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The unsteady flow physics of wind-turbine wakes under dynamic forcing conditions are
critical to the modelling and control of wind farms for optimal power density. Unsteady
forcing in the streamwise direction may be generated by unsteady inflow conditions in the
atmospheric boundary layer, dynamic induction control of the turbine or streamwise surge
motions of a floating offshore wind turbine due to floating-platform oscillations. This study
seeks to identify the dominant flow mechanisms in unsteady wakes forced by a periodic
upstream inflow condition. A theoretical framework for the problem is derived, which
describes travelling-wave undulations in the wake radius and streamwise velocity. These
dynamics encourage the aggregation of tip vortices into large structures that are advected
along in the wake. Flow measurements in the wake of a periodically surging turbine were
obtained in an optically accessible towing-tank facility, with an average diameter-based
Reynolds number of 300 000 and with surge-velocity amplitudes of up to 40 % of the
mean inflow velocity. Qualitative agreement between trends in the measurements and
model predictions is observed, supporting the validity of the theoretical analyses. The
experiments also demonstrate large enhancements in the recovery of the wake relative
to the steady-flow case, with wake-length reductions of up to 46.5 % and improvements
in the available power at 10 diameters downstream of up to 15.7 %. These results provide
fundamental insights into the dynamics of unsteady wakes and serve as additional evidence
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that unsteady fluid mechanics can be leveraged to increase the power density of wind
farms.

Key words: wakes

1. Introduction

As the deployment of renewable energy continues to gain momentum worldwide, it is
increasingly necessary to consider ways to optimize the power-generation capacity of
large aggregations of these energy-harvesting systems. For this task, increasing the power
density, or power generated per unit occupied land or sea area, is a critical objective for
maximizing the contribution of renewable-energy sources to global energy demands while
minimizing space and infrastructure requirements. For wind turbines, a major limiting
factor to the power density of a wind farm is the wake regions downstream of each turbine.
Downstream turbines that operate in these regions of low-speed and highly turbulent flow
suffer drastic losses in power generation, thereby decreasing the overall power density of
the array of the order of 10 % to 20 % (Barthelmie et al. 2009).

Several methods for reducing these wake losses have been explored in recent years,
including layout optimization using wake models (cf. Stevens & Meneveau 2017), wake
steering by turbine yaw misalignment (e.g. Howland, Lele & Dabiri 2019) and flow
control (cf. Meyers et al. 2022). Many of these approaches operate under the assumption
that the incoming flow and its interactions with the turbines in an array behave in
steady or quasisteady manners. By contrast, flow conditions in the atmospheric boundary
layer are inherently unsteady and fluctuations across a wide range of length and time
scales affect the power generation and wake dynamics of real wind farms (cf. Abraham,
Martínez-Tossas & Hong 2021). Therefore, including the effects of unsteady dynamics in
the design, optimization and analysis of wind farms can potentially uncover new strategies
for maximizing power density (Dabiri 2020).

Accordingly, significant efforts have recently been invested into leveraging unsteady
fluid mechanics for improved turbine performance and reduced wake losses on
downstream turbines. Goit & Meyers (2015), Munters & Meyers (2017) and Munters &
Meyers (2018) introduced the idea of dynamic induction control, in which oscillations in
the thrust force of a turbine are generated to excite wake instabilities, increase the mixing of
high-momentum fluid in the free stream flow into the wake and thereby achieve accelerated
wake recovery relative to steady-flow turbine operation. Wind-tunnel experiments by
Frederik et al. (2020b) and van der Hoek et al. (2022) have demonstrated the effectiveness
of this approach in enhancing the wake recovery downstream of a single turbine. A similar
dynamic control strategy, involving individual pitch control of the turbine blades to create
helical disturbances in the wake, has recently been developed by Frederik et al. (2020a)
and tested in wind-tunnel experiments (van der Hoek et al. 2024). Other forms of dynamic
wake control that introduce oscillations in the turbine rotation rate to excite tip-vortex
pairing instabilities have been explored by Brown et al. (2022). Meyers et al. (2022)
provide a review of many recent studies of these kinds of wake-control approaches.

For floating offshore wind turbines (FOWTs), the possibility of periodic turbine motions
as a function of unsteady wind gusts, wave forcing and floating-platform hydrodynamics
represents an additional opportunity for leveraging unsteady flows for increased power
density in offshore wind farms. Building on the work of Wen et al. (2018), Johlas
et al. (2021) and others, Wei & Dabiri (2022, 2023) demonstrated using wind-tunnel
experiments and analytical models that periodically surging turbines (i.e. turbines moving
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in linear oscillations along the direction of the incoming wind) can generate over 6 %
more power in certain loading conditions than equivalent stationary turbines. El Makdah
et al. (2019) also measured large increases in power generation for turbines in axial
ramp-up gusts, which could suggest that fixed-bottom turbines in unsteady streamwise
flows can achieve time-averaged power-generation enhancements as well. The effects
of unsteady turbine motions on the turbine wake and power generation of downstream
turbines, however, are less well understood.

Several studies have investigated the wake dynamics of FOWTs moving in streamwise
rocking or linear-surge motions (cf. Cioni et al. 2023). Fontanella, Zasso & Belloli
(2022) observed travelling-wave oscillations in the streamwise velocity downstream of
a periodically surging wind turbine in a wind tunnel, but at a measurement distance of 2.3
turbine diameters into the wake, no changes in wake recovery were found. In wind-tunnel
experiments, Rockel et al. (2016) found that the rocking motions of a FOWT lead to a
suppression in the entrainment of kinetic energy into the wake and therefore a decrease
in the wake-recovery rate. Conversely, recent measurements by Messmer, Hölling &
Peinke (2024) using a turbine mounted on an actuated Stewart platform showed increases
in wake recovery in excess of 20 % relative to the fixed-turbine case, as a function of
streamwise surge and transverse sway motions. Similarly, experiments by Bossuyt et al.
(2023) involving arrays of scaled FOWT models undergoing simultaneous wind and
wave forcing demonstrated improvements in power density with increased wave-induced
platform oscillations. In another recent study involving wind-tunnel experiments and
large-eddy simulations of oscillating FOWTs, Taruffi, Combette & Viré (2024) showed
analogous flow structures in the wake to those observed in dynamic induction control
studies, though wake-recovery effects were not directly investigated. Additionally, van
den Broek et al. (2023) and van den Berg, De Tavernier & van Wingerden (2023) have
investigated the coupled effects of dynamic induction control and turbine motions using
free-vortex wake simulations, finding that improvements in wake recovery due to periodic
turbine-thrust oscillations can in some cases be mitigated by the motions of the turbine,
leading to a reduced overall effect on wake recovery. Based on the mixed results of
these studies, it is apparent that a better understanding of the fluid mechanics underlying
unsteady wake behaviours in FOWTs is needed.

