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ELIMINATION OF IMAGINARIES IN ORDERED ABELIAN GROUPS
WITH BOUNDED REGULAR RANK

MARIANA VICARÍA

Abstract. In this paper we study elimination of imaginaries in some classes of pure ordered abelian
groups. For the class of ordered abelian groups with bounded regular rank (equivalently with finite spines)
we obtain weak elimination of imaginaries once we add sorts for the quotient groups Γ/Δ for each definable
convex subgroup Δ, and sorts for the quotient groups Γ/(Δ + �Γ) where Δ is a definable convex subgroup
and � ∈ N≥2. We refer to these sorts as the quotient sorts. For the dp-minimal case we obtain a complete
elimination of imaginaries if we also add constants to distinguish the cosets of �Γ in Γ, where � ∈ N≥2.

§1. Introduction. The model theory of ordered abelian groups has been studied
since the sixties, and was initiated by Robinson and Zakon in [15] who studied the
completions of regular ordered abelian groups (see Definition 2.10). Later, the study
of the elementary properties of ordered abelian groups was continued by Belegradek
in [2] for the class of poly-regular ordered abelian groups (see Definition 2.13).
Significant achievements on (relative) quantifier elimination, model completion, and
definability of convex subgroups were achieved by Schmitt in [16] for the general
class of ordered abelian groups. More recently, Cluckers and Halupczok obtained
a (relative) quantifier elimination for ordered abelian groups in [3] in a language
that is more aligned with Shelah’s imaginary expansion than the one introduced by
Schmitt.

The model theoretic classification of certain classes of ordered abelian groups is
an active research area. Results include: the well-known result of Gurevich–Schmitt
that no ordered abelian group has the independence property in [6]; the dp-minimal
case characterized by Jahnke, Simon, and Walsberg in [11]; the strongly dependent
case independently obtained by Dolich–Goodrick, Farré, and Halevi–Hasson in
[4, 5, 7], respectively, and the distal case in [1] due to Aschenbrenner, Chernikov,
Gehret, and Ziegler.

The next natural step regarding the model theory of ordered abelian groups was
understanding a reasonable language where one will have elimination of imaginaries.
The answer to this problem, interesting in its own sake, has a significant impact in
clarifying the problem of elimination of imaginaries for henselian valued fields.
At the heart of the model theory of henselian valued fields is the well known Ax-
Kochen/Ershov theorem, that broadly states that the first-order theory of a henselian
finitely ramified valued field is completely determined by the first-order theory of its
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residue field and its value group. In a pure henselian valued field, the value group is
a pure ordered abelian group and it is interpretable in the structure.

Following the Ax-Kochen principle one can first attempt to solve the problem of
elimination of imaginaries for henselian valued fields by following two orthogonal
directions:

1. The first one is to make the value group as tame as possible (e.g., to assume
that it is definably complete) and to understand the obstacles that the residue
field naturally contributes to the problem. This research path was successfully
finalized by Hils and Rideau-Kikuchi in [9].

2. Alternatively, one can make the residue field very tame (e.g., algebraically
closed) and study the issues that the complexity of the value group brings to
the problem. The work in [19] clarifies the picture for the equicharacteristic
zero case, and this paper is the first milestone towards the solution.

We use an abstract criterion isolated by Hrushovski in [10] to show the following
two results:

Theorem. Let Γ be an ordered abelian group of bounded regular rank (equivalently
with finite spines). Then Γ admits weak-elimination of imaginaries once the quotient
sorts are added.

Theorem. Let Γ be a dp-minimal ordered abelian group. Then Γ admits elimination
of imaginaries once the quotient sorts are added, and we add constants to distinguish
the cosets of �Γ in Γ, where � ∈ N≥2.

This paper is organized as follows:

1. Section 2: We present the state of model theory of ordered abelian groups and
introduce the class of ordered abelian groups with bounded regular rank.

2. Section 3: We characterize the definable end-segments in an ordered abelian
group with bounded regular rank and show that they can be coded in the
quotient sorts.

3. Section 4: We introduce Hrushovski’s theorem to achieve a weak elimination
of imaginaries result for the class of ordered abelian groups with bounded
regular rank. This criterion requires us to check two conditions: the density of
definable types, proved in Proposition 4.4; and the coding of definable types,
proved in Proposition 4.2.

4. Section 5: We briefly summarize the main results for pure ordered abelian
groups.

The case of direct sums of the integers with the lexicographic order has been done
independently by Liccardo in [13], as part of her Ph.D. thesis under D’Aquino. Hils
and Mennuni in [8] have independently obtained the result for the regular case.

§2. Preliminaries.

2.1. Elimination of imaginaries. Let T be a first-order theory and let M be its
monster model. LetD ⊆ Mk be some definable set and E some definable equivalence
relation over D. The equivalence class e = a/E is said to be an imaginary element.
Imaginaries in model theory were introduced by Shelah in [18]. Later in [14], Makkai
proposed to construct the many sorted structure Meq , where we add a sort SE for
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ELIMINATION OF IMAGINARIES IN ORDERED ABELIAN GROUPS 1641

each definable equivalence relation E and a map �E sending each element to its class.
Since then, the model theoretic community has presented and studied imaginary
elements in this way and refers to the multi-sorted structure Meq as the imaginary
expansion of M. We call the sorts SE imaginary sorts while we refer to M as the
home sort.

Any formula φ(x, y) induces an equivalence relation in M|y| defined as

Eφ(y1, y2) if and only if ∀x
(
φ(x, y1) ↔ φ(x, y2)

)
.

Let b ∈ M|y| and X := φ(x, b). We call the class b/Eφ the code of X and denote it
as �X�. We denote by dcleq and acleq the definable closure and the algebraic closure
in the expansion Meq .

