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Abstract. We investigate large set axioms defined in terms of elementary embeddings

over constructive set theories, focusing on IKP and CZF. Most previously studied large

set axioms, notably, the constructive analogues of large cardinals below 0], have proof-

theoretic strength weaker than full Second-order Arithmetic. On the other hand, the

situation is dramatically different for those defined via elementary embeddings. We show

that by adding to IKP the basic properties of an elementary embedding j : V →M for ∆0-

formulas, which we will denote by ∆0-BTEEM , we obtain the consistency of ZFC and more.

We will also see that the consistency strength of a Reinhardt set exceeds that of ZF + WA.

Furthermore, we will define super Reinhardt sets and TR, which is a constructive analogue

of V being totally Reinhardt, and prove that their proof-theoretic strength exceeds that

of ZF with choiceless large cardinals.

§1. Introduction. Large cardinals have played a pivotal role in set theory,
and many of them can be defined in terms of elementary embeddings. Associating
large cardinals with elementary embeddings appeared first in Scott’s pioneering
paper [59], and was further systematically developed throughout the 1960s and
1970s. Many of these results were collected by Reinhardt and Solovay around the
early 1970s, which was published later with Kanamori in the expository paper
[60].

The attempt to find ever stronger notions of large cardinal axioms culminated
in the principle now known as a Reinhardt cardinal, which was first mentioned in
Reinhardt’s doctoral thesis [57]. A Reinhardt cardinal is a critical point of a non-
trivial elementary embedding j : V → V . Unfortunately, the fate of a Reinhardt
cardinal in ZFC is that of inconsistency, as if Icarus falls into the sea as he flew too
close to the sun. A famous result by Kunen [34] proves that Reinhardt cardinals
are incompatible with the Axiom of Choice and it is still unknown if ZF with
a Reinhardt cardinal is consistent. However, there has been little study of the
consistency of Reinhardt cardinals in the choiceless context and few results about
the implications of such axioms have appeared in the literature before 2010. The
only exception the authors know of is a result of Apter and Sargsyan [7], and
other relevant results about Reinhardt embeddings focused on its inconsistency.
Notable examples include Suzuki’s non-definability of embeddings j : V → V
over ZF [61] or Zapletal’s PCF-theoretic proof of Kunen’s inconsistency theorem
[66].
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2 HANUL JEON AND RICHARD MATTHEWS

Choiceless large cardinals are large cardinal notions that extend a Reinhardt
cardinal and are therefore incompatible with the Axiom of Choice. A super Rein-
hardt cardinal was employed by Hugh Woodin in 1983 to prove the consistency of

ZFC + I0, which had a focal role in establishing the consistency of ZF + ADL(R).
A Berkeley cardinal appeared around 1992 by Woodin at his set theory seminar
as an attempt to provide a large cardinal notion that was refutable from ZF alone.
While no such inconsistency has been found so far, it has since become an inter-
esting principle in itself. Current research on choiceless large cardinals emerged
in the mid-2010s as part of a project to explore Woodin’s HOD dichotomy (see
[65, Section 7.1] or [10] for details), under the thesis that such cardinals would
indicate the V was ‘far’ from HOD in some sense. Bagaria, Koellner, and Woodin
collected and analyzed notions of choiceless large cardinals in [10], and the theory
of choiceless large cardinals was further developed in various papers by authors
including Cutolo, Goldberg, and Schlutzenberg.

One of the most striking results along this line is a result by Goldberg [26],
which establishes the consistency of ZF+j : Vλ+2 → Vλ+2 modulo large cardinals
over ZFC:

Theorem 1.1 (Goldberg [26, Theorem 6.20]). These two theories are
equiconsistent over ZF + DC:

1. For some ordinal λ, there is an elementary embedding j : Vλ+2 → Vλ+2.1

2. AC + I0. a
Furthermore, Goldberg proved that the existence of an elementary embedding

j : Vλ+3 → Vλ+3 exceeds almost all of the traditional large cardinal hierarchy
over ZFC.

Theorem 1.2 (Goldberg [26, Theorem 6.16]). Working over ZF + DC, the
existence of a Σ1-elementary embedding j : Vλ+3 → Vλ+3 implies the consistency
of ZFC + I0.

In the other direction, we can try to ‘salvage’ an elementary embedding j : V →
V by weakening the background set theory. One direction of research in this man-
ner was conducted by Corazza. Corazza [12] introduced the Wholeness axiom,
WA, by dropping Replacement for j-formulas. WA is known to be weaker than I3.
Corazza further weakened WA to the Basic Theory of Elementary Embeddings,
BTEE, in [13] which is the weakest setting one needs to express the existence of
an elementary embedding by dropping all axioms for j-formulas in the extended
language. The resulting axiom is known to be weaker than the existence of 0].

Another direction to weaken the assumptions is by dropping Powerset. How-
ever, it should be noted that ZFC−, the theory obtained by ejecting Powerset
from ZFC and only assuming Replacement, is ill-behaved with elementary em-
beddings. For example, in [23] it is shown that  Loś’s theorem can fail over ZFC−,
and a cofinal Σ1-elementary embedding need not be fully elementary. On the
other hand, they also show that these issues can be avoided by strengthening
ZFC− to ZFC−, which is obtained by additionally assuming Collection.

Further research along this line is characterizing large cardinal notions in terms
of models of ZFC− with an ultrafilter predicate (For example, [30] or [25]). Large

1Karagila proposed the term Kunen cardinal for a critical point of an elementary embedding

j : Vλ+2 → Vλ+2 since Kunen’s result [34] shows no such cardinal can exist in ZFC.
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cardinals defined in this way refine the large cardinal hierarchy between a Ramsey
cardinal and a measurable cardinal, and provide bounds for the consistency
strength of ZFC− with an elementary embedding. As one such example of this
characterization, we have the following theorem.

Theorem 1.3 ([38, Theorem 10.5.7]). ZFC with a locally measurable cardinal
proves the consistency of ZFC− + DC<Ord plus the existence of a non-trivial
elementary embedding j : V →M .

Finally, it can be shown that an elementary embedding j : V → V is possible
in ZFC− under the large cardinal assumption of ZFC + I1:

Theorem 1.4 ([38, Theorem 9.3.2] or [39, Theorem 2.2]). ZFC proves the
following: there is an elementary embedding k : Vλ+1 → Vλ+1 if and only if there
is an elementary embedding j : Hλ+ → Hλ+ .

As a corollary, ZFC−j
2 is compatible (modulo large cardinals over ZFC) with

a non-trivial elementary embedding j : V → V which additionally satisfies that
Vcrit j exists.

However, [39] also showed there is a limitation on the properties of such an
elementary embedding j : V → V over ZFC−. One of these restrictions is that
j : V → V cannot be cofinal3:

Theorem 1.5 ([38, Theorem 10.2.3] or [39, Theorem 5.4]). Working over
ZFC−j , if j : V → V is a non-trivial Σ0-elementary embedding such that Vcrit j

exists, then it cannot be cofinal.

We may also weaken the background set theory by dropping the law of ex-
cluded middle, that is, moving into a constructive setting. Since some statements
are no longer equivalent over a constructive background, we need to carefully for-
mulate constructive counterparts of classical notions, including the axiom sys-
tems of constructive set theories.

The first form of a constructive set theory was defined by H. Friedman [15],
and is now known as Intuitionistic ZF, IZF. In [15], Friedman showed that IZF
and ZF are mutually interpretable by using the combination of double-negation
translation and non-extensional set theory. Another flavor of constructive set
theory appeared as an attempt to establish a formalization of Bishop’s Con-
structive analysis. Myhill [42] gave his own formulation of a constructive set
theory CST. However, its language is different from the standard one – CST
includes natural numbers as primitive objects, while ZF does not. The other for-
mulation of a constructive set theory, which is closer to standard ZF, was given
by Aczel [1] via a type-theoretic interpretation. Aczel’s constructive set theory
is called Constructive ZF, CZF. Aczel further developed a theory on CZF and its
relationship with Martin-Löf type theory in the consequent works [2] and [3]. In
particular, Aczel’s last paper in the sequel, [3], defined regular sets, which begins
the program to define large cardinals over CZF.

2Where ZFC−j is ZFC− in the langauge expanded to include j. See Convention 4.1.
3An embedding j : M → N is said to be cofinal if for every y ∈ N there is an x ∈ M such

that y ∈ j(x).
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The first research on constructive analogues of large cardinal axioms was done
by Friedman and Ščedrov [16]. Unlike classical set theories, ordinals over con-
structive set theories are not well-behaved. This motivated defining large car-
dinal notions over constructive set theories in a structural manner, resulting
in large set axioms. They defined and analyzed inaccessible sets, Mahlo sets,
and various elementary embeddings over IZF, and proved that their consistency
strength is no different from their classical counterparts.

Large set axioms over constructive set theories appeared first in various papers
of Rathjen (for example, [45], [46], [55], [47]). The first appearance of large set
axioms over CZF was in a proof-theoretic context, and their relationship with
better known theories, like extensions of Martin-Löf type theories or KP, were
emphasized. An initial analysis of large set axioms over CZF can be found in [5]
or [6], and this has been further extended by Gibbons [21] and Ziegler [67] in
each of their doctoral theses. Gibbons [21] extended Rathjen’s analysis on the
proof-theoretic strength of CZF in [45] to CZF with Mahlo sets. Furthermore,
Gibbons’ thesis is the first publication that shows the definition of a critical set4

Unlike other results around large set axioms over CZF, Ziegler’s thesis focused
on what we can derive about large set axioms from CZF alone. For example, he
observed that the number of inaccessible sets may not affect the proof-theoretic
strength:

Theorem 1.6 ([67, Chapter 6]). The following theories are equiconsistent:

1. CZF with an inaccessible set,
2. CZF with two inaccessible sets, and
3. CZF with ω inaccessible sets.

Ziegler also examined elementary embeddings over CZF in detail, and one of
his striking results is that every Reinhardt embedding j : V → V must be cofinal
(see Proposition 4.8 for the formal statement of the theorem).

Ziegler’s thesis ends with the following result that elementary embeddings are
incompatible with the principle of subcountability, which asserts that for every
set there is a partial surjection from ω onto it. This can be seen as a constructive
analogue to Scott’s early result in [59] that measurable cardinals are incompatible
with the Axiom of Constructibility.

Theorem 1.7 (Ziegler [67, Theorem 9.93]). Over CZF, the combination
of the Axiom of Subcountability and the existence of a critical set results in a
contradiction. a

Rathjen analyzed the proof-theoretic strength of small large sets, large set
notions whose classical counterpart is weaker than the existence of 0], over CZF
(See Section 3, especially Theorem 3.10), and the proof-theoretic strength of all
currently known small large set axioms over CZF is weaker than that of Second-
order Arithmetic. However, the proof-theoretic strength of large large sets, large
set notions defined in terms of elementary embeddings, is yet to receive a formal
rigorous treatment.

We end this introduction by noting some history of the development of this
work. A first version of this paper can be found in [31] where the first author

4He called it a measurable set. We will address this terminology in Section 4.
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studied the consistency strength of a Reinhardt set over CZF with Full Separa-
tion. The second author’s PhD thesis, [38], included an initial investigation into
elementary embeddings of KP and IKP. This version can be seen as a combina-
tion of the previous work by the individual authors and extensively extends the
results found in either source.

Main results. It turns out that the proof-theoretic strength of large large
set vastly exceeds that of ZFC. In fact, we just need a small fragment of the
properties of an elementary embedding, that we shall denote by ∆0-BTEEM ,
which is the minimal theory needed to claim that j : V →M is a ∆0-elementary
embedding, to exceed the proof-theoretic strength of ZFC.

Theorem.

1. (Theorem 5.1) Working over IKP, let K be a transitive set such that K |=
∆0-Sep, ω ∈ K and let j : V → M be a ∆0-elementary embedding whose
critical point is K. Then K |= IZF.

2. (Corollary 5.14) Furthermore, if we additionally allow Set Induction and

Collection for Σj,M -formulas and add Separation for ∆j,M
0 -formulas, then

we can define jω(K) :=
⋃
n∈ω j

n(K) and prove that jω(K) satisfies
IZF + BTEE plus Set Induction for j-formulas.

3. (Theorem 5.21 and Theorem 6.37) As a consequence, the following two theo-
ries prove the consistency of ZFC + BTEE plus Set Induction for j-formulas:
CZFj,M with a critical set, and IKPj,M plus a Σ-Ord-inary elementary em-
bedding with a critical point κ ∈ Ord.

The next natural question would be how strong a Reinhardt set is. It turns
out that Reinhardt sets are very strong over CZF:

Theorem. (Theorem 6.41) CZF with a Reinhardt set proves the consistency of
ZF + WA.

These two results motivate an idea that the proof-theoretic strength of stronger
large set notions may go beyond that of ZF with choiceless large cardinals. This
idea turns out to hold, and a constructive formulation of super Reinhardt car-
dinals witnesses this. We can push this idea further, so that we can expect that
we may reach an ‘equilibrium’ by strengthening large set axioms once more, in
the sense that adding some large set notions to CZF has the same proof-theoretic
strength as that of IZF plus the same axiom. We can see that the assertion that
V resembles Vκ for a total Reinhardt cardinal κ, which we will call TR, witnesses
this claim.

However, both our analogues of super Reinhardts and total Reinhardts
require a second-order formulation. We will resolve this issue by defining CGB,
which is a constructive version of GB. Moreover, formulating an elementary
embedding in a constructive context requires infinite connectives because there
is no obvious way to cast the elementarity into a single formula. (It is possible
in a classical context because every Σ1-elementary embedding j : V → M is
fully elementary.) This motivates CGB∞, CGB with infinite connectives.
Extending CGB with infinite connectives will turn out to be ‘harmless’ in the
sense that CGB∞ is conservative over CGB. Under this setting, we have the
following results:
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Theorem.

1. (Theorem 6.39) CGB∞ with a super Reinhardt set proves the consistency of
ZF with a Reinhardt cardinal,

2. (Corollary 7.8) CGB∞ + TR interprets ZF + TR.

The structure of the paper. This paper is largely divided into two parts:
the ‘internal’ analysis of large set axioms over constructive set theories, and de-
riving a lower bound for large large set axioms in terms of extensions of classical
set theories. Defining some of these axioms will require largely unexplored no-
tions including second-order constructive set theories, so we define the necessary
preliminary notions in Section 2.

Next, we review the basic properties of large set axioms over constructive set
theories. This is also divided into two sections: in Section 3, we review small
large sets over constructive set theories and their connection with classical set
theories. Then in Section 4, we define large large sets over constructive set
theories, including analogues of choiceless large cardinals. Having laid down the
necessary framework, in Section 5 we provide an internal analysis of large set
axioms. The main consequence of Section 5 is that we provide lower bounds
for the consistency strength of large large set axioms in terms of extensions of
IZF, from which it will be easier to interpret classical theories by applying a
double-negation translation.

In any case, we want to derive the consistency strengths in terms of exten-
sions of classical set theories. Hence we need to develop one of the methods
to transform intuitionistic theories into classical ones. This is what Section 6
mainly focuses on. In Section 6, we review Gambino’s Heyting-valued interpreta-
tion defined in [20] and investigate this interpretation under the double-negation
topology. We will see that the interpretation translates IZF into the classical
theory ZF. Furthermore, we will also reduce extensions of IZF to those of ZF by
using the double-negation topology. Section 7 is devoted to the double-negation
translation of second-order set theories and the concept of the universe being
totally Reinhardt. We summarize the lower bound of the consistency strength
of large large set axioms over constructive set theories in terms of extensions of
ZFC in Section 8 before ending by posing some questions for future investigation
in Section 9.

§2. Preliminaries. In this section, we will briefly review ZFC without Power
Set, ZFC−, and constructive set theory. There are various formulations of con-
structive set theories, but we will focus on CZF. In addition, we will define the
second-order variant CGB and IGB of CZF and IZF respectively.

2.1. ZFC without Power Set. We will frequently mention ZFC without
Power Set, denoted ZFC−. However, ZFC− is not obtained by just dropping
Power Set from ZFC:

Definition 2.1. ZF− is the theory obtained from ZF by dropping Power Set
and using Collection instead of Replacement. ZFC− is obtained by adding the
Well-Ordering Principle to ZF−.
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Note that using Collection instead of Replacement is necessary to avoid
pathologies. See [23] for the details. It is also known by [17] that ZFC− does
not prove the reflection principle.

2.2. Intuitionistic set theory IZF and Constructive set theory CZF.
There are two possible constructive formulations of ZF, namely IZF and CZF,
although we will focus on the latter.
IZF appeared first in H. Friedman’s paper [15] on the double-negation of set

theory. Friedman introduced IZF as an intuitionistic counterpart of ZF and
showed that there is a double-negation translation from ZF to IZF, analogous to
that from PA to HA.

Definition 2.2. IZF is the theory that comprises the following axioms: Ex-
tensionality, Pairing, Union, Infinity, Set Induction, Separation, Collection, and
Power Set.

Remark 2.3. We take the axiom of Infinity to be the statement ∃a(∃x(x ∈
a)∧∀x ∈ a ∃y ∈ a (x ∈ y)). See Remark 2.13 for alternative, equivalent, ways to
define Infinity.

Constructive Zermelo-Fraenkel set theory, CZF, is introduced by Aczel [1] with
his type-theoretic interpretation of CZF. We will introduce subtheories called
Basic Constructive Set Theory, BCST, and CZF− before defining the full CZF.

Definition 2.4. BCST is the theory that consists of Extensionality, Pairing,
Union, Emptyset, Replacement, and ∆0-Separation. CZF− is obtained by adding
the following axioms to BCST: Infinity, Set Induction, and Strong Collection
that states the following: if φ(x, y) is a formula such that for given a, if ∀x ∈
a∃yφ(x, y), then we can find b such that

∀x ∈ a∃y ∈ bφ(x, y) ∧ ∀y ∈ b∃x ∈ aφ(x, y).

We also provide notation for frequently-mentioned axioms:

Definition 2.5. We will use Sep, ∆0-Sep, ∆0-LEM for denoting Full Separation
(i.e., Separation for all formulas), ∆0-Separation and the law of excluded middle
for ∆0-formulas respectively.

The combination of Full Separation and Collection proves Strong Collection,
but the implication does not hold if we weaken Full Separation to ∆0-Separation.
It is also known that ∆0-Separation is equivalent to the existence of the inter-
section of two sets. See Section 9.5 of [6] for its proof.

Proposition 2.6. Working over BCST without ∆0-Separation, ∆0-Separation
is equivalent to the Axiom of Binary Intersection, which asserts that a∩ b exists
if a and b are sets. a

It is convenient to introduce the notion of multi-valued function to describe
the Strong Collection and Subset Collection axioms that we will discuss shortly.
Let A and B be classes. A relation R ⊆ A × B is a multi-valued function from
A to B if domR = A. In this case, we write R : A ⇒ B. We use the notation
R : A ⇔⇒ B if both R : A ⇒ B and R : B ⇒ A hold. The reader is kept in mind
that the previous definition must be rephrased in an appropriate first-order form
if one of A, B, or R is a (definable) proper class in the same way as how we
translate classes over ZF.
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Then we can rephrase Strong Collection as follows: for every set a and a class
multi-valued function R : a⇒ V , there is an ‘image’ b of a under R, that is, a
set b such that R : a⇔⇒ b.

Now we can state the Axiom of Subset Collection:

Definition 2.7. The Axiom of Subset Collection states the following: Assume
that φ(x, y, u) is a formula that defines a collection of multi-valued functions
from a to b parametrized by u ∈ V : that is, φ(x, y, u) satisfies ∀u∀x ∈ a∃y ∈
bφ(x, y, u). Then we can find a set c such that

∀u∃d ∈ c[∀x ∈ a∃y ∈ dφ(x, y, u) ∧ ∀y ∈ d∃x ∈ aφ(x, y, u)].

CZF is the theory obtained by adding Subset Collection to CZF−.

We may state Subset Collection informally as follows: for every first-order
definable collection of multi-valued class functions 〈Ru : a ⇒ b | u ∈ V 〉 from a
to b, we can find a set c of all ‘images’ of a under some Ru. That is, for every
u ∈ V there is d ∈ c such that Ru : a⇔⇒ d.

There is a simpler axiom equivalent to Subset Collection, known as Fullness,
which is a bit easier to understand.

Definition 2.8. The Axiom of Fullness states the following: Let mv(a, b) be the
class of all multi-valued functions from a to b. Then there is a subset c ⊆ mv(a, b)
such that if r ∈ mv(a, b), then there is s ∈ c such that s ⊆ r. Such a c is said to
be full in mv(a, b).

Then the following hold:

Proposition 2.9 ([5], [6]).

1. (CZF−) Subset Collection is equivalent to Fullness.
2. (CZF−) Power Set implies Subset Collection.
3. (CZF−) Subset Collection proves the function set ab exists for all a and b.
4. (CZF−) If ∆0-LEM holds, then Subset Collection implies Power Set.

We will not provide a proof for the above proposition, but the reader may
consult with [5] or [6] for its proof. We also note here that [45] showed that
Subset Collection does not increase the proof-theoretic strength of CZF− while
[51] showed that the Axiom of Power Set does.

The following lemma is useful to establish (1) of Proposition 2.9, and is also
useful to treat multi-valued functions in general:

Lemma 2.10. Let R : A ⇒ B be a multi-valued function. Define A(R) : A ⇒
A×B by

A(R) = {〈a, 〈a, b〉〉 | 〈a, b〉 ∈ R}.

For S ⊆ A×B, let AS(R) = {〈a, 〈a, b〉〉|〈a, b〉 ∈ R ∩ S}.5 Then

1. AS(R) : A⇒ S ⇐⇒ R ∩ S : A⇒ B,
2. AS(R) : A⇔ S ⇐⇒ S ⊆ R.

Proof. For the first statement, observe that AS(R) : A⇒ S is equivalent to

∀a ∈ A∃s ∈ S[〈a, s〉 ∈ AS(R)].

5After this lemma we will often abuse notation by referring to AS(R) simply as A(R).
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By the definition of AS , this is equivalent to

∀a ∈ A∃s ∈ S[∃b ∈ B(s = 〈a, b〉 ∧ 〈a, b〉 ∈ R ∩ S)].

We can see that the above statement is equivalent to ∀a ∈ A∃b ∈ B[〈a, b〉 ∈
R ∩ S], which is the definition of R ∩ S : A⇒ B. For the second claim, observe
that AS(R) : A⇔ S is equivalent to

∀s ∈ S∃a ∈ A[〈a, s〉 ∈ AS(R)].

By rewriting AS to its definition, we have

∀s ∈ S∃a ∈ A[∃b ∈ B(s = 〈a, b〉 ∈ R ∩ S)].

We can see that it is equivalent to S ⊆ R. a

The following lemma is useful when we work with multi-valued functions be-
cause it allows us to replace class multi-valued functions over A with set multi-
valued functions in A:

Lemma 2.11. Assume that A satisfies second-order Strong Collection, that is,
for every a ∈ A and R : a⇒ A, we have b ∈ A such that R : a ⇔⇒ b.6 If a ∈ A
and R : a⇒ A, then there is a set c ∈ A such that c ⊆ R and c : a⇒ A.

Proof. Consider A(R) : a ⇒ a × A. By second-order Strong Collection over A,
there is c ∈ A such that A(R) : a ⇔⇒ c. Hence by Lemma 2.10, we have c ⊆ R
and c : a⇒ A. a

It is known that every theorem of CZF is also provable in IZF. Moreover, IZF
is quite strong in the sense that its proof-theoretic strength is the same as that
of ZF. On the other hand, it is known that the proof-theoretic strength of CZF is
equal to that of Kripke-Platek set theory KP. IZF is deemed to be impredicative
due to the presence of Full Separation and Power Set.7 On the other hand, CZF
is viewed as predicative since it allows for a type-theoretic interpretation such as
the one given by Aczel, [1]. However, adding the full law of excluded middle to
IZF or CZF results in the same theory, namely ZF.

2.3. Kripke-Platek set theory. Kripke-Platek set theory is the natural
intermediate theory between arithmetic and stronger set theories like ZF. KP
has a natural intuitionistic counterpart called Intuitionistic Kripke-Platek, which
we denote by IKP.

Definition 2.12. IKP is the theory consisting of Extensionality, Pairing, Union,
Infinity, Set Induction, ∆0-Collection, and ∆0-Separation.

Remark 2.13. The reader is reminded that there are different formulations of
KP and IKP.

1. Some authors such as in [9] restricts Set Induction in KP and IKP to Π1-
formulas. We include Full Set Induction in KP and IKP.