The main purpose of the present work is to theoretically and experimentally investigate
the unsteady wake dynamics generated by streamwise forcing from a turbine, in order
to identify the dominant flow mechanisms and to determine their effects on wake
dynamics and recovery. The current approach focuses on streamwise forcing because
of the salience of these disturbances in FOWT platform dynamics (Johlas et al. 2019;
Bossuyt et al. 2023), the direct relevance to the dynamic induction control literature and
the potential for power-generation enhancements in streamwise unsteady flows (Dabiri
2020; Wei & Dabiri 2023). The theoretical analysis is designed to be agnostic to the
source of wake unsteadiness, and is therefore equally applicable to stationary turbines
with dynamic induction control and FOWTs undergoing streamwise surge motions.
While the experiments presented in this work use a periodically surging turbine to
generate unsteady wakes, the results and conclusions should in principle apply to
dynamic induction control scenarios as well. Lastly, this study identifies fundamental flow
mechanisms for unsteady wakes that may find broader applications outside of wind-energy
contexts, including hydrokinetic turbines in tidal flows (e.g. Scarlett & Viola 2020),
streamwise-oscillating cylinders (e.g. Currie & Turnbull 1987), bio-inspired propulsors
in free- or intermittent-swimming conditions (cf. Smits 2019) and vehicles propelled by
oscillatory jets (e.g. Ruiz, Whittlesey & Dabiri 2011).
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The work is structured as follows. In § 2, a theoretical framework for wakes with
oscillatory streamwise inflow conditions is described, and its implications for wake
properties and vortex dynamics are discussed. The assumptions, strengths and limitations
of the analysis approach are also considered. In § 3, an experiment to obtain flow
measurements in the wake of a periodically surging turbine using an optical towing-tank
facility is described. Results from the experiments are presented in § 4 and are compared
qualitatively with predictions from the theoretical model to demonstrate that the modelling
approach captures the dominant physics of the unsteady-wake problem. Implications of the
findings for wind-energy applications are surveyed at the end of § 4, and conclusions are
given in § 5.

2. Theoretical considerations

In this section, we derive a system of coupled partial differential equations as a
phenomenological model for the unsteady dynamics of a turbine wake with an oscillatory
upstream boundary condition. This general formulation can be applied to dynamic
induction control for stationary turbines and streamwise periodic surge motions in FOWTs.
The approach relies on several simplifying abstractions from real turbine wakes, and is
therefore not intended to be fully quantitative. However, the theoretical framework can
still provide useful insights into the dominant flow physics of the unsteady-wake problem,
and it can also be applied to a kinematic description of vortex dynamics in the near wake.

In this work, we denote time averages with overbars, phase averages with tildes
and amplitudes with circumflexes. Quantities referring to steady-flow or quasisteady
measurements are written with a zero subscript (e.g. λ0). For velocities, lowercase letters
represent velocity fields that vary in space and time, e.g. u(x, r, t), where r represents
the radial coordinate. The uppercase letter U denotes the radially averaged streamwise
velocity, i.e. u(r) averaged in space from r = 0 to the wake radius R. The velocity of the
turbine surge motions is defined as U(t) to distinguish it from these other velocities, and it
is assumed to be periodic with the form

U(t)
U∞

= u∗ sin
(

2π
t
T

)
, (2.1)

where T is the surge period and u∗ is the surge-velocity amplitude. The reduced frequency
associated with these motions is

k = 2πD
TU∞

, (2.2)

where D is the turbine diameter. This is referred to as the Strouhal number in several
recent studies on dynamic induction control for wind turbines (e.g. Munters & Meyers
2018; Frederik et al. 2020b; Messmer et al. 2024).

2.1. Governing equations for streamwise-unsteady wake dynamics
To derive the governing equations for a turbine wake with streamwise unsteadiness,
we define a control volume with a variable wake radius R(x, t), as shown in
figure 1. The flow inside the control volume is treated as incompressible and
quasi-one-dimensional (quasi-1-D), such that all flow occurs in the streamwise direction
and the streamwise velocity U(x, t) does not vary in the radial direction. The flow is
additionally assumed to be inviscid in the near wake, where tip vortices dominate and
viscous contributions to the kinetic-energy budget are comparatively small. The turbine
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R(x, t)

U(x, t)

U∞

r

x

Figure 1. Sketch of the quasi-1-D axisymmetric problem formulation for an unsteady turbine wake.

itself is modelled as an actuator disc, which generates a thrust force on the flow and
defines the inlet boundary condition to the control volume at x = 0. Variations in the
thrust force due to unsteady inflow conditions or streamwise surge motions will create
an oscillatory inlet condition Ui(x = 0, t) that will dictate the dynamics in the near wake.
We do not seek to model the coupling between the turbine dynamics and this near-wake
inflow condition here, assuming for simplicity a periodic inflow condition of the form
Ui(x = 0, t) = Ū + Û sin( ft).

Given these assumptions, the equations for conservation of mass and momentum within
the wake control volume can be derived (with details provided in Appendix A). The
relation for conservation of mass is given as a first-order nonlinear partial differential
equation in terms of R and U:

∂R
∂t

+ 1
2

R
∂U
∂x

+ U
∂R
∂x

= 0. (2.3)

If R is held constant, (2.3) reduces to the more familiar form ∂U/∂x = 0. The equation
therefore captures the effects of changes in the flow velocity on the local size of the wake.
For a quasi-1-D incompressible flow, a decrease in the flow velocity across a given distance
�x must result in a corresponding increase in the cross-sectional area of the control volume
so that the mass flux remains constant. Similarly, an increase in the flow velocity will result
in a decrease in the cross-sectional area. Hence, if U(x, t) takes the form of a travelling
wave, (2.3) dictates that the wake radius will also form travelling waves so that the mass
flux at every streamwise location in the control volume is conserved.

The relation for conservation of momentum is the 1-D Euler equation,

∂U
∂t

+ U
∂U
∂x

= − 1
ρ

∂p
∂x

. (2.4)

Here, we have assumed that the pressure is constant in the radial direction, both inside
and outside of the wake. The pressure term represents a heterogeneous forcing on a
Burgers-type partial differential equation. In keeping with the assumptions of many turbine
wake models (e.g. Bastankhah & Porté-Agel 2014), we choose to neglect this term, though
in reality the pressure recovery in the near-wake region will be non-negligible.

For the remaining terms in the momentum equation, we decompose the flow velocity
into phase-averaged and fluctuating components, in the style of a Reynolds decomposition:

U(x, t) = Ũ(x, t) + U′(x, t). (2.5)

The phase-averaged equation, (2.4), using this decomposition yields

∂Ũ
∂t

+ Ũ
∂Ũ
∂x

= −1
2

∂

∂x
Ũ′2. (2.6)
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To model the normal-stress term on the right-hand side of the equation, we combine
two scaling relationships for wind-turbine wakes in steady inflow conditions. Quarton &
Ainslie (1990) show that the turbulence intensity u′/U∞ decays monotonically towards
zero with increasing streamwise distance. It is also well known that the velocity in a
turbine wake recovers monotonically towards the free stream wind speed in a power-law
relationship with streamwise distance (cf. Porté-Agel, Bastankhah & Shamsoddin 2020).
Thus, one can typically assume that the magnitude of the streamwise velocity gradient
∂u/∂x will decay monotonically towards zero as well. Combining these two observations,
we argue that

Ũ′2 ∼
∣∣∣∣∣dŨ

dx

∣∣∣∣∣ , (2.7)

or in the form of a turbulent-viscosity hypothesis,

− ˜U′U′ = νu

∣∣∣∣∣∂Ũ
∂x

∣∣∣∣∣ . (2.8)

The proportionality parameter νu may vary as a function of x; we will obtain a rudimentary
model from experimental measurements in § 4 of the form

νu = κx, (2.9)

(cf. figure 13). It is important to note that νu is fundamentally different from a typical
eddy viscosity based on the Reynolds shear stress, since it represents the interactions
of streamwise quantities and has nothing to do with shear. Equation (2.8) thus suggests
that stronger streamwise gradients are associated with stronger velocity fluctuations, and
a linear model enforces a stronger coupling between the two quantities with increasing
downstream distance.