Definition 2.1. 1. We say that T has elimination of imaginaries if for any
imaginary element e there is a tuple a in the home sort such that e ∈ dcleq(a)
and a ∈ dcleq(e).

2. We say that T has weak elimination of imaginaries if for any imaginary element
e there is a tuple a in the home sort such that e ∈ dcleq(a) and a ∈ acleq(e).

3. We say that T codes finite sets if for every modelM � T and every finite subset
S of M, the code �S� is interdefinable with a tuple of elements in M.

The following is a folklore fact.

Fact 2.2. Let T be a complete multi-sorted theory. If T has weak elimination of
imaginaries and codes finite sets then T eliminates imaginaries.

2.2. Ordered abelian groups of bounded regular rank. In this section we summarize
several results about the classification of ordered abelian groups and their model
theoretic behavior. We start by recalling the following folklore fact.

Fact 2.3. Let (Γ, <,+, 0) be a non-trivial ordered abelian group. Then the topology
induced by the order in Γ is discrete if and only if Γ has a minimal positive element. In
this case we say that Γ is discrete, otherwise we say that it is dense.

The following notions were isolated in the sixties by Robinson and Zakon in [15]
to understand some complete extensions of the theory of ordered abelian groups.

Definition 2.4. Let Γ be an ordered abelian group and n ∈ N≥2.
1. Let � ∈ Γ. We say that � is n-divisible if there is some � ∈ Γ such that � = n� .
2. We say that Γ is n-divisible if every element � ∈ Γ is n-divisible.
3. Γ is said to be n-regular if any interval with at least n points contains an

n-divisible element.

Example 2.5. We include some examples to illustrate the previous definitions.
1. Consider the ordered abelian group (Z,+,≤, 0), the elements 2, 4, 6 are

2-divisible while 1 is not.
2. The groups (Q,+,≤, 0) and (Z,+,≤, 0) are n-regular for each natural

number n ∈ N≥2. The group (Z⊕ Z,≤lex ,+, 0), where ≤lex is the lexi-
cographic order, is not 2-regular, because the interval

(
(1, – 1), (1, 4)

)
=

{(1, 0), (1, 1), (1, 2), (1, 3)} does not contain a 2-divisible element.

The following definitions were introduced by Schmitt in [16, 17].
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1642 MARIANA VICARÍA

Definition 2.6. We fix an ordered abelian group Γ and n ∈ N≥2. Let � ∈ Γ. We
define:

• A(�) = the largest convex subgroup of Γ not containing �.
• B(�) = the smallest convex subgroup of Γ containing �.
• C (�) = B(�)/A(�).
• An(�) = the smallest convex subgroup C of Γ such that B(�)/C is n-regular.
• Bn(�) = the largest convex subgroup C of Γ such that C/An(�) is n-regular.

In [16, Chapter 2], Schmitt shows that the groupsAn(�) andBn(�) are definable in
the language of ordered abelian groups LOAG = {+, –,≤, 0} by a first-order formula
using only the parameter �.

We recall that the set of convex subgroups of an ordered abelian group is totally
ordered by inclusion.

Definition 2.7. Let Γ be an ordered abelian group and n ∈ N≥2, we define the
n-regular rank to be the order type of(

{An(�) | � ∈ Γ\{0}},⊆
)
.

The n-regular rank of an ordered abelian group Γ is a linear order, and when
it is finite we can identify it with its cardinal. In [5], Farré emphasizes that we can
characterize it without mentioning the subgroupsAn(�). The following is [5, Remark
2.2].

Fact 2.8. Let Γ be an ordered abelian group and n ∈ N≥2, then:
1. Γ has n-regular rank equal to 0 if and only if Γ = {0}.
2. Γ has n-regular rank equal to 1 if and only if Γ is n-regular and not trivial.
3. Γ has n-regular rank equal to m if there are Δ0, ... ,Δm convex subgroups of Γ,

such that:
• {0} = Δ0 < Δ1 < ··· < Δm = Γ.
• For each 0 ≤ i < m, the quotient group Δi+1/Δi is n-regular.
• The quotient group Δi+1/Δi is not n-divisible for 0 < i < m.
In this case we define RJn(Γ) = {Δ0, ... ,Δm–1}. The elements of this set are
called the n-regular jumps.

Example 2.9. Let G = Z⊕ ··· ⊕ Z︸ ︷︷ ︸
n–times

with the lexicographic order ≤lex . The

3-regular rank of G is equal to n. This is witnessed by the sequence:

{0} ≤ {0} ⊕ ··· ⊕ {0}︸ ︷︷ ︸
n–1 times

⊕Z ≤ ··· ≤ {0} ⊕ Z⊕ ··· ⊕ Z︸ ︷︷ ︸
n–1–times

≤ Z⊕ ··· ⊕ Z.

2.2.1. Regular groups and poly-regular groups.

Definition 2.10. An ordered abelian group Γ is said to be regular if it is n-regular
for all n ∈ N.

Example 2.11. (Z,+,≤, 0) and (Q,+,≤, 0) are standard examples of regular
groups. By [2, Theorem 1.2] any archimedean group is regular.

Robinson and Zakon in their seminal paper [15] completely characterized the
possible completions of the theory of regular groups, obtained by extending the
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first-order theory of ordered abelian groups with axioms asserting that for each
n ∈ N if an interval contains at least n-elements then it contains an n-divisible
element. The following is [15, Theorem 4.7].

Theorem 2.12. The possible completions of the theory of regular groups are:

1. the theory of discrete regular groups, and
2. the completions of the theory of dense regular groups T� where

� =: Primes → N ∪ {∞}

is a function specifying the index �(p) = [Γ : pΓ].