6If A is also transitive then A shall be called regular, and this will be formally defined in
Definition 3.1.

7There is no consensus on the definition of predicativity. The usual informal description of
predicativity is rejecting self-referencing definitions.
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2. The formulation of Infinity over IKP is more subtle. Some authors such as
[9] exclude Infinity from KP and IKP, and denote KP with Infinity KPω. We
also have an apparently stronger formulation, namely Strong Infinity, which
is defined as follows: let Ind(a) be the formula ∅ ∈ a∧∀x ∈ a(x∪{x} ∈ a).
Then Strong Infinity is the statement

∃a[Ind(a) ∧ ∀b[Ind(b)→ a ⊆ b]].

Moreover, Lubarsky [36] uses another alternative formulation of Infinity
stated as follows:

∃a[Ind(a) ∧ ∀x ∈ a[x = 0 ∨ ∃y ∈ a(x = y ∪ {y})]].

However, these formulations are all equivalent over IKP. The equivalence of
Strong Infinity and Lubarsky’s Infinity is easy to prove. The harder part is
proving Strong Infinity from Infinity. This is done over CZF in Proposition
4.7 of [5], and one can verify that the proof also works over IKP.

Finally, let us observe that IKP proves Collection for a broader class of formulas
named Σ-formulas:

Definition 2.14. The collection of Σ-formulas is the least collection which con-
tains the ∆0-formulas and is closed under conjunction, disjunction, bounded
quantifications, and unbounded ∃.
Theorem 2.15. For every Σ-formula ϕ(x, y, u) the following is a theorem of
IKP: For every set u, if ∀x ∈ a∃yϕ(x, y, u) then there is a set b such that

∀x ∈ a∃y ∈ bϕ(x, y, u) ∧ ∀y ∈ b∃x ∈ aϕ(x, y, u).

We refer the reader to Section 19 of [6] or Section 11 of [5] for some of the
basic axiomatic consequences of IKP and their proofs.

2.4. Inductive definition. Various recursive constructions on CZF are given
by inductive definitions. The reader might refer to [5] or [6] to see general
information about the inductive definition, but we will review some of the details
for the reader who are not familiar with it.

Definition 2.16. An inductive definition Φ is a class of pairs 〈X, a〉. To any
inductive definition Φ, associate the operator ΓΦ(C) = {a | ∃X ⊆ C〈X, a〉 ∈ Φ}.
A class C is Φ-closed if ΓΦ(C) ⊆ C.

We may think of Φ as a generalization of a deductive system, and ΓΦ(C) as
a class of theorems derivable from the class of axioms C. Some authors use the
notation X `Φ a or X/a ∈ Φ instead of 〈X, a〉 ∈ Φ. The following theorem says
each inductive definition induces a least fixed point:

Theorem 2.17 (Class Inductive Definition Theorem, CZF−). Let Φ be an
inductive definition. Then there is the smallest Φ-closed class I(Φ).

The following lemma is the essential tool for the proof of the Class Inductive
Definition Theorem. See Lemma 12.1.2 of [6] for its proof:

Lemma 2.18 (CZF−). Every inductive definition Φ has a corresponding itera-
tion class J , which satisfies Ja = Γ

(⋃
x∈a J

x
)

for all a, where Ja = {x | 〈a, x〉 ∈
J}.
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2.5. Constructive L. In this subsection, we will define the constructible
universe L and discuss its properties over IKP.

Constructing L under a constructive manner was first studied by Lubarsky
[35]. Lubarsky developed the properties of L over IZF, and showed that IZF
proves L satisfies IZF plus V = L. Crosilla [14] showed that the construction of
L carries over to IKP8.

There are at least two ways of defining L: the first is using definability over
a set model, which Lubarsky [35] and Crosilla [14] had taken. Another one
is using fundamental operations, also called Gödel operations in the classical
context, which was taken by the second author in [38]. We will follow the second
method.

Definition 2.19 (Fundamental operations). Define

• 1st(x) = a iff ∃u ∈ x∃b ∈ u(x = 〈a, b〉),
• 2nd(x) = b iff ∃u ∈ x∃a ∈ u(x = 〈a, b〉),
• y”{z} := {u | 〈z, u〉 ∈ y}.
Then we define the fundamental operations as follows:

• Fp(x, y) := {x, y},
• F∩(x, y) := x ∩

⋂
y,

• F∪(x) :=
⋃
x,

• F\(x, y) := x \ y,
• F×(x, y) := x× y,
• F→(x, y) = x ∩ {z | y is an ordered pair and (z ∈ 1st(y)→ z ∈ 2nd(y))},
• F∀(x, y) := {x”{z} | z ∈ y},
• Fd(x, y) := domx
• Fr(x, y) := ranx
• F123(x, y) := {〈u, v, w〉 | 〈u, v〉 ∈ x ∧ w ∈ y},
• F132(x, y) := {〈u,w, v〉 | 〈u, v〉 ∈ x ∧ w ∈ y},
• F=(x, y) := {〈v, u〉 ∈ y × x | u = v},
• F∈(x, y) := {〈v, u〉 ∈ y × x | u ∈ v}.

For simplicity, we shall let I be the set of all indices i of Fi presented in the
above definition.

The following lemma says that we can represent every ∆0-formula in terms of
fundamental operations:

Lemma 2.20 ([38], Lemma 5.2.4, IKP). Let φ(x1, · · · , xn) be a bounded for-
mula whose free variables are all expressed. Then there is a term Fφ built up
from fundamental operations such that

IKP ` Fφ(a1, · · · , an) = {〈xn, · · · , x1〉 ∈ an × · · · × a1 | φ(x1, · · · , xn)}.a
Definition 2.21. For a set a, define

• E(a) := a ∪ {Fi(~x) | ~x ∈ a ∧ i ∈ I},
• D(a) := E(a ∪ {a}), and
• Def(a) :=

⋃
n∈ω Dn(a).

Definition 2.22. For an ordinal α, define Lα :=
⋃
β∈α Def(Lβ) and L :=⋃

α∈Ord Lα.

8Crosilla uses CZFr to denote what we called IKP
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12 HANUL JEON AND RICHARD MATTHEWS

Then we have the following properties of the constructible hierarchy:

Proposition 2.23 ([38, Proposition 5.3.12], IKP). For all ordinals α, β,

1. If β ∈ α, then Lβ ⊆ Lα,
2. Lα ∈ Lα+1,
3. Lα is transitive, and
4. Lα is a model of Bounded Separation. a
Moreover we can see that IKP proves L is a model of IKP:

Theorem 2.24 ([38, Theorem 5.3.6 and 5.3.7], IKP). IKPL holds. That is,
if σ is a theorem of IKP, then IKP proves σL. Furthermore, L thinks V = L
holds. a

We will not examine its proof in detail, but it is still worthwhile to mention
relevant notions that are necessary for the proof. One of these is hereditary
addition, which was first formulated by Lubarsky [35]. This is necessary because
α ∈ β does not entail α+ 1 ∈ β + 1 constructively.

Definition 2.25. For ordinals α and γ, define α+H γ by recursion on α:

α+H γ :=
(⋃
{β +H γ | β ∈ α} ∪ {α}

)
+ γ.

Another relevant notion is augmented ordinals. Lubarsky [35] introduced this
notion to develop properties of the constructible hierarchy over IZF. Augmented
ordinals are not needed to verify that L is a model of IKP, but are used to
prove the Axiom of Constructibility, and we will use them when working with
elementary embeddings.

Definition 2.26. Let α be an ordinal. Then α augmented, α#, is defined re-
cursively on α as

α# :=
⋃
{β# | β ∈ α} ∪ (ω + 1).

Remark 2.27. In [38], the second author distinguished Strong Infinity and
Infinity, and take a more cautious way to define L: first, one defines a subsidiary
hierarchy Lα by Lα :=

⋃
β∈αD(Lβ). Then define L :=

⋃
α∈Ord Lα. Finally, it is

shown that if Strong Infinity holds, then L satisfies IKP and L = L.
The reason for taking this method is that the equivalence of Infinity and Strong

Infinity over IKP without Infinity is quite non-trivial. This way of defining L also
has the benefit that it works even in the absence of any form of Infinity.

Remark 2.28. Unlike either IKP or IZF, CZF does not prove that L satisfies
CZF, in particular CZF cannot prove that Exponentiation holds in L. Crosilla [14]
showed that CZF proves L validates IKP with full Collection. Full details of the
above construction using fundamental operations, alongside a full investigation
of which axioms of CZF hold in L was undertaken by the second author and
Michael Rathjen in [40].

2.6. Second-order set theories. We need a second-order formulation of
constructive set theories in order to define large set axioms corresponding to
large cardinals beyond choice. We will formulate constructive analogues of
Gödel-Bernays set theory GB whose first-order counterparts are CZF and IZF,
respectively. We will use ∀0 and ∃0 for quantifications over sets, and ∀1 and ∃1

for quantifications over classes. We omit the superscript if the context is clear.
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Following standard conventions, we will use uppercase letters for classes and
lowercase letters for sets, unless specified otherwise. The reader could consult
with [64] if they are interested in classical second-order set theory.

Definition 2.29. Constructive Gödel-Bernays set theory (CGB) is defined as
follows: the language of CGB is two-sorted, that is, CGB has sets and classes as
its objects. CGB comprises the following axioms:

• Axioms of CZF for sets.
• Every set is a class, and every element of a class is a set.
• Class Extensionality: two classes are equal if they have the same set of

members. Formally,

∀1X,Y [X = Y ↔ ∀0x(x ∈ X ↔ x ∈ Y )].

• Elementary Comprehension: if φ(x, p, C) is a first-order formula with a
class parameter C, then there is a class A such that A = {x | φ(x, p, C)}.
Formally,

∀0p∀1C∃1A∀0x[x ∈ A↔ φ(x, p, C)].

• Class Set Induction: if A is a class, and if we know a set x is a member of A
if every element of x belongs to A, then A is the class of all sets. Formally,

∀1A
[
[∀0x(∀0y ∈ x(y ∈ A)→ x ∈ A)]→ ∀0x(x ∈ A)

]
.

• Class Strong Collection: if R is a class multi-valued function from a set a
to the class of all sets, then there is a set b which is an ‘image’ of a under
R. Formally,

∀1R∀0a[R : a⇒ V → ∃0b(R : a⇔⇒ b)].

Remark 2.30. We do not need to add the Class Subset Collection axiom

∀1R∀0a∀0b
[
[R ⊆ V × V × V ∧ ∀0u(R �u : a⇒ b)]

→ ∃0c∀0u∃0d ∈ c(R �u : a⇔⇒ d)
]

9

as an axiom of CGB because it is derivable from the current formulation of CGB:
we can prove it from the first-order Fullness and the Class Strong Collection by
mimicking the proof of Set Collection from Fullness and Strong Collection.

The reader should also note that, unlike classical GB, there is no additional
Separation axiom for sets: that is, we do not assume a ∩ A = {x ∈ a | x ∈ A}
is a set for a given class A. In fact, the assumption that a ∩ A is always a set
implies Full Separation due to Elementary Comprehension.

Thus we introduce a new terminology for classes such that A ∩ a is always a
set:

Definition 2.31. A class A is amenable if A ∩ a is a set for any set a.

The following lemma shows every class function is amenable:

Lemma 2.32 (CGB). Let F be a class function, then F is amenable.

9Here R �u is the class {〈x, y〉 | 〈u, x, y〉 ∈ R}.
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14 HANUL JEON AND RICHARD MATTHEWS

Proof. It suffices to show that if F is a class function then F � a is a set for
each a ∈ V . Consider the class function A(F � a) : a → a × V , where A is the
operation we defined in Lemma 2.10. By Class Strong Collection, we can find a
set b such that A(F � a) : a⇔⇒ b.

We claim that b = F � a. For F � a ⊆ b, if x ∈ a then we can find y ∈ b such
that 〈x, y〉 ∈ A(F � a). Hence y = 〈x, z〉 ∈ F � a for some z. By functionality of
F , we have y = 〈x, F (x)〉. For the remaining inclusion, if y ∈ b, then there is
x ∈ a such that 〈x, y〉 ∈ A(F � a). Now we can prove that y = 〈x, F (x)〉 since F
is a class function. a

Next, we define the second-order variant of IZF which we denote by IGB. IGB
allows Separation for arbitrary classes as classical GB does.

Definition 2.33. Intuitionistic Gödel-Bernays set theory (IGB) is obtained by
adding the following axioms to CGB:

1. Axioms of IZF for sets.
2. Class Separation: every class is amenable.

We know that classical GB is a conservative extension of ZF. We expect the
same results to hold for constructive set theories. The following theorem shows
it actually holds, however, its proof will require a small amount of proof theory.
We borrow ideas of the proof from [63].

Proposition 2.34. CGB is conservative over CZF. IGB is conservative over
IZF.

Proof. We only provide the proof for the conservativity of CGB over CZF since
the same argument applies to the conservativity of IGB over IZF. We will rely
on the cut-elimination theorem of intuitionistic predicate logic. The reader who
might be unfamiliar with this can consult with [44] or [8].

Assume that σ is a first-order sentence that is deducible from CGB. Then we
have a cut-free derivation of σ from a finite set Γ of axioms of CGB. It is known
that every cut-free derivation satisfies the subformula property, that is, every
formula appearing in the deduction is a subformula of σ or Γ.

Thus we have a finite set {X0, · · ·Xn} of class variables that appear in the
deduction. Now we divide into the following cases:

1. If Xi appears in an instance of Class Comprehension in the deduction,
then the deduction contains x ∈ Xi ↔ φ(x, p, C) for some class-quantifier
free φ. Now replace every x ∈ Xi with φ(x, p, C), and Xi = Y with
∀x(φ(x, p, C)↔ x ∈ Y ) in the deduction.

2. Otherwise, replace x ∈ Xi with x = x, and Xi = Y with ∀x(x = x ↔ x ∈
Y ).

Then we can see that the resulting deduction is a first-order proof of σ. Hence
CGB ` σ. a

2.7. Second-order set theories with infinite connectives. We will use
infinite conjunctions to circumvent technical issues about defining elementary
embeddings. Hence we define an appropriate infinitary logic and the correspond-
ing second-order set theories. The following definition appears in [43]:
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Definition 2.35 (G3iω, [43]). The intuitionistic cut-free first-order sequent cal-
culus G3iω is defined by the following rules: initial sequents are of the form
P,Γ =⇒∆, P and its deduction rules are:

A,B,Γ =⇒∆

A ∧B,Γ =⇒∆
L∧ Γ =⇒∆, A Γ =⇒∆, B

Γ =⇒∆, A ∧B
R∧

Ak,
∧
n∈ω An,Γ =⇒∆∧

n∈ω An,Γ =⇒∆
L
∧

k

{Γ =⇒∆, An | n > 0}
Γ =⇒∆,

∧
n∈ω An

R
∧

A,Γ =⇒∆ B,Γ =⇒∆

A ∨B,Γ =⇒∆
L∨ Γ =⇒∆, A,B

Γ =⇒∆, A ∨B
R∨

{Γ, An =⇒∆ | n < ω}
Γ,
∨
n∈ω An =⇒∆

L
∨ Γ =⇒∆,

∨
n∈ω An, Ak

Γ =⇒∆,
∨
n∈ω An

R
∨

k

Γ =⇒∆, A B,Γ =⇒∆

A→ B,Γ =⇒∆
L→ A,Γ =⇒∆, B

Γ =⇒∆, A→ B
R→

⊥,Γ =⇒∆
L⊥

A[t/x],Γ =⇒∆

∃xA,Γ =⇒∆
L∃ Γ =⇒∆,∃xA,A[t/x]

Γ =⇒∆,∃xA
R∃

∀xA,A[t/x],Γ =⇒∆

∀xA,Γ =⇒∆
L∀ Γ =⇒∆, A[y/x]

Γ =⇒∆,∀xA
R∀ (y fresh)

The difference between finitary logic and G3iω is that the latter allows for
infinite conjunctions and disjunctions over countable sets of formulas. This will
only be needed in order to formalise the concepts of Super Reinhardt sets and the
total Reinhardtness of V in subsection 4.2. Otherwise, throughout this paper,
we will stick to finitary logic.

It is well-known that the usual classical and intuitionistic predicate calculus
enjoys the cut-elimination rule. This is the same for G3iω. We state the following
proposition without proof. The reader might refer to [43] for its proof.

Proposition 2.36 (Cut elimination for G3iω). G3iω with the cut rule proves
the same sequents as G3iω itself (that is, without the cut rule.)

Finally, we are ready to define set theories over G3iω:

Definition 2.37. CGB∞ and IGB∞ are obtained by replacing the underlying
logic of CGB and IGB with G3iω, respectively.

Note that the infinitary logic G3iω has no role in defining new sets from the
given sets: for example, we do not have Separation schemes for infinite con-
junctions and disjunctions. The only reason we are using G3i is to enhance the
expressive power of set theories as we introduced classes into first-order set the-
ories. The following theorem shows that infinite connectives do not provide new
theorems into CGB or IGB:
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Proposition 2.38. CGB∞ is conservative over CGB for formulas with no infi-
nite connectives. The analogous result also holds between IGB∞ and IGB.

Proof. We only prove the first claim since the proof for the second claim is
identical. We can see from Proposition 2.36 that the subformula property for
G3iω holds: that is, every formula in a derivation of Γ⇒ ∆ is a subformula of Γ
or ∆.

Now assume that we have a derivation Γ =⇒σ from a finite set Γ of axioms
of CGB and an infinite-connective free formula σ. By the subformula property,
the derivation has no infinite connectives. This means that the entire derivation
can be done without rules for infinite connectives. Hence CGB proves σ. a

§3. Small Large set axioms. In this and the next section, we will discuss
large set axioms, which is an analogue of large cardinal axioms over constructive
set theories. Since ordinals over CZF could be badly behaved (for example, they
need not be well-ordered), we focus on the structural properties of given sets
to obtain higher infinities over CZF. This approach is not unusual even under
classical context since many large cardinals over ZF are characterized and defined
by structural properties of Vκ or Hκ. (One example would be the definition of
indescribable cardinals.) We also compare the relation between large cardinal
axioms over well-known theories like ZF and its large set axiom counterparts.

The first large set notions over CZF would be regular sets. Regular sets appear
first in Aczel’s paper [3] about inductive definitions over CZF. As we will see
later, regular sets can ‘internalize’ most inductive constructions, which turns out
to be useful in many practical cases. We will follow definitions given by [67], and
will briefly discuss differences in the terminology between different references.
Definition 3.1. A transitive set A is

1. Regular if it satisfies second-order Strong Collection:

∀a ∈ A∀R[R : a⇒ A→ ∃b ∈ A(R : a⇔⇒ b)].

2. Weakly regular if it satisfies second-order Collection,
3. Functionally regular if it satisfies second-order Replacement,
4.
⋃

-regular if it is regular and
⋃
a ∈ A for all a ∈ A.

5. Strongly regular if it is
⋃

-regular and ab ∈ A for all a, b ∈ A, and
6. Inaccessible if (A,∈) is a model of second-order CZF.

The Regular Extension Axiom REA asserts that every set is contained in some
regular set. The Inaccessible Extension Axiom IEA asserts that every set is
contained in an inaccessible set.

Note that there is an alternative characterization of inaccessible sets:

Lemma 3.2 ([5, Corollary 10.27], CZF). A regular set A is inaccessible if
and only if A satisfies the following conditions:

1. ω ∈ A,
2.
⋃
a ∈ A if a ∈ A,

3.
⋂
a ∈ A if a ∈ A and a is inhabited, and

4. for a, b ∈ A we can find c ∈ A such that c is full in mv(a, b). a
Corollary 3.3. Inaccessible sets are strongly regular. Especially, if a, b ∈ A and
A is inaccessible, then ab ∈ A.
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Proof. Let A be an inaccessible set and a, b ∈ A. If r : a → b is a function and
c ∈ A is full in mv(a, b), then we can find a multi-valued function s ∈ c of the
domain a such that s ⊆ r. Hence r = s ∈ c ∈ A, which proves r ∈ A, and thus we
have ab ⊆ A. To see ab ∈ A, since A satisfies fullness, we can find c ∈ A which is
full in mv(a, b)∩A. Then ab ⊆ mv(a, b)∩A, and so ab = {f ∈ c | f : a→ b} ∈ A
by ∆0-Separation over A. a

There is no need for the notion ‘pair-closed regular sets’ since every regular
set is closed under pairings if it contains 2:

Lemma 3.4 ([6, Lemma 11.1.5], CZF−). If A is regular and 2 ∈ A, then
〈a, b〉 ∈ A for all a, b ∈ A. a

REA has various consequences. For example, CZF− + REA proves Subset Col-
lection. Moreover, it also proves that every bounded inductive definition Φ has
a set-sized fixed point I(Φ). (See [5] or [6] for details.)

The notion of regular set is quite restrictive, as it does not have Separation
axioms, not even for ∆0-formulas. Thus we have no way to do any internal
construction over a regular set. The following notion is a strengthening of regular
set, which resolves the issue of internal construction:

Definition 3.5. A regular set A is BCST-regular if A |= BCST. Equivalently,
A is a regular set satisfying Union, Pairing, Empty set, and Binary Intersection.

We do not know if CZF proves every regular set is BCST-regular, although
Lubarsky and Rathjen [56] proved that the set of all hereditarily countable sets
in the Feferman-Levy model is functionally regular but not

⋃
-regular. It is not

even known that the existence of a regular set implies that of a BCST-regular
set. However, every inaccessible set is BCST-regular, and every BCST-regular
set we work with in this paper will also be inaccessible.

What are regular sets and inaccessible sets in the classical context? The fol-
lowing result illustrates what these sets look like under some well-known classical
set theories:

Proposition 3.6.

1. (ZF−) Every
⋃

-regular set containing 2 is a transitive model of second-order
ZF−, ZF−2 .

2. (ZFC−) Every
⋃

-regular set containing 2 is of the form Hκ for some regular
cardinal κ.

3. (ZF−) Every inaccessible set is of the form Vκ for some inaccessible cardinal
κ.10

Proof.

1. Let A be a
⋃

-regular set containing 2. We know that A satisfies Exten-
sionality, Set Induction, Union, and the second-order Collection. Hence it
remains to show that second-order Separation holds.

10Without choice, the various definitions of inaccessibility are no longer equivalent. There-
fore, following [29], we define an ordinal κ to be inaccessible if Vκ is a model of second-order

ZF. Equivalently, κ is inaccessible if κ is a regular cardinal, and for every α < κ there is no
surjection from Vα to κ.
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Let X ⊆ A, a ∈ A and suppose that X ∩ a is inhabited. Fix c in this
intersection. Now consider the function f : a→ A defined by

f(x) =

{
x if x ∈ X, and

c otherwise.

By second-order Strong Collection over A, we have b ∈ A such that f : a⇔⇒
b. It is easy to see that b = X ∩ a holds.

2. Let A be a regular set. Let κ be the least ordinal that is not a member of
A. Then κ must be a regular cardinal: if not, there is α < κ and a cofinal
map f : α→ κ. By transitivity of A and the definition of κ, we have α ∈ A,
so κ ∈ A by the second-order Replacement and Union, a contradiction.

We can see that ZFC− proves Hκ = {x | |TC(x)| < κ} is a class model of
ZFC−, and A satisfies the Well-ordering Principle. We can also show that
A ⊆ Hκ holds: if not, there is a set x ∈ A \ Hκ. Since A is closed under
transitive closures, A contains a set whose cardinality is at least κ. Now
derive a contradiction from second-order Replacement.

We know that A∩Ord = Hκ∩Ord = κ. By second-order Separation over
A, P(Ord)∩A = P(Ord)∩Hκ. Hence we have A = Hκ: for each x ∈ Hκ, we
can find θ < κ, R ⊆ θ × θ, and X ⊆ θ such that (TC(x),∈, x) ∼= (θ,R,X).
(Here we treat x as a unary relation.) Then (θ,R,X) ∈ A, so x ∈ A by
Mostowski Collapsing Lemma.

3. If A is inaccessible, then A is closed under the true power set of its elements
since second-order Subset Collection implies A is closed under exponentia-
tion a, b 7→ ab. Hence A must be of the form Vκ for some κ. Moreover, κ is
inaccessible because Vκ = A |= ZF2. a

It is easy to see from results in [56] that ZF proves every rank of a regular set
is a regular cardinal. However, the complete characterization of regular sets in
a classical context is open:

Question 3.7. Is there a characterization of regular sets over ZFC? How about⋃
-regular sets over ZF−?