Applying this model to (2.6) yields

∂Ũ
∂t

+ Ũ
∂Ũ
∂x

+ νu(x)
∂2Ũ
∂x2 = 0. (2.10)

This first-order nonlinear partial differential equation is a viscous Burgers equation, which
describes the growth, propagation and steepening of nonlinear travelling waves. The
proportionality parameter νu(x) therefore represents a damping term that inhibits the
steepening of the waves and the formation of unphysical shock discontinuities, which
would occur in the inviscid form of the Burgers equation (νu = 0). This is physically
consistent with the underlying ˜U′U′ quantity that the damping term represents, which
is related to turbulent convection and transport in the turbulent kinetic energy budget for
axisymmetric wakes (Uberoi & Freymuth 1970). This term thus models the transfer of
energy from the phase-averaged base flow to turbulence via streamwise velocity gradients,
which are created in this system by the time-varying inflow condition Ui, and the nonlinear
wave steepening generated by the first two terms in (2.10) (i.e. the inviscid Burgers
equation).
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In summary, the dynamics of the unsteady wake can be written as a system of two
first-order nonlinear partial differential equations,

∂R
∂t

+ 1
2

R
∂U
∂x

+ U
∂R
∂x

= 0 and (2.11a)

∂U
∂t

+ U
∂U
∂x

+ νu(x)
∂2U
∂x2 = 0, (2.11b)

where the tildes denoting phase-averaging have been removed for clarity and will not be
used for the remainder of this work. The system is subject to the boundary conditions

∂Ri

∂t

∣∣∣∣
x=0,t

= 0 and (2.12a)

Ui|x=0,t = Ū + Û sin( ft). (2.12b)

The equations exhibit one-way coupling, as the momentum equation only depends on U
and serves as a forcing on R through the continuity equation. The time-varying boundary
condition Ui and damping term in (2.11b) preclude the straightforward derivation of
explicit analytical solutions, but it is well known that the viscous Burgers equation
generates damped nonlinear travelling waves and can be solved numerically. For (2.11a),
the method of characteristics can be applied by defining a characteristic variable ξ =
x − Ut, such that along lines of constant ξ , the partial differential equation reduces to
a pair of ordinary differential equations,

dx
dt

∣∣∣∣
ξ

= U and (2.13a)

dR
dt

∣∣∣∣
ξ

= −1
2

∂U
∂x

R. (2.13b)

The first equation describes the advection of solutions for R according to the
travelling-wave velocity U, while the second governs the growth or decay of the
wake-radius amplitude independent of advection. Given the wave steepening that is
inherent to solutions of Burgers-type equations for U, we expect that the magnitude of
∂U/∂x will be greater on the downstream side of the wave (where ∂U/∂x < 0) than on
the upstream side of the wave. Thus, from (2.13b), we anticipate that the period-averaged
amplitude of R will grow under the forcing provided by (2.11b) until streamwise velocity
gradients are damped out, at which point the amplitude of R will saturate and waves in the
wake radius will simply advect downstream.

To demonstrate the dynamics of the system, results from numerical integrations are
shown in figure 2. The upstream boundary conditions were set based on measured values
from experiments (cf. figure 12 in § 4.2). A third-order upwind scheme was used to
discretize the ∂U/∂x term, while a second-order central-difference scheme was used for
the ∂2U/∂x2 term. As we have anticipated in our analysis, the model produces damped
nonlinear travelling waves in the velocity, which in turn result in waves in the wake radius
that grow and saturate in amplitude as they propagate downstream.

2.2. Vortex dynamics
The kinematics of the control volume described by the system of equations derived in
the previous section also allow predictions regarding the vortex dynamics in the wake
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Figure 2. Numerical solutions to the coupled partial differential equation modelling framework for
(a,c,e) the wake radius and (b,d, f ) streamwise velocity, for three example cases. Here (a,b) u∗ = 0.1,

k = 1.89, λ0 = 4.50; (c,d) u∗ = 0.1, k = 2.36, λ0 = 4.50; (e, f ) u∗ = 0.2, k = 1.89, λ0 = 4.50.

to be made. Tip vortices shed by the turbine blades typically bound the wake of the
turbine until they break down in the intermediate wake. This is a three-dimensional (3-D)
helical structure, but given the axisymmetric nature of the turbine wake, the successive
appearances of the helical vortex line at a single azimuthal orientation are often treated as
a discrete series of two-dimensional (2-D) point vortices (e.g. de Vaal, Hansen & Moan
2014b; van den Broek et al. 2023). In steady conditions, these vortex elements are generally
arranged in relatively straight lines extending downstream from the blade tips. For an
unsteady wake with a time-varying wake radius, the tip vortices will experience radial
displacements along with the wake radius. We can therefore consider the dynamics of a
series of discrete point vortices arranged in non-collinear patterns, as a representation of a
helical tip vortex undergoing spatial and temporal changes in its radius. For more detailed
stability analyses of helical tip vortices under dynamic conditions, we refer the reader to
the work of Kleine et al. (2022) on the wakes of moving FOWTs and Rodriguez, Jaworski
& Michopoulos (2021) on the wakes of turbines with flexible blades.

Consider an infinitely long line of point vortices with equal circulation Γ and equal
spacing �x. The induced velocity from the ith vortex on a given vortex j is given by

[
u
v

]
i,j

= Γ

2π((xj − xi)2 + ( yj − yi)2)

[−( yj − yi)
xj − xi

]
, (2.14)

1000 A66-8

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.999


Wake dynamics of wind turbines in unsteady streamwise flow

–2

–1.5

–1.0

–0.5

0.5

1.0

1.5

0

–1 0

x

y

1 2

Figure 3. The 2-D point-vortex simulation. Vortices with equal and negative (clockwise) circulation are
initialized at the open circles on the grey dotted line. Their trajectories are shown in solid lines, and their
final positions in the simulation are given by closed circles. Vortex locations and trajectories are coloured by
the concavity of the curve at the vortex’s initial position.

where we assume that radial perturbations (�r ≡ �y) are small such that Γ is
approximately constant. Due to the symmetries of the interactions, the induced velocity
on a given vortex by its left-hand neighbour will be cancelled out by the induced velocity
by its right-hand neighbour, and the line will not deform over time.

Next, consider a similar system of point vortices with circulations −Γ , now arranged
on a parabola of constant concavity given by y = αx2. For the vortex initially at (xj, yj) =
(0, 0), the total induced velocity from its left and right neighbours at j − 1 and j + 1 is[

u
v

]
j±1,j

= − Γ

π(1 + (α�x)2)

[
α

0

]
. (2.15)

A point-vortex distribution with positive concavity will thus induce a negative tangential
velocity in a given vortex, and the magnitude of this induced motion scales with the
concavity α. Conversely, a distribution with negative concavity will induce a positive
tangential velocity in a vortex on the curve.