Robinson and Zakon proved as well that each of these completions is the theory
of some archimedean group. In particular, any discrete regular group is elementarily
equivalent to (Z,≤,+, 0). This theory is known as Presburger arithmetic, introduced
in 1929 by M. Presburger, who proved that it admits quantifier elimination in the
well-known Presburger Language

LPres = {0, 1,+, –, <, (≡m)m∈N≥2}.

Given an ordered abelian group Γ we naturally see it as an LPres-structure. The
symbols {0,+, –, <} take their obvious interpretation. If Γ is discrete, the constant
symbol 1 is interpreted as the least positive element of Γ, and by 0 otherwise. For each
m ∈ N≥2 the binary relation symbol ≡m is interpreted as the equivalence modulo
m, i.e., for any g, h ∈ Γ g ≡m h if and only if g – h ∈ mΓ.

The theory of a dense ordered abelian group admits quantifier elimination in the
Presburger language if and only if it is regular. This is a result of Weispfenning in
[20, Theorem 2.9].

Definition 2.13. Let Γ be an ordered abelian group. We say that it is poly-
regular if it is elementarily equivalent to a subgroup of the lexicographically ordered
group Rn.

In [2] Belegradek studied poly-regular groups and proved that an ordered abelian
group is poly-regular if and only if it has finitely many proper definable convex
subgroups, and all the proper convex subgroups are definable over the empty set.
In [20, Theorem 2.9] Weispfenning obtained quantifier elimination for the class
of poly-regular groups in the language of ordered abelian groups extended with
predicates to distinguish the subgroups Δ + �Γ where Δ is a convex subgroup and
� ∈ N≥2.

2.2.2. Ordered abelian groups with bounded regular rank.

Definition 2.14. Let Γ be an ordered abelian group. We say that it has bounded
regular rank if it has finite n-regular rank for each n ∈ N≥2. For notation, we will
use RJ (Γ) =

⋃
n∈N≥2

RJn(Γ).

The class of ordered abelian groups of bounded regular rank extends the class of
poly-regular groups and regular groups. The terminology of bounded regular rank
becomes clear with the following Proposition (item 3).
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Proposition 2.15. Let Γ be an ordered abelian group. The following are all
equivalent:

1. Γ has finite p-regular rank for each prime number p.
2. Γ has finite n-regular rank for each natural number n ≥ 2.
3. There is some cardinal κ such that for any H ≡ Γ, |RJ (H )| ≤ κ.
4. For any H ≡ Γ, any definable convex subgroup of H has a definition without

parameters.
5. There is some cardinal κ such that for any H ≡ Γ, H has at most κ definable

convex subgroups.
Moreover, in this caseRJ (Γ) is the collection of all proper definable convex subgroups
of Γ and all are definable without parameters. In particular, there are only countably
many definable convex subgroups.

Proof. This is [5, Proposition 2.3]. 


2.2.3. Quantifier elimination and the quotient sorts. In [3] Cluckers and Halupc-
zok introduced a language Lqe to obtain quantifier elimination for ordered abelian
groups relative to the auxiliary sorts Sn, Tn, and T+

n , whose precise description can
be found in [3, Definition 1.5]. This language is similar in spirit to the one introduced
by Schmitt in [16], but has lately been preferred by the community as it is more in
line with the many-sorted language of Shelah’s imaginary expansion Meq . Schmitt
does not distinguish between the sorts Sn, Tn, and T+

n . Instead for each n ∈ N he
works with a single sort Spn(Γ) called the n-spine of Γ, whose description can be
found in [6, Section 2]. In [3, Section 1.5] it is explained how the auxiliary sorts
of Cluckers and Halupczok are related to the n-spines Spn(Γ) of Schmitt. In [5,
Section 2], it is shown that an ordered abelian group Γ has bounded regular rank if
and only if all the n-spines are finite, and Spn(Γ) = RJn(Γ). In this case, we define
the regular rank of Γ as the cardinal |RJ (Γ)|, which is either finite or ℵ0. Instead
of saying that Γ is an ordered abelian group with finite spines, we prefer to use the
classical terminology of bounded regular rank, as it emphasizes the relevance of
the n-regular jumps and the role of the divisibilities to describe the definable convex
subgroups.

Definition 2.16 (The language L). Let Γ be an ordered abelian group with
bounded regular rank. We view Γ as a multi-sorted structure in the language L,
where:

1. We add a sort for the ordered abelian group Γ, and we equip it with a copy of
the language LPres extended with predicates to distinguish each of the convex
subgroups Δ ∈ RJ (Γ). We refer to this sort as the main sort.

2. For each Δ ∈ RJ (Γ) we add a sort for the ordered abelian group Γ/Δ, equipped
with a copy of the Presburger language

LΔ
Pres = {0Δ, 1Δ,+Δ, –Δ, <Δ, (≡Δ

m)m∈N≥2}.
We add as well a map 	Δ : Γ → Γ/Δ, interpreted as the natural quotient map.

In [5, Theorem 2.4] Farré obtained a quantifier elimination statement for the class
of ordered abelian groups with bounded regular rank in the language L extended
with a set of constants in the home sort. However, we present a slightly different
language where we add the constants for the minimal element in Γ/Δ (if it exists)
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instead of adding a representative in the home sort whose projection is the minimal
class in Γ/Δ. For this purpose we highlight that the following statement is a direct
consequence of [1, Proposition 3.14].

Theorem 2.17. Let Γ be an ordered abelian group with bounded regular rank. Then
Γ admits quantifier elimination in the language L.