While we can see that every inaccessible set over ZF is closed under power sets,
there is no reason to believe that inaccessible sets over constructive set theories
are closed under power sets, even if the Axiom of Power Set holds. Hence we
introduce the following notion:

Definition 3.8. An inaccessible set K is power inaccessible if, for every a ∈ K,
every subset of a belongs to K. pIEA is the assertion that every set is an element
of some power inaccessible set.

Notice that the existence of a power inaccessible set implies the Axiom of
Power Set over CZF. This is because if K is power inaccessible, then P(1) ⊆ K,
and from this one can see that every set has a power set since there is a bijection
between P(a) and aP(1) through characteristic functions, see Proposition 10.1.1
of [6] for further details. We will mention power inaccessible sets only in the
context of IZF. Also, the reader should note that [38] and [16] use the word
‘inaccessible sets’ to denote power inaccessible sets.

The reader is reminded that the meaning of an inaccessible set varies over the
references. On the one hand, [67] and [6] follows our definition of inaccessibility.
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On the other hand, other references like [46], [55], [5] and [54] use the following
definition, which we will call REA-inaccessibility :

Definition 3.9. A set I is REA-inaccessible if I is inaccessible and I |= REA.

The disagreement in the terminology may come from the difference between
their set-theoretic and proof-theoretic properties. On the one hand, Proposi-
tion 3.6 shows that inaccessible sets over ZF− are exactly of the form Vκ for
some inaccessible cardinal κ. However, an REA-inaccessible set over ZF− is not
only of the form Vκ for some inaccessible κ, but also satisfies REA. Gitik [22]
proved that ZF with no regular cardinal other than ω is consistent if there is a
proper class of strongly compact cardinals, and Gitik’s construction can carry
over Vκ for an inaccessible cardinal κ which is a limit of strongly compact cardi-
nals while preserving the inaccessibility of κ. Thus ZF with the existence of an
inaccessible set does not imply there is an REA-inaccessible set.

On the other hand, [48] showed that the theory CZF + IEA is equiconsistent
with CZF + REA.11 However, CZF + ∀x∃y(x ∈ y ∧ y is REA-inaccessible) has a
stronger consistency strength than that of CZF + REA.

Before finishing this section, let us remark that the consistency strength of
small large sets over CZF is quite weak compared to their counterparts over
ZF. The reader should refer to [45], [46] or [47] for additional accounts for the
following results:

Theorem 3.10 (Rathjen). Each pair of theories have an equal consistency
strength and proves the same Π0

2-sentences.

1. CZF + REA and KPi, the theory KP with a proper class of admissible ordi-
nals.

2. CZF + ∀x∃y(x ∈ y ∧ y is REA-inaccessible) and KPI, the theory KP with a
proper class of recursively inaccessible ordinals. a

§4. Large Large set axioms. There is no reason to refrain from defining
larger large sets. Hence we define stronger large set axioms. We have two ways of
defining large cardinals above measurable cardinals: elementary embeddings and
ultrafilters. On a fundamental level, ultrafilters make use of the law of excluded
middle because either a set or its complement must be in the ultrafilter. This
means that it is possible to prove that a set is in the ultrafilter by showing that
a different set is not in the ultrafilter, an inherently nonconstructive principle.
On a more structural note, the ultrafilter characterization does not immediately
entail the existence of smaller large set notions. For example, it is well-known
that it is possible to have a model of ZF in which there is a non-principal,
countably complete ultrafilter over ω1. To obtain the consistency of inaccessible
cardinals from this, one is then obliged to work in an inner model, which adds
additional complexity to the arguments.

Unlike ultrafilters, the embedding characterization will give direct, positive
results on large sets even when working in a weak constructive setting. For
example, we will see in Corollary 5.4 that, over IKP, if K is a transitive set
(which satisfies some minor additional assumptions) which is a ‘critical point’ of

11[48] defined inaccessible sets as transitive models of CZF− and second-order Strong Col-
lection. These two definitions are equivalent since REA implies Subset Collection.
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an elementary embedding j : V →M , then K is a model of IZF + pIEA and more.
Therefore, we will use the elementary embedding characterizations to access the
notions of measurable cardinals and stronger principles.

4.1. Critical sets and Reinhardt sets. In this section, we will give the
basic tools that we shall need to work with elementary embeddings. When
working with some embedding j : V → M we will not in general be assumed
that either j or M is definable in a first-order manner. This means that we
cannot state Collection or Separation for formulas involving j or M in a purely
first-order way. Therefore, to deal with them, we will need to expand our base
theory to accommodate class parameters. This leads to the following convention,
whose main purpose is to simplify later notation.

Convention 4.1. Let T be a ‘reasonable’ first-order set theory over the language
{∈} such as CZF, IKP, or IZF and let A be a class predicate. The theory TA
is the theory with the same axiom schemes as T in the language expanded to
include the predicate A. For example, CZFA has the axiom schemes of A plus
∆0-Separation, Set Induction, Strong Collection, and Subset Collection in the
expanded language {∈, A}.
Definition 4.2. We work over the language ∈ extended by a unary functional
symbol j and a unary predicate symbol M . Let T be a ‘reasonable’ set theory
such as CZF, IKP or IZF and suppose that V |= T . We say that j : V → M is a
(fully) elementary embedding if it satisfies the following:

1. j is a map from V into M ; ∀xM(j(x)),
2. M is transitive; ∀x(M(x)→ ∀y ∈ xM(y)),
3. M |= T ,
4. (Elementarity) ∀~x[φ(~x) ↔ φM (j(~x))] for every ∈-formula φ, where φM is

the relativization of φ over M .

For a class of formulas Q (usually Q = ∆0 or Σ), we call j Q-elementary if
j satisfies the above definition with (4) restricted to φ a Q-formula. Finally, we
say that K is a critical point of j if it is a transitive set that satisfies K ∈ j(K)
and j(x) = x for all x ∈ K.

We begin with the weak theory of the Basic Theory of Elementary Embed-
dings, originally introduced by Corazza in [13]. This is the minimal theory
required to state that j : V → V is an elementary embedding with a critical
point but without assuming anything about the relevant Separation, Collection,
or Set Induction schemes over the extended language. For our purposes, it will in
fact be beneficial to weaken this further to BTEEM which is the minimal theory
stating that j : V → M is an elementary embedding with a critical point for
some M ⊆ V .

We shall see in Section 5 that IKPj with a critical point implies the consistency
of IZF + BTEE and in Section 6 that the latter is equiconsistent with ZF+BTEE,
which already has a quite high consistency strength.

Definition 4.3. We work over the language ∈ extended by a unary functional
symbol j and a unary predicate symbol M . Let BTEEM be the assumption that
there exists some transitive class M ⊆ V and elementary embedding j : V →M
which has a critical point. We drop M and simply use BTEE when V = M
holds, that is, ∀xM(x). In addition, continuing our previous notation, given a
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class of formulas Q we let Q-BTEEM denote BTEEM with elementarity replaced
by Q-elementarity.

Remark 4.4. If V |= T + BTEEM (where T is a reasonable set theory) we will
always assume that V |= TM , that is we will assume that M is allowed to appear
in the axiom schemes of T .

Classically, BTEE is a relatively weak principle which is implied by the large
cardinal axiom 0#, which is the statement that there is a non-trivial elementary
embedding j : L → L. The reason this is weak is because we do not have Sep-
aration in the extended language which means that we cannot produce sets of
the form j � a for arbitrary sets a.

Convention 4.5. For T a reasonable theory, we will slightly abuse the notation
Tj,M to extend it to be the theory T plus a fully elementary embedding j : V →
M which has a critical point and which satisfies the axiom schemes of T in the
language expanded to include predicates for j and M . In particular, we will allow
j and M to appear in the Separation Schemes of T (for example, ∆0-Separation
if T = CZF), Set Induction and appropriate Collection axioms of T (for example,
Σ-Collection if T = IKP or Strong Collection and Subset Collection if T = CZF).

Over IKPj , being a critical point of an elementary embedding is sufficient to
prove some of the basic properties one would want from the theory of elementary
embeddings. For example, one can show that if there is a critical point then there
is (at least one) critical point which is an ordinal (see Chapter 9 of [67] or Chapter
7 of [38] for details) or that there is a model of (first-order) IZF.

However, such an assumption is not necessarily the most natural counterpart to
the classical notion of non-trivial elementary embeddings. For example, consider
ZFC plus an elementary embedding j : V → M with critical point κ. Then Lκ
can easily be seen to be a critical point as defined above however it is the ‘wrong’
set to work within this context because it is not a model of second-order ZFC.
In particular, one can show that P(ω)L is merely a countable set. Instead, what
one wants to work with is a critical point which is an inaccessible set, and this
is what we shall define next. Note that in weak theories there is no reason that
having a critical point will imply the existence of such a set. For example, it is
proven in Chapter 10 of [38] that it is possible to produce a model of ZFC− with a
non-trivial elementary embedding, while also having that P(ω) is a proper class,
and in such a model there will be no set sized models of second-order ZFC−.

Now let us define critical sets and Reinhardt sets in terms of elementary em-
beddings:

Definition 4.6 (Tj,M ). Let K be a critical point of an elementary embedding
j : V → M . We call K a critical set if K is also inaccessible. If M = V and K
is transitive and inaccessible, then we call K a Reinhardt set.

We introduce one final definition which is intermediate between BTEE and
Reinhardt sets; the Wholeness Axiom. This was first formulated by Corazza
[12] and later stratified by Hamkins [28] in order to investigate what theory was
necessary to produce the Kunen Inconsistency under ZFC.

Definition 4.7. The Wholeness axiom WA is the combination of BTEE and
Separationj . WA0 is the combination of BTEE and ∆0-Separationj .
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We will use the term critical point and critical set simultaneously, so the reader
should distinguish the difference between these two terms. (For example, a crit-
ical point need not be a critical set unless it is inaccessible.) Note that the
definition of critical sets is different from that suggested by Hayut and Karagila
[29]: they defined a critical cardinal as a critical point of an elementary embed-
ding j : Vκ+1 → M for some transitive set M . This is done to ensure that the
embedding j is a set and therefore first-order definable. We will instead take the
more natural, but not obviously first-order definable, definition where the do-
main is taken to be the universe, which is what Schlutzenberg calls V-critical in
[58]. Finding and analyzing the CZF-definition of a critical set that is classically
equivalent to a critical set in the style of Hayut and Karagila would be good
future work. Also, [67] uses the term ‘measurable sets’ to denote critical sets,
but we will avoid this term for the following reasons: it does not reflect that the
definition is given by an elementary embedding, and it could be confusing with
measurable sets in measure theory.

We do not know if every elementary embedding j : V → M over CZF enjoys
being cofinal. Surprisingly, the following lemma shows that j becomes a cofinal
map if M = V . Note that the following lemma heavily uses Subset Collection.
See Theorem 9.37 of [67] for its proof.

Proposition 4.8 (Ziegler [67], CZFj). Let j : V → V be a non-trivial elemen-
tary embedding. Then j is cofinal, that is, we can find y such that x ∈ j(y) for
each x. a

Note that [67] uses the term set cofinality to denote our notion of cofinality.
However, we will use the term cofinality to harmonize the terminology with that
of [39]. Ziegler’s theorem on the cofinality of Reinhardt embedding was an early
indication of the high consistency strength of CZF with a Reinhardt set. This
is because [39] shows that a related weak set theory, namely ZFC− with the
DCµ-scheme for all cardinals µ, already proves there is no cofinal non-trivial
elementary embedding j : V → V .

The following lemma, due to Ziegler [67], has an essential role in the proof
of Proposition 4.8 and developing properties of large large sets. We note here
that the proof will not require V to satisfy any of our axioms in the language
expanded with j or for the embedding to be fully elementary and therefore the
Lemma is also provable over weaker theories such as IKP + BTEE. Note that,
when working without Power Set, P(P(a)) should be seen as an abbreviation for
the class consisting of those sets whose elements are all subsets of a.

Lemma 4.9 (IKP + ∆0-BTEEM). Assume that j : V → M is a ∆0-elementary
embedding and K is a transitive set such that j(x) = x for all x ∈ K. Then we
have the following results for each a ∈ K:

1. If b ⊆ a, then j(b) = b.
2. If b ⊆ P(a), then j(b) = b.
3. If b ⊆ P(P(a)), then j(b) = b.

Furthermore, if we can apply the induction to j-formulas, then we can show that
j(b) = b for all b ⊆ Pn(a) for each n ∈ ω, where Pn(a) is the nth application of
the power set operator to a.
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Proof.

1. If x ∈ b, then x ∈ K by transitivity of K, so x = j(x) ∈ j(b). Hence
b ⊆ j(b).

Conversely, x ∈ j(b) ⊆ j(a) = a implies x ∈ K, so j(x) = x. Hence
j(x) ∈ j(b), and we have x ∈ b. This shows j(b) ⊆ b.

2. If x ∈ b, then x ∈ P(a). Hence j(x) = x by the previous claim, and we
have x = j(x) ∈ j(b). In sum, b ⊆ j(b).

Conversely, suppose x ∈ j(b). Observe that ∀t ∈ b(t ⊆ a) and this is ∆0.
Thus, by elementarity, x ⊆ j(a) = a.

Hence by the previous claim, x = j(x). This shows j(x) ∈ j(b), so x ∈ b.
Hence j(b) ⊆ b.

The proof of the remaining case is identical, so we omit it. a

4.2. Large set axioms beyond choice. As before, there is no reason why
we should stop at Reinhardt sets. While Reinhardt cardinals are incompatible
with ZFC, it is known that all proofs of this use the Axiom of Choice in an
essential way. This has led to the study of stronger large cardinals in the ZF
context, the most notable example being [10]. We will focus on the concept of
super Reinhardt sets and totally Reinhardt sets. However, before we do so, we
note a technical difficultly regarding truth predicates and first-order definability,
which is why we will need to work in an infinitary second-order theory.

Using [18, Theorem 1] or [33, Proposition 5.1], in ZF, an elementary map
j : V → M is fully elementary if it is Σ1-elementary. Unfortunately, in our
context, we do not know whether Σn-elementary embeddings are fully elementary
even if n is sufficiently large.

During this subsection, we will fix an enumeration 〈φn(X,~x) | n ∈ N〉 of all
first-order formulas over the language of set theory with one class variable X.

Definition 4.10 (CGB∞). Let A be a class. A class j is an A-(fully) elementary
embedding from V to M if j is a class function and

∧
n∈N ∀~x[φn(A, ~x)↔ φMn (A∩

M, j(~x))]. We simply call j elementary if A = V .

Definition 4.11 (CGB∞). An inaccessible set K is super Reinhardt if for every
set a there is an elementary embedding j : V → V such that K is a critical point
of j and a ∈ j(K).

More generally, an inaccessible set K is A-super Reinhardt for an amenable
A if for each set a we can find an A-elementary embedding j : V → V whose
critical point is K such that a ∈ j(K).

The reader should notice that we have formulated critical sets and Reinhardt
sets over Tj,M where T was some general, unspecified (first-order) theory, whereas
the definition of super Reinhardt sets in formulated in the specified second-order
theory of CGB∞. Some readers could think that formulating criticalness and
Reinhardtness over CGB∞ would be more natural, as Bagaria-Koellner-Woodin
formulated Reinhardt cardinals over GB instead of ZFj . It will turn out that
sticking to the more first-order formulation of criticalness and Reinhardtness
is better for the following technical reason. We will take a double-negation
interpretation based on Gambino’s Heyting-valued interpretation [20] over first-
order constructive set theories in Section 6. It is harder to extend Gambino’s
interpretation to a second-order set theory than extending it to CZFj,M because
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the former requires extending Gambino’s forcing to all classes and defining the
interpretation of second-order quantifiers, while the latter does not. However,
we cannot avoid the full second-order formulation of super Reinhardtness, unlike
we did for Reinhardtness, because its definition asks for class many elementary
embeddings.

Our definition of A-super Reinhardtness is different from that of Bagaria-
Koellner-Woodin [10] because they required j to satisfy j+[A] :=

⋃
x∈V j(A∩ x)

is equal to A instead of A-elementarity. It turns out by Lemma 4.14 that our
definition is stronger than that of Bagaria-Koellner-Woodin in our constructive
context, but they are equivalent in the classical context.

Lemma 4.12 (CGB). Let φ(X,x0, · · · , xn) be a ∆X
0 -formula whose free variables

are all expressed. If A is an amenable class and if we take a = TC({x0, · · · , xn}),
then

φ(A, x0, · · · , xn)↔ φ(A ∩ a, x0, · · · , xn).

Proof. The proof proceeds by induction on φ.

• Assume that φ is an atomic formula. The only non-trivial case is x ∈ A,
and it is easy to see that x ∈ A↔ x ∈ TC({x}) ∩A.

• The cases for logical connectives are easy to check.
• Assume that φ(A, x0, · · · , xn) is ∀y ∈ x0ψ(A, y, x0, · · · , xn), and assume

that

ψ(A, y, x0, · · · , xn)↔ ψ(A ∩ f(y), x0, · · · , xn)

for all y, where f(y) = TC({y, x0, · · · , xn}). If y ∈ x0, then f(y) = a =
TC({x0, · · · , xn}). Hence

∀y ∈ x0ψ(A, y, x0, · · · , xn)↔ ∀y ∈ x0ψ(A ∩ a, y, x0, · · · , xn).

The case for ∃y ∈ x0ψ(y, x0, · · · , xn) is also similar. a

Remark 4.13. It is worthwhile to note that if K is a super Reinhardt set
then it is also a Reinhardt set, in the sense that it is a critical point for some
elementary embedding j : V → V for which 〈V, j〉 satisfies every axiom of CZFj .
This is not obvious because, while CGB∞ satisfies Class Set Induction and Class
Strong Collection, it does not include a Class Separation axiom. Therefore,
for an arbitrary class A, there is no reason why ∆A

0 -Separation should hold.
To circumvent this issue let j : V → V be an elementary embedding such that
K ∈ j(K) (and everything in K is fixed by j). We observe that, by Lemma 2.32,
j is an amenable class and therefore we can apply the above Lemma from which
one can conclude that ∆j

0-Separation holds.

Lemma 4.14 (CGB∞). Let A be an amenable class and j : V → V be a class
function.

1. If j is fully elementary, then j is ∆A
0 -elementary if and only if j+[A] = A.

2. If LEM holds, then every Σ1 ∪ ∆A
0 -elementary embedding j is elementary

for all A-formulas.

Proof.
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1. Assume that j is elementary for ∆A
0 -formulas. We first show that j(A∩x) =

A ∩ j(x): we know that ∀y[y ∈ A ∩ x↔ y ∈ A ∧ y ∈ x]. We can view this
sentence as a conjunction of two ∆A

0 -formulas, so we have

∀y[y ∈ j(A ∩ x)↔ y ∈ A ∧ y ∈ j(x)].

This shows the claim we desired. Hence j+[A] =
⋃
x∈V j(A∩x) =

⋃
x∈V A∩

j(x) = A. (The last equality holds by the cofinality of j, Proposition 4.8.)
Conversely, assume that j+[A] = A holds and let φ(X,x0, · · · , xn) be a

∆X
0 -formula with a unique class variable X, all of whose free variables are

displayed. By Lemma 4.12, a = TC({x0, · · · , xn}) satisfies

φ(A, x0, · · · , xn)↔ φ(A ∩ a, x0, · · · , xn).

Since j is elementary and A ∩ a is a set by amenability, we have

φ(A ∩ a, x0, · · · , xn)↔ φ(j(A ∩ a), j(x0), · · · , j(xn)).

Note that ∀y ∈ j(a)[y ∈ j+[A] ↔ y ∈ j(A ∩ a)] holds. Furthermore, every
bounded variable y appearing in φ is bounded by a. Hence

φ(j(A ∩ a), j(x0), · · · , j(xn))↔ φ(j+[A], j(x0), · · · , j(xn)).

From the assumption j+[A] = A, we finally have φ(A, x0, · · · , xn) ↔
φ(A, j(x0), · · · , j(xn)).

2. LEM implies our background theory is GB. We follow Kanamori’s proof
[33, Proposition 5.1(c)] that every Σ1-elementary cofinal embeddings over
ZF is fully elementary.

Assume that we have the ΣAn -elementarity of j. Consider the A-formula
∃xφ(A, x, a), where φ is a ΠA

n -formula. Then φ(A, x, a) implies
φ(A, j(x), j(a)), and we have ∃yφ(A, y, j(a)).

Conversely, assume that we have ∃xφ(A, x, j(a)). Since j is cofinal by
Proposition 4.8, we can find α such that x ∈ Vj(α). Since j is elemen-
tary, Vj(α) = j(Vα) and hence ∃x ∈ j(Vα)φ(A, x, j(a)) holds. Note that,
by using second-order Collection for formulas using the class A, if θ is
ΣAn then so is ∀x ∈ aθ and, since we have a classical background the-
ory, by taking negations, if θ is ΠA

n then so is ∃x ∈ aθ and thus the
formula ∃x ∈ j(Vα)φ(A, x, j(a)) is ΠA

n . So, by ΣAn -elementarity, we have
∃x ∈ Vαφ(A, x, a). a

The upshot of the second claim in the above lemma is that GB proves that
given a fully elementary embedding, it is A-elementary if it is ∆A

0 -elementary.
Furthermore, the condition j+[A] = A is equivalent to ∆A

0 -elementarity. Hence
Lemma 4.14 justifies that our definition of super Reinhardtness is a reasonable
constructive formulation of that of Bagaria-Koellner-Woodin.

We also note here that we can weaken the assumption in the second clause
of Lemma 4.14: namely, GB proves every cofinal ∆A

0 -elementary embedding
j : V → V is fully elementary for A-formulas.

We end this section with one final large set axiom which we will see suffices to
bring the constructive theory into proof-theoretic equilibrium with its classical
counterpart.
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Definition 4.15. V is totally Reinhardt (TR) is the following statement: for
every class A, there is an A-super Reinhardt set.

§5. How strong are large large sets over CZF? In this section, we per-
form the preparatory work needed to derive a lower bound for the consistency
strength of various large large set axioms over CZF. We will show that over IKP,
a critical point with a moderate property is a model of IZF + pIEA. We will see
that we can find a model of a stronger extension of IZF under a large large set
axioms over CZF.

One might ask why we focus on deriving the models of IZF with large set
properties. The reason is that deriving consistency strength from CZF is difficult:
double-negation translation does not behave well over CZF with large set axioms.
On the contrary, IZF or its extensions go well with double-negation translations.

5.1. The strength of elementary embeddings over BTEEM . The aim of
this subsection is to derive a lower bound for the consistency strength of an ele-
mentary embedding j : V →M with a critical point. One amazing consequence
of Lemma 4.9 is that the existence of a critical set is already quite strong, com-
pared to small large set axioms over CZF. As in the Lemma, we remark here
that we do not require V to satisfy any axiom in the expanded language and
therefore the proof also works over IKP + ∆0-BTEEM .

Theorem 5.1 (IKP + ∆0-BTEEM). Let K be a transitive set such that K |=
∆0-Sep, ω ∈ K and let j : V →M be a ∆0-elementary embedding whose critical
point is K. Then K |= IZF.

Proof. K satisfies Extensionality and Set Induction since K is transitive. We
only prove that Power Set, Full Separation, and Collection are valid over K since
the validity of other axioms is not hard to prove. The focal fact of the proof is
that j(K) is also a transitive model of ∆0-Separation and K ∈ j(K).

1. Power Set: let a ∈ K, and define b as b = {c ∈ K | c ⊆ a}. We can see
that b ∈ j(K) and b = j(b) by Lemma 4.9. Hence j(b) ∈ j(K), and thus
we have b ∈ K.

It remains to show that K thinks b is a power set of a. We claim that
K |= ∀x(x ∈ b ↔ x ⊆ a), which is equivalent to ∀x ∈ K(x ∈ b ↔ x ⊆ a),
but this is obvious from the definition of b.

2. Full Separation: let a ∈ K and φ(x, p) be a first-order formula with a
parameter p ∈ K. Observe that the relativization φK(x, p) is ∆0, so b =
{x ∈ a | φK(x, p)} ∈ j(K). Since b ⊆ a, we have j(b) = b. Hence b ∈ K.

It suffices to show that K thinks b witnesses this instance of Separation
for φ and a. Formally, it means ∀x ∈ K[x ∈ b ↔ x ∈ a ∧ φK(x, p)] holds,
which trivially holds by the definition of b.

