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Genetic variation of relative growth rates in Notonecta undulata
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1. INTRODUCTION

Students of allometric (or relative) growth attempt to analyse the changes in the
body proportions of the growing organism by plotting one dimension (Y) against
another (X) on a double logarithmic grid. Often the points so plotted are approxim-
ately linear for part or all of the growth period, and the dimensions compared are
then said to obey the law of simple allometry, according to the relationship

T = BXk

or y = b + kx

where y and x are the logarithms of Y and X, and 1c and b = log B are constants (see
Reeve & Huxley, 1945; Kavanagh & Richards, 1945).

The most interesting of these constants is the relative growth coefficient (k), which
measures the ratio of the rates of multiplication of the two dimensions. This co-
efficient has been given various names in efforts to develop a uniform terminology
(see above references), and we shall here refer to it simply as the growth coefficient,
without danger of ambiguity.

Clark & Hersh (1939) made an interesting study of allometric growth in the water
boatman, Notonecta undulata. For this purpose they collected data of unusual value
in this field, in that young from each of a number of captured wild females were
reared individually and measured each instar. The data are therefore of the longi-
tudinal type as defined by Tanner (1962). This makes it possible to examine
individual variations in the constants b and k, and to look for evidence of genetic
variation in these constants by comparing the variances between and within
families. Clark and Hersh did not make any detailed analysis along these lines,
though they came to the conclusion that the individuals examined fell into two
groups with regard to the growth gradient of the three limbs in relation to body
length: in about half the individuals there was an antero-posterior gradient (k
highest for the first leg and lowest for the third), while in the remainder k was highest
for the middle leg. This conclusion suggests the existence of individual variation
which deserves further analysis. Professor L. B. Clark very kindly placed the
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Genetic variation in Notonecta undulata 385
original data at the disposal of one of us (E.C.R.R.), and the first part of a further
analysis is presented below. In this paper we shall confine ourselves to the relation-
ship between femur length (the largest segment) in the three legs and body length.
Other dimensions, for which the analysis is not yet complete, will be discussed in
later papers.

2. MATERIAL

Clark & Hersh (1939) collected eggs from ten wild females and placed them in
individual compartments of wire mesh trays which were kept floating in water in
a sheltered part of the lake at Minaki, Ontario. Towings from the lake and surround-
ing ponds were made daily and supplied to the trays. The food, consisting mainly
of Ostracods and Daphnia, was at all times adequate, and environmental conditions
were considered fairly uniform because of the stabilizing effect of the large body of
water. The trays were examined daily, and each individual was measured 24 hours
after an ecdysis, when it had been narcotized with chloral hydrate or ether, or
cooled by adding ice to the water.

The dimensions measured were body length, maximum head and body widths
and the lengths of the femur, tibia and tarsus of the three legs, all of which increased
with instar number, and distance from synthlipsis to vertex, which decreased as
general size increased.

It will be remembered that, as in all Hemiptera, Notonecta has incomplete
metamorphosis, with five nymphal and one adult instar, making six measurement
stages in all. These stages are sufficiently alike for it to be possible to measure the
same dimensions on all of them.

Of a total of 231 eggs collected and cultured, 124 survived the first 48 hours and
72 reached the adult stage, so that mortality was rather high. To avoid troublesome
complications in the analysis, we have confined ourselves to the 72 animals which
completed their growth, making the assumption (which is, perhaps, open to question)
that this group, forming 31% of the initial sample of eggs and 58% of those which
started their development, is a representative sample of the population. It seems
unlikely that whatever selective or randomly operating agencies were responsible
for the mortality could have seriously modified the relative growth pattern.

3. METHODS OF STATISTICAL ANALYSIS

In view of the variety of statistical methods which have been used in the study of
allometry, something must be said about our own choice of approach. Earlier
investigators, if they used any statistical methods at all, calculated the regression
of the log, of one dimension on that of another, taken as standard. Clark and Hersh
used the F2-weight correction method of Feldstein & Hersh (1935) which adjusts
the regression for the assumption that errors are distributed normally before trans-
formation to logs. But, while it may be possible to measure a given dimension with
the same arithmetical accuracy over a considerable size range, the factors respon-
sible for growth and therefore for variability at any growth stage must generally act
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in a multiplicative way (cf. Hemmingsen, 1934), and Reeve (1940) considered
straightforward linear regression on the logarithms of the dimensions to be the
appropriate method, and this has also been used by Cock (1963).