Notation 2.18. We will be mainly interested in the description of the definable
sets in the main sort. For this purpose we will slightly abuse the language, to simplify
the notation. For each k ∈ Z and Δ ∈ RJ (Γ) we define kΔ = k · 1Δ, where 1Δ is the
minimal element in Γ/Δ if it exists. We will sometimes indicate kΔ simply as k + Δ.
We introduce the following notation:

1. We write 
(x) + Δ < � + k + Δ for the formula 	Δ(
(x)) <Δ 	Δ(�) + kΔ.
2. We write 
(x) ≡Δ � + k for the formula 	Δ(
(x)) = 	Δ(�) + kΔ.
3. We write 
(x) ≡Δ+mΓ � + k for the formula	Δ(
(x)) ≡Δ

m 	Δ(�) + kΔ. The latter
is interpreted as 	Δ(
(x)) – (	Δ(�) + kΔ) ∈ m

(
Γ/Δ).

Here 
(x) is a term in the language of ordered abelian groups in m variables,
x = (x1, ... , xm) and � ∈ Γ.

Definition 2.19. 1. A set S ⊂ Γ is said to be an end-segment (respectively, an
initial segment) if for any x ∈ S and y ∈ Γ, x < y (respectively, y < x) we
have that y ∈ S.

2. Let n ∈ N≥2, Δ ∈ RJ (Γ), � ∈ Γ ∪ {– ∞,+∞}, and � ∈ {≥, >}.
{� ∈ Γ | n� + Δ�� + Δ} is an end-segment of Γ. We call the end-segments

of this form divisibility end-segments. We define divisibility initial segments
analogously.

3. A mid-segment is a nonempty set C of the form C = U ∩ L where U is a
divisibility end-segment and L is a divisibility initial segment.

4. A basic positive congruence formula is a formula of the form zx ≡Δ+lΓ � + k
where � ∈ Γ, z, k ∈ Z, l ∈ N≥2, and Δ ∈ RJ (Γ). Likewise, a basic negative
formula is a formula of the form zx �≡Δ+lΓ � + k. A basic congruence formula
is either a basic positive congruence formula or a basic negative formula.

5. A finite congruence restriction is a finite conjunction of basic congruence
formulas.

6. A nice set is a set of the formC ∩ X , where C is a mid-segment and X is defined
by a finite congruence restriction.

The following is a direct consequence of quantifier elimination.

Corollary 2.20. Let Γ be an ordered abelian group with bounded regular rank.
Let X ⊆ Γ be a definable set. Then X is a finite union of nice sets.

We will consider an extension LQ of the language L, where for each natural
number n ∈ N≥2 and Δ ∈ RJ (Γ) we add a sort for the quotient group Γ/(Δ + nΓ)
and a map �nΔ : Γ → Γ/(Δ + nΓ). We refer to the sorts in the languageLQ as quotient
sorts.

The following fact will be very useful to show weak elimination of imaginaries for
ordered abelian groups with bounded regular rank.

Fact 2.21. Let Γ be an ordered abelian group of finite n-regular rank witnessed by
the sequence {0} = Δ0 < Δ1 < ··· < Δl = Γ and fix some definable convex subgroup
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H. Then Γ/H is also a group of finite n-regular rank. Moreover, if Γ is an ordered
abelian group of bounded regular rank, then H ∈ RJ (Γ) and each coset of Δi /H in
Γ/H is interdefinable with an element of Γ/Δi .

Proof. Let Γ be an ordered abelian group and H a convex subgroup. Assume
that Γ has finite n-regular rank, witnessed by the sequence {0} = Δ0 < Δ1 < ··· <
Δl = Γ and let r be the smallest index such that Δr ⊆ H ⊆ Δr+1. We aim to show
that Δr+1/H < ··· < Δl /H = Γ/H witnesses that Γ/H has finite n-regular rank.
For each r ≤ i < l , by the isomorphism theorem (Δi+1/H )/(Δi /H ) ∼= Δi+1/Δi . As
Δi+1/Δi is n-regular and not n-divisible, so is (Δi+1/H )/(Δi /H ).

The second part of the statement follows immediately by the isomorphism theorem
and Proposition 2.15. 


2.3. A survey of model theoretic results on ordered abelian groups. In 1984 the
classification of the model theoretic complexity of ordered abelian groups was
initiated by Gurevich and Schmitt in [6], who proved that no ordered abelian group
has the independence property. During the last years finer classifications have been
achieved, and we present the state of the field in this subsection.

Definition 2.22. Let Γ be an ordered abelian group and let p be a prime number.
We say that p is a singular prime if [Γ : pΓ] = ∞. If Γ does not have singular primes
we call it non-singular.

The following result corresponds to [11, Proposition 5.1].

Proposition 2.23. Let Γ be an ordered abelian group. The following conditions are
equivalent:

1. Γ is non-singular.
2. Γ is dp-minimal.

The following is [1, Theorem 3.13].

Proposition 2.24. Let Γ be an ordered abelian group with bounded regular rank
(i.e., each Spn(Γ) is finite). The following statements are equivalent:

1. Γ is distal.
2. Γ is dp-minimal.

The following statement was independently achieved in [4, 5, 7].

Proposition 2.25. Let Γ be an ordered abelian group. The following conditions are
equivalent:

1. Γ is strongly dependent.
2. Γ has finite dp-rank.
3. Γ has bounded regular rank and finitely many singular primes.

Moreover, let P = {p ∈ N | p is a singular prime}. Then

dp – rank(Γ) ≤ 1 +
∑
p∈P

|RJp(G)|.
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§3. Definable end-segments. In this subsection we characterize the definable end-
segments (or initial segments) in an ordered abelian group with bounded regular
rank (equivalently with finite spines). We also show that they can be coded in the
quotient sorts.

Definition 3.1. Let Γ be an ordered abelian group with bounded regular rank:

1. Given S ⊆ Γ an end-segment (or an initial segment) we denote by ΔS the
stabilizer of S, i.e., ΔS := {� ∈ Γ | � + S = S}.