3. Collection: Since K models Full Separation, by ∆0-elementarity of j, we
also have j(K) satisfies Full Separation. Now, let φ(x, y, p) be a formula
and a, p ∈ K, and suppose that ∀x ∈ a∃y ∈ KφK(x, y, p) holds. Now, for
each x ∈ a and y ∈ K, since everything is fixed by j, we have

V |= φK(x, y, p) =⇒ M |= φj(K)(x, y, p).
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Therefore, M |= ∀x ∈ a∃y ∈ Kφj(K)(x, y, p). Define b = {y ∈ K |
∃x ∈ a φj(K)(x, y, p)} ∈ j(K), then b witnesses M |= ∃b ∈ j(K)∀x ∈
a∃y ∈ b φj(K)(x, y, p). Thus, by elementarity, we have ∃b ∈ K∀x ∈ a∃y ∈
b φK(x, y, p). Namely, K satisfies this instance of Collection. a

Hence the existence of an elementary embedding with a critical point is al-
ready tremendously strong compared to CZF. We will see in Section 6 that IZF
interprets classical ZF, so the existence of a critical set over CZF is stronger than
ZF. However, it turns out that the hypotheses given in Theorem 5.1 proves the
critical point K satisfies not only IZF, but also large set axioms. For example, we
next show that K is a model of IZF + pIEA. The proof begins with the following
lemmas:

Lemma 5.2 (IKP+ ∆0-BTEEM). Assume that K satisfies the conditions given
in the hypotheses of Theorem 5.1. If a ∈ K, then P(a) ∩K = P(a) ∩ j(K).

Proof. Let a ∈ K, b ∈ j(K) and b ⊆ a. By Lemma 4.9, we have b ∈ K. a

Lemma 5.3 (IKP + ∆0-BTEEM). Under the hypotheses for K given in Theo-
rem 5.1, j(K) thinks K is power inaccessible.

Proof. We proved that K is a model of IZF and P(a)∩K = P(a)∩ j(K) for any
a ∈ K. Thus it suffices to show that j(K) believes K is regular. That is,

∀a ∈ K∀R ∈ j(K)[R : a⇒ K → ∃b ∈ K(R : a⇔⇒ b)].

The proof employs basically the same argument as the proof that K satisfies
Collection given in Theorem 5.1: let a ∈ K, R ∈ j(K), and suppose that R : a⇒
K. Then

V |= R : a⇒ K =⇒ M |= j(R) : a⇒ j(K).

Now let b = {y ∈ K | ∃x ∈ a 〈x, y〉 ∈ j(R)} ∈ M . Since b is a subset of K ∈
j(K), we have b ∈ j(K). Furthermore, b witnesses M |= ∃b ∈ j(K)[j(R) : a⇔⇒ b].
Hence, by elementarity, there exists b ∈ K such that ∀x ∈ a∃y ∈ b(R : a⇔⇒ b). a

Corollary 5.4 (IKP+ ∆0-BTEEM). Under the hypotheses for K given in The-
orem 5.1, K satisfies pIEA.

Proof. By Lemma 5.2, j(K) believes K is power inaccessible. Fix a ∈ K, then
b = K witnesses the following statement:

M |=
[
∃b ∈ j(K)

(
a ∈ b ∧ j(K) |= b is power inaccessible

)]
.

Hence by elementarity, there is b ∈ K such that a ∈ b and K believes b is power
inaccessible. Since a is arbitrary, we have K |= IZF + pIEA. a

In fact, we can derive more: we can show that not only does K satisfy pIEA,
but K also satisfies ∀x∃y[x ∈ y ∧ Φ(y)], where Φ is any large set properties such
that j(K) |= Φ(K). Especially, Φ can be a combination of power inaccessibility
with Mahloness or 2-strongness. (See [46] or [67] for the details of Mahlo sets or
2-strong sets.)
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5.2. Iterating j to a critical point. In the classical context, one usually
works with λ = jω(κ) = supn<ω j

n(κ) for κ = crit j when they study large
cardinals at the level of rank-into-rank embeddings and beyond. We can see in
the classical context that if j : V →M is elementary embedding with κ = crit j,
then Vλ is still a model of ZFC with some large cardinal properties.

We may expect the same in a constructive manner, but defining the analogue
of λ = jω(κ) cannot be done over IKP + Σ-BTEEM . The problem is that the
definition of λ requires defining 〈jn(κ) | n ∈ ω〉, which requires recursion for
j-formulas. It turns out that we can define this sequence if we have Set Induc-
tion for Σj,M -formulas. Moreover, even if we have this sequence, we require an
instance of Σj,M -Replacement to turn the sequence into a set, which is when we
will have to start working in IKPj,M .

Definition 5.5 (IKP+Σ-BTEEM ). Let j : V →M be an elementary embedding
with a critical point K. Following Corazza [13, (2.7) to (2.9)], let Θ and Φ be
the following formulas:

Θ(f, n, x, y) ≡ f is a function ∧ dom f = n+ 1 ∧ f(0) = x ∧
∀i
(
0 < i ≤ n→ f(i) = j(f(i− 1)) ∧ f(n) = y

)
Φ(n, x, y) ≡ n ∈ ω → ∃f Θ(f, n, x, y).

Informally speaking, Θ(f, n, x, y) states that f is a function with domain n+1
computing jn(x) = y, and Φ(n, x, y) asserts that jn(x) = y. We can see that

Θ is ∆j,M
0 and Φ is Σj,M . A careful analysis will show that Φ allows a Πj,M -

formulation, so Φ is actually ∆j,M . However, this fact is irrelevant in our context.

Lemma 5.6 (Corazza, IKP + Σ-BTEEM + Σj,M -Set Induction).

1. For all n ∈ ω and x, y, there is at most one f such that Θ(f, n, x, y) holds.
That is,

∀n ∈ ω∀x, y, f, g [Θ(f, n, x, y) ∧Θ(g, n, x, y)→ f = g].

2. Φ defines a function. That is, ∀n ∈ ω∀x∃!yΦ(n, x, y).

Proof.

1. Fix x, y, f, g and assume that both Θ(f, n, x, y) and Θ(g, n, x, y) hold. To
be precise, we apply Set Induction to the following formula:

θ(i) ≡ [i ≤ n→ f(i) = g(i)].

Assume that ∀j ∈ i θ(j) holds. Then we can see that f(i) = j(f(i− 1)) =
j(g(i − 1)) = g(i) holds. In other words, we have θ(i). By Set Induction
for ∆0-formulas, we have ∀i θ(i), so f = g.

2. For uniqueness, assume that we have Φ(n, x, y0) and Φ(n, x, y1). By the pre-
vious claim, we can see that for the same f , Θ(f, n, x, y0) and Θ(f, n, x, y1)
hold. Hence y0 = f(n) = y1.

For existence, we claim that ∀n ∈ ω∀x∃y, f Θ(f, n, x, y). This uses Set
Induction for Σj,M -formulas. Fix x and let

φ(n, x) ≡ n ∈ ω → ∃y∃f Θ(f, n, x, y).

Assume that ∀i ∈ n φ(i, x) holds. Suppose that y and f witnesses Θ(f, n−
1, x, y), then we can extend f to f ′ by setting f ′ := f ∪ {〈n, j(y)〉}. It is
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immediate that Θ(f ′, n, x, y). Hence, by Set Induction for Σj,M -formulas,
we have ∀nφ(n, x). a

Remark 5.7. When working with elementary embeddings derived from ultra-
filters in ZFC one can show that the ultrapower construction can be iterated.
That is, one starts with j : V → M0 and shows that for every n there is a tran-
sitive class Mn+1 and an embedding in : Mn →Mn+1. Then one can show that
j2 = i0 ◦ j : V → M1 is an elementary embedding with a critical set. However,
this argument does not go through in our weaker context. In particular, it is
unclear what the codomain of j2 should be and therefore why j2 should be an
elementary embedding. Therefore, for our purposes, in general, jn(x) should be
a formal object which is the result of applying j to x n times. On the other
hand, one should note that if j is restricted to some set A then it is possible to
iterate the (set) embedding j �A : A→ j(A).

Hence we can define the constructive analogue of λ = jω(κ), by using an
instance of Σj,M -Replacement:

Definition 5.8 (IKPj,M ). Let j : V → M be a ∆0-elementary embedding with
a critical point K. By Lemma 5.6 and Replacement for Σj,M -formulas, 〈jn(K) |
K ∈ ω〉 is a set. Define Λ :=

⋃
n∈ω j

n(K).

Remark 5.9. In order to define Λ in the above definition it is important that V
satisfies at least Σj,M -Replacement and Σj,M -Induction for ω. One can see that
the class function sending n to jn(K) is Σj,M -definable and that Σj,M -Induction
then implies that this function is total. Finally, an instance of Σj,M -Replacement
gives us that {jn(K) | n ∈ ω} is a set, and therefore so is its union. We refer to
the end of Section 2 of [13] or Section 6.3 of [38] for details of this and what issues
can potentially arise without assuming any induction in the extended language.

Remark 5.10. In the above definition, we keep talking about ∆0-elementary
embedding while we work over IKPj,M , which technically includes the full ele-
mentarity of j as an axiom. Hence we actually work with a weaker subtheory of
IKPj,M , which is obtained by weakening the elementarity scheme to ∆0-formulas.
This fact becomes important in subsection 5.3 where we work in IKP with a Σ-
elementary embedding j : V →M .

However, we will continue to refer to the background theory IKPj,M when
this does not cause confusion. To emphasize, we work with the Set Induction

scheme over the extended language as well as the ∆j,M
0 -Separation and the Σj,M -

Collection schemes.

Now we can see that K is an elementary submodel of Λ:

Lemma 5.11 (IKPj,M). Let j : V → M be an ∆0-elementary embedding with
a critical point K, and assume that K |= ∆0-Sep. Then K is an elementary
submodel of Λ. That is, the following holds: for every formula φ(~x) (without j
or M) all of whose free variable are expressed,

V |= ∀~x ∈ K[φK(~x)↔ φΛ(~x)].(1)

Proof. We proceed with the proof by induction on formulas. Note that we can
formulate our proof over IKP since the truth predicate for transitive models is
Σ-definable. Atomic cases and the cases for ∧, ∨, and → are trivial, and so we
concentrate on cases for quantifiers.
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• Case ∀: assume that ~a ∈ K and φ(x,~a) is absolute between K and Λ. That
is, assume that (1) holds for φ. Obviously

V |= (∀xφ(x,~a))Λ → (∀xφ(x,~a))K .

Conversely, assume that

V |= ∀x ∈ KφK(x,~a).

Since this is ∆0-expressible in V , by elementarity we have

M |= ∀x ∈ j(K)φj(K)(x,~a).

Since ∀x ∈ j(K)φj(K)(x,~a) is bounded and M is a transitive subclass of V ,
∀x ∈ j(K)φj(K)(x,~a) is absolute between V and M , so

V |= ∀x ∈ j(K)φj(K)(x,~a).

We can iterate j in a similar fashion, so we have

V |= ∀x ∈ jn(K)φj
n(K)(x,~a)

for all n ∈ ω. Here ~a is unchanged because it is in K. Similarly, by
elementarity and absoluteness of bounded formulas, we have from (1) that

V |= ∀n ∈ ω∀x,~a ∈ jn(K)[φj
n(K)(x,~a)↔ φΛ(x,~a)].

Hence V thinks φΛ(x,~a) for all n ∈ ω and ~a ∈ K. Since Λ =
⋃
n∈ω j

n(K),

we have ∀x ∈ ΛφΛ(x,~a).
• Case ∃: The proof is similar to the case for ∀. Assume the same condi-

tions to ~a and φ(x,~a) as we did before. Showing V |= (∃xφ(x,~a))K →
(∃xφ(x,~a))Λ is trivial.

For the converse, assume that V |= ∃x ∈ ΛφΛ(x,~a). Then we can find
n ∈ ω such that V |= ∃x ∈ jn(K)φΛ(x,~a). We can prove φΛ(x,~a) is
equivalent to φj

n(K)(x,~a) for x,~a ∈ jn(K), so V |= ∃x ∈ jn(K)φj
n(K)(x,~a).

Then we have the desired result if n = 0. If n > 0, then by absolute-
ness of bounded formulas, M |= ∃x ∈ jn(K)φj

n(K)(x,~a). By applying

elementarity, we have V |= ∃x ∈ jn−1(K)φj
n−1(K)(x,~a). Now we can see

by repeating this argument that V |= ∃x ∈ Kφ(x,~a). a

An upshot of Lemma 5.11 is that jn(K) is an elementary submodel of Λ.12

Especially, by applying this fact to Lemma 5.3, we have

Lemma 5.12 (IKPj,M). Assume that K satisfies the conditions given in the
hypotheses of Theorem 5.1. Then Λ thinks K is a power inaccessible set. a

Especially, we have an analogue of Lemma 5.2 between K and Λ:

Lemma 5.13 (IKPj,M). Assume that K satisfies the conditions given in the
hypotheses of Theorem 5.1. For n ∈ ω and a ∈ jn(K), we have P(a) ∩ Λ =
P(a) ∩ jn(K). a

As a corollary of the previous results, we have

Corollary 5.14 (IKPj,M). Assume that K satisfies the conditions given in
the hypotheses of Theorem 5.1. Then Λ satisfies 〈Λ, j �Λ〉 |= IZF + BTEE +
Set Inductionj.

12In fact, the proof of Lemma 5.11 implicitly implies K is an elementary submodel of jn(K).
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Proof. Λ is a model of IZF by Lemma 5.11 and Theorem 5.1. Moreover, j �Λ :
Λ → Λ has a critical point K ∈ Λ, so 〈Λ, j �Λ〉 is a model of BTEE. Since Λ is

transitive and Set Induction for ∆j,M
0 formulas holds, we have 〈Λ, j �Λ〉 believes

Set Induction for j-formulas holds. a

Remark 5.15. The reader might notice that we always try to reveal where
the given formula holds over, like V |= φ or M |= φ, and explicitly state how
to transfer between statements holding over V and over M , for example, by
relying on absoluteness of bounded formulas. The main reason for it is that while
V |= φ(K) implies M |= φ(j(K)), we cannot say anything about V |= φ(j(K))
and M |= φ(K).

For example, work over ZFC with a measurable cardinal κ, and consider an
ultrapower map j : V → Ult(V,U) ∼= M . Then V |= (Vκ |= ZFC2) and M |=
(Vj(κ) |= ZFC2). However, j(κ) is not even a cardinal over V , so V 6|= (Vj(κ) |=
ZFC2). Similarly, while V thinks κ is measurable, M does not in general think
κ is measurable.

5.3. Playing with a Σ-Ord-inary elementary embedding over IKP. Let
us examine what we can derive from a Σ-elementary embedding with an ordinal
critical point. An illuminating result along this line is that of Ziegler [67], which
is proved by considering the rank of any fixed critical point K:

Proposition 5.16 (Ziegler [67, Section 9.1] or [38, Lemma 7.2.4],
IKP + Σ-BTEEM). Let j : V → M be a Σ-elementary map. Then the following
statements are all equivalent:

1. There is K such that K ∈ j(K) and ∀x ∈ TC(K) (j(x) = x),
2. There is a transitive K such that K ∈ j(K) and ∀x ∈ K (j(x) = x),
3. There is an ordinal κ such that κ ∈ j(κ) and ∀α ∈ κ (j(α) = α). a
The main idea of the above proposition is extracting the rank of a given K,

then observing that j respects the rank of a set since the rank function is Σ-
definable.

However, it is not likely that we can extend this result further. Ziegler pro-
vided a way to give a model of CZF−Rep + Exp, CZF− with Exponentiation and
Replacement in place of Strong Collection, from a ∆0-elementary embedding
j : V → M with an ordinal critical point. However, Ziegler’s result requires an
additional assumption on j called jIEA.

Despite that, Σ-elementary embedding over IKP still shows quite a strong
consistency strength provided if it has an ordinal critical point. The following
result is from [38]:

Theorem 5.17 ([38, Theorem 7.3.2], IKP + Σ-BTEEM). Let j : V → M be
a Σ-Ord-inary elementary embedding with witnessing ordinal κ, that is, a Σ-
elementary embedding with a critical point κ that is an ordinal. Furthermore, let
κ# be defined as in Definition 2.26. Then Lκ# |= IZF.

Using the results we previously developed we can extend this to a model of
IZF + pIEA.

Proposition 5.18 (IKP + Σ-BTEEM). Let j : V → M be a Σ-Ord-inary ele-
mentary embedding with witnessing ordinal κ. Then j �LV : LV → LM is a
Σ-elementary embedding over L and Lκ# |= ∆0-Sep.
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Proof. ∆0-elementarity of j �LV : LV → LM follows from the fact that the
formula x ∈ L is Σ-definable and j is Σ-elementary. Secondly, by (4) of Propo-
sition 2.23, Lκ# |= ∆0-Sep.) a

By applying Theorem 5.1 and Corollary 5.4, we have

Corollary 5.19 (IKP+ Σ-BTEEM). Let j be a Σ-Ord-inary elementary embed-
ding with witnessing ordinal κ. Then L#

κ is a model of IZF + pIEA.

Remark 5.20. Classically, LV = LM if M is a proper class transitive model of
KP. Furthermore, if M is a transitive (set or class) model of KP, then LM =

L ∩M only depends on OrdM = Ord ∩M .
This is not constructively valid even if M is a proper class since there is no

reason to believe Ord ∩ V = Ord ∩M . In fact, we can construct a Kripke model
of IZF that satisfies Ord ∩ V 6= Ord ∩ L. See [38, Section 5.5] for the details.

Of course, we can derive more: [38] proved that Lκ# also thinks every set is
included in a totally indescribable set. Also, under the presence of Set Induction
and Collection for Σj,M -formulas, we have

Theorem 5.21 (IKPj,M). Let λ =
⋃
n∈ω j

n(κ#). Then Lλ =
⋃
n∈ω Ljn(κ#) and

〈Lλ, j �Lλ〉 is a model of IZF + BTEE + Set Inductionj.

Proof. Set Induction and Collection for Σj,M -formulas are necessary to ensure
the existence of λ.

By definition of Lα,

Lλ =
⋃
α∈λ

Def(Lα) =
⋃
n∈ω

⋃
α∈jn(κ#)

Def(Lα) =
⋃
n∈ω

Ljn(κ#).

Now, the desired result follows from Corollary 5.14. a

5.4. Reinhardt sets. Let j : V → M be an elementary embedding and K
a critical point of j. It is not generally true that j(K) is also a regular set,
although M believes it is. However, for a Reinhardt embedding j : V → V ,
j(K) is regular. This yields a better lower bound for the consistency strength
of Reinhardt sets. Observe that the proof only requires j to be ∆0-elementary
because all of the formulas can be bound by Λ.

Theorem 5.22 (IKPj). If K is Reinhardt, then Λ satisfies IZF + WA.

Since we already know that Λ |= IZF, the above proposition follows immedi-
ately from the following lemma:

Lemma 5.23. For any j-formula φ, t ∈ ω and a, p ∈ jt(K), {x ∈ a | 〈Λ, j �Λ〉 |=
φ(x, p)} ∈ jt(K).

Proof. Let Fθ(a, p) := {x ∈ a | 〈Λ, j �Λ〉 |= θ(x, p)} for a formula θ. We will
prove that, for every formula θ, Fθ(a, p) ∈ jt(K) for all a, p ∈ jt(K) by induction
on the complexity of θ.

Atomic cases in which j does not appear follow immediately from the inacces-
sibility of jt(K). We consider the case for equality where j appears, the cases
for element-hood being similar. To do this, we need to show that for a ∈ jt(K),

{〈x, y〉 ∈ a | x = j(y)} ∈ jt(K).
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First, since jt+1(K) is inaccessible in V , jt+1(K) is Exp-closed by Corollary 3.3,
and therefore j � a ∈ mv(aj(a)) is in jt+1(K). Next, since jt+1(K) is closed under
intersections, j � a ∩ a ∈ jt+1(K). However, this is a subset of a ∈ jt(K) so, by
Lemma 5.13, j � a ∩ a = {〈x, y〉 ∈ a | x = j(y)} ∈ jt(K).

Conjunctions, disjunctions and implications follow from the fact that jt(K)
satisfies Union and ∆0-Separation: let us examine the proof for implications.
Suppose that Fφ(a, p), Fψ(a, p) ∈ jt(K) for any a, p ∈ jt(K). Then, by ∆0-
Separation,

Fφ→ψ(a, p) = {x ∈ a | x ∈ Fφ(a, p)→ x ∈ Fψ(a, p)} ∈ jt(K).

Next, suppose that φ(x, p) is ∀yψ(x, y, p). For each n ∈ ω, let

Sn := {x ∈ a | ∀y ∈ jt+n(K)〈Λ, j �Λ〉 |= ψ(x, y, p)}.

We claim that Sn ∈ jt(K) for every n ∈ ω. By the inductive hypothesis, for
every y ∈ jt+n(K),

Fψ(a, 〈y, p〉) := {x ∈ a | 〈Λ, j �Λ〉 |= ψ(x, y, p)} ∈ jt+n(K).

Then we can define a function R : jt+n(K) → jt+n+1(K) given by R(y) =
Fψ(a, 〈y, p〉). Furthermore, R(y) ∈ P(a) ∩ jt+n+1(K) = P(a) ∩ jt+n(K). Hence
the codomain of R is P(a) ∩ jt+n(K), which is an element of jt+n+1(K). Since
K is regular, so inaccessible by Theorem 5.1, so is jt+n+1(K). Hence by Corol-
lary 3.3, R ∈ jt+n+1(K). Hence Sn =

⋂
ranR ∈ jt+n+1(K). By Lemma 5.13

and Sn ⊆ a ∈ jt(K), we have Sn ∈ jt(K).
Finally for this case, since Sn ∈ jt(K) for each n ∈ ω, we can define a function

S : ω → jt(K) by S(n) := Sn. By repeating the previous argument with the
inaccessibility of jt(K) and ω ∈ jt(K), we have S ∈ jt(K). Hence⋂

n∈ω Sn = {x ∈ a | ∀n ∈ ω∀y ∈ jt+n(K)〈Λ, j �Λ〉 |= ψ(x, y, p)} = Fφ(a, p)

is also a member of jt(K).
The last case is when φ(x, p) is ∃yψ(x, y, p). The proof is quite similar to the

previous one. Similar to the previous case, for every n ∈ ω, let

S′n := {x ∈ a | ∃y ∈ jt+n(K)〈Λ, j �Λ〉 |= ψ(x, y, p)}.

We again prove that for each n ∈ ω, S′n ∈ jt(K) by first obtaining that
R ∈ jt+n+1(K), where R : y 7→ Fψ(a, 〈y, p〉) is the same function we defined in
the proof for the previous case. Therefore, S′n =

⋃
y∈jn+1(K)R(y) ∈ jn+1(K).

Furthermore, S′n ⊆ a ∈ jt(K) shows S′n ∈ jt(K). If we define S′ : ω → jt(K) by
S′(n) := S′n, then S′ ∈ jt(K). Hence Fφ(a, p) =

⋃
n∈ω S

′(n) ∈ jt(K). a

5.5. Super Reinhardt sets. The following theorem shows that super Rein-
hardt sets reflect first-order properties of V .

Theorem 5.24 (CGB∞). Let K be a super Reinhardt set. Then K is an ele-
mentary submodel of V . That is, for every formula (without j) φ(~x) all of whose
variables are displayed,

∀~x ∈ KφK(~x)↔ φ(~x).

Proof. Atomic cases and the cases for logical connectives are trivial. Hence we
focus on quantifications.
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• Case ∀: assume that a ∈ K and φ(x, a) is absolute between K and V .
Then clearly we have ∀xφ(x, a)→ ∀x ∈ KφK(x, a). Conversely, assume
that ∀x ∈ KφK(x, a). Fix b ∈ V and j such that b ∈ j(K). Then ∀x ∈
j(K)φj(K)(x, a) implies φj(K)(b, a). Furthermore, we can see that φ(x, a)
is also absolute between j(K) by applying j to our inductive hypothesis;
∀x, a ∈ KφK(x, a)↔ φ(x, a). Thus φ(b, a) for all b ∈ V .

• Case ∃: assume the same conditions on a and φ(x, a) as we did before.
Then obviously we have ∃x ∈ KφK(x, a) → ∃xφ(x, a). For the converse,
assume that there is b such that φ(b, a). Find j such that b ∈ j(K). Since φ
is also absolute between j(K) and V , we have ∃x ∈ j(K)φj(K)(x, a). Thus
∃x ∈ KφK(x, a). a

Note that the above theorem requires the full elementarity of elementary em-
beddings. Next, we shall see that not only do strong Reinhardt sets reflect all
first-order properties of V , but also they contain every true subset of a member
of themselves:

Proposition 5.25 (CGB∞ ). Let K be a super Reinhardt set and a ∈ K. If
b ⊆ a, then b ∈ K. Especially, PK(a) = P(a) for a ∈ K, so K is power
inaccessible.