This principle can be demonstrated for a system of point vortices initialized along a
sine wave with no background flow and numerically integrated forward in time using
(2.14), shown in figure 3. Vortices initially located on the wave crest move in the
positive direction, while vortices initially located on the wave trough move in the negative
direction. In both cases, vortices travelling in the same direction are pushed into closer
proximity with each other as they move, rolling up into a vortex aggregate.

Applying this analysis to the sample model solutions for the wake radius shown in
figure 2, we can predict the evolution of tip vortices in the turbine wake as they are
advected downstream. Assuming the initial distribution of the tip vortices follows the
model solutions for r(x, t), we would expect to see a similar aggregation behaviour as
that observed in figure 3. Furthermore, since the nonlinear steepening of the wake-radius
waves leads to higher concavities at the wave crests relative to the wave troughs, the tip
vortices should tend to aggregate most strongly downstream of the wave crests and ‘surf’
on these waves as they travel downstream.

A complementary mechanism for tip-vortex aggregation can be found by considering
the effect of streamwise-velocity gradients. Consider again a line of point vortices with
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initial spacing �x, advected by a flow with a positive streamwise gradient �U/�x. If
we follow one point vortex at its advection velocity U, after some time �t, the distance
between it and its neighbours will have increased to �x + �U�t. By (2.14), this increase
in separation will result in weaker interactions between neighbouring vortices. Conversely,
in flows with a negative streamwise gradient, the separation between vortices will decrease
as a function of time, thereby increasing the magnitude of vortex interactions by mutual
induction.

Returning to the simulated traces of R and U in figure 2, we observe that regions
where ∂U/∂x < 0 coincide with peaks in the wake radius where the concavity of R is
most negative. The negative streamwise velocity gradients should therefore supplement the
effect of negative concavity described previously and augment the tendency of tip-vortex
elements to aggregate just downstream of peaks in the wake-radius waveform. By contrast,
positive streamwise velocity gradients align with troughs in R, which will discourage the
roll-up of individual vortices in these regions. These analyses suggest that tip vortices
will primarily aggregate in a single structure just downstream of peaks in the wake-radius
waves. The strength of this behaviour will depend on the amplitude and frequency of the
unsteady wake forcing Ui(x = 0, t), which dictate both the magnitude of the streamwise
velocity gradients in the wake and the sharpness of the peaks in the wake-radius waveform.

The proposed mechanisms for vortex aggregation in unsteady wakes are similar in
principle to that of tip-vortex pairing, a phenomenon that is related to the breakdown of
turbine wakes in steady inflow conditions (Okulov & Sørensen 2007; Felli, Camussi & Di
Felice 2011; Sarmast et al. 2014; Lignarolo et al. 2015; Quaranta, Bolnot & Leweke 2015).
However, while the mutual-induction instabilities considered in canonical turbine wakes
typically involve two or three vortex elements, the present analysis involves larger systems
of vortices. The number of tip vortices shed into the wake over a single unsteady forcing
period can be estimated as

Nv = 2Nb
λ

k
, (2.16)

where Nb is the number of turbine blades, λ is the tip-speed ratio (λ = ωD/2U∞) and k is
the reduced frequency. For the experiments that will be detailed in this work (cf. table 1 in
§ 3), 11 < Nv < 33. The unsteady vortex-interaction mechanisms described above occur
across length scales of the order of half the wavelength of the wake-radius perturbations,
thus involving approximately Nv/2 vortices per period. Therefore, while vortex-pairing
instabilities may be present in periodically forced unsteady wakes, it is expected that the
additional mechanisms described in this section will play a non-negligible role in the
vortex dynamics of the wake, due to the number and distribution of the vortices present in
the interactions.

In summary, the modelling approach outlined in this section provides an interpretable
theoretical description of the dynamics of the wake radius, streamwise velocity and
tip-vortex aggregations in a periodically unsteady turbine wake. The framework offers
insights into the dominant physics of the problem and can be used for qualitative
predictions of trends in the dynamics, including that

(1) nonlinear travelling waves in the streamwise velocity U are generated by the
oscillatory boundary condition, undergo steepening and are damped in amplitude
as they advect downstream;

(2) travelling wakes in the wake radius R are generated by the streamwise-velocity
waves, grow with increasingly prominent crests and broad troughs and saturate as
velocity gradients dissipate;
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Figure 4. Schematic of the experimental apparatus in the optical towing tank, including the turbine, turbine
sensors, traverse and the fields of view of the four high-speed cameras. A sample velocity waveform U(t) for
the traverse is shown in an inset.

(3) tip-vortex elements are encouraged by the unsteady wake dynamics to aggregate
ahead of crests in the wake radius and advect downstream with these crests; and

(4) increasing the strength of the forcing in the boundary condition Ui(x = 0, t)
increases the amplitudes of U and R in the wake, as well as the tendency towards
vortex aggregation.

The modelling approach relies on several assumptions that limit its quantitative accuracy
and restrict its applicability to the prediction of perturbations in the near wake. However, in
the following sections we will demonstrate that it still captures many of the key dynamical
features of unsteady turbine wakes.

3. Experimental methods

3.1. Experimental apparatus
Wake measurements downstream of a periodically surging rotor were conducted in an
optically accessible towing-tank facility at Queen’s University. The apparatus is described
in detail by El Makdah et al. (2019); a brief overview is given here, and a schematic is
provided in figure 4.

A three-dimensionally printed turbine with a diameter of D = 0.3 m was used in the
experiments. The turbine blades were designed with SD7003 airfoil profiles of constant
chord and a spanwise twist that targeted a constant angle of attack of 10◦ along the blade
at a tip-speed ratio (TSR) of λ = 4. The turbine had a maximum measured coefficient of
power of Cp = 0.29 at a TSR of λ = 3.89. The turbine was mounted on a sting at the
centre of the towing-tank test section, and the turbine shaft was connected to a rotational
encoder (Baumer ITD69H00), torque sensor (HBM T22) and frictional brake by means of
a chain drive. The turbine system had a low rotational inertia relative to the hydrodynamic
torques on the blades (El Makdah, Zhang & Rival 2021). The estimated blockage of the
turbine based on swept area was 7.1 %.

The test section of the towing tank was 15 m long and had a 1 m × 1 m cross-section.
This was filled with water and enclosed by a ceiling that served to mitigate free-surface
waves. The turbine was suspended from a traverse through a 50-mm-wide opening in the
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ceiling. A rotary encoder on the traverse enabled its linear position to be recorded. The
traverse was driven at a mean speed of U∞ = 1 ms−1 for steady-flow measurements. For
unsteady surge cases, periodic oscillations in the traverse velocity of up to ±0.4 ms−1 were
superimposed on this mean speed. The average magnitude of the error between the desired
velocity profile and the measured traverse velocity was 0.023 ms−1. Each traverse run was
initiated with a constant-acceleration ramp-up profile that transitioned smoothly into the
test motion waveform, and a similar ramp-down profile was used to bring the traverse to
rest after the experiment. A light sensor mounted 3.84 m from the starting position of the
traverse served as a trigger to start flow measurements. This position was chosen such
that the traverse would reach steady-state operation before data recording was initiated.
The towing tank was allowed to settle for at least 4 min between individual runs, as it
was determined that longer settling durations did not further reduce the average particle
displacements significantly. Each phase-averaged ensemble for a given case was compiled
from 20 separate runs of the corresponding traverse-motion profile.