On the other hand, Teissier (1948) and Haldane (1950) consider regression analysis
unsatisfactory when two dimensions are compared and there is no compelling
reason for choosing either one as the independent variate. Teissier proposed the
method of minimizing the sum of products of horizontal and vertical deviations of
the experimental points from the allometry line, i.e. minimizing the expression

S {(y -V)~ *(* - x)} {{x -x)-(y- y)/k}

which gives the solution k = ay/Gx.
This is the ratio of the regression coefficient of y on x to that of x on y, and sur-

prisingly (as Teissier showed) it has the same sampling variance as the regression
coefficient of y on x. The line obtained is the reduced major axis of the correlation
surface of (x, y), and is also the line for which the sum of the perpendicular distances
of the observed points is at a minimum when x and y are in standard measure (i.e.
each is divided by its standard deviation). Kermack & Haldane (1950) have exami-
ned the sampling characteristics of k calculated in this way.

Yates (1950) pointed out that another approach leads naturally to the same
formula for calculating k. If yx and yy are the ratios of the error variance to the true
variance of x and of y, and the true law relating y and x is the linear equation (in our
terminology)

y = b + kx

then the estimates of k which are virtually unbiased for large samples are:

k' = (I +yx) cov(xy)ja2
x

I/k' = (l+vy)cov(xy)l<y*

If neither error variance can be estimated, but we are prepared to assume that the
two ratios of error variance to true variance are equal, i.e. that yx = yy, we obtain the
combined estimate k' = avjax, identical with that of Teissier.

As Kermack and Haldane showed, we may avoid transferring to logs, using the
formulae (which assume normal distribution on the log scale)

ay Hogjl+v2
Y)

whence k = — =
a

where vx = &xlX, VY = cv/Y. If the coefficients of variation on the arithmetic scale
are fairly small, we have the even simpler estimate

k = vYlvx = Xar/Yax

with standard error &\/[(l — r2)/n], where r is the correlation coefficient between X
and Y, and n is the number of pairs of observations.
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This method of approach obviously has many advantages, both theoretically and

in making it possible often to estimate k without the labour of transferring the data
to logarithms. It has also been developed by Teissier (1955) for the multivariate
case, using the methods of factor analysis, so that the allometric inter-relationships
of a number of dimensions can be jointly analysed and the relative importance of
general and group factors, or influences, acting on each dimension can be estimated.

In the present data there are six instars with large increases in size between each—
e.g. body length for a typical individual has the following values: 2-2, 3-1, 4-8, 6-2,
8-5, and 11-8 mm.—and relatively little variation within instars. Evidently the
logarithms of these measurements will be far from normally distributed, and the
short-cut formulae for k and for the variances on the log scale will give strongly and
unevenly biased estimates (as we found to be the case in some preliminary tests). I t
was, therefore, necessary to transform all the data to logarithms before analysing
them.

A full multivariate analysis of the 12 dimensions which increase with instar
number, along the lines developed by Teissier (1955), is under consideration; but
this requires heavy computational labour, and it seemed advisable to start with a
more straightforward analysis of simpler and more easily defined problems. In
this paper we shall examine the linearity of the allometric relationship of femur
length to body length, and analyse the individual variation in the allometry
coefficients for these characters. For this purpose normal regression methods, taking
body length as the independent variate, most readily provide the statistical tests we
need, and for the present we shall confine ourselves to them. It should be noted,
however, that the correlations between pairs of dimensions or their logarithms for
the whole growth period are very high, so that k diifers little when calculated by the
regression method and by Teissier's formula. A similar situation was found by
Cock (1963) in his study of the allometric relations of shank length and shank width
to body weight in the fowl, k estimated by the two methods being almost identical.

4. RESULTS

(a) Linearity on the logarithmic scale

Clark and Hersh, in their Fig. 3, plotted leg length against body length on a double
logarithmic grid, and concluded by visual inspection that the points for each leg
tended to lie on a flattened sigmoid curve which approximated to a straight line.
We have preferred to work with the femurs, the largest of the leg segments, rather
than with total leg length based on the sum of femur, tibia and tarsus lengths. Fig. 1
shows the logarithms of the three femur lengths plotted against that of body length
for females, and it will be seen that there is a similar tendency for the points of each
femur to lie on a sigmoid curve, to that noticed by Clark and Hersh for the complete
legs. A similar tendency is also seen when the corresponding dimensions for males
are plotted.