Proof. Find j : V → V such that b ∈ j(K). By Lemma 4.9, j(b) = b ∈ j(K), so
b ∈ K. a

Corollary 5.26 (CGB∞). Suppose that there is a super Reinhardt set. Then V
is a model of IZF + pIEA.

However, it is not, in general, true that we will also satisfy the full second-order
theory of IGB. The issue here is that there is no reason why a (not first-order
definable) class should be amenable. On the other hand, one should observe
that by restricting our attention to amenable classes we will obtain a model of
IGB. Also, note that being a super Reinhardt is a second-order property, so its
existence does not reflect down to K.

Bagaria-Koellner-Woodin [10] showed that super Reinhardt cardinals rank-
reflect Reinhardt cardinals, that is, there is an inaccessible cardinal γ such that
(Vγ , Vγ+1) models ZF2 with a Reinhardt cardinal. We will show in Theorem 6.39
that CGB∞ with a super Reinhardt set interprets ZF with a proper class of γ
such that (Vγ , Vγ+1) |= ZF2 + ‘there is a Reinhardt cardinal.’ However, its proof
‘mixes up’ large set arguments over CZF with a double-negation translation, so
the following question is still open:

Question 5.27. Working over CGB∞ with a super Reinhardt set, can we prove
there is an inaccessible set M such that (M,P(M)) satisfies CGB∞ with the
existence of a Reinhardt set?

However, we can still derive various large set principles from super Reinhardt-
ness. For example, we can see that super Reinhardtness implies the analogue of
j : Vλ+n ≺ Vλ+n over ZF:

Proposition 5.28 (CGB∞). Assume that there is a super Reinhardt set. Define
Vα(x) recursively as Vα(x) = TC(x)∪

⋃
β∈α P(Vβ(x)). If j(ξ) = ξ, then for each
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set a we can find Λ 3 a, which is a countable union of power inaccessible sets,
with an elementary embedding j : Vξ(Λ)→ Vξ(Λ).

Especially, for each n ∈ ω and a ∈ V , we can find Λ 3 a, which is a countable
union of power inaccessible sets, such that there is an elementary embedding
j : Pn(Λ)→ Pn(Λ).

Proof. Let K be a super Reinhardt set and j be an elementary embedding with
a critical point K such that a ∈ j(K). Now let Λ = jω(K). We can see that
j �Vξ(Λ): Vξ(Λ)→ j(Vξ(Λ)) = Vξ(Λ) is the desired elementary embedding. The
latter claim follows by letting ξ = n. a

5.6. Totally Reinhardt sets. Then how about the case for totally Rein-
hardt sets? We examined that if K is super Reinhardt, then K ≺ V . However,
K does not reflect j-formulas. We can see that A-super Reinhardt sets reflect
not only usual set-theoretic formulas, but also A-formulas. The proof of the
following theorem is identical to that of Theorem 5.24, so we omit it. We note
here that in the theorem we will not need to assume that A ∩K is a set, and if
A is not amenable then in fact this will not be the case.

Theorem 5.29 (CGB∞). Let K be an A-super Reinhardt set. Then K reflects
every A-formula. That is, for every formula φ(X,~x) with one class parameter
X and all of whose variables are displayed,

∀~x ∈ K[φK(A ∩K,~x)↔ φ(A, ~x)].

a
Note that A-elementarity of j is necessary for the above theorem: The reader

can see that the proof of Theorem 5.24 applies j to the inductive hypothesis,
namely, φ(~x) is absolute between K and V , and this is where we need the A-
elementarity. We can also see that the proof breaks down if we do not assume
A-elementarity: if the proof were to work without A-elementarity, then Theo-
rem 5.24 would hold even for j-formulas. This would imply K thinks there is a
critical point of j, which is invalid.

One consequence of the reflection of A-formulas is that V satisfies Full Separa-
tion for A-formulas when A is amenable. This is because, for amenable classes, it
is relatively straightforward to prove that K |= SepA. The proof of the following
lemma is similar to that of Theorem 5.1, so we omit it.

Lemma 5.30 (CGB∞). Let A be an amenable class and K be an A-super Rein-
hardt set. Then K satisfies Full Separation for A-formulas. a
Corollary 5.31 (CGB∞). Assume that there is an A-super Reinhardt set for
an amenable A. Then Full Separation for A-formulas hold. Especially, if V
is totally Reinhardt, then Full Separation for A-formulas hold for all amenable
classes A. a

Note that every A-super Reinhardt set is super Reinhardt, so is power inac-
cessible by Proposition 5.25. In sum, CGB∞ + TR proves IGB∞ + TR without
Class Separation. It is unknown if Class Separation follows from the remaining
axioms of IGB∞ + TR. However, we can still see that IGB∞ + TR is interpretable
within itself without Class Separation:

Theorem 5.32 (CGB∞). CGB∞ + TR interprets IGB∞ + TR.
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Proof. We proved that CGB∞ + TR proves every axiom of IGB∞ + TR except
for Class Separation. We claim that IGB∞ + TR is interpreted in itself without
Class Separation.

Let φ be a formula of IGB∞ + TR, and φa be a formula obtained by bounding
every second-order quantifier to the collection of all amenable classes. That is, we
get φa by replacing every ∀1X and ∃1X occurring in φ to ∀1X(X is amenable)→
· · · and ∃1X(X is amenable) ∧ · · · .

By Corollary 5.31, Class Separation holds for amenable classes: that is, if A
is amenable and φ(x, p, C) is a second-order quantifier-free formula whose free
variables are all expressed, then {x | φ(x, p,A)} is also amenable. Thus the
a-interpretation of Class Separation holds. Moreover, it is easy to see that the
a-interpretation of the other axioms of IGB∞ + TR are valid. a

§6. Heyting-valued interpretation and the double-negation interpre-
tation. In this section, we will develop tools to analyze the consistency strength
of large set axioms over constructive set theories. The main tool we will use is
the double-negation translation. Especially, we will heavily rely on Gambino’s
Heyting-valued interpretation ([19, Chapter 5] or [20]) with the double-negation
topology which has a similar presentation to the classical Boolean-valued inter-
pretations. Grayson [27] and Bell [11] have also introduced a way to interpret
classical ZF from IZF using an easier method whose connection to Boolean-valued
models is even clearer. However, we will use Gambino’s method because it works
over the much weaker background theory of CZF−.

6.1. Heyting-valued interpretation of CZF−. Forcing is a powerful tool
to construct a model of set theory. Gambino’s definition of Heyting-valued model
(or alternatively, forcing) opens up a way to produce models of CZF−. His
Heyting-valued model starts from a formal topology, which formalizes a poset of
open sets with a covering relation:

Definition 6.1. A formal topology is a structure S = (S,≤,C) such that (S,≤)
is a poset and C⊆ S × P(S) satisfies the following conditions:

1. if a ∈ p, then a C p,
2. if a ≤ b and b C p, then a C p,
3. if a C p and ∀x ∈ p(x C q), then a C q, and
4. if a C p, q, then a C (↓ p) ∩ (↓ q), where ↓ p = {b ∈ S | ∃c ∈ p(b ≤ c)}.
Intuitively, S describes a basis of a topology, and C is a covering relation.

Then, for each collection of ‘open sets’ p, we have the notion of a nucleus, p,
which is the set of all open sets that are covered by p. We can view p as a
‘union’ of all open sets in p, defined by

p = {x ∈ S | x C p}.

Then the class Low(S) of all lower subsets13 that are stable under  (i.e., p = p)
form a set-generated frame:

Definition 6.2. A structure A = (A,≤,
∨
,∧,>, g) is a set-generated frame if

(A,≤,
∨
,∧,>) is a complete distributive lattice with the generating set g ⊆ A,

such that the class ga = {x ∈ g | x ≤ a} is a set, and a =
∨
ga for any a ∈ A.

13A subset p ⊆ S is a lower set if ↓ p = p.
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The reader is reminded that we can endow a Heyting algebra structure over a
set-generated frame. For example, we can define a → b by a → b =

∨
{x ∈ g |

x ∧ a ≤ b}, ⊥ by ∅, and
∧
p by

∨
{x ∈ g | ∀y ∈ p(x ≤ y)}.

Proposition 6.3. For every formal topology S, the class Low(S) has a set-
generated frame structure under the following definition of relations and opera-
tions:

• p ∧ q = p ∩ q,
•
∨
p = (

⋃
p),

• > = S,
• ≤ as the inclusion relation, and
• g = {{x} | x ∈ S}.

Furthermore, we can make Low(S) a Heyting algebra with the following addi-
tional operations:

• p ∨ q = (p ∪ q),
• p→ q = {x ∈ S | x ∈ p→ x ∈ q},
•
∧
p =

⋂
p. a

We extend the nucleus  to a lower subclass P ⊆ S, which is a subclass of S
satisfying P = ↓P := {a ∈ S | ∃b ∈ P (a ≤ b)}, by taking

JP :=
⋃
{p | p ⊆ P}.

Then we define Heyting operations for classes as follows:

• P ∧Q = P ∩Q,
• P ∨Q = J(P ∪Q),
• P → Q = {x ∈ S | x ∈ P → x ∈ Q}.
For a set-indexed collection of classes {Px | x ∈ I}, take

∧
x∈I Px =

⋂
x∈I Px

and
∨
x∈I Px = J

(⋃
x∈I Px

)
.

The following results can be proven by direct calculation and so we omit their
proofs:
Remark 6.4.

• If p is a set then Jp = p.
• For any lower subclass P ⊆ S, P ⊆ JP .
• If P , Q and R are subclasses of S which are stable under J then R ⊆ (P →
Q) if and only if R ∧ P ⊆ Q.

• If {Px | x ∈ I} is a family of subclasses of S such that for each x ∈ I,
JPx = Px and R is another subclass of S such that JR = R, then R ⊆∧
x∈I Px if and only if R ⊆ Px for each x ∈ I.

Given x ∈ S one can consider the class of all p ⊆ S such that x ∈ p, namely
the collection of all covers of x. In general, this need not be a set however in
many cases it can be sufficiently approximated by a set. This is particularly vital
to verify Subset Collection in our eventual model in Theorem 6.11.

Definition 6.5. A formal topology (S,≤,C) is said to be set-presentable if there
is a set-presentation R : S → P(P(S)), which is a set function satisfying

a C p↔ ∃u ∈ R(a)[u ⊆ p]
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for all a ∈ S and p ∈ P(S).

Since some readers may not be familiar with the definition of formal topology,
we give here a brief informal description of it. We then refer the reader to
Chapter 4 of [19] or Chapter 15 of [6] for a more detailed account. The notion
of formal topology stems from an attempt to formulate point-free topology over
a predicative system such as Martin-Löf type theory. Thus we may view (S,≤)
as a collection of open sets.

We usually describe open sets by using a subbasis, and sometimes the full
topology is more complex than the subbasis. This issue can particularly arise
in the constructive set-theoretic context and, even worse, it could be that while
a subbasis is a set, the whole topology generated by the subbasis is a proper
class. In that case, we want to have a simpler surrogate for the full topology.
This explains why we do not define the formal topology as a

∨
-semilattice.

Since the covering relation plays a pivotal role in topology and sheaf theory,
we also formulate the covering relation C into the definition of formal topology.
Producing Low(S) from the formal topology corresponds to recovering the full
topology from a subbasis.

Although we hope that S will be as simple as possible, the use of a ‘complex’
formal topology is sometimes unavoidable. For example, even the natural
double-negation formal topology defined over P(1), which we will shortly
define, is a class unless we have Power Set. Thus we want to define a ‘small
formal topology’ separately, and the notion of set-presented formal topology is
exactly for such a purpose. Roughly, the set-representation R decomposes
a ∈ S into some collection of ‘open sets,’ and we can track the covering relation
by using R.

The Heyting universe V S over S is defined inductively as follows: a ∈ V S if and
only if a is a function from a set-sized subset of V S to Low(S). For each set x, we
have the canonical representation x̌ ∈ V S of x recursively defined by dom x̌ =
{y̌ | y ∈ x} and x̌(y̌) = >. We can now define the Heyting interpretation,
[[φ]] ∈ Low, with parameters in V S as follows:

Definition 6.6. Let φ be a formula of first-order set theory and ~a ∈ V S . Then
we define the Heyting-valued interpretation, [[φ(~a)]], as follows:

• [[a = b]] =
(∧

x∈dom a a(x)→
∨
y∈dom b b(y) ∧ [[x = y]]

)
∧(∧

y∈dom b b(y)→
∨
x∈dom a a(x) ∧ [[x = y]]

)
,

• [[a ∈ b]] =
∨
y∈dom b b(y) ∧ [[a = y]],

• [[⊥]] = ⊥, [[φ∧ψ]] = [[φ]]∧ [[ψ]], [[φ∨ψ]] = [[φ]]∨ [[ψ]], [[φ→ ψ]] = [[φ]]→ [[ψ]],
and [[¬φ]] = [[φ→ ⊥]],

• [[∀x ∈ aφ(x)]] =
∧
x∈dom a a(x)→ [[φ(x)]],

• [[∃x ∈ aφ(x)]] =
∨
x∈dom a a(x) ∧ [[φ(x)]],

• [[∀xφ(x)]] =
∧
x∈V S [[φ(x)]] and [[∃xφ(x)]] =

∨
x∈V S [[φ(x)]].

We write V S |= φ when [[φ]] = > holds, and in such a case we say that φ is
valid in V S .

The next result is that the interpretation validates every axiom of CZF−.
Since the proof of this was already done in [20], we will omit most of the proof.
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However we will replicate the proof of the validity of Strong Collection because
it is more involved and the method will be necessary to show the persistence of
BCST-regularity in Theorem 6.24.

Let a ∈ V S and R be a class. We want to show the following statement holds:

[[(R : a⇒ V )→ ∃b(R : a⇔⇒ b)]] = >.

Here → is translated to a Heyting implication operation, and the focal property
of the implication operation is the following: q → r = > if and only if for every
p ≤ q, we have p ≤ r.

Hence we try the following strategy: take any p ∈ Low(S) such that p ⊆
[[R : a⇒ V ]](that is, p ≤ [[R : a⇒ V ]] in the inclusion ordering). Then we claim
that we can find b ∈ V S such that p ⊆ [[R : a⇔⇒ b]].

We will, and must use a form of Strong Collection to prove the validity of
Strong Collection over V S . The role of Strong Collection is to confine the
codomain of a class-sized multi-valued function to a set-sized range. Next
note that, using the third and fourth items in Remark 6.4, the assumption
p ⊆ [[R : a ⇒ V ]] is equivalent to p ∧ a(x) ⊆ [[∃y R(x, y)]] for all x ∈ dom a.
So, using this assumption, we can codify the relation R by using

P = {〈x, y, z〉 | x ∈ dom a, y ∈ V S , z ∈ p ∧ a(x) ∧ [[R(x, y)]]}.

Intuitively, P encodes a family of classes

{p ∧ a(x) ∧ [[R(x, y)]] | x ∈ dom a, y ∈ V S}.

Since [[R(x, y)]] could be a proper class in which we cannot form a collection of
all p ∧ a(x) ∧ [[R(x, y)]], we introduce P to code this family into a single class.

We will construct b by searching for an appropriate subset of P and making
use of it. We will cast appropriate lemmas when we need them.

Lemma 6.7. Fix p ∈ Low(S) and a ∈ V S such that p ⊆ [[R : a ⇒ V ]]. Let
P be the class we defined before. Then we can find a set r ⊆ P such that
p ∧ a(x) ⊆ {z | ∃y 〈x, y, z〉 ∈ r} for all x ∈ dom a.

Proof. Before starting the proof, let us remark that the b we will eventually
construct as our witness for Strong Collection will satisfy {z | ∃y 〈x, y, z〉 ∈
r} ⊆ [[∃y ∈ b R(x, y)]].

Observe that p ⊆ [[R : a ⇒ V ]] is equivalent to ∀x ∈ dom a(p ∧ a(x) ⊆∨
y∈V S [[R(x, y)]]). Hence we have

p ∧ a(x) ⊆
∨
y∈V S

p ∧ a(x) ∧ [[R(x, y)]] = J

 ⋃
y∈V S

p ∧ a(x) ∧ [[R(x, y)]]


for every x ∈ dom a. We want to have a family of classes Qx =

⋃
y∈V S p ∧

a(x) ∧ [[R(x, y)]]. For this, we define the coding Q of the family Qx by

Q = {〈x, z〉 | ∃y ∈ V S [〈x, y, z〉 ∈ P ]}

and let Qx = {z | 〈x, z〉 ∈ Q}, which one can easily see satisfies our requirement.
Then p ∧ a(x) ⊆ JQx. By the definition of J , we have the following sublemma,
which is Lemma 2.8 of [20]:
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Lemma 6.8. Let P be a lower subclass of S and u ⊆ JP . Then we can find
v ⊆ P such that u ⊆ v. a

In sum, we have that for each x ∈ dom a there is a v ⊆ Qx such that p∧a(x) ⊆
v. The following lemma shows we can find v in a uniform way:

Lemma 6.9. Let a be a set, S : a⇒ V a multi-valued class function, Q ⊆ a×V
a class. For each x ∈ a, let Qx := {z | 〈x, z〉 ∈ Q}. Moreover, assume that

1. For each x ∈ a there is u ⊆ Qx such that S(x, u) holds and
2. (Monotone Closure) If S(x, u) holds and u ⊆ v ⊆ Qx then S(x, v),

then there is f : a→ V such that f(x) ⊆ Qx and S(x, f(x)) for all x ∈ a.

Proof. Consider the multi-valued function S′ of domain a defined by

S′(x, u) if and only if S(x, u) and u ⊆ Qx.

By mimicking the proof of Lemma 2.11, we can find a set g : a⇒ V such that
g ⊆ S′. Now take f(x) =

⋃
gx =

⋃
{u | 〈x, u〉 ∈ g}, which is a set by Union and

Replacement. We can see that f(x) ⊆ Qx for each x ∈ a. By the first clause of
our assumptions and monotone closure of S, we have S(x, f(x)) for all x ∈ a. a

Let us return to the proof of Lemma 6.7. Consider the relation S defined by

S(x, u) if and only if (u ⊆ Qx and p ∧ a(x) ⊆ u).

It is easy to see that S satisfies the hypotheses of Lemma 6.9. Therefore, by
Lemma 6.9 applied to S, we can find f : dom a→ Low(S) such that f(x) ⊆ Qx
and p ∧ a(x) ⊆ f(x).

Recall that f(x) ⊆ Qx =
⋃
y∈V S p∧a(x)∧ [[R(x, y)]]. Hence for each x ∈ dom a

and z ∈ f(x) we can find y ∈ V S such that z ∈ p ∧ a(x) ∧ [[R(x, y)]]. However,
the class of such y may not be a set, so we will apply Strong Collection to find
a subset of the class uniformly.

Now let

q = {〈x, z〉 | x ∈ dom a, z ∈ f(x)}.

Then for each 〈x, z〉 ∈ q there is y such that 〈x, y, z〉 ∈ P . Now consider the
multi-valued function P ′ : q ⇒ V S defined by

P ′(〈〈x, z〉, y〉) if and only if P (x, y, z),

By Strong Collection applied to A(P ′) : q ⇒ q × V S , we have d such that
A(P ′) : q ⇔⇒ d. By Lemma 2.10, d ⊆ P ′ and d : q ⇒ V S . Define g(x, z) =
{y | 〈〈x, z〉, y〉 ∈ d}. Then we can see that y ∈ g(x, z) implies 〈x, y, z〉 ∈ P .

Finally, let

r = {〈x, y, z〉 | 〈x, z〉 ∈ q, y ∈ g(x, z)}.

It is clear that r is a set. We know that p ∧ a(x) ⊆ f(x), and z ∈ f(x)
implies ∃y[y ∈ g(x, z)], so ∃y[〈x, y, z〉 ∈ r]. By combining these facts, we have
p∧ a(x) ⊆ {z | ∃y 〈x, y, z〉 ∈ r}. Thus concluding the proof of Lemma 6.7. �

Proposition 6.10. Working over CZF−, V S validates Strong Collection.
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Proof. Let a ∈ V S and let R be a class relation. Let p ∈ Low(S) and as-
sume that p ⊆ [[R : a ⇒ V ]]. By Lemma 6.7 (and using the previously defined
notation), we can fix some r ⊆ P such that

p ∧ a(x) ⊆ {z | ∃y 〈x, y, z〉 ∈ r}

holds for all x ∈ dom a. Now define b ∈ V S as follows:

dom b = {y | ∃x∃z[〈x, y, z〉 ∈ r]},

and

b(y) = {z | ∃x ∈ dom a[〈x, y, z〉 ∈ r]}.

We claim that p ⊆ [[R : a⇔⇒ b]].

• p ⊆ [[R : a⇒ b]]: if 〈x, y, z〉 ∈ r, then y ∈ dom b, hence

p ∧ a(x) ⊆ {z | ∃y 〈x, y, z〉 ∈ r} ⊆
∨

y∈dom b

{z | 〈x, y, z〉 ∈ r}

⊆
∨

y∈dom b

{z | 〈x, y, z〉 ∈ r} ∧ p ∧ a(x) ∧ [[R(x, y)]]

⊆
∨

y∈dom b

b(y) ∧ [[R(x, y)]] = [[∃y ∈ b R(x, y)]].

• p ⊆ [[R : b⇒ a]]: note that 〈x, y, z〉 ∈ r implies x ∈ dom a. Hence

b(y) = {z | ∃x ∈ dom a〈x, y, z〉 ∈ r}

⊆
∨

x∈dom a

a(x) ∧ [[R(x, y)]] = [[∃x ∈ a R(x, y)]].a

Hence we have

Theorem 6.11. Working over CZF−, the Heyting-valued model V S also satis-
fies CZF−. If S is set-presented and Subset Collection holds, then V S |= CZF.
Furthermore, if our background theory satisfies Full Separation or Power Set,
then so does V S respectively.

Proof. The first part of the theorem is shown by Gambino [20], and we have
already replicated the proof for the validity of Strong Collection. Hence we omit
this part of the proof, and we concentrate on the preservation of Full Separation
and Power Set.

For Full Separation, it suffices to see that the proof for Bounded Separation
over V S also works for Full Separation. It actually works since Full Separation
ensures [[φ]] is a set for every formula φ because [[∀xφ(x)]] = {s ∈ S | ∀x(x ∈
V S → s ∈ [[φ(x)]])} and [[∃xφ(x)]] = ({s ∈ S | ∃x(x ∈ V S ∧ s ∈ [[φ(x)]])}).

For Power Set, let a ∈ V S . We can show that Low(S) is a set due to Power
Set. Thus we have the name b ∈ V S defined by dom b = dom a(Low(S)) and
b(c) = >. We claim that b witnesses Power Set.

Let c ∈ V S . We will find d ∈ dom b such that

[[c ⊆ a]] ≤
∨

d∈dom b

[[c = d]].
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Let d be the name such that dom d = dom a and d(y) = [[y ∈ c]]. Then
d ∈ dom b. Furthermore, we have

[[c ⊆ a]] =
∧

x∈dom c

c(x)→

 ∨
y∈dom d

a(y) ∧ [[x = y]]


≤

∧
x∈dom c

c(x)→

 ∨
y∈dom d

a(y) ∧ [[x = y]] ∧ c(x)


≤

∧
x∈dom c

c(x)→

 ∨
y∈dom d

[[x = y]] ∧ [[x ∈ c]]


≤

∧
x∈dom c

c(x)→

 ∨
y∈dom d

[[x = y]] ∧ [[y ∈ c]]

 = [[c ⊆ d]]

and

[[d ⊆ c]] =
∧

x∈dom a

[[x ∈ c]]→ [[x ∈ c]] = >.

Hence [[c ⊆ a]] ≤ [[c = d]]. a

Let us finish this subsection with some constructors, which we will need later.

Definition 6.12. For S-names a and b, up(a, b) is defined by
dom(up(a, b)) = {a, b} and (up(a, b))(x) = >. op(a, b) is the name defined by
op(a, b) = up(up(a, a), up(a, b)).

up(a, b) is a canonical name for the unordered pair {a, b} over V S . That is,
we can prove that

[[∀x∀y∀z[z = up(x, y)↔ z = {x, y}]]] = >.

Hence the name op(a, b) is the canonical name for the ordered pair given by a
and b over V S .

6.2. Double-negation formal topology. Our main tool to determine the
consistency strength of the theories in this paper is the Heyting-valued interpre-
tation with the double-negation formal topology.