Four high-speed cameras (Photron SA4) with a resolution of 1024 × 1024 pixels
were arranged in a line outside of the towing tank to capture a combined field of
view of approximately 1.15 m × 0.39 m. The individual fields of view overlapped by
approximately 30 %. The cameras were triggered simultaneously by the aforementioned
light sensor and recorded at a frame rate of 500 Hz. A high-speed laser (Photonics
DM40-527) was used to illuminate the measurement domain along the rotational axis
of the turbine. The flow was seeded by neutrally buoyant polyamide spherical particles
(LaVision) with a diameter of 60 μm. The turbine and sting were spray-painted black to
minimize reflections.

3.2. Data analysis
The 2-D particle image velocimetry (PIV) was performed using the raw image data
recorded by the cameras. An automated masking routine was written to mask the turbine,
sting and shadow cast by the turbine blades, based on the identified location of the nose
of the turbine in the images. Only images recorded between the start trigger signal and the
start of the traverse ramp-down motion were processed. Velocity vectors were computed
using multipass cross-correlation with a final interrogation-window size of 32 × 32
pixels with 50 % overlap, using the open-source MATLAB package PIVlab (Thielicke
& Stamhuis 2014). A high-pass filter was applied to the images before correlation, and
standard deviation and median thresholds were applied to the vector fields after processing.

The individual vector fields from each camera were stitched together by interpolating
onto a common spatial grid and averaging the velocities in the overlap regions. These
composite laboratory-fixed velocity fields were then transferred into a reference frame
moving at the mean speed of the turbine by identifying their locations in space and time
within a single turbine surge period, interpolating onto a common spatial grid in the new
reference frame and stitching overlapping regions via linearly weighted blending. For the
steady-flow reference cases, the representative period was set as T = 1 s (for U∞ ≤ 1)
or T = 0.5 s (for U∞ > 1). Vorticity fields were then calculated using Gaussian-filtered
velocity fields to smooth out spurious results from numerical differentiation. Finally, the
fields were phase-averaged across all 20 traverse runs, yielding time-resolved 2-D velocity
fields over a single period that covered at least 12 turbine diameters of the streamwise
extent of the wake and over 1 turbine diameter in the radial direction. In some cases, over
18D of the wake was measured.

To serve as quantities for comparison with the flow model described in § 2, the wake
radius and streamwise velocity were also computed from the PIV data. The wake radius

1000 A66-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.999


Wake dynamics of wind turbines in unsteady streamwise flow

λ0 Cp,0 T [s] u∗ k λ̄ Cp

4.50 ± 0.193 0.144 ± 0.045 1 0.1 1.89 4.50 ± 0.229 0.144 ± 0.051
0.8 0.1 2.36 4.51 ± 0.226 0.139 ± 0.047
1 0.2 1.89 4.52 ± 0.225 0.142 ± 0.050
2 0.4 0.94 4.25 ± 0.495 0.123 ± 0.043

5.07 ± 0.173 0.033 ± 0.025 1 0.1 1.89 5.05 ± 0.196 0.034 ± 0.024
0.8 0.1 2.36 5.05 ± 0.207 0.035 ± 0.025
1 0.2 1.89 5.06 ± 0.180 0.034 ± 0.022
2 0.4 0.94 5.04 ± 0.185 0.032 ± 0.020

Table 1. Operational parameters for the turbine used in these experiments, including steady-flow
characteristics (λ0 and Cp,0), surge-motion parameters (T , u∗, and k) and the resulting time-averaged
performance (λ̄ and Cp). For all cases, U∞ = 1 ms−1.

was defined at a given location x as the radial location r at which the streamwise velocity
reached 95 % of the free stream velocity, i.e. R(x, t) such that u(x, R, t) = 0.95U∞. These
profiles of R(x, t) were smoothed using a moving-average filter with a width of three
samples. The radially averaged streamwise velocity U(x, t) was computed by averaging
the local velocity u across a streamwise slice of the wake at x, from the centre of the wake
to the wake radius R(x, t).

3.3. Experimental cases
The parameter space investigated in these experiments is summarized in table 1. Two
loading conditions were applied to the turbine. In the first case, the frictional brake was
manually tuned between runs to obtain a steady-flow TSR of λ0 = 4.50. In the second
case, the brake was released such that the only load on the turbine was due to shaft friction,
yielding a steady-flow TSR of λ0 = 5.07. Both of these scenarios result in higher TSRs
than the power-maximizing loading condition. This was intended to mitigate the effects of
flow separation and stall on the turbine blades, in accordance with the observations of Wei
& Dabiri (2022).

At each loading condition, both steady-reference and unsteady surge-motion cases were
investigated. Steady-flow reference cases were carried out for each loading condition at
a constant inflow velocity of U∞ = 1 ms−1. Additional constant-velocity cases at U∞ =
0.8 ms−1 and U∞ = 1.2 ms−1 were collected to represent a quasisteady range of wake
profiles for a surge-velocity amplitude of u∗ = 0.2, which will be compared with unsteady
cases with the same surge-velocity amplitude to highlight differences between quasisteady
and unsteady wake dynamics.

Four unsteady cases for each loading condition spanned a range of surge-velocity
amplitudes u∗ and reduced frequencies k: a baseline unsteady case with u∗ = 0.1 and
k = 1.89, a case with the same u∗ and higher k, a case with the same k as the baseline case
and higher u∗ and finally a case with as high of a value of u∗ as could be achieved with
the apparatus, which required k to be halved. For the case with u∗ = 0.4, the displacement
of the traverse over a single period exceeded the length of the measurement domain, since
acceleration limitations of the traverse stipulated a lower frequency than that of the other
cases. Therefore, 20 additional runs were carried out in which the turbine motion waveform
was offset by 1 m from its usual starting location, so that the combined set of 40 runs
covered the entire wake over a single surge period. The surge-velocity amplitudes and
reduced frequencies investigated in this study are relatively high and represent significant
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Figure 5. Phase-averaged TSR data, defined by the inflow velocity in the rotor frame, as a function of time for
the two loading conditions covered in this study (a,b). The steady reference values are shown as black dashed
lines.

motions when applied to full-scale FOWTs, which in certain conditions experience
motions with u∗ > 0.25 (Wayman 2006; Larsen & Hanson 2007; de Vaal, Hansen & Moan
2014a). The range of reduced frequencies is somewhat higher than the range expected for
FOWTs as a function of wave and platform frequencies, which Messmer et al. (2024)
estimate to be k ∈ [0, 1.5]. This was unavoidable due to limitations in the traverse velocity
and length of the towing tank. Still, based on the findings of Messmer et al. (2024), we
expect the dynamics observed at higher reduced frequencies to apply to somewhat lower
reduced frequencies (k � 0.5) as well.

The phase-averaged TSRs for all unsteady cases, referenced to the apparent inflow
velocity in the rotor frame U∞ − U(t), are shown in figure 5. The fact that these signals
are almost perfectly in phase with the surge-velocity waveform U(t) confirms that the
inertia of the turbine is very low compared with the surge dynamics. We also note that,
for most of the unsteady cases, the time-averaged TSR and coefficient of power (shown in
the rightmost columns of table 1) remained relatively constant with changes in u∗ and k.
For one case (u∗ = 0.4 and λ0 = 4.50), the time-averaged TSR and power dropped due to
the onset of stall in the turbine at low instantaneous inflow velocities, as evidenced by the
drop in rotation rate observed around t/T = 0.8 for this case in figure 5(a).

