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MULTIPLICATIVE GROUPS UNDER FIELD EXTENSION 

WARREN MAY 

Let K be a field and L an extension field. L. Fuchs [2, Problem 98] has 
suggested studying the change in multiplicative groups in going from K* to 
L*. We wish to indicate difficulties that arise in trying to relate the group 
theoretic structure of L* to that of K*, even when K* has particularly simple 
structure and the extension is quadratic. 

First let us note a trivial fact. If [L : K] = n < co and K* has a free direct 
factor A, then L* has a free direct factor isomorphic to A. To see this, let 4> 
be the composite L* —> K* —> A of the norm map followed by the projection 
map. Then L* has a free direct factor isomorphic to 0(1/*). But the image of 
the norm map contains (K*)n, hence <t>(L*) = A. The simple structure that 
we shall consider for K* is the direct product of a finite cyclic group and a free 
abelian group. Consequently, L* will have a large free direct factor. However, 
we shall show that the complementary factor may be essentially as arbitrary 
as possible for a subgroup of the multiplicative group of a field. More pre
cisely, we shall appeal to a construction in [4] to prove 

THEOREM 1. Let G be any abelian group whose torsion subgroup is locally cyclic 
with nontrivial 2-component. Then there exist afield K and a quadratic extension 
field L such that K* = Z(2) X A for some free abelian group A, while L* Ç~ G X 
B for some free abelian group B. 

The proof of the theorem utilizes transcendentals, therefore one might 
wonder what can occur in the more constrained situation in which K is required 
to be an algebraic extension of the rational numbers Q. 

THEOREM 2. Let G be any countable torsion-free abelian group. Then there exist 
afield K} algebraic over Q, and a quadratic extension field L such that K* = Z(2) 
X A for some free abelian group A, while L* ~ Z(4) X G X B for some free 
abelian group B. 

We conjecture that G need not be torsion-free, but we have been unable to 
prove a parallel to Theorem 1. First we shall give two propositions that will be 
needed for the proof of Theorem 2. Most of the field theory that we use can 
be found in [3]. 

PROPOSITION 1. Let K be a finite extension field of Q and L a finite extension 
field of K. Then L*/K* ~ A X B, where A is a free abelian group and B is finite. 

Received January 6, 1978. 

436 

https://doi.org/10.4153/CJM-1979-047-5 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-047-5


MULTIPLICATIVE GROUPS 437 

Proof. Let D and E be the divisor groups of K and L, respectively, and 
regard D as embedded in E in the usual fashion (reflecting extension of ideals). 
Let D! Ç D be the free subgroup generated by the prime divisors of K that 
have all extensions to L unramified. For each such prime, choose a prime of L 
lying above it. The remaining primes of L generate a complement of D' in E, 
thus E/D' is free. Since only finitely many primes of K ramify in L, D/D' is 
finitely generated, therefore E/D is the product of a free group and a finite 
group. 

Let U and V denote the unit groups (units in the ring of algebraic integers) 
in K and L, respectively, and let D0 and E0 denote the subgroups of principal 
divisors in D and E, respectively. There are natural isomorphisms K*/U ~ Do 
andL*/T ^ E0. Moreover, K* H V = U, and the induced inclusion (K*/U) Q 
(L*/V) agrees with Do C E0. The class group D/Do is known to be finite, thus 
what we have shown about E/D implies that Eo/D0 is the product of a free 
group and a finite group. The same applies to the isomorphic group L*/VK*. 
But (VK*/K*) ^ (V/U). One knows from the Dirichlet unit theorem that 
V is finitely generated. It follows that L*/K* is the product of a free group and 
a finite group, thus the proposition is proved. 

If H is an abelian group, let T(H) denote its torsion subgroup. We consider 
an aspect of T(L*/K*) in 

PROPOSITION 2. Let K be afield, L an extension field, and p a prime different 
from the characteristic of K. Assume that L = K(a)1 where av Ç K\KP. If p = 2, 
further assume thatL ^ K{i) (i2 = -1). Then T(L*/K*) = ( (a )T(L*)K*)/K*. 