2. Let S ⊆ Γ be an end-segment and Δ ∈ RJ (Γ). We consider the projection map
	Δ : Γ → Γ/Δ, and we write SΔ to indicate 	Δ(S). The set

SΔ = {� ∈ Γ/Δ | ∃y ∈ S 	Δ(y) = �}

is a definable end-segment of Γ/Δ, as it is the projection of an end-segment.
3. Let Δ ∈ RJ (Γ) andS ⊆ Γ be an end-segment. We say that S is Δ-decomposable

if it is a union of Δ-cosets.
4. Let X and Y be definable sets. We say that Y is coinitial (or cofinal) in X if

for any y ∈ X there is some element z ∈ X ∩ Y such that z ≤ y (respectively,
z ≥ y).

Fact 3.2. Let S ⊆ Γ be a definable end-segment. Then ΔS is a definable convex
subgroup of Γ, and therefore ΔS ∈ RJ (Γ). Furthermore, ΔS =

⋃
Δ∈C

Δ, where

C = {Δ ∈ RJ (Γ) | S is Δ-decomposable}.

Proof. We first show that ΔS ⊆
⋃
Δ∈C

Δ. Note ΔS is a definable convex subgroup,

so ΔS ∈ RJ (Γ). We aim to show that S is ΔS -decomposable, so it is sufficient to
show that for any � ∈ S, � + ΔS ⊆ S. Fix some � ∈ Γ. If � ∈ ΔS then � + � ∈ S, so
� + ΔS ⊆ S.

We now prove that
⋃
Δ∈C

Δ ⊆ ΔS . Let Δ ∈ C and fix some � ∈ Δ. We want to show

that � + S ⊆ S and S ⊆ � + S. Because S is Δ-decomposable, � + Δ ⊆ S for any
� ∈ S. In particular, � + � ∈ S. As � is an arbitrary element in S, we conclude that
� + S ⊆ S. It is only left to show that S ⊆ � + S. Let � ∈ S, then � – � ∈ S because
� + Δ ⊆ S. As � = � + (� – �) ∈ � + S, we have S ⊆ � + S, as required. 


Proposition 3.3. Let Γ be an ordered abelian group of bounded regular rank. Any
definable end-segment is a divisibility end-segment.

Proof. Let S ⊆ Γ be a definable end-segment such that S �= Γ. By Fact 3.2, ΔS
is a definable convex subgroup of Γ and S is ΔS -decomposable. To simplify the
notation we will denote Γ̂ = Γ/ΔS and Ŝ = SΔS = 	ΔS (S). It is sufficient to prove
that Ŝ is a divisibility end-segment in Γ̂.

Claim 3.3.1. Note that for any k ∈ N exactly one of the following occurs:

• Γ̂ is k-regular.
• There is a nontrivial k-regular convex subgroup Λk of Γ̂ and a coset � + Λk such

that Ŝ ∩ (� + Λk) �= ∅ and Ŝc ∩ (� + Λk) �= ∅.
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Proof. Let {0} = Δ0 < Δ1 < ··· < Δl = Γ be the sequence of convex subgroups
witnessing that Γ has k-finite regular rank equal to l. Let r ≤ l be the smallest
index such that ΔS � Δr . If r = l then Γ̂ is k-regular. Otherwise the quotient group
Λk = Δr/ΔS satisfies the required conditions. Indeed, as Δr/Δr–1 is k-regular so is
Δr/ΔS . Additionally, S is not Δr-decomposable. If it were, then we would have Δr ⊆
ΔS which contradicts ΔS � Δr . Then there is some coset � + Δr such that S ∩ (� +
Δr) �= ∅ and Sc ∩ (� + Δr) �= ∅ because otherwise S would be Δr-decomposable.
Thus Ŝ ∩ (�̂ + Λk) �= ∅ and Ŝc ∩ (�̂ + Λk) �= ∅, where �̂ = � + ΔS . 


We may assume that Ŝ does not have a minimum because otherwise the statement
follows immediately. By Corollary 2.20 applied to Γ̂, Ŝ is a finite union of nice
sets Ci ∩ Xi , where Ci = Ui ∩ Li . As Ŝ is a definable end-segment, it is sufficient to
understand the co-initial description of Ŝ. Without loss of generality we may assume
that Ui ⊆ U1 for all i. Let Δ̂ ∈ RJ (Γ̂). Then Δ̂ = Δ/ΔS for some ΔS � Δ ∈ RJ (Γ).
Thus there is a coset � + Δ̂ such that Ŝ ∩ (� + Δ̂) �= ∅ and Ŝc ∩ (� + Δ̂) �= ∅ because
S is not Δ-decomposable.

Hence, each of the congruence formulas involving the groups Δ̂ + kΓ̂ does not
change its truth value overU1 ∩ (� + Δ̂). Therefore it does not change its truth value
co-initially in U1.

Consider a conjunction of congruence restrictions of the form:

C (x) :=
( ∧
i≤s
x ≡ki Γ̂ ci

)
∧

( ∧
j≤l

¬(x ≡rj Γ̂ dj)
)
.

Let M be the least common multiple of all theki ’s and rj ’s involved in the definition of
C (x). By the previous Claim 3.3.1, Γ is M-regular or we can find an M-regular group
ΛM and a coset that intersects Ŝ and its complement. We first assume the existence of
a non-trivial convex subgroup ΛM and a coset � + ΛM such that Ŝ ∩ (� + ΛM ) �= ∅
and Ŝc ∩ (� + ΛM ) �= ∅. Let Y = C (x) ∩ (U1 ∩ (� + ΛM )).

Claim 3.3.2. If Y �= ∅, then C (x) is co-initial in U1.