4. Results

In this section, velocity and vorticity fields from the towing-tank experiments are shown
to highlight the dominant features of the unsteady turbine wake. These dynamics are
compared with the qualitative predictions of the modelling framework from § 2.1 to
connect the previously discussed physical mechanisms with the observations. Finally,
connections between the unsteady dynamics in the wake and enhancements in wake
recovery observed in the unsteady cases are explored.

4.1. Velocity and vorticity fields
First, to demonstrate key differences between the wakes from the steady-flow and unsteady
cases, streamwise-velocity and out-of-plane vorticity fields are shown in figures 6 and
7 for sample cases at the higher reference TSR, λ0 = 5.07. Figures 6(a) and 7(a)
show a snapshot from the steady-flow wake, while figures 6(b–e) and 7(b–e) show four
instantaneous snapshots from the unsteady wake (u∗ = 0.2 and k = 1.89) at evenly spaced
time steps. A video of the full evolution of these quantities over a single period is provided
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Figure 6. Streamwise-velocity fields for (a) a steady-flow case and (b–e) four time steps of an unsteady case
with u∗ = 0.2 and k = 1.89. For both cases, λ0 = 5.07. The full time-series of the unsteady data is provided in
supplementary movie 1.

in the supplementary movie 1 is available at https://doi.org/10.1017/jfm.2024.999. The
steady wake shows typical wake features, such as gradual spreading in the velocity-deficit
region, a monotonic recovery in the streamwise velocity with increasing downstream
distance, and tip-vortex shedding in the near wake (x/D � 3) that breaks down in the
intermediate wake. It is important to note that the azimuthal positions of the turbine blades
were not synchronized across runs, so the fields shown in these and following figures are
not phase-locked with respect to the turbine rotation. Despite this limitation, the signatures
of tip vortices can still be identified in the vorticity fields. In the steady case shown in
figure 7, tip-vortex pairing instabilities are readily discernible, as the vortex elements
collect into groups of three that then break down in the intermediate wake.

The unsteady wake, by contrast, exhibits strong departures from steady-flow wake
behaviours. In figure 6, a pulsatile streamwise velocity is visible in the near wake around
x/D ≈ 1, as a result of the time-varying thrust and power of the turbine. This oscillatory
inflow condition propagates downstream as a travelling wave and creates periodic peaks
in the velocity-deficit region where the wake radius extends out past the steady-flow
wake boundary. In the corresponding vorticity fields in figure 7, the tip-vortex elements
roll up into a larger aggregate structure at around x/D ≈ 2, which is then advected
downstream as a coherent vortex packet. While the signatures of tip-vortex pairing are
still visible in these unsteady snapshots, the smaller aggregates that form on account
of the mutual-inductance instability are subsumed into the larger aggregate structure.
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Figure 7. Out-of-plane vorticity fields for (a) a steady-flow case and (b–e) four time steps of an unsteady case
with u∗ = 0.2 and k = 1.89. For both cases, λ0 = 5.07. The full time-series of the unsteady data is provided in
supplementary movie 1.

Additionally, the large vortex aggregate is shed with a periodicity matching that of the
turbine surge waveform, suggesting that its dynamics are governed more strongly by
the periodic wake forcing than by conventional vortex-pairing mechanisms. All of these
observations align well with the theoretical analyses that were presented in § 2, as well as
the numerical simulations of Kleine et al. (2022).

To demonstrate the effects of varying the unsteady surge-motion parameters u∗ and k,
instantaneous snapshots at a fixed time instance t/T = 0 are shown for all four unsteady
cases for the streamwise velocity at the lower TSR (λ0 = 4.50) in figure 8 and for the
out-of-plane vorticity at the higher TSR (λ0 = 5.07) in figure 9. A full time-series of u and
ω for the case with u∗ = 0.4 at λ0 = 5.07 is provided in the supplementary movie 2. The
dynamics observed in the example case discussed above are also visible in these instances.
The degree of unsteadiness in the wake appears to increase with increasing surge-velocity
amplitude, while the wavelength of the travelling waves in the wake scales inversely with
the reduced frequency k. In all cases, the travelling-wave dynamics and vortex aggregates
appear to persist well into the far wake (x/D � 10). The vortex aggregates that survive
into the far wake are those that originally rolled up at the crests in the wake-radius wave,
whereas no corresponding structures from the wake-radius wave troughs are visible past
x/D ≈ 8. Again, these observations are well in accordance with the theoretical conjectures
advanced in § 2.
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Figure 8. Streamwise-velocity fields for four unsteady cases at t/T = 0, with T and u∗ increasing from (a) to
(d). All cases have λ0 = 4.50.
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Figure 9. Vorticity fields for four unsteady cases at t/T = 0, with T and u∗ increasing from (a) to (d). All
cases have λ0 = 5.07. The full time-series of u and ω for the case with u∗ = 0.4 is provided in supplementary
movie 2.
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Figure 10. Calculated wake radii (grey line), superimposed on vorticity fields for two cases with u∗ = 0.2
and k = 1.89. Panels (a) and (b) show reference loading conditions of λ0 = 4.50 and λ0 = 5.07, respectively.
Both cases are shown at t/T = 0.75; the full time-series of the λ0 = 4.50 case is provided in supplementary
movie 3.

4.2. Wake features and dynamics

4.2.1. Trends in the wake radius and radially averaged streamwise velocity
To quantify the dynamics observed in the velocity and vorticity fields, we use the
definitions of the wake radius and radially averaged streamwise velocity given in § 3.2
to produce experimental analogues to the model parameters R and U from (2.11a) and
(2.11b). Examples of the calculated wake radius R(x, t) are shown as grey lines on two
vorticity snapshots in figure 10, as well as on time-series of u and ω for λ0 = 4.50
and u∗ = 0.2 in supplementary movie 3. This visualization highlights the undulatory
behaviour of the wake in the unsteady cases.

The calculated wake radius and radially averaged streamwise velocity are then shown
for all of the steady and unsteady cases at λ0 = 4.50 for a single time instance t/T = 0.75
in figure 11. The wake-radius data in figure 11(a) show evidence of nonlinear travelling
waves, with wave steepening on the downwind sides of the waves in the far wake
for the higher-amplitude cases. Corresponding perturbations in the streamwise velocity
are visible in figure 11(b), and the magnitude of these perturbations decreases with
increasing streamwise distance into the wake. These data confirm the salience of the
dynamics captured by the modelling framework, but also demonstrate the limitations of
the theoretical analysis. Both R and U demonstrate strong evidence of nonlinear travelling
waves, as predicted by the model. However, the model assumes a constant time-averaged
base-flow velocity Ū that does not change as a function of downstream distance. The data
in figure 11(b), by contrast, show almost immediate signs of wake recovery at relatively
short downstream distances. This therefore limits the scope of the model to perturbations
about time-averaged quantities. These considerations should be kept in mind as we now
turn to compare the model with the data.