Proof. We observe that [L : K] = p. Consider /3 G L* of prime-power order 
modulo K*. First suppose that the order is qT for some prime q ?± p, and let 
0*r = y ç K*. If N is the norm map from L to K, then N(/3)gr = 7P, hence 
7 = 7i?r for some 7! £ i£*. Thus £ = 7if for some root of unity f 6 X*. Thus 

#£* e r(L*)x*. 
Now suppose that /3 has order pT modulo K*, and let /3pr = 7 £ X*. First we 

consider the case where 7 = 7ip for some 71 G K*. Let f denote a primitive 
pth root of unity. Then fivr~l = 7 ^ for some m. We must have p \ m, for 
otherwise the order of /3 modulo K* would be less than pT. For the same reason, 
we must have f g 2£. Therefore L 2 #(f ) 2 # , with [i£(f) : K] > 1. But 
[i£(f) : i£] divides £ — 1 and [L : K] = p. This contradiction implies that no 
such p can exist. Thus we may assume that 7 G i ^ . Except possibly when 
p = 2, r > 1 and i g K, we have [A:(/3) : 2£] = i?r (see [3, Chapter VIII, 
Section 9]), and hence r = 1. Let us deal with the exceptional case first. Thus, 
we are momentarily assuming that p = 2, i d K and [K(/3) : K] < 2r. Under 
these circumstances, it is known that 7 = — 454 for some ô £ K. From /32r = 
— 454, we see that i £ L and hence L = 2£(i). But this case is excluded in the 
hypothesis of the proposition. Therefore we may return to the situation where 
Pp = y and [K(fi) : K] = p. Then we have K(J3) = L = Z(a) . Let X' be 
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generated over K by a primitive pt\i root of unity. Since [Kf : K] divides 
p - 1, it follows tha tL C\K' = K, hence [LK' : K'\ = p. Thus ZJT is a cyclic 
extension of i£' of degree p, and we may apply Kummer theory. Since LKf = 
K'(a) = K'(I3), we have 0 = am7, where y G i£' and £ f w. But 7 = fia~m G L 
also, hence y £ K. Thus /3i£* G (a )K*. We have therefore shown the proposi
tion. 

We remark that the excluded case is more intricate. For example, if K = Q 
and a = i, then 1+ie T(L*/K*), but 1 + i g ((a)T(L*)K*)/K*. 

Proof of theorem 1. We shall take L to be the field constructed in the proof 
of Theorem 3 in [4]. Referring to that proof, we observe that G is a subgroup 
of L*, L = Q(G), L*/G is a free abelian group, and there exists a torsion-free 
basis for G consisting of elements that are algebraically independent over 
Q(T(G)) (called K in [4]). Let H be a finitely generated subgroup of G. Decom
pose H as H = (f ) X (hi) X . . . X (hn), where f is a root of unity and 
fei, . . . , hn are torsion-free elements of G. We claim that hi, . . . , hn are alge
braically independent over 0(f)- By the remark on the torsion-free basis for G, 
there exist elements gi, . . . , gm £ G that are algebraically independent over 
0(f) , and a positive integer k such that (&i*, . . . , hn

k ) CI (gx, . . . , gm ) . But 
any basis for (gi, . . . , gm ) is clearly algebraically independent, hence it 
follows from the stacked basis theorem that (h\k, . . . , hn

k ) has a basis that is 
algebraically independent. Therefore hi, . . . , hn are algebraically independent 
over 0(f)- It follows that the automorphism of 0(f) sending f to £*-1 can be 
extended to a unique automorphism aH of O ( ^ ) such that aH(h) = h~l for every 
h ^ H. lî H1 Ç: H2 are two finitely generated subgroups of G, then 0^ is the 
restriction of aH2 to Q(Hi). Put a- = U aH, where the union is taken over all 
finitely generated subgroups H of G. Then a is an automorphism of L such that 
a(g) = g~l for every g G G. Let i£ be the fixed field of o\ Then [L : K] = 2 since 
a- has order two. Moreover, K* r\ G = ( — 1 ), hence !£*/ ( — 1 ) is isomorphic 
to a subgroup of the free abelian group L*/G. Thus K* = Z(2) X 4̂ for some 
free abelian group A, and L* = G X B for some free abelian group 5 . 

Proof of theorem 2. We shall carry out the construction of L within the 
complex numbers. By Dirichlet's theorem on primes in arithmetic progres
sions, there are infinitely many p such that p = 1 (mod 12). Since such primes 
satisfy p = 1 (mod 4), there is a factorization p = (a + W) (a — W), where 
a ± hi are nonassociate primes in the Gaussian integers. Note that (a + bi) • 
(a — bi)~l lies on the unit circle, and that these elements for various p are 
independent free generators. Select a basis for G, and let the subgroup generated 
by it be G0. Since G0 is of countable rank, we may assume that Go is generated 
by a subset of the elements given above. Since the circle group is divisible, we 
may in fact assume that G is realized as a subgroup of the unit circle. Choose 
a chain of subgroups G0 Q Gi Q G2 Q . . . such that (Gn+i : Gn) = pn for some 
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prime pn (n ^ 0), and such tha t Un Gn = G. For each n ^ 0, select an 