Definition 6.13. The double-negation formal topology, Ω, is the formal topology
(1,=,C), where x C p if and only if ¬¬(x ∈ p).

Unlike set-sized realizability or set-represented formal topology, the double-
negation topology and the resulting Heyting-valued interpretation need not be
absolute between BCST-regular sets or transitive models of CZF−. For example,
even for a transitive model M of CZF−, it need not be the case that Ω = ΩM

holds. This is because C⊆ 1×P(1) and P(1) = PM (1) may not in general hold
between transitive sets. For instance, if ϕM is not logically equivalent to ϕ then
it is unclear why {0 ∈ 1 | ϕ} should be in M∩P(1). One example of the failure of
Ω = ΩM happens when M is the set HF of all hereditarily finite sets. [32] proved
that HF is a model of CZF without Infinity, and it additionally satisfies LEM for
atomic formulas. This shows ΩHF = 2. However, there is no reason to believe
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that Ω = 2 in general unless we have ∆0-LEM. Hence we need a careful analysis
of the double-negation formal topology, which is the aim of this subsection.

We can see that the class of lower sets, Low(Ω) = {p ⊆ 1 | p = ↓ p}, is just the
powerclass of 1, P(1), and the nucleus of Ω is given by the double complement
p¬¬ = (p¬)¬, where

p¬ = {0 | ¬(0 ∈ p)},

so p¬¬ = {0 | ¬¬(0 ∈ p)}. Hence Low(Ω) is the collection of all stable subsets
of 1, that is, those sets p ⊆ 1 such that p = p¬¬.

The main feature of Ω is that Heyting-valued interpretation over Ω forces a
law of excluded middle for some class of formulas:

Proposition 6.14. Let p ∈ Low(Ω) = P(1). Then (p ∪ p¬)¬¬ = 1. As a
corollary, if [[φ]] is a set, then [[φ ∨ ¬φ]] = 1. Especially,

1. [[φ ∨ ¬φ]] = 1 holds for every bounded formula φ, and
2. If Full Separation holds, then [[φ ∨ ¬φ]] = 1 holds for every φ.

Proof. ¬¬(p ∪ ¬p) = 1 follows from the fact that ¬¬(φ ∨ ¬φ) is derivable in
intuitionistic logic. Moreover, [[φ ∨ ¬φ]] = ([[φ]] ∪ ¬[[φ]])¬¬ if [[φ]] is a set. Lastly,
under CZF−, if φ is bounded then [[φ]] is a set and if Full Separation holds then
[[φ]] is a set for every φ. a

The following corollary is immediate from the previous proposition and The-
orem 6.11:

Corollary 6.15. If V satisfies CZF−, then V Ω |= CZF− + ∆0-LEM. Further-
more, if V satisfies Full Separation, then V Ω |= ZF−. a

We will frequently mention the relativized Heyting-valued interpretation. For
a transitive model A of CZF−, we can consider the construction of V Ω internal
to A. We define the following notions to distinguish relativized interpretation
from the usual one.

Definition 6.16. Let A be a transitive model of CZF−. Then AΩ := (V Ω)A is

the Ω-valued universe relativized to A. If A is a set, then Ã denotes the Ω-name
defined by dom Ã := AΩ and Ã(x) = > for all x ∈ dom Ã.

We shall see in Lemma 6.17 that whenever A is a set, so is AΩ which means
that the definition of Ã is well defined. Also, we will often confuse Ã and AΩ

if the context is clear. Finally, it is worth mentioning that if j is an elementary

embedding, then j(K̃) = j̃(K), so we may write jn(K̃) instead of j̃n(K).
As before with Ω, we do not know whether Low(Ω) is equal to its relativization

(Low(Ω))
M in M . As a result, we do not know whether its Heyting-valued

universe, V Ω, and Heyting-valued interpretation, [[·]], are absolute. Fortunately,
the formula p ∈ Low(Ω), which is p ⊆ 1∧ p = p¬¬, is ∆0. Hence p ∈ Low(Ω) is

absolute between transitive models of CZF−. As a result, we have the following
absoluteness result on the Heyting-valued universe:

Lemma 6.17. Let A be a transitive model of CZF− without Infinity. Then we
have AΩ = V Ω ∩A. Moreover, if A is a set, then AΩ is also a set.
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Proof. We will follow the proof of [50, Lemma 6.1]. Let Φ be the inductive
definition given by

〈X, a〉 ∈ Φ ⇐⇒ a is a function such that dom a ⊆ X, a(x) ⊆ 1,

and a(x)¬¬ = a(x) for all x ∈ dom a.

We can see that the Φ defines the class V Ω. Furthermore, Φ is ∆0, so it is
absolute between transitive models of CZF−. By Lemma 2.18, we have a class J
such that V Ω =

⋃
a∈V J

a, and for each s ∈ V , Js = ΓΦ(
⋃
t∈s J

t). Now consider
the operation Υ given by

Υ(X) := {a ∈ A | ∃Y ∈ A(Y ⊆ X ∧ 〈Y, a〉 ∈ Φ)}.

By Lemma 2.18 again, there is a class Y such that Y s = Υ(
⋃
t∈s Y

t) for all

s ∈ V . Furthermore, we can see that Y s ⊆ V Ω by induction on a.
Let Y =

⋃
s∈A Y

s. We claim by induction on s that Js∩A ⊆ Y . Assume that
J t ∩ A ⊆ Y holds for all t ∈ s. If a ∈ Js ∩ A, then the domain of a is a subset
of A ∩

(⋃
t∈s J

t
)
, which is a subclass of Y by the inductive assumption and the

transitivity of A. Moreover, for each x ∈ dom a there is u ∈ A such that x ∈ Y u.
By Strong Collection over A, there is v ∈ A such that for each x ∈ dom a there
is u ∈ v such that x ∈ Y u. Hence dom a ⊆

⋃
u∈v Y

u, which implies a ∈ Y v ⊆ Y .

Hence V Ω ∩ A ⊆ Y , which gives us that Y = V Ω ∩ A. We can see that the
construction of Y is the relativized construction of V Ω to A, so Y = AΩ. Hence
AΩ = V Ω ∩A. If A is a set, then Υ(X) is a set for each set X, so we can see by
induction on a that Y a is also a set for each a ∈ A. Hence AΩ = Y =

⋃
a∈A Y

a

is also a set. a

We extended the nucleus  to J for subclasses of LowS, and used it to define
the validity of formulas of the forcing language. Now, we are working with the
specific formal topology S = Ω, and in this case, for a class P ⊆ 1, JP =

⋃
{q¬¬ |

q ⊆ P}. It is easy to see that P ⊆ JP ⊆ P¬¬.
We also define the following relativized notion for any transitive class A such

that 1 ∈ A:

JAP =
⋃
{q¬¬ | q ⊆ P and q ∈ A}.

If P ∈ A, then JAP = P¬¬, and in general, we have P ⊆ JAP ⊆ JP ⊆ P¬¬.
Moreover, we can prove the following facts by straight forward computations.

Lemma 6.18. Let A and B be transitive classes such that 1 ∈ A,B and let
P ⊆ 1 be a class.

1. A ⊆ B implies JAP ⊆ JBP .
2. If P(1) ∩A = P(1) ∩B, then JAP = JBP . a
However, the following proposition shows that CZF− does not prove JAP =

JBP or JP = P¬¬ in general:

Proposition 6.19.

1. If A ∩ P(1) = 2 (for example when A = 2 or A = V and ∆0-LEM holds),
then JAP = P .

2. If P¬¬ ⊆ JP for every class P , then if ∆0-LEM holds so does the law of
excluded middle for arbitrary formulas. a
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JA has a crucial role in defining Heyting-valued interpretation, but JA and JB

might have different effects unless A = B. This causes absoluteness problems,
which appears to be impossible to in general avoid.

The following lemma states provable facts about relativized Heyting interpre-
tations:

Lemma 6.20. Let A ⊆ B be transitive models of CZF−. Assume that φ is a
formula with parameters in AΩ.

1. If φ is bounded, then [[φ]]A = [[φ]]B.
2. If φ only contains bounded quantifications, logical connectives between

bounded formulas, unbounded ∀, and ∧, then [[φ]]A = [[φÃ]]B.
3. If every conditional appearing as a subformula of φ is of the form ψ → χ

for a bounded formula ψ and a formula χ, then [[φ]]A ⊆ [[φÃ]]B.

4. If P(1) ∩A = P(1) ∩B, then [[φ]]A = [[φÃ]]B.

Proof.

1. If φ is bounded, then [[φ]] is defined in terms of double complement, Heyt-
ing connectives between subsets of 1, and set-sized union and intersection.
These notions are absolute between transitive sets, so we can prove [[φ]] is
also absolute by induction on φ. In the case of atomic formulas as an initial
stage, we apply the induction on AΩ-names.

2. We apply induction on formulas. For the unbounded ∀, we have

[[∀xφ(x)]]A =
∧
x∈AΩ

[[φ(x)]]A =
∧
x∈AΩ

[[φÃ(x)]]B = [[∀x ∈ ÃφÃ(x)]]B .

The remaining clauses follows from the absoluteness argument we used in
the proof of the previous item, so we omit them.

3. The proof again uses induction on formulas. By the previous argument, if

[[φ(x)]]A ⊆ [[φÃ(x)]]B for all x ∈ AΩ, then [[∀xφ(x)]]A ⊆ [[∀x ∈ ÃφÃ(x)]]B .
For an unbounded ∃, we have

[[∃xφ(x)]]A = JA
(⋃
{[[φ(x)]]A | x ∈ AΩ}

)
⊆ JB

(⋃
{[[φÃ(x)]]B | x ∈ AΩ}

)
= [[∃x ∈ ÃφÃ(x)]]B .

The remaining cases are straightforward except for→, which requires some
inspection to see how the inclusion works. By the assumption, our condi-
tional is of the form ψ → χ for some bounded formula ψ and a (possibly

unbounded) formula χ. Since ψ is bounded, we have [[ψ]]A = [[ψÃ]]B .
Furthermore, we can see that if a, b, c ∈ Low(Ω) satisfies a ⊆ b, then
c→ a ⊆ c→ b. Hence

[[ψ → χ]]A =
(
[[ψ]]A → [[χ]]A

)
⊆
(

[[ψÃ]]B → [[χÃ]]B
)

= [[(ψ → χ)Ã]]B .

4. We can see that [[φ(x)]]A = [[φÃ(x)]]B holds by induction on φ. The calcu-
lations we did before are helpful to see the inductive argument works for
unbounded quantifications. In particular, we observe that if P(1) ∩ A =
P(1) ∩B then JA = JB . a
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Remark 6.21. In the third clause of Lemma 6.20, if A ∈ B, then⋃
x∈AΩ [[φÃ(x)]]B ∈ P(1) ∩B. Thus, in this case, we have

JB

( ⋃
x∈AΩ

[[φÃ(x)]]B

)
=

( ⋃
x∈AΩ

[[φÃ(x)]]B

)¬¬
.

Remark 6.22. We can see that Lemma 6.20 also holds for arbitrary formal
topologies S ∈ A. The proof is identical, and its verification is left to the reader.

6.3. Preservation of small large sets. Heyting-valued models do not nec-
essarily preserve large sets unless we impose some additional restrictions. For
example, on the one hand, Ziegler proved in [67] that large set properties are
preserved under ‘small’ pcas and formal topologies.

Proposition 6.23 (Ziegler, [67], Chapter 4). Let K be either a regular set,
inaccessible set, critical set or Reinhardt set.

1. Let A be a pca and A ∈ K. Then K[A] := V [A] ∩ K is a set and the
realizability model V [A] thinks K[A] possesses the same large set property
K does.

2. Let S be a formal topology that is set-represented by R. Assume that S, R ∈
K. Then KS := V S∩K is a set and V S thinks the canonical name K̃ given
by dom K̃ = KS , K̃(a) = > possesses the same large set property K does.

On the other hand, however, our double-negation formal topology will usually
lose large set properties. For example, CZF− cannot prove that Heyting-valued
interpretations under Ω preserve regular sets regardless of how many regular sets
exist in V : If it were possible, then CZF + REA would interpret ZF, but the latter
theory proves the consistency of the former.

Hence our preservation results under the double-negation topology are also
quite limited, which is a great obstacle for deriving the consistency strength of
large sets over constructive set theories. Fortunately, almost all lower bounds
we derived in Section 5 are models of IZF. Furthermore, we mostly work with
power inaccessible sets instead of mere inaccessible sets. This will make deriv-
ing the lower bounds easier, and we will examine the detailed account of the
aforementioned statements in this subsection.

We mostly follow the proof of Lemma 6.7 and Proposition 6.10. However, for
the sake of verification, we will provide most of the details of relevant lemmas
and their proofs. Throughout this section, A and B are classes such that

• A ∈ B (thus A is a set),
• P(1) ∩A = P(1) ∩B,
• A is BCST-regular and B is a transitive (set or class) model of CZF−.

Finally, R ∈ B will denote a multi-valued function over the Heyting-valued
universe BΩ unless specified.

The main goal of this subsection is proving the following preservation theorem:

Theorem 6.24. Let A be a BCST-regular set and B ⊇ A a transitive model of
CZF− such that P(1) ∩A = P(1) ∩B. Then BΩ thinks Ã is BCST-regular.
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Its proof requires a sequence of lemmas in a similar way to how we proved
Proposition 6.10, the validity of Strong Collection over V S . The following lemma
is an analogue of Lemma 6.9:

Lemma 6.25. Let a ∈ A, S : a ⇒ A a multi-valued function and Q ⊆ a × A a
class. Moreover, assume that

1. For each x ∈ a there is u ⊆ Qx = {z | 〈x, z〉 ∈ Q} such that 〈x, u〉 ∈ S, and
2. (Monotone Closure) If 〈x, u〉 ∈ S and u ⊆ v ⊆ Qx then 〈x, v〉 ∈ S.

Then there is an f ∈ A∩aA such that f(x) ⊆ Qx and 〈x, f(x)〉 ∈ S for all x ∈ a.

Proof. As before, consider the multi-valued function S′ with domain a defined
by

S′(x, u) if and only if S(x, u) and u ⊆ Qx.

By Lemma 2.11, there is g ∈ A such that g : a ⇒ A and g ⊆ S′. Let gx = {y |
〈x, y〉 ∈ g}, then

⋃
gx ⊆ Qx. Now take f(x) =

⋃
gx, then f ∈ A since A satisfies

Union and second-order Replacement. Moreover, since S′ is monotone closed,
we have 〈x, f(x)〉 ∈ S′ for all x ∈ a. a

The following lemma is an analogue of Lemma 6.7. The reader is reminded
that the proof of the following lemma necessarily uses the assumption P(1)∩A =
P(1) ∩B.

Lemma 6.26. Let a ∈ AΩ and R ∈ B. Fix p ∈ A such that p = p¬¬ and
p ⊆ [[R : a⇒ Ã]]B. If we define P as

P = {〈x, y, z〉 ∈ dom a×AΩ × 1 | z ∈ (p ∧ a(x) ∧ [[op(x, y) ∈ R]]B)},

then there exists r ∈ A such that r ⊆ P and

p ∧ a(x) ⊆ {z | ∃y ∈ AΩ 〈x, y, z〉 ∈ r}¬¬.

Proof. Again, observe that p ⊆ [[R : a⇒ Ã]]B is equivalent to

p ∧ a(x) ⊆
∨B

y∈AΩ

[[op(x, y) ∈ R]]B = JB

 ⋃
y∈AΩ

[[op(x, y) ∈ R]]B


for all x ∈ dom a. Now let us take

Q = {〈x, z〉 | ∃y ∈ AΩ(〈x, y, z〉 ∈ P )},

then take Qx = {z | 〈x, z〉 ∈ Q} ⊆ 1. We can easily see that
Qx =

⋃
y∈AΩ [[op(x, y) ∈ R]]B holds. Thus we have p ∧ a(x) ⊆ JBQx.

Furthermore, it is also true that Qx ∈ P(1) ∩ B = P(1) ∩ A. So we have
Qx ∈ P(1) ∩B, which implies that JBQx = Q¬¬x .

Now consider the relation S ⊆ dom a× (P(1) ∩A) defined by

〈x, u〉 ∈ S if and only if u ⊆ Qx and p ∧ a(x) ⊆ u¬¬.

We want to apply Lemma 6.25 to S, so we will check the hypotheses of
Lemma 6.25 hold.

The first condition holds because 〈x,Qx〉 ∈ S for each x ∈ dom a. Further-
more, this shows that S is a multi-valued function with domain dom a. For the
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second condition, the relation is monotone closed in A because if v ⊆ w are in
P(1) ∩A then v¬¬ ⊆ w¬¬.

Therefore, by Lemma 6.25 applied to S, we have a function f ∈ dom aA ∩ A
such that p ∧ a(x) ⊆ f(x)¬¬ and f(x) ⊆ Qx for all x ∈ dom a. Now let

q = {〈x, z〉 | x ∈ dom a and z ∈ f(x)}.

Then for each 〈x, z〉 ∈ q there is y ∈ AΩ such that 〈x, y, z〉 ∈ P holds. By
Lemma 2.11 applied to P ′ : q ⇒ AΩ, defined by

P ′(〈x, z〉, y) if and only if P (x, y, z),

there is r ∈ A such that r ⊆ P and r : q ⇒ AΩ. It is easy to see that r satisfies
our desired property. a

Remark 6.27. There is a technical note for the proof of Lemma 6.26, which
is that there is no need for P , Q, and Qx to be definable over A in general.
The reason is that we do not know if either R or [[·]]B are accessible from A.
However, we do not need to worry about this since we are relying on the second-
order Strong Collection over A.

Furthermore, the proof of Lemma 6.26 also uses an assumption that B is a
transitive model of CZF− implicitly. The reason is that we made use of Heyt-
ing operations relative to B, which we formulate over CZF−. Thus relativized
Heyting operations are viable when B satisfies CZF−.

We are now ready to prove the preservation theorem, Theorem 6.24. Its proof
is parallel to that of Proposition 6.10.

Proof of Theorem 6.24. First, observe that since B is a transitive model of CZF−

both BΩ and the Heyting operations over B are well defined. Furthermore, it
is easy to see that BΩ thinks Ã is transitive, and closed under Pairing, Union
and Binary Intersection. Hence it remains to show that BΩ thinks Ã satisfies
second-order Strong Collection, that is,

[[∀a ∈ Ã∀R[R : a⇒ Ã→ ∃b ∈ Ã(R : a⇔⇒ b)]]]B = 1.

Take a ∈ dom Ã, R ∈ BΩ and p ∈ B such that p ⊆ 1 and p = p¬¬.
We claim that if p ⊆ [[R : a ⇒ Ã]]B , then there is b ∈ dom Ã such that

p ⊆ [[R : a⇔⇒ b]]B . Taking P as in the statement of Lemma 6.26, by Lemma 6.26,
we can find some r ∈ A such that r ⊆ P and

p ∧ a(x) ⊆ {z | ∃y〈x, y, z〉 ∈ r}¬¬.

Define b such that dom b = {y | ∃x, z(〈x, y, z〉 ∈ r)} and

b(y) = {z | ∃x〈x, y, z〉 ∈ r}¬¬.

for y ∈ dom b. Note that b(y) ∈ A since r is. Then we can show that p ⊆
[[R : a⇔⇒ b]]B by following the computation given in the proof of Proposition 6.10.

a

As a corollary, we have
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Corollary 6.28. Let K be a power inaccessible set. Then V Ω thinks K̃ is power
inaccessible.

Proof. Since P(1) ∈ K, we have P(1) ∩K = P(1). Thus Theorem 6.24 shows

V Ω thinks K̃ is BCST-regular. It remains to show that V Ω thinks K̃ is closed
under the true power set.

We claim that the argument for the preservation of Power Set given in the
proof of Theorem 6.11 relativizes to K. Work in V , and take a ∈ KΩ. Since K
is power inaccessible, the name defined by dom b = dom a{p¬¬ | p ⊆ 1}, b(c) = 1
is a member of K. By the same calculation as in the proof of Theorem 6.11, we
have [[∀c(c ⊆ a→ c ∈ b)]] = 1. Hence the desired result holds. a

6.4. Interpreting an elementary embedding. In this subsection, we work
over CZF + BTEEM unless otherwise specified.

We will show that elementary embeddings are persistent under Heyting-valued
interpretation over Ω. We will mostly follow Subsection 4.1.6 of Ziegler [67], but
we need to check his proof works in our setting since his applicative topology
does not include Heyting algebras generated by formal topologies that are not
set-presentable. Furthermore, we are working with a weaker theory than Ziegler
assumed. Especially, we do not assume Set Induction, ∆0-Separation and Strong
Collection for (j,M)-formulas, which calls for additional care.

In most of our results in the rest of the paper, we will consider the case
M = V , so considering the target universe, M , of j will not be needed for our
main results. Nevertheless, to begin with we will work in the more general setting
and not assume that M = V .

We need to define Heyting-valued interpretations for M and j in the forcing
language. Since j preserves names, we can interpret j as j itself. We will
interpret M by MΩ, as defined in Definition 6.16, which was given by following
the construction of V Ω inside M . Thus defining MΩ does not require Strong
Collection or Set Induction for the language extended by j. The existence of
MΩ follows from the assumption that M satisfied CZF−.

One possible obstacle to defining the interpretation for the extended language
is a non-absoluteness of Ω and the resulting double-negation formal topology
between transitive models of CZF−. We discussed in subsection 6.2 that the
Heyting interpretation [[φ]] need not be absolute between transitive sets.

It would be convenient if we have [[φ]] = [[φ]]M , which follows from P(1) =
P(1) ∩M , which thankfully we have.

Lemma 6.29. For any formula φ with parameters in MΩ, we have [[φ]]M =

[[φM
Ω

]].

Proof. By Lemma 4.9, P(1) = P(1)∩M . Hence the conclusion follows from the
last clause of Lemma 6.20. a

Thus we do not need to worry about the absoluteness issue on the Heyting
interpretation. Now we are ready to extend our forcing language to {∈, j,M}.
Definition 6.30. Define [[φ]] for the extended language as follows:

• [[jm(a) ∈ jn(b)]] and [[jm(a) = jn(b)]] are defined in the same way as [[x ∈ y]]
and [[x = y]] were.
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• [[a ∈M ]] :=
∨
x∈MΩ [[a = x]],

• [[∀x ∈Mφ(x)]] :=
∧
x∈MΩ [[φ(x)]], and

• [[∃x ∈Mφ(x)]] :=
∨
x∈MΩ [[φ(x)]].

Remark 6.31. The reader should be careful that [[φ(~x)]] is not in general a set.
Provably over CZF + BTEEM , [[jm(a) ∈ jn(b)]] and [[jm(a) = jn(b)]] are always
sets. In general, we can see that if φ(~x) is a Heyting combination of atomic
formulas, then [[φ(~x)]] is a set regardless of what the background theory is.

However, taking a bounded quantification could make [[φ]] a class that is not
provably a set. For example, consider taking bounded universal quantification
over [[φ(x.y)]] for a Heyting combination of atomic (j,M)-formulas φ. Then
[[∀x ∈ aφ(x, y)]] =

∧
x∈dom a a(x) ∧ [[φ(x, y)]]. Each of [[φ(x, y)]] can be a set,

but the family {[[φ(x, y)]] | x ∈ dom a} need not be a set unless we have Strong
Collection and ∆0-Separation for (j,M)-formulas.

The situation is even worse for bounded existential quantifiers and disjunc-
tions: we took a nucleus  when defining the interpretation of these, so [[∃x ∈
aφ(x)]] =

∨
x∈dom a[[φ(x)]] = 

(⋃
x∈dom a[[φ(x)]]

)
. This is ill-defined when the

union
⋃
x∈dom a[[φ(x)]] is a class rather than a set. Hence we have to use the join

operator for classes instead of sets. The trade-off for the new definition of [[φ]],
in this case, is that we do not know if [[φ ∨ ¬φ]] = 1 for a j-formula φ, unless we
can ensure [[φ]] is a set.

From this definition, we have an analogue of Lemma 4.26 of [67], which is
useful to check that j is still elementary over V Ω:

Lemma 6.32. For any bounded formula φ(~x) with all free variables displayed
in the language ∈ (that is, without j and M), we have

[[φ(~a)]] = [[φM
Ω

(j(~a))]] = [[φ(j(~a))]]

for every ~a ∈ V Ω.