4.2.2. Comparisons between model solutions and measured data
While the modelling framework has limitations that may preclude its use for quantitatively
accurate predictions, a comparison of its outputs with experimental data can still
demonstrate that it is parameterizing the dominant physics of the unsteady-wake problem.
To this end, we use the PIV data to extract representative inflow boundary conditions and
a scaling for the turbulent fluctuations, and integrate the model with these parameters for
direct comparison with the data.
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Figure 11. Wake radius R (a) and radially averaged streamwise velocity U (b) as a function of streamwise
distance at t/T = 0.75. All cases with λ0 = 4.50 are shown.

To define the upstream boundary condition Ui(x = 0, t) for the wake, the time average
Ū and amplitude Û of the radially averaged streamwise velocity were extracted from each
unsteady dataset at x/D = 1 and are shown in figure 12. Notably, the amplitude of the
streamwise velocity in the near wake appears to scale linearly with the surge-velocity
amplitude in figure 12(b). These quantities were applied directly to the boundary condition
in (2.12b).

To estimate the coupling between streamwise-velocity fluctuations and streamwise-
velocity gradients, as modelled by (2.8), the variances of the individual streamwise
velocities u′(x, r, t) across all 20 ensembles were computed. These values were then
averaged across the wake at every streamwise location to estimate the streamwise-velocity
autocovariance ˜U′U′ at each location. Dividing these quantities by the magnitude of the
velocity gradient at each location gave estimates for the proportionality parameter νu(x).
These empirical values are shown for all cases tested as black (steady) and grey (unsteady)
lines in figure 13. Interestingly, these trends are qualitatively similar to those found in the
traditional Reynolds shear stresses (i.e. ũ′v′) in the wakes of moving FOWTs modelled in
large-eddy simulations (Li & Yang 2024). This suggests at least a qualitative correlation
between the streamwise-velocity autocovariance and turbulent momentum entrainment.
Since the collection of estimates of νu(x) were observed to scale approximately linearly
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Figure 12. Time-averaged streamwise velocity (a) and amplitude of the streamwise velocity (b), both spatially
averaged across the wake at x/D = 1. These data define the initial conditions for Ui(x = 0, t) in the analytical
model, given in (2.12b).
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Figure 13. Empirical estimates of the proportionality parameter νu, derived from (2.8). The fit to all of the
data in the figure, shown as a red dashed line, was used as a rudimentary model for νu(x) in (2.11b). The fit best
matches the data for 3 � x/D � 9, whereas the data become noisier farther downstream.

with streamwise distance in the intermediate wake (3 � x/D � 9), a linear fit (cf. (2.9))
over all of the steady and unsteady estimates was employed as the model for νu(x) in
(2.11b). The applicability of the linear fit breaks down in the far wake (x/D � 9), as the
streamwise velocity gradients decrease in magnitude and the estimates for νu thus become
more susceptible to noise. The overarching theoretical framework is not expected to apply
in this region anyway since it neglects wake-recovery effects due to turbulent momentum
entrainment, so the linear approximation was deemed acceptable for the purposes of
this study. With this model for νu in place, (2.11a) and (2.11b) could then be integrated
numerically, as described in § 2.1.

For a more direct comparison with the model results, the envelope of the
wake-radius perturbation was computed from the data. This represents the minimum and
maximum values observed in the quantity R(x, t) − R̄(x) over t/T ∈ [0, 1). The envelope
representation removes the effects of wake recovery in terms of streamwise changes in
both the time-averaged radius R̄(x) and the wave advection velocity Ū(x), neither of
which are captured in the model. Plots of these envelopes along with the model solutions
at two representative time instances are shown in figure 14 for all four unsteady cases
with λ0 = 4.50. Given the simplifying assumptions of the modelling framework, the
agreement between the model solutions and experimental results is remarkable. For
the lower-amplitude cases (u∗ ≤ 0.2), the model shows a very similar rate of growth in
the wake-radius amplitude as in the envelope of the data. The saturated amplitude of the
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Figure 14. Excursions of the wake radius from the local temporal mean, R(x, t) − R̄(x), comparing the
envelope of the PIV data (grey region) with numerical solutions to the model (lines). The data envelope
spans the minimum and maximum wake radii in the data over t/T ∈ [0, 1) at each streamwise location. Good
agreement between the model solutions and measured data is observed for u∗ ≤ 0.2. Here (a) u∗ = 0.1, k =
1.89, λ0 = 4.50; (b) u∗ = 0.1, k = 2.36, λ0 = 4.50; (c) u∗ = 0.2, k = 1.89, λ0 = 4.50; (d) u∗ = 0.4, k =
0.94, λ0 = 4.50.

wake-radius waves downstream of x/D ≈ 5 also corresponds well between the model and
data. The model overestimates the final amplitude of the wake radius in the case with
the highest forcing amplitude (u∗ = 0.4), suggesting that the physics neglected in the
modelling approach become more significant as the unsteady forcing amplitude increases.

To further investigate the correspondence between the model results and experimental
findings, we compute the amplitude of the wake-radius perturbations for both the model
and the data for all cases. These are shown for both loading conditions in figure 15 for three
streamwise locations: x/D = 2, 5 and 10, which represent the near-, intermediate- and
far-wake regions, respectively. The effective wake-radius amplitudes from the quasisteady
measurements at U∞ = 0.8 and 1.2 ms−1 are shown as open coloured markers at u∗ = 0.2.
It is apparent that the quasisteady approximation of the wake-radius amplitude does not
capture the unsteady dynamics of the wake, as there are no travelling waves present in the
quasisteady approximation. The model results, shown as darker-coloured open markers
(with dashed lines representing linear interpolations between solutions), follow the trends
in the data (closed markers) more closely. At the lower surge-velocity amplitudes (u∗ ≤
0.2) and in the near- and intermediate-wake regions, the model results align well with the
data. The model solutions diverge from the data at the highest surge-velocity amplitude
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Figure 15. Comparison between theoretical and experimental results for the wake-radius amplitude R̂/D,
plotted as a function of surge-velocity amplitude u∗, for λ0 = 4.50 (a) and λ0 = 5.07 (b). Experimental data are
shown as coloured markers, model solutions are shown as darker-coloured open markers, and results obtained
from quasisteady measurements are given as coloured open markers with error bars (at u∗ = 0.2 only). Linear
interpolations between the model solutions are shown as dashed lines. The colours and shapes of the markers
correspond to their streamwise locations in the wake. Relatively good agreement between the model and data
is observed for x/D ≤ 5 and u∗ ≤ 0.2.

and in the far wake, as expected given the breakdown of its assumptions in these regimes.
Still, even in these situations the model correctly predicts that the wake-radius amplitude
will increase with increasing u∗ and with increasing x/D, suggesting that the underlying
physics parameterized by the model is still relevant.

Results from a similar analysis of the amplitude of the streamwise velocity are shown in
figure 22 in Appendix B. The model solutions strongly underpredicted these amplitudes
but still captured the trends in the data, especially compared with the quasisteady
approximations. While the results suggest that the model in its current form is not a
quantitatively accurate predictive tool for all wake properties, it is still able to represent
key dynamical phenomena of these unsteady wake scenarios.

4.3. Wake-recovery enhancements via unsteady flow mechanisms
The preceding sections have demonstrated that the theoretical considerations in § 2 are
able to qualitatively describe the growth and propagation of travelling-wave perturbations
in unsteady turbine wakes, but are not able to directly address the streamwise evolution of
time-averaged quantities. Using the experimental results, however, it is possible to observe
the effects of unsteady wake forcing on these time-averaged quantities and consider their
underlying physics.