such tha t Gn+i = (Gn, an). Then an g Gn, an
Pn G Gn- We define L0 = Q( i ) , 

Ln = Lo(Gn) for w ^ 1, and L = L0(G). Observe tha t Ln+i = Ln(an) and 

Let C be the maximal cyclotomic extension of 0 - We shall prove by induction 
on n t ha t there exist free groups B0, Bi, . . . such tha t Ln* = (i) X Gn X 
TLj^n Bjf and such tha t [Ln P\ C : L0] is a power of 2. The elements (a + W) 
• (a — bi)~l used earlier to give a basis for Go are par t of a free basis for L 0 */ (i ), 
as can be seen from unique factorization in the Gaussian integers. In fact, it is 
easy to see t ha t there exists a free group B0 such tha t L0* = (i) X Go X B0, 
and such tha t all odd primes p ^ 1 (mod 12) form par t of a set of free genera
tors for Bo. Clearly, L0 H C = L0. Thus we have shown the initial s tep of the 
induction. 

Now assume tha t Ln* = (i) X Gn X I I ^ n Bj and tha t [Ln C\ C : L0] is a 
power of 2. We shall write a = an, p = pn and a p = (3. Since G is torsion-
free, /3 has ^-height 0 in Gn, thus 0 (? £ / • Therefore, [Ln+i : Ln] = p. We claim 
tha t [Ln+i P\ C : L0] is a power of 2, and tha t T(Ln+i*) = (i). Suppose t h a t 
[Ln+i C\ C \ Ln C\ C] = m > 1. This is a normal extension (since contained in 
C), consequently Ln(Ln+\ C\ C) 2 Lw is a normal extension of degree m. Since 
the extension is contained in Zw+i, we conclude tha t m = p} and tha t Lw + i is a 
normal extension of Ln. The polynomial X p — (3 splits in Z^+i, hence Ln+i con
tains a primitive pih root of unity. This root of uni ty must therefore lie in 
Ln because its degree over Ln divides p — 1. From the decomposition of Lw*, 
we conclude tha t p = 2. Thus we have shown tha t [Ln+i H C : L0] is a power of 
2. To showT the s ta tement T(Ln+i*) = ( i ) , first suppose tha t f G T(Ln+i*) is 
a primitive gth root of uni ty for q an odd prime. Then Q(f) Q Ln+i C\ C. By 
what we have just shown above, this implies t ha t q — 1 is a power of 2 ; there
fore q ^ 1 (mod 12). Moreover, Vq G Q(h f) (see [3, Chap. V I I I , Section 3]), 
thus -\/q £ Ln+i. By the way Bo was chosen, q has height 0 in B0, hence height 0 
in Ln*. Therefore [Ln(yfq) : Ln] = 2. Consequently, p = 2 and Ln(^/q) = 
Ln+i = Ln(a). By Kummer theory, we may conclude tha t V<Z = ^7 f ° r some 
7 G Ln*. Hence q = /3y2, where ft Ç Gn. But this is impossible since q has height 0 
in Ln*/Gn. Therefore, T(Ln+i*) has trivial g-component for odd primes q. Now 
suppose t ha t a primitive 8th root of uni ty f 8 G T(Ln+i*). Since f8 G £w, we must 
have p = 2 and Lw + i = Lw(f8)- Again by Kummer theory, we have f8 = cry, 
hence 1 = /3478. Since G is torsion-free and the 2-height of f3 in Gn is 0, it follows 
t ha t the 2-height of 04 in Gn is 2. Thus the 2-height of 04 in Ln* is 2. But the 
2-height of Y8 in Lw* is a t least 3. This contradiction implies t ha t f 8 G T(Ln+i*). 
T h u s r (L n + i*) = ( i ) , and we have demonstrated our claim. 

We are now ready to prove the remaining par t of the induction step. Proposi
tion 2 together with what we have just shown imply tha t T(Ln+i*/Ln*) = 
Gn+iLn*/Ln*, thus Proposition 1 implies t ha t Ln+i*/Gn+iLn* is free. Therefore, 
we can write Ln+i* = (Gn+iLn*) X Bn+i for some free group Bn+i. Consider 
Gn+iLn*. Since Gn+i is torsion-free and Gn+i/Gn is torsion, it follows tha t Gn+\ C\ 
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((i) X TljZnBj) = 1. Thus Gn+iLn* = (i) X Gn+i X H^nBj- Therefore 
Ln+i* = (i) X Gn+i X n ^ n + i 5 i f and the induction is finished. 

If we define B = © j<0)Bjy then B is free, and it is clear that L* = (i) X 
G X B. As in the proof of Theorem 1, L is closed under complex conjugation 
since G is contained in the unit circle, and since L = L0(G). Define K = L C\ R, 
hence [L : K] = 2. Since K* P\ G = 1, it follows that the projection 
(i) X G X B -+(i) XB is injective on K*. Thus K* ^ Z(2) X .4 for some 
free group A. The proof of the theorem is complete. 
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