It is of some interest, therefore, to test whether these deviations from linearity are
statistically significant, or whether they can be attributed to chance variations.
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This test is made in Table 1 for the largest segments—the third femurs—of each sex.
The high linear regression variance on the instar means (row 1) indicates that there
is a very high correlation between the instar means of femur and body length in each
sex. But the residual variance between instars (row 2) is highly significant compared

1-5
1 0 1 1

Log10 body length

Fig. 1. Allometric plots of femur length against body length on logarithmic scale for
females. Each point is based on the mean of 37 measurements. (1), (2) and (3) are
the lines for femurs 1, 2 and 3.

with the variance within instars, for each sex, so that there is clearly a significant
deviation from linearity on the logarithmic plot. Rows 4 and 5 show that there is
an appreciable correlation between the two dimensions within instars.

The slightly sigmoid tendency of the curves, noticed by Clark and Hersh and
visible in Pig. 1, suggests that the deviations from linearity are not due to any simple
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mechanism such as one dimension reaching full size earlier, or falling off in growth
rate earlier, than the other, which would give a curve convex to one axis instead of a
sigmoid curve. Nor is there any obvious tendency for the relative growth rate to
change at the last pre-adult instar, as it does for example, in Maia squinado (Teissier,
1935). But to test these possibilities further Table 2 shows the effect of fitting a

Table 1. Regression of log third femur length on log body length

Females Males

1. Regression on instar means
2. Residual variance between instars
3. Variance within instars
4. Average regression within instars
5. Residual variance within instars

second degree equation to the data of Table 1. The additional variance taken up by
the second degree term is not significantly large, and there is no substantial reduc-
tion in the residual variance between instars, so that the deviations from linearity
clearly cannot be attributed to any simple cause of the type referred to above.
While there is no doubt about their statistical significance, these deviations from

Table 2. Second degree regression of log third femur length on log body length

Females Males

D.F.

1
4

216
1

215

M.S.x 10*

171,600

114
0-77

3-8
0-76

D.F.

1
4

204
1

203

M.S.x 104

160,200

125
1-56

19-6

1-47

D.F. M.S.x 104 D.F. M.S.x 104
Linear regression on instar means 1 171,600 1 160,200
Second degree regression term 1 205 1 137
Residual variance between instars 3 84 3 121
Error variance (residual within instars) 215 0-76 203 1-5

linearity are small in relation to the overall linear trend, and do not preclude us from
analysing the individual variation in the growth coefficients. Without the above
analysis they might well have been attributed to the effects of chance variation.

(b) Differences between individuals in the growth coefficient k

The significant deviations from linearity, though small, make a full regression
analysis of the data for individuals difficult, since the error variances would have to
be adjusted for the effect of non-linearity. A better method is to calculate the
growth coefficients (k) for each individual separately and then to analyse these
coefficients for differences between individuals, between sexes and between families.
For this purpose it would clearly make very little difference whether we use Teissier's
formula or the regression coefficient to calculate k, since one set of estimates would
be all slightly higher than the other set. We have used the regression estimates.
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The average values of the growth coefficients for each femur are given in Table 3
for both sexes, together with the difference between sexes and its standard error.
Females have higher ^-values than males, but the trend is the same in both sexes
in that the second leg has the highest coefficient of the three, or, in Huxley's (1932)
terminology, the growth gradient in the femurs has a high point in the second leg.
Clark and Hersh quote rather different values for these coefficients in their Table 3
(femurs 1-3 have fc-values 1-066, 1-114 and 1-141 in females and 0-971, 1-060 and
1-104 in males) and they actually find k highest in the third leg. The difference
between their estimates and ours probably arises from the fact that they used the
F2-weight correction method of Feldstein & Hersh (1935), which gives biased
estimates for the reasons mentioned earlier. It is nevertheless surprising that their
method alters the shape of the growth gradient, and this fact suggests the possibility
of an error in their computations.