Proof. For the first equality, note that [[φ(~a)]] ⊆ 1. Hence we have

[[φ(~a)]] = j([[φ(~a)]]) = [[φ(j(~a))]]M = [[φM
Ω

(j(~a))]].

by Lemma 4.9.
The second equality will follow from the claim that for any bounded formula

φ and ~b ∈ MΩ, [[φ(~b)]] = [[φM
Ω

(~b)]]. The proof proceeds by induction on φ: the
atomic case and cases for ∧, ∨, and→ are trivial. For bounded ∀, observe that if

c,~b ∈MΩ then [[c = c∩MΩ]] = 1, so [[∀x ∈ c φ(x,~b)↔ (∀x ∈ c φ(x,~b))M
Ω

]] = 1.

This proves [[∀x ∈ c φ(x,~b)]] = [[∀x ∈ c φM
Ω

(x,~b)]]. The case for bounded
existential quantifiers is similar. a

Moreover, we can check the following equalities easily:

Proposition 6.33.

1. [[∀x, y(x = y → j(x) = j(y))]] = 1,
2. [[∀x(j(x) ∈M)]] = 1,
3. [[∀x(x ∈M → ∀y ∈ x(y ∈M))]] = 1.
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Proof. The first equality follows from [[x = y]] = [[j(x) = j(y)]], which holds by
the previous lemma, and the remaining two follow from direct calculations. a

Lemma 6.34. For every ~a ∈ V Ω and formula φ that does not contain j or M ,

we have [[φ(~a)↔ φM
Ω

(j(~a))]] = 1.

Proof. Lemma 6.32 proved that this lemma holds for bounded formulas φ. We
will use full induction on φ to prove [[φ(~a)]] = [[φM (j(~a))]] for all ~a ∈ V Ω. If φ is
∀xψ(x,~a), we have [[∀xψ(x,~a)]] =

∧
x∈V Ω [[ψ(x,~a)]]. Now

0 ∈
∧
x∈V Ω

[[ψ(x,~a)]] ⇐⇒ ∀x ∈ V Ω(0 ∈ [[ψ(x,~a)]])

⇐⇒ ∀x ∈ (V Ω)M (0 ∈ [[ψ(x, j(~a))]]),

where the last equivalence follows from applying j to the above formula. Since
the last formula is equivalent to 0 ∈

∧
x∈MΩ [[ψ(x, j(~a))]], we have∧

x∈V Ω

[[ψ(x,~a)]] =
∧

x∈MΩ

[[ψ(x, j(~a))]] = [[∀x ∈MψM (x, j(~a))]].

If φ is ∃xψ(x,~a), we have [[∃xψ(x,~a)]] =
∨
x∈V Ω [[ψ(x,~a)]]. Moreover,

0 ∈
∨
x∈V Ω

[[ψ(x,~a)]] ⇐⇒ ∃p ⊆ 1

[
p ⊆

⋃
x∈V Ω

[[ψ(x,~a)]] and 0 ∈ p¬¬
]

⇐⇒ ∃p ⊆ 1

[
p ⊆

⋃
x∈MΩ

[[ψM
Ω

(x, j(~a))]] and 0 ∈ p¬¬
]

Hence 0 ∈
∨
x∈V Ω [[ψ(x,~a)]] if and only if 0 ∈

∨
x∈MΩ [[ψ(x, j(~a))]] a

We now work in the extended language CZFj,M . We need to check that ∆0-
Separation and Strong Collection under the extended language are also persistent
under the double-negation interpretation. We can see that the proof given by
[20] and Theorem 6.11 carries over, so we have the following claim:

Proposition 6.35. If V satisfies any of Set Induction, Strong Collection, ∆0-
Separation or Full Separation for the extended language, then the corresponding
axiom for the extended language is valid in V Ω. a

The essential property of a critical set is that it is inaccessible. However,
inaccessibility is not preserved under Heyting-valued interpretations in general.
Fortunately, being a critical point is preserved provided it is regular:

Lemma 6.36. Let K be a regular set such that K ∈ j(K) and j(x) = x for all

x ∈ K. Then [[K̃ ∈ j(K̃) ∧ ∀x ∈ K̃(j(x) = x)]] = 1.

Proof. Since (j(K) is inaccessible)M , we have j(K) |= CZF−. Thus, by
Lemma 6.17, j(K)Ω = j(K) ∩ V Ω. By applying the same argument internal to
M , we have

(j(K)Ω)M = (j(K) ∩ V Ω)M = j(K) ∩MΩ.
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Since j(K) ∩ V Ω ⊆ j(K) ⊆ M , we have j(K) ∩ V Ω ⊆ M . This implies j(K) ∩
V Ω = j(K) ∩ V Ω ∩M = j(K) ∩MΩ. In sum, we have

j(K)Ω = j(K) ∩ V Ω = j(K) ∩MΩ = (j(K)Ω)M ,

and these are sets by Lemma 6.17.

Also, K ∈ j(K) implies K̃ ∈ j(K). Since the domain of j(K̃) = j̃(K) is

j(K) ∩ V Ω, we have K̃ ∈ dom j(K̃), which implies [[K̃ ∈ j(K̃)]] = 1. For the

assertion [[∀x ∈ K̃(j(x) = x)]] = 1, observe that if x ∈ dom K̃ then j(x) = x, so
we have the desired conclusion. a

6.5. Consistency strength: intermediate results. By using the results
from the previous sections and subsections, we have the following:

Theorem 6.37.

1. IZF + BTEE interprets ZF + BTEE.
2. IZF + BTEE + Set Inductionj interprets ZF + BTEE + Set Inductionj.
3. IZF + WA interprets ZF + WA. a
Hence

Corollary 6.38.

1. (IKPj,M ) IKP with a critical point implies Con(ZF+BTEE+Set Inductionj).
2. CZF with a Reinhardt set implies Con(ZF + WA).

Proof. Using Theorem 5.21, if K is a critical point of an embedding j : V →M
then we can find some ordinal λ for which 〈Lλ, j �Lλ〉 is a model of IZF + BTEE+
Set Inductionj . Therefore the first claim follows from the first claim of Theo-
rem 6.37. The second claim follows directly from Theorem 5.22. a

By mimicking Bagaria-Koellner-Woodin’s argument in [10] over V Ω, we have
the following consistency result:

Theorem 6.39 (CGB∞). Let K be a super Reinhardt set. Then V Ω satisfies
ZF plus there is a proper class of inaccessible cardinals γ such that (Vγ , Vγ+1) |=
ZF2 + there is a Reinhardt cardinal.

Proof. The proof will proceed as follows: First, we will show that the back-
ground theory interprets some moderate semi-intuitionistic theory. Then we will
derive that this semi-intuitionistic theory proves that there is a proper class of
inaccessible cardinals γ such that Vγ is a model of ZF with a Reinhardt cardinal.

So, let K be a super Reinhardt set. For any a ∈ V Ω, we can find an amenable
elementary embedding j : V → V with critical set K such that a ∈ j(K). As per
usual, let Λ = jω(K). We shall restrict our background theory to its first-order
part to facilitate the proof.

By Proposition 5.25 and Corollary 5.26, K is power inaccessible and V satis-
fies IZF + pIEA. Thus by Corollary 6.15 and Corollary 6.28, V Ω interprets the
following statements:

• Axioms of ZF, and
• There is a proper class of inaccessible cardinals.
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Especially, V Ω interprets the law of excluded middle for formulas without j.
However, we do not know if V Ω satisfies ZFj because there is no reason why
V should satisfy the Separation scheme for j-formulas. As a result, the double-
negation translation does not force the law of excluded middle for j-formulas. De-
spite this, V Ω still believes the following statements are valid due to Lemma 6.34
and Proposition 6.35:

• j is amenable and elementary, and
• Collection and Set Induction for j-formulas.

Amenability of j needs some justification. Working over V , j is amenable by
Lemma 2.32. As we observed in Remark 4.13, if j is amenable then Separation
for ∆j

0-formulas holds. By Proposition 6.35, ∆0-Separation for j-formulas is
valid in V Ω from which it follows that V Ω thinks j is amenable.

Now work in V Ω. Since V Ω validates ZF with a proper class of inaccessible
cardinals, we can find the least inaccessible cardinal γ such that γ > jω(κ),

where κ = rank K̃. Here jω(κ) is well-defined since the sequence 〈jn(κ) | n ∈ ω〉
required Set Induction for j-formulas for its definition and Collection for its
supremum to exist. Furthermore, one can see that V Ω thinks K̃ is a critical
point of j and K̃ = Vκ. (The latter equality follows from the fact that K̃ is
power inaccessible.) From which it follows that κ = crit j.

Since γ is definable from the parameter jω(κ), which is fixed by j, by ele-
mentarity we have γ = j(γ). Moreover, V Ω also believes j �Vγ ∈ Vγ+1 and
crit(j �Vγ) = κ. (Amenability of j ensures j �Vγ exists.) Hence V Ω thinks
(Vγ , Vγ+1) is a model of ZF2 with a Reinhardt cardinal.

Finally, recall that a ∈ j(K) and a were arbitrary. Hence we have proved
that for every a ∈ V Ω, V Ω thinks there is an inaccessible cardinal γ such that
(Vγ , Vγ+1) believes that there is a Reinhardt cardinal κ for which a ∈ Vj(κ).

Hence V Ω thinks there is a proper class of such γ. a

Remark 6.40. Most results in this section can be obtained by using Friedman’s
double-negation translation as defined in [15] and [16]. In some cases, applying
Friedman’s argument would be simpler: for example, verifying the axioms of IZF
under Friedman’s double-negation translation does not involve any lengthy proof,
unlike the verification of Strong Collection over Gambino’s Heyting universe V S .
However, Friedman’s proof of the validity of Collection under this translation
heavily relies on Full Separation, an axiom scheme that CZF does not enjoy.

Thus we may ask what the advantages are to using Gambino’s Heyting-valued
interpretation over Friedman’s double-negation interpretation. The main reason
is that Gambino’s presentation is closer to forcing, which is a technique more
familiar to set theorists. Secondly, as an intermediate step, Friedman first in-
terprets a non-extensional set theory. This can be very notationally heavy and
difficult to follow when one first tries to understand the arguments. Finally, most
of this work has been done over the weak system of CZF and it is unknown how
to achieve Friedman’s interpretation in this system.

On the other hand, there may be no advantage to our main results concern-
ing critical sets and Reinhardt sets. This is because in Theorems 5.21 and 5.22
we obtained a lower bound for their consistency strength in terms of IZF plus
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some large set axioms. One could then take Freidman’s double-negation transla-
tion of this theory to obtain the consistency of ZF+BTEE+ Set Inductionj and
ZF + WA for critical sets and Reinhardt sets respectively. However, using Gam-
bino’s method we can strengthen this result to preserve our background theory
while containing a set model of this classical theory. Namely, we will see that
V Ω preserves the theory CZF−j and contains, as a set, Λ̃ which is a model of the
above theory. Since Friedman’s interpretation does not work over weak theories,
it does not seem to be possible to obtain a similar result with that translation.

Theorem 6.41. Working with the theory CZFj,M with a critical set, V Ω vali-

dates CZF−j + ∆0-LEM with a critical point K̃ of j. Furthermore, Λ̃ = jΩ(K̃)
satisfies ZF+BTEE plus Set Induction for j-formulas. If we strengthen a critical
set to a Reinhardt set, then V Ω validates Λ̃ |= ZF + WA.

If we add Full Separation into the background theory, then V Ω satisfies not
only CZF−j + ∆0-LEM, but also ZF−.

Proof. The results in the previous subsections show V Ω validates
CZF−j + ∆0-LEM, and that j is an elementary embedding from V Ω to MΩ with

a critical point K̃. Since K is BCST-regular, K ∈ j(K), and
P(1) ∩ K = P(1) ∩ j(K), we can apply Theorem 6.24 to K and j(K). Hence
we have that

[[K̃ is BCST-regular]]j(K)Ω

= 1,

which implies that [[K̃ |= CZF−]]j(K)Ω

= 1. Observe that the claim K̃ |= CZF−

is ∆0, so applying the second clause of Lemma 6.20 proves [[K̃ |= CZF−]] = 1.
Now working in V Ω, the excluded middle for bounded formulas gives us that

every transitive set satisfies the full excluded middle. Especially, both K̃ and
Λ̃ satisfy the full excluded middle. In addition, Λ̃ satisfies IZF + BTEE plus Set
Induction for j-formulas by Corollary 5.14. Thus we have the desired result.

The case for a Reinhardt set is analogous to the previous one, except that we
apply Theorem 5.22 to show that Λ̃ validates IZF + WA.

Finally, if we have Full Separation, then V Ω also satisfies Full Separation
which completes the proof since the combination of Full Separation and ∆0-LEM
implies the full excluded middle. a

We will end this section by observing that the translation preserves the co-
finality of an elementary embedding over a moderate extension of CZF. None
of the previous analysis has required either Full Separation or Subset Collection
in the background universe. On the other hand, the following proof, which we
include for completeness, requires either Full Separation or REA.

Lemma 6.42 (CZFj). Assume either Full Separation or REA. If j : V ≺ V is
a cofinal elementary embedding, then V Ω thinks j is cofinal.

Proof. Let a ∈ V Ω. Then there is a set X such that a ∈ j(X). If we assume Full
Separation, then X ∩V Ω is a set, and j(X ∩V Ω) = j(X)∩V Ω. Let b be a name
such that dom b = X ∩ V Ω and b(y) = 1 for all y ∈ dom b. Then [[a ∈ j(b)]] = >.

An additional step is required if we assume REA instead: Take a set X such
that a ∈ j(X). By REA, we can find a regular set Y such that X ∈ Y . By
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Lemma 6.17, Y Ω = Y ∩ V Ω is a set. The remaining argument is then identical
to the previous one. a

While Lemma 6.42 does not directly suggest anything about consistency
strength, when combined with Theorem 6.41 it does tell us that CZF + Sep
with a Reinhardt set interprets ZF− with the existence of a non-trivial cofinal
embedding j : V → V .

As we pointed out after Proposition 4.8, over ZFC− with the DCµ-schemes for
all cardinals µ there cannot be a non-trivial cofinal embedding j : V → V . The
DCµ-schemes are a variant of the Axiom of Choice and adding these schemes to

ZF− does not bolster its consistency strength. In fact, ZF− proves L satisfies the
DCµ-scheme for every cardinal µ in L. Thus the absence of a cofinal embedding

over ZFC− with the DCµ-schemes for any cardinal µ can be seen as a variant of
the Kunen inconsistency phenomenon.

However, it is unclear how we can use the above results to obtain a stronger
bound for the consistency strength of CZF with a Reinhardt set. It is known that
if one extends CZF by the Relation Reflection Scheme (RRS), as defined by Aczel
[4], then this is also persistent under Gambino’s Heyting-values interpretation
and ZFC− proves that RRS is equivalent to the DC-Scheme. It is further possible
that one might be able to generalize such a scheme to DCµ for larger cardinals,
however, this does not appear to be sufficient to derive an inconsistency due to
the heavy use of Well-Ordering in the proof of inconsistency in [39].

Alternatively, it is proven in [39] that we can remove the assumption of the
Dependent Choice Schemes if we instead require that Vcrit j ∈ V (in fact, the
main reason one assumes the DCµ-scheme for every cardinal µ is to prove this).
The issue is that we do not know whether V Ω believes that Vcrit j ∈ V , even if
we assume V satisfies Full Separation or REA. If we were to assume that there
was a Reinhardt set which was Power Inaccessible then this would be the case,
however, we can only obtain that Λ believes that K is Power Inaccessible which
is insufficient to derive the required result.

§7. Double-negation translation of second-order set theories. In this
section, we will provide a double-negation translation of IGB and TR. One tech-
nical issue is that the statement of TR requires an infinite conjunction. However,
we know that the full elementarity of j : V → V is definable in a classical con-
text, namely Σ1-elementarity, and that this can be codified into a single formula
by using the partial truth predicate for Σ1-formulas. Thus we will not try to
interpret infinite connectives.

7.1. Interpreting GB from IGB.

Definition 7.1. A class A is an Ω-class name, or simply a class name if:

• The elements of A are of the form 〈a, p〉, where a ∈ V Ω, p ⊆ 1 and p¬¬ = p,
• It is functional in the sense that 〈a, p〉, 〈a, q〉 ∈ A implies p = q.

If A is a class name, define domA := {a | ∃p 〈a, p〉 ∈ A} and A(a) = p for the
unique p such that 〈a, p〉 ∈ A.

Then we can extend [[φ]] to atomic second-order formulas as follows:
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Definition 7.2. Let a ∈ V Ω and A, B be class names. Define [[a ∈ A]] :=∨
x∈domAA(x) ∧ [[x = a]] and

[[A = B]] :=

 ∧
x∈domA

A(x)→
∨

y∈domB

B(y) ∧ [[x = y]]


∧

 ∧
y∈domB

B(y)→
∨

x∈domA

A(x) ∧ [[x = y]]

 .

Based on the above definition, we can extend our interpretation to any formula
φ with no second-order quantifiers.

Now we want to extend the double-negation interpretation to formulas which
have second-order quantifiers, but this calls into question how this should be
formulated in our second-order context. To illustrate the problem, observe that
we take a class meet and join to interpret unbounded first-order quantifiers,
and the resulting [[φ]] is a class rather than a set. Thus we may suspect that
interpreting second-order quantifiers results in [[φ]] being a hyperclass, a collection
of classes, which is clearly not an object of CGB or IGB.

This situation is analogous to the one encountered in Remark 6.31, where [[φ]]
for a j-formula φ may not be a set. This was because the definitions of ∨ and ∃
for j-formulas used J instead of  and we only know that J([[φ]] ∪ ¬[[φ]]) = 1 is
true when [[φ]] is a set.

We may suspect the same issue happens for second-order formulas: we may
need to extend  to some function J which is defined for hyperclasses, as J serves
as an extension of , to define ∨ and ∃ for second-order formulas. However,
even if we have a proper definition of J , there is no reason to believe that
J ([[φ]] ∪ ¬[[φ]]) = 1 should hold for a second-order formula φ.

The situation would be better if we can ensure [[φ]] is a set. We know that if we
additionally assume Full Separation then, for φ a first-order formula, [[φ]] is a set.
Analogously, we may suspect that we can prove [[φ]] is a set when φ is a second-
order formula, if we have Full Separation and the Full Class Comprehension
scheme, which is the assertion that {x | φ(x)} is a class for any class formula φ.
However, adding this axiom to GBC results in Kelley-Morse theory, KM, which
would considerably increase the strength of the underlying theory we wish to
work with.

Because we do not have a good framework for working with hyperclasses we
will circumvent this issue in another way, by combining Gambino’s interpretation
with Friedman’s double-negation translation. We will take Gambino’s interpre-
tations for formulas with no second-order quantifiers, and extend it using the
same translation as in Friedman’s double-negation interpretation.

Definition 7.3. For a second-order formula φ with set parameters from V Ω and
Ω-class name parameters, define φ− inductively as follows:

• If φ is an atomic formula, then φ− ≡ ([[φ]] = 1),
• (φ ∧ ψ)− ≡ φ− ∧ ψ−,
• (φ ∨ ψ)− ≡ ¬¬(φ− ∨ ψ−),
• (φ→ ψ)− ≡ φ− → ψ−,

https://doi.org/10.1017/bsl.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.8


VERY LARGE SET AXIOMS OVER CONSTRUCTIVE SET THEORIES 57

• (∀0xφ(x))− ≡ ∀0x ∈ V Ω φ−(x),
• (∃0xφ(x))− ≡ ¬¬∃0x ∈ V Ω φ−(x),
• (∀1Xφ(X))− ≡ ∀1X((X is a class name)→ φ−(X)),
• (∃1Xφ(X))− ≡ ¬¬∃1X((X is a class name) ∧ φ−(X)).

Lemma 7.4 (IGB). If φ is a formula with no second-order quantifiers, then
φ− ≡ ([[φ]] = 1).

Proof. The proof proceeds by induction on φ. Atomic cases follows by definition.
For conjunction,

(φ ∧ ψ)− ≡ φ− ∧ ψ− ⇐⇒ [[φ]] = 1 and [[ψ]] = 1 ⇐⇒ [[φ]] ∩ [[ψ]] = 1

and we can see that [[φ]] ∩ [[ψ]] = [[φ ∩ ψ]] by the definition of our translation.
The cases for bounded and unbounded ∀ and implications are analogous.

We need some care for the case for disjunction and ∃ and in particular we
will need to make use of both Full Separation and Powerset. We examine the
case for unbounded ∃, to see why we need these two axioms. We know that
[[∃xφ(x)]] =

∨
x∈V Ω [[φ(x)]], and this is J

(⋃
x∈V Ω [[φ(x)]]

)
. By Full Separation,⋃

x∈V Ω [[φ(x)]] = {0 | ∃x ∈ V Ω[[φ(x)]] = 1} is a set. Furthermore, Powerset

proves Jp = p¬¬ for all p ⊆ 1. Hence [[∃xφ(x)]] =
(⋃

x∈V Ω [[φ(x)]]
)¬¬

, so

(∃xφ(x))− ≡ ¬¬∃x ∈ V Ωφ−(x) ⇐⇒ ¬¬∃x ∈ V Ω([[φ(x)]] = 1)

⇐⇒ 0 ∈ {0 | ¬¬(∃x ∈ V Ω([[φ(x)]] = 1))}

⇐⇒

( ⋃
x∈V Ω

[[φ(x)]]

)¬¬
= 1.

The cases for bounded existential quantifiers and disjunctions are analogous, so
we omit them. a

Lemma 7.5. Let A and B be class names and φ(X) be a formula of second-order
set theory. Then

([[A = B]] = 1 ∧ φ−(A))→ φ−(B).

Proof. The proof proceeds by induction on φ, and one can see that the only
non-trivial part of this is the atomic case where φ(X) is x ∈ X.
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To do this, we show that [[A = B]] ∧ [[a ∈ A]] ≤ [[a ∈ B]]:

[[A = B]] ∧ [[a ∈ A]] ≤

 ∧
x∈domA

A(x)→
∨

y∈domB

B(y) ∧ [[x = y]]


∧

( ∨
x∈domA

A(x) ∧ [[x = a]]

)

≤
∨

x∈domA

 ∨
y∈domB

B(y) ∧ [[x = y]]

 ∧ [[x = a]]


≤

∨
y∈domB

B(y) ∧ [[y = a]] = [[a ∈ B]].

Therefore, if both [[A = B]] = 1 and [[a ∈ A]] = 1 then [[a ∈ B]] = 1. a

Theorem 7.6 (IGB). Working over IGB, every axiom of GB is valid in V Ω.

Proof. By Theorem 6.11 and Lemma 7.4, we can see that the first-order part of
IGB is valid. Moreover, (φ∨¬φ)− is valid since it is equivalent to ¬¬(φ−∨¬φ−),
which is constructively valid.

It remains to show that the second-order part of IGB is valid under the inter-
pretation.

• Class Extensionality: follows from Lemma 7.5.
• Elementary Comprehension: Let a ∈ V Ω, A be a class name, and φ be

a formula without class quantifiers. Then [[φ(x, a,A)]] is well-defined for
x ∈ V Ω. Now consider B to be the class name

B = {〈x, [[φ(x, a,A)]]〉 | x ∈ V Ω}.

Furthermore, we can easily see that [[x ∈ B ↔ φ(x, a,A)]] = 1. Hence B
witnesses Elementary Comprehension for φ(x, a,A).

• Class Set Induction: the usual argument for first-order Set Induction carries
over.

• Class Strong Collection: we can see that the proof of Proposition 6.10 works
if we replace R(x, y) with 〈x, y〉 ∈ R.

We do not need to check that the double-negation translation interpretation
also validates Class Separation since GB without Class Separation proves Class
Separation: it follows from Class Replacement, and the proof is similar to the
derivation of Separation from Replacement over classical set theory. a

7.2. Interpreting TR. This subsection is devoted to the following result:

Theorem 7.7. If GB + TR ` φ, then IGB∞ + TR ` φ−.

As mentioned before, we will dismiss infinite connectives from the interpre-
tation. The main reason is that in GB every ΣA1 -elementary embedding is fully
A-elementary embedding by essentially Lemma 4.14 (2).

https://doi.org/10.1017/bsl.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.8


VERY LARGE SET AXIOMS OVER CONSTRUCTIVE SET THEORIES 59

Proof of Theorem 7.7. It suffices to show that IGB∞ + TR proves (TR)−. Let A
be a class name and a ∈ V Ω. We claim that there is a class name ̃ such that

[[̃ is A-elementary ∧ a ∈ ̃(K̃) ∧ K̃ is a critical point of ̃]] = 1.