Proof. Let x0 ∈ Y and U ′ =
(
U1 ∩ (� + ΛM )

)
– x0. U ′ is a definable end-

segment of ΛM without a minimum. Fix an element � ∈ U ′. As U ′ does not have a
minimum and ΛM is M-regular, we can find an element � ∈ ΛM such thatM� ∈ U ′

and M� < �. Then z =M� + x0 ∈ Y and z < x0 + �. Thus C (x) is co-initial
in U1. 


Likewise, if Γ̂ is M-regular we can conclude that C (x) is co-initial in U1.
Consequently, the congruence restrictions are irrelevant in the definition of the
end-segment S. It must be the case then that S = U1, as desired. 


Even though it may seem like any divisibility cut defined by a formula of the form
nx�� where n ∈ N≥2, � ∈ {≥, >} and � ∈ Γ could be coded by � , this statement
is false and requires a slightly more delicate treatment. We introduce the following
example to motivate the reader to not dismiss the technical work in Proposition 3.3.

Example 3.4. Consider the ordered abelian group (Z⊕ Z,≤lex ,+, 0) where ≤lex
is the lexicographic order. Let S = {z ∈ Z2 | 2z ≥ (1, 1)}. Note that for any � ∈ Z,
S is also defined by the formula 2z ≥ (1, �).
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Lemma 3.5. Let Γ be an ordered abelian group of bounded regular rank. Let
{0} = Δ0 ≤ Δ1 ≤ ··· ≤ Δl = Γ be the sequence of convex subgroups witnessing that
Γ has finite n-regular rank. Then any divisibility end-segment S defined by a formula
nx � � where n ∈ N≥1, � ∈ {≥, >} and � ∈ Γ is coded by a tuple of elements in the
sorts Γ ∪ {Γ/Δi | i ≤ l}.

Proof. We argue by induction in the n-regular rank of Γ that S can be coded in
the sorts Γ ∪ {Γ/Δi | i ≤ l}. For the base case, we suppose that Γ is n-regular. We
first assume that Γ is dense, and we aim to prove that � and �S� are interdefinable.
It is clear that �S� ∈ dcl eq(�). For the converse let 
 be any automorphism of the
monster model M and suppose that 
(�) �= � . Without loss of generality, � < 
(�).
By density we can find n-elements in the interval (�, 
(�)). By n-regularity and
density there is an element � such that � < n� < 
(�). Thus 
(S) � S.

We now assume that Γ is discrete and let 1 be its minimal element. There is a
unique natural number 0 ≤ i ≤ n – 1 such that � + i is n-divisible, because {�, � +
1, ... , � + (n – 1)} is an interval with at least n-elements. Let i0 be the index such
that � + i0 is n-divisible. Then x ∈ S if and only if nx ≥ � + i0. Thus �+i0

n is the
minimal element of S and thereby it is a code for S.

We proceed to show the inductive step, and we consider the sequence {0} = Δ0 <
Δ1 < ··· < Δl+1 = Γ witnessing that Γ has n-regular rank equal to l + 1. Let 	Δ1 :
Γ → Γ/Δ1 be the canonical projection map, and note that Γ/Δ1 is an ordered abelian
group of n-regular rank l. First we suppose that 	Δ1(�) is not n-divisible. Then S is
interdefinable with SΔ1 = {� ∈ Γ/Δ1 | n� > 	Δ1(�)}. By the induction hypothesis,
such end-segment can be coded in the sorts Γ/Δ1 ∪ {(Γ/Δ1)/(Δi /Δ1) | 2 ≤ i ≤ l}.
As each of the sorts (Γ/Δ1)/(Δi /Δ1) can be canonically identified with Γ/Δi , the
conclusion of the statement follows.

We consider the case where 	Δ1(�) is n-divisible, i.e., there is some � ∈ Γ such
that n	Δ1(�) = 	Δ1(�). Note that 	Δ1(�) = min(SΔ1). If Δ1 is discrete, then S has a
minimum and this minimal element is a code for S. Thus without loss of generality
Δ1 is dense. We aim to show that � and �S� are interdefinable. In fact, let 
 be
an automorphism of the monster model M fixing �S�. We want to show that it
fixes also � . We argue by contradiction, and we assume that � < 
(�). As 	Δ1(�) ∈
dcl eq(�S�), we have 
(�) – � ∈ Δ1. Fix some element � ∈ Γ such that n� + Δ1 =
� + Δ1. We can find elements �1 < �2 ∈ Δ1 such that � = n� + �1 and 
(�) = n� +
�2. By n-regularity and density of Δ1 we can find an element � ∈ Δ1 such that
�1 < n� < �2, so we have � < n(� + �) < 
(�) and hence S � 
(S), as desired. 


Proposition 3.6. Let Γ be an ordered abelian group of bounded regular rank and let
S ⊆ Γ be a definable end-segment. Then �S� is interdefinable with a tuple of elements
in the sorts Γ ∪ {Γ/Δ | Δ ∈ RJ (Γ)}. Consequently, any initial segment is also coded
in the sorts Γ ∪ {Γ/Δ | Δ ∈ RJ (Γ)}.

Proof. By Proposition 3.3 it is sufficient to code divisibility end-segments. We
may assume that S = {� ∈ Γ | n� + Δ ≥ � + Δ}. Therefore S is interdefinable with
SΔ = {z ∈ Γ/Δ | nz ≥ 	Δ(�)}; this is a definable end-segment of Γ/Δ. The statement
follows immediately from Lemma 3.5 combined with Fact 2.21.

The second part of the statement follows by noticing that any initial segment is
the complement of an end-segment. 
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§4. An abstract criterion to eliminate imaginaries. The following is [10, Lemma
1.17].