Table 3. Growth coefficients (k) for femur length against body length

Femur
Femur
Femur
Sample

1
2
3
size

Females
(F)

1-0403
1-1418
1-1188

37

Males
(M)

1-0180
1-1207
1-1089

35

Difference
F—M

0-0223 ±0-0078
00211 ±00071
0-0099 ±0-0050

To test for individual variation in the growth gradient among the three femurs,
the regression of & on femur number (taken as 1, 2 and 3) has been analysed so as to
separate the variances due to differences in slope of the regression lines calculated
for each individual (this measures the magnitude of variations in the growth
gradient) and the variance due to differences in mean k between individuals, which
measures variation in the general level of relative growth of the femurs. Table 3
shows that the regression of k on leg number is not linear, since k% is larger than &i
and &3. We can still compare the linear regression coefficients, which will differ from
one animal to another if their growth gradients differ, but a correction has to be made
to the error variance to remove the effect on it of non-linearity. It should be emphas-
ized that we are here talking about non-linearity in the regression of k on femur
number, and not of non-linearity in the regression of log femur length on log body
length which was discussed in the previous section.

The methods of computation are shown for females in Table 4. Since the term
for non-linearity (row 2) is equally represented in the variances of rows 3, 4 and 5,
it does not contribute to rows 6 and 7, but it must be subtracted from row 5 to give
the adjusted error term of row 8.

Table 5 gives the results of applying this analysis to both sexes, and also includes
the variances due to the average linear regression of k on leg number and the average
deviation from linearity.

There is in both sexes a significant linear regression of k on leg number, indicating
the existence of a gradient in growth coefficients along the body, while the significant
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term for non-linearity shows that the gradient is not a linear one—its highest point
is, as Table 3 indicated, in the second leg. There are significant differences between
animals in mean k, but there is no sign of differences in slope of the regression lines.
This means that there are differences between animals in the mean level of relative
growth rate of the limbs, but no significant variation in the shape of the growth
gradient. On the basis of this analysis it is clearly impossible to accept the conclusion
of Clark and Hersh that the growth gradient varied between animals, about half of
them having k highest in the first leg and the rest having k highest in the second leg.
Their conclusion seems to have been based on inspection of the k values, calculated
by the F2-weight formula, without any statistical test.

Table 4. Regression o/k on leg number: computation in females

Row

1. Linear regression
2. Deviation from linearity

Residual variance on fitting
3. Single line
4. Parallel lines
5. Separate lines
6. Differences in mean k (3 - 4)
7. Differences in slope (4 - 5)
8. Adjusted error (5-2)

* S.S. = Slim of Squares.

D.F.
1
1

109
73
37
36
36
36

S.S.*x 104
1138
957

1877
1360
1216
518
143
259

Table 5. Regression o/k on leg number: completed analysis

Linear regression
Deviation from linearity
Differences in mean k
Differences in slope
Adjusted error

D.F.

1
1

36
36
36

Females
M.S.x lO*

1138**
957**

14-4
3-98
7-20

D.F.

1
1

34
34
34

Males
M.S.xlO4

1448**
766**

15-7**
3-84
3-74

** Variance ratio significant at 1% level. Row 3 is tested against the
average of rows 4 and 5.

The variation in mean k between individuals suggests the action of genes which
influence the general growth rate of the limbs in relation to that of body length, and
their effects should be reflected in differences between families. There were nine
families containing at least one animal of each sex raised to maturity and measured
each instar, and the data on these families can be analysed to show the variance
between sexes, between families, and within sex and family, in mean value of k for
the three femurs. The number of animals in each family, the mean k for each sex, and
the sums and differences of these means, are given in Table 6.
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The resulting analysis of variance of h is shown in Table 7. Since the subclass
numbers vary, the sums and differences are weighted by a weighting factor inversely
proportional to their variances, calculated in the usual way, i.e. for each family
w = njnmj{nf+nm), where nf and nm are the numbers of females and males in the
family. Then the weighted variance of 8 gives the variance between families and the
weighted variance of D gives the interaction variance between sex and family, while
[(sum of wD)2/(sum of w)] gives the variance between sexes. The error variance is
taken as the variance in mean k within sexes and families.

Table 6. Numbers of progeny and mean kfor each family in both sexes

Female progeny Male progeny
Family t _A ^ t « ( o = D =

no. nf kf nm km kf+km kf-km

1 3 1-1119 3 1-1009 2-2128 0-0110
2 3 1-1334 2 1-0962 2-2296 00372
3 2 1-0956 7 1-0780 2-1736 0-0176
4 3 1-0675 1 10480 2-1155 00195
5 6 1-1031 5 1-0858 2-1889 00173
6 8 1-1001 6 1-0826 2-1827 0-0175
7 1 1-0623 3 1-0514 2-1137 00109
8 2 1-1029 3 11121 2-2150 -0-0092
9 9 1-0996 5 1-0771 2-1767 00225

Notes: n and k are number of progeny and mean k for the three femurs averaged over the
progeny of each family.