By TR, we can find some elementary embedding j : V → V and an inaccessible
set K such that j is A-elementary, a ∈ j(K) and K is a critical point of j. Define
̃ = {〈op(a, j(a)), 1〉 | a ∈ V Ω}. It is easy to see that [[̃ is a function]] = 1, and,

by Lemma 6.36, [[K̃ is a critical point of ̃]] = 1. Furthermore, [[a ∈ ̃(K̃)]] = 1

is equivalent to [[a ∈ j(K̃)]] = 1, the latter of which follows from a ∈ j(K).
It remains to show that V Ω thinks ̃ is an A-elementary embedding. For

this, it suffices to show that ̃ is ΣA-elementary by Lemma 4.14. Let ψ(x) be a
ΣA-formula. Then [[

∀~x
(
ψ(~x)↔ ψ(j(~x))

)]]
= 1

is equivalent to

∀~x ∈ V Ω
(
[[ψ(~x)]] = 1↔ [[ψ(j(~x))]] = 1

)
.

Finally, since [[ψ(~x)]] = 1 is expressible in V using a ΣA-formula (without any
other class parameters), the above formula is immediate from the A-elementarity
of j. a

Combining the above analysis with Theorem 5.32, the following corollary is
immediate.

Corollary 7.8. CGB∞ + TR interprets GB + TR. a
Remark 7.9. Some readers may wonder about whether we need full elemen-
tarity in the formulation of TR, because the proof of Theorem 7.7 would work
if j preserves formulas of some bounded complexity, probably ΣA-formulas. It
is correct that what the proof of Theorem 7.7 actually shows is IGB∞ with a
statement weaker than TR interprets GB + TR. However, the full power of TR
was necessary in Theorem 5.32 to derive IGB∞ + TR from CGB∞ + TR.

§8. Consistency strength: final results. We have proven in
Corollary 6.38 that IKP with a critical point implies the consistency of
ZF + BTEE + Set Inductionj while CZF with a Reinhardt set implies the
consistency of ZF + WA. However, one may ask how strong these notions are
with respect to the traditional large cardinal hierarchy over ZFC, which is a
question we address here.

Let us examine the theory ZF + BTEE + Set Inductionj first. We can see
that ZF + BTEE + Set Inductionj proves L satisfies the same theory. Hence we
have the consistency of ZFC+BTEE+ Set Inductionj from that of ZF+BTEE+
Set Inductionj .

Let us compare the consistency strength of ZFC+BTEE+Set Inductionj with
that of other large cardinal axioms to illustrate how strong it is. We can see that
virtually rank-into-rank cardinals, defined by Gitman and Schindler [24], provide
an upper bound:
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Definition 8.1 ([24]). A cardinal κ is virtually rank-into-rank if in some set-
forcing extension it is the critical point of an elementary embedding j : Vλ → Vλ
for some λ > κ.

Lemma 8.2. Let κ be a virtually rank-into-rank cardinal and λ witness this. If
j : Vλ → Vλ is a elementary embedding over a set-generic extension with crit j =
κ, then, in this extension, (Vjω(κ),∈ j) satisfies ZFC + BTEE + Set Inductionj.

Proof. First, κ is inaccessible in V . This follows from Theorem 4.20 of [24] and
known facts about ω-iterable cardinals, but we shall also give a direct proof for
it. Suppose, for a contradiction, that V thinks κ is singular. Then there is a
cofinal sequence 〈αξ | ξ < cf κ〉 ∈ Vλ that converges to κ. Since j(cf κ) = cf κ and
j(αξ) = αξ for all ξ < cf κ, j(κ) = κ, which gives our contradiction. Similarly,
if κ is not a strong limit cardinal in V , then there is ξ < κ and a surjection
f : PV (ξ) → κ in V . Then f ∈ Vλ since rank f ≤ κ + 3 < j3(κ) < λ. (This
follows from the fact that the jn(κ) for n < ω form a strictly increasing sequence.)
Now we can derive a contradiction in the usual way by considering j(f).

Hence Vκ is a model of ZFC. Also, we can see in the extension that Vκ ≺ Vjn(κ)

for all n < ω which shows that Vjω(κ) =
⋃
n<ω Vjn(κ) is a model of ZFC. Finally,

j �Vjω(κ) : Vjω(κ) → Vjω(κ) and, by the transitivity of Vjω(κ), Vjω(κ) satisfies
Set Inductionj . a

As a lower bound, Corazza [13] proved that ZFC + BTEE proves there is an
n-ineffable cardinal for each (meta-)natural number n.

The authors do not know the exact consistency strength of ZF + WA (the
assumption of Σj-Induction is useful to ensure that the critical sequence is total)
in the ZFC-context but we can still find a lower bound for it. Suppose that κ was
the critical point of such an embedding. Then we have that the critical sequence
〈jn(κ)|n ∈ ω〉 is definable, although it may not be a set (see Proposition 3.2 of
[12] for details). From this, we have

Lemma 8.3 (ZF + WA0). If the critical sequence is cofinal over the class of all
ordinals, then κ is extendible.

Proof. Let η be an ordinal. Take n such that η < jn(κ), then jn : Vκ+η ≺
Vjn(κ+η) and crit jn = κ. Hence κ satisfies η-extendibility. a

However, it should be noted that it is also possible that the critical sequence
〈jn(κ) | n < ω〉 is bounded. In this case Vλ, for λ = supn<ω j

n(κ), is a model
of ZF + WA in which the critical sequence is cofinal. Thus we can proceed with
the argument by cutting off the universe at λ.

By an easy reflection argument, we can see also see that ZF + WA0, with the
critical sequence cofinal, proves not only that there is an extendible cardinal,
but also the consistency of ZF with a proper class of extendible cardinals, an ex-
tendible limit of extendible cardinals, and much more. Since extendible cardinals
are preserved by Woodin’s forcing [65, Theorem 226], we have a lower bound for
the consistency strength of ZF + WA0, e.g., ZFC plus there is a proper class of
extendible cardinals. Clearly, ZF + WA0 should be much stronger than this but
to find a better lower bound that involves even more sophisticated machinery
than is currently available.

https://doi.org/10.1017/bsl.2024.8 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2024.8


VERY LARGE SET AXIOMS OVER CONSTRUCTIVE SET THEORIES 61

To summarize our consistency bound derived in this section, we have the
following:
Corollary 8.4.

• IKPj,M with a Σ-Ord-inary elementary embedding or CZF with a critical
set implies the consistency of ZFC + BTEE+ Set Inductionj. Furthermore,
ZFC + BTEE + Set Inductionj proves that the critical point, κ, of j is n-
ineffable for every (meta-)natural n.

• CZF with a Reinhardt set implies the consistency of ZF + WA. Furthermore,
the consistency ZF+WA implies the consistency of ZFC with a proper class
of extendible cardinals.

§9. Future works and Questions.

9.1. Upper bounds for large large set axioms. We may wonder how
to find an upper bound for the consistency strength of CZF with very large set
axioms in terms of classical set theories. The authors believe that the currently
known methods do not suffice to provide non-trivial upper bounds for the proof-
theoretic strength of CZF with very large set axioms. The known methods for
analyzing the strength of CZF and its extensions are the followings:

1. Reducing CZF or its extension to Martin-Löf type theory or its extension,
and constructing a model of the type theory into a classical theory such as
KP or its extensions. This is how Rathjen (cf., [45], [49], [53], [54]) provides
a relative proof-theoretic strength for extensions of CZF.

2. More generally, sets-as-trees interpretation or its variants: for example,
Lubarsky [37] proved that we can reduce CZF + Sep into Second-order
Arithmetic by combining realizability with a sets-as-trees interpretation.
We may associate Lubarsky’s construction with Rathjen’s interpretations
because the sets-as-types interpretation is a special case of the sets-as-trees
interpretation. (Types have tree-like structures.) Another construction on
that line is functional realizability, which we define below for the sake of
completeness:

Definition 9.1. Let A be a pca and V (A) be the realizability universe.
(See Definition 3.1 of [50] or Definition 2.3.1 of [41].) A name a ∈ V (A)
is functional if for every 〈e, b〉, 〈e, c〉 ∈ a, b = c. V f (A) is the class of all
functional names a ∈ V (A).

The realizability relation 
f over V f (A) is identical with the usual real-
izablity relation 
 over V (A). (See Definition 4.1 of [50]), except that we
restrict quantifiers to V f (A) instead of V (A). We say that V f (A) |= φ(~a)
if there is an e ∈ A such that e 
f φ(~a).

3. Set realizability, which appears in [51] and [52]. This exploits the compu-
tational nature of sets to construct an interpretation. Unfortunately, set
realizablity does not result in models of CZF: it produces an interpretation
of CZF−, CZF−+Exp, or CZF + Pow to IKP, IKP(E), or IKP(P) respectively.
Furthermore, set realizability can be used to prove the existence property
of CZF−, CZF− + Exp, or CZF + Pow. However, Swan proved in [62] that
CZF does not have the existence property, which suggests set realizability
cannot model CZF.
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Thus the only currently known way to analyze the consistency strength of CZF
and its extensions is by combining realizability with sets-as-trees interpretations.
However, this has significant issues when we try and generalize the method to
large large cardinals. The first point is that almost all of the currently known
methods (possibly except for [49] and [62]) rely on Kleene’s first pca to construct
an interpretation of variants of Martin-Löf type theory into classical theories.
The upshot is that the resulting interpretation of CZF also validates the Axiom
of Subcountability, which claims that every set is subcountable. However, Ziegler
[67] observed that the Axiom of Subcountability is incompatible with critical
sets. This feature may simply be due to the fact that the pca we are using in
the construction of the interpretation is countable, so we may avoid this issue
by using a larger pca.

However, it seems that there is no obvious way of constructing a realizer for
∀~xφM (j(~x)) → φ(~x) regardless of how large the pca A is. Since we can view
sets-as-types interpretations as a special case of sets-as-trees interpretations, we
can expect there would be a similar difficulty when we construct a model of CZF
with large large set axioms by using the combination of realizability models and
type-theoretic interpretations of CZF.

Question 9.2. Can we provide any non-trivial upper bound for the consistency
strength of CZF with a critical set or a Reinhardt set?

9.2. Improving lower bounds. Our current lower bound could also be im-
proved. For example, the proof of Corollary 5.14, Theorem 5.21, and Theo-
rem 5.22 produces a set model of some theory. Hence the resulting lower bound
for the consistency strength is strict. This brings into question whether we can
provide a better lower bound for the given theories, possibly by constructing a
class model of IZF with a large set axiom.

Since obtaining a lower bound heavily relies on double-negation translations, it
would be important to develop the relationship between double-negation transla-
tions and large set axioms. For example, Avigad [9] provided a way to interpret
KP from IKP by combining Friedman’s double-negation interpretation [15] and
a proof-theoretic forcing. It may be possible to extend Avigad’s interpretation
for IKP with a Σ-Ord-inary elementary embedding with a critical point, which
could result in a better lower bound (or possibly an equiconsistency result).

The ‘classical’ side of the lower bounds should also be improved. For example,
we claimed that CZF with a Reinhardt set implies the consistency of ZF + WA,
and the latter implies the consistency of ZFC with a proper class of extendible
cardinals. The authors do not know if it is possible to prove the consistency of
ZFC + WA from that of ZF + WA.

We conclude this subsection with the following obvious question:

Question 9.3. Can we obtain a better lower bound for the consistency of any
of the theories analyzed in this paper?

9.3. Developing technical tools. Some concepts in this paper are of inde-
pendent interest. For example, we defined second-order constructive set theories
CGB and IGB to handle super Reinhardt sets and TR. However, constructive
second-order set theories bring their own questions, associated with their classi-
cal counterparts. The following questions are untouched in this paper:
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Question 9.4.

1. Williams [64] defined and analyzed second-order set-theoretic principles
that bolster second-order set theory, including Class Collection schema,
Elementary Transfinite Recursion schema, ETR, and its restrictions ETRΓ.
Can we define constructive analogues of these principles? If so, what are
their consistency strength? For example, does CGB + ETRω prove the ex-
istence of the truth predicate of first-order set theory (and hence proves
Con(CZF))?

2. Do constructive second-order set theories admit the unrolling construction
that was introduced by Williams [64]?

3. Can we develop a realizability model or Heyting-valued model for construc-
tive second-order theories? It is known that not every class forcing preserves
Collection and Powerset over the classical GB. We may expect that we need
some restriction on a class realizability or a class formal topology to ensure
they preserve CGB.

The relativization of Heyting-valued models is also an interesting topic. We
only focused on the double-negation topology, and it seems that the formal
topologies appearing in the current literature are either set-presentable or the
double-negation topology. However, it is plausible that another formal topol-
ogy might appear in the future, and its interaction with different inner models
could be non-trivial. In that case, absoluteness and relativization issues become
important.

9.4. Other large set axioms. In this paper, we analyzed critical sets, Rein-
hardt sets, and some constructive analogue of choiceless large cardinals. We did
not provide the definition and analysis for analogues of other large cardinal ax-
ioms, such as supercompactness or hugeness. These concepts were first defined
over IZF by Friedman and Ščedrov

in [16], in such a way as to be equivalent to their classical counterparts. How-
ever, for the sake of completeness, we include variations below that work better
in our weaker context of CZF.

Convention 9.5. Assume that K is a critical point of an elementary embedding
j : V →M . Over ZFC, many large cardinals above measurable cardinals are de-
fined as critical points of some elementary embedding with additional properties,
for example, closure properties of M . We shall give constructive analogues of
the main methods used to define closure where, here, MP is Ziegler’s modified
powerclass operator and V̂a is Ziegler’s modified hierarchy. (See Section 5.3 of
[67] for the details).

• Replace the closure under < γ-sequences, <γM ⊆ M , to closure under
multi-valued functions whose domain is an element of V̂a: if b ∈ V̂a and
R : b ⇒ M is a multi-valued function14, then there is c ∈ M such that
R : b⇔⇒ c.

• Replace the closure under γ-sequences, γM ⊆ M , to closure under multi-
valued functions whose domain is an element of V̂a∪{a} = V̂a ∪MP(V̂a).

• Replace Vα ⊆M with V̂α ⊆M .

14It is unclear whether we need to restrict R to set-sized multi-valued functions. Future
research should analyze the difference between these two.
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The reader might wonder why we use multi-valued functions of the domain in
V̂a and V̂a∪{a}. For example, we may formulate a constructive analogue of the
closure under γ-sequences γM ⊆M as the closure under multi-valued functions
of domain a. There is a reason why we should allow multi-valued functions of
the domain in a ∪ {a}: for a transitive set a, the closure under multi-valued
functions of domain in a ∪ {a} proves a ∈ M . However, it is unclear if this can
be achieved from just those multi-valued functions whose domain is in a.

It still remains a question why we use V̂a∪{a} instead of a∪{a}. The main rea-

son is that V̂a∪{a} includes a∪{a} but has a much richer set-theoretic structure,
which is the same reason we have worked with large sets rather than large car-
dinals. This will mean that our definitions will be equivalent to those presented
in [16] over IZF.

Observe that, over ZFC, these modified definitions are equivalent to the stan-
dard ones. Thus, for example, we can define supercompact sets or strong sets15

as follows:

Definition 9.6 (CGB∞).

1. Let a be a transitive set. A set K is a-supercompact if there is an elemen-
tary embedding j : V → M such that K is a critical point of j and M is
closed under multi-valued functions whose domain is in V̂a∪{a} A set K is
supercompact if K is a-supercompact for all transitive sets a.

2. A set K is n-huge if there is an elementary embedding j : V → M such
that K is a critical point of j and M is closed under multi-valued functions
whose domain is in V̂jn(K)∪{jn(K)}.

3. A set K is α-strong if there is an elementary embedding j : V → M such
that K is a critical point of j and V̂α ⊆ M . A set K is strong if K is
α-strong for all α.

Here it suffices to restrict our attention to ordinals rather than defining
a-strongness for arbitrary sets since V̂a = V̂rank(a).

The reader is reminded that we may formulate a-supercompactness or α-
strongness over CZFj,M . However, formulating the full supercompactness and
strongness would require us to quantify over j and M , so these should be stated
over CGB∞.

As a remark, let us mention that Friedman and Ščedrov [16] also defined huge-
ness and supercompactness over IZF. A set K is huge in the sense of Friedman-
Ščedrov if K is a critical point of an elementary embedding j : V →M which is
power inaccessible and satisfies the following statement: for any subset u of j(K),
if t : u ⇒ M then we can find some v ∈ M such that t : u ⇔⇒ v.16 The follow-
ing proposition shows our definition of hugeness and that of Friedman-Ščedrov
coincides in some sense:

15This is an analogue of strong cardinals. Unfortunately, this terminology overlaps with

2-strong sets (See [46] or [67] for the definition of 2-strongness.)
16Their definition is adjusted for the intensional IZF, but we work with Extensionality. Also,

they required v only to satisfy t : u ⇒ v, but their definition is ‘incorrect’ in the sense that

their formulation does not imply the closure of M under sequences over ZFC. The reason is
that we do not know whether t is amenable over M in general.
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Proposition 9.7 (IGB∞). A transitive set K is huge in the sense of Friedman-
Ščedrov if and only if K is power inaccessible and huge in the sense of Defini-
tion 9.6.

Proof. Assume that K is huge in the sense of Friedman-Ščedrov. It is known
that V̂K = K if K is inaccessible (See [67, Theorem 5.18]). Furthermore, power
inaccessibility implies P(1) ∈ K, so MP(K) = P(K). Since transitivity implies

K ⊆ P(K), we have V̂K ∪MP(K) = P(K). Thus we have

∀u ∈ V̂K ∪MP(K)[∀t : u⇒M → ∃v ∈M(t : u⇔⇒ v)].

Hence K is huge. The remaining direction is trivial. a

The case for supercompactness is tricky because Friedman and Ščedrov em-
ployed a family of elementary embeddings instead of working over a second-order
set theory to formulate it. We leave examining the difference between these two
definitions of supercompact sets to possible future work.

These new notions of large set axioms bring the following question:

Question 9.8. Can we provide any consistency result for the large set axioms
we can define by following the above schemes? Can we define an IKP-analogue
of such very large cardinals?
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[16] Harvey Friedman and Andrej Ščedrov, Large sets in intuitionistic set theory, An-
nals of Pure and Applied Logic, vol. 27 (1984), no. 1, pp. 1–24.

[17] Sy-David Friedman, Victoria Gitman, and Vladimir Kanovei, A model of second-

order arithmetic satisfying ac but not dc, Journal of Mathematical Logic, vol. 19 (2019),
no. 01, p. 1850013.

[18] Haim Gaifman, Elementary embeddings of models of set-theory and certain subtheo-

ries, Axiomatic set theory (Proc. Sympos. Pure Math., Vol. XIII, Part II, Univ. Cali-
fornia, Los Angeles, Calif., 1967), (1974), pp. 33–101.

[19] Nicola Gambino, Sheaf interpretations for generalised predicative intuitionistic sys-

tems, 2002.
[20] , Heyting-valued interpretations for constructive set theory, Annals of Pure

and Applied Logic, vol. 137 (2006), no. 1-3, pp. 164–188.
[21] Ben John Gibbons, The veblen hierarchy explained via mahlo hierarchies in construc-

tive set theory, PhD thesis, University of Leeds, 2002.

[22] Moti Gitik, All uncountable cardinals can be singular, Israel Journal of Mathemat-
ics, vol. 35 (1980), no. 1, pp. 61–88.

[23] Victoria Gitman, Joel David Hamkins, and Thomas A Johnstone, What is the

theory ZFC without power set?, Mathematical Logic Quarterly, vol. 62 (2016), no. 4-5, pp.
391–406.

[24] Victoria Gitman and Ralf Schindler, Virtual large cardinals, Annals of Pure and
Applied Logic, vol. 169 (2018), no. 12, pp. 1317–1334.

[25] Victoria Gitman and Philipp Schlicht, Between ramsey and measurable cardinals,

2023.

[26] Gabriel Goldberg, Even ordinals and the kunen inconsistency, 2021.
[27] Robin J. Grayson, Heyting-valued models for intuitionistic set theory, Applications

of sheaves, Springer, 1979, pp. 402–414.
[28] Joel David Hamkins, The wholeness axioms and V=HOD, Archive for Mathemat-

ical Logic, vol. 40 (2001), no. 1, pp. 1–8.

[29] Yair Hayut and Asaf Karagila, Critical cardinals, Israel Journal of Mathematics,
vol. 236 (2020), no. 1, pp. 449–472.
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Appendix A. Tables for notions appearing in this paper.

Name Rough definition Def. Synonyms Note

Regular
M is transitive and satisfies
2nd-order Strong Collection

3.1

Weakly
regular

M is transitive and satisfies
2nd-order Collection

3.1

Functionally
regular

M is transitive and satisfies
2nd-order Replacement

3.1⋃
-regular

M is regular and satisfies
Union

3.1

Strongly
regular

M is
⋃

-regular and satisfies
Exponentiation

3.1

BCST-
regular

M is regular and M |=
BCST

3.5

Inaccessible M is regular and M |= CZF2 3.1
REA-
Inaccessible

M is inaccessible and M |=
REA

3.9 [47]: Inaccessible

Power
Inaccessible

M is inaccessible and b ⊆
a ∈M → b ∈M 3.8 [16]: Inaccessible (1)

REA Cofinally many regular sets 3.1

IEA
Cofinally many inaccessible
sets

3.1

pIEA
Cofinally many power inac-
cessible sets

3.8

Tj,M

j : V → M is an elemen-
tary embedding and the ax-
iom schemes of T (e.g. Col-
lection) allow j and M as
parameters

4.1 (2)

∆0-BTEEM
j : V → M and j is ∆0-
elementary

4.3 (2)

Σ-BTEEM
j : V → M and j is Σ-
elementary

4.3 (2)

BTEEM
j : V → M and j is fully el-
ementary

4.3 (2)

WA
BTEE + Separation for j-
formulas

4.7

Critical
A set K such that j : V →
M , K ∈ j(K), j �K = Id

4.6
[58]: V -critical

[67]: Measurable
(3)

Reinhardt
Same as V -critical but with
V = M

4.6
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Super
Reinhardt

A set K such that for ev-
ery set a there is an elemen-
tary embedding j : V → V
such that a,K ∈ j(K) and
j �K = Id

4.11 (4)

A-Super
Reinhardt

Same as above but j is A-
elementary

4.11 (4)

TR
∀1A∀0a∃j : V → V (j is A-
elementary and a ∈ j(K))

4.15 (4)

V S
The Heyting universe over
the formal topology S 6.6

Ω
The double-negation formal
topology (1,=,C), where
x C p iff ¬¬(x ∈ p)

6.13

a¬¬ The class {x | ¬¬(x ∈ a)} Below
6.13

AΩ
The Heyting-valued uni-
verse over Ω relativized to
A

6.16

Ã
The Ω-name satisfying
dom Ã = AΩ and Ã(x) = > 6.16 (5)

1. The existence of a Power Inaccessible set implies Powerset over CZF.
2. We omit M when V = M .

3. We call such K a critical point of j : V →M . Also, our critical set is different from the

notion of critical cardinals defined in [29].
4. This formulation requires a second-order set theory with infinite connectives.

5. We use AΩ to mean Ã when the context is clear.

Figure 1. Notions appearing in this paper
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Name Logic ∈-Ind Inf Sep Collection Powerset

BCST IFL ∆0 Replacement

IKP IFL X X ∆0 ∆0 (Σ)

KP CFL X X ∆0 ∆0 (Σ)

CZF− IFL X X ∆0 Strong Collection

CZF IFL X X ∆0 Strong Collection Subset Coll.

IZF IFL X X X X X

ZF− CFL X X X Replacement

ZF− CFL X X X X

ZF CFL X X X X X

CGB (4) X X ∆0 Class Strong Coll.

IGB (4) X X X Class Strong Coll. X

CGB∞ G3iω X X ∆0 Class Strong Coll.

IGB∞ G3iω X X X Class Strong Coll. X
1. Every theory on the table has Extensionality, Union, and Pairing as axioms.
2. IFL stands for Intuitionistic first-order logic, and CFL stands for Classical first-order

logic.

3. ∆0 means the schema is restricted to ∆0-formulas. (Σ) means we can prove the schema
for Σ-formulas.

4. We define second-order set theories over intuitionistic first-order logic with two sorts.

See Definition 2.29, 2.33, and 2.37 for the definition of CGB, IGB,CGB∞, and IGB∞
respectively.

5. ∈-Ind, Inf, Sep, Coll are abbreviations for ∈-Induction, Infinity, Separation, and Collec-

tion respectively.

Figure 2. Theories appearing in this paper
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