Theorem 4.1. Let T be a first-order theory with home sort K. Let G be some
collection of sorts. If the following conditions all hold, then T has weak elimination of
imaginaries in the sorts G.

1. Density of definable types: for every non-empty definable set X ⊆ K there is an
acl eq(�X�)-definable type in X.

2. Coding definable types: every definable type in Kn has a code in G (possibly
infinite). That is, if p is any (global ) definable type in Kn, then the set �p� of
codes of the definitions of p is interdefinable with some (possibly infinite) tuple
from G.

Proof. A very detailed proof can be found in [12, Theorem 6.3]. The first part of
the proof shows weak elimination of imaginaries as it is shown that for any imaginary
element e we can find a tuple a ∈ G such that e ∈ dcl eq(a) and a ∈ acl eq(e). 


We will use this criterion to prove that any pure ordered abelian group with
bounded regular rank admits weak elimination of imaginaries once the quotient
sorts are added.

4.1. Coding of definable types. In this subsection we show that any definable type
p(x) can be coded in the quotient sorts.

Proposition 4.2. Let Γ be an ordered abelian group and let p(x) ∈ Sn(Γ) be a
definable type. Then p(x) can be coded in the quotient sorts.

Proof. Let p(x) be a definable type in n variables over Γ. By quantifier
elimination (Theorem 2.17), p(x) is completely determined by formulas of the
following forms:

• First kind:

φ1(x, �) :=
∑
i≤n
zixi + Δ < � + k + Δ

or

�1(x, �) :=
∑
i≤n
zixi + Δ > � + k + Δ,

where � ∈ Γ, Δ ∈ RJ (Γ), and k, zi ∈ Z.
• Second kind:

φ2(x, �) :=
∑
i≤n
zixi ≡Δ+lΓ � + k,

where � ∈ Γ, Δ ∈ RJ (Γ), k, zi ∈ Z, and l ∈ N≥2.
• Third kind:

φ3(x, �) :=
∑
i≤n
zixi ≡Δ � + k,

where � ∈ Γ, Δ ∈ RJ (Γ), and zi ∈ Z.
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The set {� ∈ Γ | φ1(x, �) ∈ p(x)} is an end-segment of Γ, so it can be
coded in the quotient sorts by Propositions 3.3 and 3.6. Likewise, the set
{� ∈ Γ | �1(x, �) ∈ p(x)} is an initial segment of Γ, and it admits a code in the
quotient sorts.

LetX = {� ∈ Γ | φ2(x, �) ∈ p(x)}, then X is either empty or we can take �0 ∈ X
and �X� is interdefinable with �lΔ(�0) ∈ Γ/(Δ + lΓ).

Lastly, Z = {� ∈ Γ | φ3(x, �) ∈ p(x)} is either empty or for any element �0 ∈ Z,
we have that �Z� is interdefinable with 	Δ(�0) ∈ Γ/Δ. 


4.2. Density of definable types. In this subsection we prove the first condition
required in Hrushovski’s criterion: the density of definable types in algebraically
closed sets.

The following will be a useful fact to obtain our result.

Fact 4.3. Let X ⊆ Γ be a definable set without a minimum element. Then there is
a �X� definable end-segment S such that X is co-initial in S.

Proof. Let I = {� ∈ Γ | (– ∞, �] ∩ X = ∅}. I is a �X�-definable initial segment
of Γ. Let S = Γ\I , it is sufficient to verify that X is co-initial in S. Let � ∈ S, then
(– ∞, �] ∩ X �= ∅. Because X does not have a minimum, we can find an element
x ∈ X such that x < � , as required. 


Proposition 4.4. Let Γ be an ordered abelian group of bounded regular rank and
X ⊆ Γ a definable set. There is a global type p(x) � x ∈ X such that p(x) is definable
over acleq(�X�).

Proof. Let X ⊆ Γ be a 1-definable set. If X has a minimum element a, the
statement follows immediately by taking the type of this element. Thus we may
assume that X does not have a minimum, by Fact 4.3 there is a �X�-definable
end-segment S such that X is co-initial in S. In particular, the type

ΣgenS (x) = {x ∈ S ∩ X} ∪ {x /∈ B | B � S and B is a definable end-segment}

is a consistent partial type which is �S�-definable.
Let � : N → N× N≥1 be some fixed bijection. We now build by induction an

increasing sequence of partial consistent types (Σi(x) | i < �) in the following
way:

• Stage 0: Set Σ0(x) = ΣgenS (x).
• Stage i + 1: Let �(i) = (k, l), at this stage we want to decide the congruence

modulo the subgroup Δk + lΓ. To keep the notation simple we assume that
l ≥ 2 and we use the projection map �lΔk := Γ → Γ/(Δk + lΓ). If l = 1 we
argue in the same manner to fix the coset of Δk and instead we use the projection
map 	Δk : Γ → Γ/Δk .
We proceed by cases:

a) Set Σi+1(x) = Σi (x) ∪ {�lΔk (x) �= �l�k (�) | � ∈ Γ} if it is consistent.
b) Otherwise, letAi = {�1, ... , �ri } ⊆ Γ/(Δk + lΓ) be the finite set of cosets

such that Σi (x) ∪ {�lΔk (x) = �j} is consistent. Take an element �̂ ∈ Ai
and set Σi+1(x) = Σi (x) ∪ {�lΔk (x) = �̂}.
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Let M be the monster model and

J = {i ∈ N | Σi (x) ∪ {�lΔk (x) �= �l�k (�) | � ∈ Γ} is inconsistent}.

Claim 4.4.1. For any 
 ∈ Aut(M/ acleq(�X�)) the following conditions hold:
1. For any i ∈ N 
(Σi (x)) = Σi (x).
2. For any i ∈ J 
(Ai ) = Ai .
In particular, as 
 is arbitrary, then Ai ⊆ acleq(�X�).