Table 7. Analysis of variance in mean k for femurs 1-3 against body length

Between sexes (S)
Between families (F)
Interaction: S x F
Error (within S and F)

Notes: ** significant at 1% level
V(E) = Error Variance
V(F) = Component of variance between families

The difference between the sexes is significant, as we saw by another test earlier,
but there is no evidence of interaction between sex and family—the interaction
variance is, in fact, low compared with the error variance. The variance between
families is, on the other hand, clearly significant, and this must be put down to
genetic variation in the mean level of k in the three legs, since all the individuals in
the test were reared together under the same conditions and it is very difficult to see
how any environmental differences between families having such an effect could
have arisen.

D.F.
1

8
8

54

M.S.XlO4

144
51-2**

5-6

1 0 1

Interpretation

V(E) + 20-5V(F)

V(E)
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On the assumption that each family are the progeny of a single male as well as of

a single female, we can estimate the heritability of mean k, to obtain a rough measure
of the proportion of the phenotypic variance of this index which is attributable to
genetic causes. The' Interpretation' column of Table 7 gives the expected values of
the between-family and error variances on simple assumptions. The factor 20-5 in
the former is a measure of the mean number of femurs per family, appropriate to
the method of calculating the variance between families. I t is calculated from the
formula:

Mean no. of femurs per family = 121 ~Lw — -=— I / (N — 1)

where N is the number of families, w is as defined above, and the factor 3 in 12 is
there because the Mean Squares are given on the basis of an individual femur. V(E)
could, in fact, be subdivided into F(a) + 3F(6), where V(a) is the variance of an
individual femur within legs, sexes and families, and V(b) is the interaction term
between femur number and individual within sexes and families.

The heritability of mean k is calculated as follows:

V(F) = 2-01

V(E) = 10-12

Heritability % = 200 V(F)j[V(F) + V{JE)] = 33%

This suggests that about one-third of the phenotypic variance in mean k for the three
femurs against body length is the result of genetical variation. This figure, it should
be noted, will be an underestimate if the relationship between members of a family
is less than that of full sibs—i.e. if more than one male has contributed to any of
these families.

5. DISCUSSION

Leg growth in Notonecta presents a rather typical picture of the kind of allometric
growth that has been found in numerous studies of insects and Crustacea (Huxley,
1932; Teissier, 1935; Reeve & Huxley, 1945) but few of these appear to have been
previously investigated in detail with the help of statistical methods, and very little
attention has been paid to the question of genetical variation in the allometry
coefficients. The double logarithmic graphs published by Clark and Hersh suggest
to the eye that relative growth of the legs gives a close approximation to simple
allometry, with possibly some deviation in the direction of a sigmoid curve. Our
fuller analysis shows that there are, in fact, significant deviations from simple
allometry (or linearity on the double log plot), and that these are not eliminated by
fitting a second degree curve, The causes of these sigmoid deviations from linearity
are quite obscure, but they may possibly indicate that the allometry equation does
not give an adequate representation of the course of relative growth. The deviations
are, however, relatively small and certainly not large enough to make it meaningless
to fit linear regression equations to each individual and compare their slopes, the
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only difficulty being that the deviations from linearity will, in any normal regression
analysis, swell the error variance and reduce the apparent significance of tests in
which this is used. This difficulty has been avoided by calculating the growth
coefficient k separately for each individual and analysing the variation in these k
values.

The A-values of a series of bilateral appendages, or other serial parts such as
segment widths of the crustacean abdomen or successive segments of a single leg,
often differ in an ordered way, and there is then said to be a growth-gradient (Huxley,
1932). The physiological basis of such gradients is quite unknown, but they usually
show a decline in k antero-posteriorly, suggesting a connection with the order of
development of the segments (the law of antero-posterior development). The
primary gradient may, however, be modified by the presence of a secondary sexual
character with a high growth ratio. Teissier (1935) found that the walking legs of
male Maiasquinado go through three successive stages of simple allometry, of which
only the last shows a growth gradient (a typical antero-posterior one). During this
phase the chela in males is growing at its most rapid rate, so the late appearance of a
growth gradient in males seems to be a secondary sexual phenomenon associated
with the doubtless hormonally induced high growth ratio of the male chela during
the last moult, which introduces sexual maturity. During the earlier growth of males
and throughout the growth of females, the k values of the four walking legs are virtu-
ally identical, so that no primary growth gradient appears to exist here.