Proof. We argue by induction on i to show that for any

 ∈ Aut(M/ acleq(�X�)) we have that 
(Σi (x)) = Σi (x) and if i ∈ J then

(Ai ) = Ai . For the base case, fix some 
 ∈ Aut(M/ acleq(�X�)). Then

(Σ0(x)) = Σ0(x) because ΣgenS (x) is �S�-definable and �S� ∈ dcleq(�X�).
Suppose the statement holds for i and fix some 
 ∈ Aut(M/ acleq(�X�)). If
Σi+1(x) = Σi (x) ∪ {�lΔk (x) �= �lΔk (�) | � ∈ Γ}, then


(Σi+1(x)) = 
(Σi (x)) ∪ {�lΔk (x) �= �lΔk (
(�)) | � ∈ Γ}

= Σi (x) ∪ {�lΔk (x) �= �lΔk (
(�)) | � ∈ Γ} = Σi+1(x).

Let’s assume that Σi+1(x) = Σi (x) ∪ {�lΔk (x) = �} for some � ∈ Ai . We first
argue that 
(Ai ) = Ai . By definition of Ai :

� ∈ Ai if and only if Σi (x) ∪ {�lΔk (x) = �} is consistent.

Let� ∈ Ai , then Σi (x) ∪ {�lΔk (x) = �} is consistent. As 
 is an automorphism,
then


(Σi (x)) ∪ {�lΔk (x) = 
(�)} is consistent.

By the induction hypothesis, 
(Σi (x)) = Σi (x). Hence,

Σi (x) ∪ {�lΔk (x) = 
(�)} is consistent.

Consequently, 
(�) ∈ Ai and we conclude that 
(Ai ) ⊆ Ai . We argue in a
similar manner with 
–1 to show that Ai ⊆ 
(Ai ).
As for any 
 ∈ Aut(M/ acleq(�X�)), 
(Ai ) = Ai and Ai is a finite set, then
Ai ⊆ acleq(�X�). In particular, � ∈ acleq(�X�) where Σi+1(x) = Σi (x) ∪
{�lΔk (x) = �}. Then for any 
 ∈ Aut(M/ acleq(�X�)) we have that

(Σi+1(x)) = Σi+1(x), as required. 


Let Σ∞(x) =
⋃
i∈N

Σi(x), this is a partial consistent type and Σ∞(x) � x ∈ X . By

quantifier elimination Σ∞(x) determines a complete typep(x). Thenp(x) � x ∈ X ,
and p(x) is acl eq(�X�)-definable because p(x) is completely determined by the data
in Σ∞(x), which is definable over acleq(�X�) by Claim 4.4.1. 


§5. Main Results.

Theorem 5.1. Let Γ be an ordered abelian group of bounded regular rank
(equivalently with finite spines). Then Γ admits weak-elimination of imaginaries in
the language LQ, once the quotient sorts are added.
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Proof. By 4.1 it is sufficient to check that we have density of definable types
and that we can code definable types in the quotient sorts. The first condition is
Proposition 4.4 and the second one is Proposition 4.2. 


5.1. The dp-minimal case. In this section we show that a better statement can be
achieved for the dp-minimal case.

Definition 5.2. Let Γ be an ordered abelian group and H some definable
subgroup. A subset C ⊆ Γ is said to be a complete set of representatives modulo
H if:

1. Given any � ∈ Γ there is some � ∈ C such that � – � ∈ H .
2. For any � �= � ∈ C we have that � +H �= � +H .

Fact 5.3. Let Γ be an ordered abelian group, Δ a convex subgroup, and k ∈ N. Let
C be a complete set of representatives of Γ modulo kΓ, then some subset C0 ⊆ C is a
complete set of representatives modulo Δ + kΓ.

Proof. Let C ⊆ Γ be a complete set of representatives of Γ modulo kΓ and let
�kΔ : Γ → Γ/(Δ + kΓ) be the projection map. �kΔ(C) = Γ/(Δ + kΓ), because for any
� ∈ Γ, there is some � ∈ C such that � – � ∈ kΓ, in particular, � – � ∈ Δ + kΓ. For
each coset � ∈ Γ/(Δ + kΓ) choose an element c� ∈ C such that �kΔ(c�) = �. The set
C0 = {c� | � ∈ Γ/(Δ + kΓ)} is a complete set of representatives. 


By Proposition 2.23, an ordered abelian group is dp-minimal if and only if it does
not have singular primes, i.e., for any p prime number [Γ : pΓ] <∞. We consider
the language Ldp extending LQ, where for each k ∈ N≥2 we add constants for the
elements of the finite groups Γ/kΓ.

Corollary 5.4. Let Γ be a dp-minimal ordered group. Then Γ admits elimination
of imaginaries in the language Ldp, where the quotient sorts are added.

Proof. By Theorem 5.1 and Fact 2.2 it is sufficient to show that we can also code
finite sets. Let Δ definable convex subgroup and k ∈ N, the group Γ/(Δ + kΓ) is also
finite. We first argue that Γ/(Δ + kΓ) ⊆ dcl(∅). Consider the ∅-definable function

f :Γ/kΓ → Γ/(Δ + kΓ)

� + kΓ → � + (Δ + kΓ).

By Fact 5.3 f is surjective.
Hence, it is enough to prove that finite sets of tuples in S = {Γ/Δ | Δ ∈ RJ (Γ)}

can be coded in the quotient sorts. As each of the sorts Γ/Δ is linearly ordered,
there is a definable order induced over the finite products of quotients of Γ/Δ, and
thereby any finite set of tuples in S is already coded in S. 
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