In Notonecta the situation is quite different. The onset of sexual maturity at the
last moult does not have any noticeable effect on the relative growth rates, and there
is from the first instar a sharp gradient in size of the legs, reflected in all their seg-
ments, as Table 8 shows for the femurs. The relative sizes of the three femurs do not
change very much during growth, while each is increasing in length 6-7 times. In
the adult femurs 1 and 2 are about £ and f as long as femur 3.

Table 8. Relative femur lengths in Notonecta females

Length as % of third femur length
_ Actual length
Femur 1 2 3 of third femur

First instar 54 63 100 0-68 mm.
Adult instar 47 66 100 4-35 mm.

This size gradient, and the fact that it remains much the same from the first
instar onwards, are evidently the result of the adaptive enlargement of the third
legs as specialized swimming organs, an adaptation which is as essential in the first
nymphal stage as in the adult. It is obviously established during embryonic growth
preceding the first instar. A slight modification occurs in the size gradient during
subsequent growth, as is indicated by the differences between the A-values of the
three femurs shown in Table 3. This 'growth gradient' in k causes a small decrease
in the relative size of the first femur and a small increase in that of the second femur,
compared with the third. This pattern of &-values is not what one would expect if
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there were either a primary antero-posterior gradient in k unmodified by the adapt-
ation of the third legs for swimming, of a similar gradient modified by an increased
growth rate of the third legs.

Our analysis of the fc-values shows that there is significant variation between
animals in the mean relative growth rate of the three femurs, and that part of this is
genetically determined. On the other hand, no significant individual variation was
found in the shape of the growth gradient—i.e. in the relative magnitudes of k for
the three femurs. In other words, such individual variation as has been found,
whether of environmental or genetic origin, causes correlated variations in k for the
three legs together but no independent variation in k for particular legs. A similar
situation has been found for the variation in hair number on the abdominal sternites
of Drosophila melanogaster, since in wild stocks genetical variation is present which
causes correlated changes in hair count of all the segments, but not independent
changes on particular segments (Reeve & Robertson, 1954).

Individual variation in the growth ratio, k, may turn out to be a common feature
of allometric growth when it is looked for. As a recent example, Cock (1963) found
clearly significant variation in k for shank length against body weight in two breed
crosses of the fowl, during the period of simple allometry from 2-10 weeks of age.
Moreover, the fact that the two crosses differed in mean k makes it obvious that
genetic variation in this index was present. An essentially analogous situation is
found in the relation of various dimensions in Drosophila subobscura, where we are
only able to study size allometry of individuals of the same growth stage, or allo-
morphosis. Robertson (1962) found that selection to change the ratio of wing to
thorax length caused leg length to change in the same direction as relative wing
length, while Misra & Reeve (1964), from a study of clines in body dimensions of
populations of D. subobscura and D. robusta, found evidence of two groups of genes
acting independently, the first group affecting general body size and so causing
correlated changes in head and thorax size and probably all other dimensions
roughly in proportion, and the second group affecting wing and leg size only.

SUMMARY
This paper presents the first part of a further analysis of data collected many

years ago by Clark and Hersh on allometric growth in Notonecta undulata, the water
boatman. The data consist of measurements of a number of dimensions, taken
each instar, on 72 individuals reared separately from egg to adult. These individuals
were the progeny of nine wild females, so that a rough estimate can be made of the
magnitude of genetic effects by comparing the variances within and between
families. The paper examines the allometric relationship between femur length of
the three legs and body length.

The statistical problems in this type of analysis are discussed. There are signi-
ficant deviations from linearity when the six points for femur length are plotted
against body length on a double log graph, but these are small compared with the
overall linear trend. The growth coefficients (k) are calculated for the three femurs
against body length for each individual, and are analysed for differences between
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femurs, between sexes and between and within families. This analysis shows that
there are significant differences between the three femurs in growth coefficient, but
the growth gradient, or pattern of k values between the three femurs does not vary
significantly from one individual to another. On the other hand, mean k for the
three femurs shows significant individual variation and also a significant variation
between families. From this it appears that about one third of the phenotypic
variance in mean relative growth rate of the femurs is due to genetic effects.

One of the authors (R. K. Misra) was a Wellcome Research Fellow, and wishes to thank the
Wellcome Trust for financial support and Professor C. H. Waddington for the provision of
laboratory facilities during the course of this research. Thanks are also due to Mrs Mary
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