The radial- and time-averaged streamwise velocity Ū(x) is shown for all cases in
figure 16. The steady-flow cases, shown as black dashed lines, lie below the unsteady
cases from x/D ≈ 2 and deep into the far wake (x/D > 14). The gap between the
steady and unsteady wake profiles is most apparent in the intermediate wake, around
2 � x/D � 6, which is precisely where travelling-wave growth and tip-vortex aggregation
occur. The extent to which the wake recovery is enhanced also increases with increasing
surge-velocity amplitude as well as reduced frequency.

The velocity profiles in figure 16 can be used to further quantify the degree of wake
enhancement observed in these experiments. First, a reduction in the streamwise extent
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Figure 16. Radial- and time-averaged streamwise velocity Ū in the wake of the turbine for λ0 = 4.50 (a) and
λ0 = 5.07 (b). The steady reference cases are shown as black dashed lines.

of the wake can be calculated by defining the time-averaged streamwise distance x = L̄
required for the wake velocity to recover to U(x) = 0.85U∞. The steady-flow values for
this distance were L0 = 9.88D for λ0 = 4.50 and L0 = 7.75D for λ0 = 5.07. The per cent
reduction in this wake-length variable is shown in figure 17(a). All unsteady cases showed
reductions in L̄ by at least 19 %, with improvements in excess of 45 % achieved at the
highest amplitudes. Second, a similar quantity can be computed for the increase in wake
velocity at a fixed streamwise distance of x/D = 10, a reasonable interturbine spacing for
a moderate-sized wind farm (Stevens & Meneveau 2017). As shown in figure 17(b), the
wake velocities were increased at this particular location in all unsteady cases by 2 % to
5 % relative to the steady case. Taking the cube of these improvements gives a measure
of the increase in the available power in the flow at the same streamwise location, shown
in figure 17(c). In these experiments, enhancements in the available power in the flow at
x/D = 10 ranged from 6.7 % to 15.7 %, which could represent a large potential increase
in power generation for a downstream turbine placed at this location in an array. These
findings are in line with the recent experimental results of Bossuyt et al. (2023) and
Messmer et al. (2024) for FOWTs, as well as those of Frederik et al. (2020b) and van
der Hoek et al. (2022) for fixed turbines under dynamic induction control.

The various measures of wake-recovery enhancement in figure 17 are plotted against
the surge-acceleration amplitude ku∗. This choice leads to a better collapse in the data
than plotting against u∗ or k alone. The data from the lower TSR cases seem to scale in
direct proportionality with the surge acceleration, while the data from the higher TSR
cases appear to saturate towards higher acceleration amplitudes. This scaling may be a
result of the time-varying thrust force from the surging turbine that generates the unsteady
wake dynamics. The thrust force exerted by the turbine on the flow can be approximated
as the sum of quasisteady and added-mass forces,

FT ∼ π

8
ρD2CT(U∞ − U(t))2 + 1

2
ρVdCa

∂U
∂t

, (4.1)

where CT is the thrust coefficient, Vd is the effective volume of fluid displaced by the
rotor disc and Ca is an added-mass coefficient. Assuming that CT and Ca do not vary
appreciably with time, the non-dimensional force amplitude applied by the turbine on the
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Figure 17. Measures of wake-recovery enhancement, reported as percentages. Panel (a) shows the reduction in
the streamwise distance L̄ required for the wake to recover to U = 0.85U∞, relative to the distance in the steady
case L0. Panel (b) shows the enhancement in the streamwise wake velocity Ū at x/D = 10, again relative to the
corresponding steady-flow quantity U0(x/D = 10). Panel (c) shows the enhancement in the power available in
the wake at x/D = 10 relative to the steady case, (Pa − Pa,0)/Pa,0.

flow in the wake scales as
F̂
F0

∼ u∗ + ku∗, (4.2)

to first order. The fact that the data in figure 17 appear to scale with ku∗ may suggest
that the flow accelerations associated with the effective added mass of the surging turbine
represent an additional unsteady forcing on the wake that aids in the recovery of kinetic
energy. In effect, the surge motions of the turbine may be pumping the flow in the wake,
thereby stimulating faster wake recovery. It is worth noting, however, that the lower density
of air may lessen the significance of added-mass effects for actual wind turbines.

Complementary wake-recovery mechanisms may be postulated to explain the observed
enhancements. For instance, the vortex aggregates visible in the intermediate and far wake
in figures 7 and 9 likely enhance mixing and the entrainment of free stream momentum
into the wake. To examine this hypothesis, the centroids of these structures were identified
in the vorticity fields, the circulations were computed on a circular path of radius D/4
around the centroids, and the circulations were bin-averaged by streamwise distance over
all time instances for each case. These circulations are shown in figure 18 for both loading
conditions, and the data show that increasing the surge-velocity amplitude and surge
frequency increase the circulations of the vortex aggregates throughout the wake. This
aligns well with the idea that the surge motions of the turbine are applying a pulsatile
forcing on the wake, since the roll-up of these structures can be described by the 1-D
modelling framework, and those dynamics are driven by the forcing amplitude of the wake
velocity at the upstream boundary.

The geometry of the wake in the unsteady cases may also play a role in wake-recovery
enhancement. The wavy wake shape seen in figures 10 and 11(a) implies that the unsteady
wakes have a larger surface area than their steady-flow counterparts, which may give rise
to additional turbulent momentum transport due to the larger interface. Similarly, the
radial deformations in the wake themselves may encourage momentum transport in the
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Figure 18. Circulations of vortex-aggregate structures in the wake, averaged over a surge period in
streamwise bins of width D/4. The steady reference case is shown in black.

radial direction. Though the 1-D modelling framework ignores the radial velocity
component in the wake, in reality an increase in the wake radius corresponds to a net
momentum flux in the positive radial direction that scales with U(∂R/∂t). This local bulk
flow in the radial direction may encourage sweeps of high-momentum fluid into the wake
or ejections of low-momentum fluid out of the wake, depending on the direction of the
local radial flow.

In practice, the thrust-amplitude, vortex-aggregate and wake-geometry contributions
to wake recovery are most likely to be all coupled, as the thrust-force variations drive
both travelling waves in the wake and tip-vortex roll-up. A more detailed analysis of
momentum transport across the wake is not possible here due to insufficient ensemble
sizes for resolving turbulent fluxes. Future work could investigate these mechanisms more
directly and parameterize their effects on wake recovery.

4.4. Discussion and implications
The experimental results described in the previous sections highlight several strengths of
the modelling approach, as the theoretical hypotheses listed at the end of § 2 are confirmed
in the data. Travelling waves are observed in the streamwise velocity and undergo damping
as they propagate downstream, though the rate of this decay is not quantitatively captured
by the model. The model also predicts the travelling-wave dynamics evident in the
wake-radius measurements, including wave steepening and amplitude saturation. The
tip-vortex aggregation explored in § 2.2 is observed in the measured vorticity fields as well.
Finally, the strengths of these unsteady dynamical features all increase with increasing
forcing amplitude, represented by higher-amplitude oscillations at the inlet to the wake
that scale with increasing surge-velocity amplitudes of the turbine.

The experimental results also highlight the assumptions and limitations of the
theoretical analysis. Since the modelling approach in its current form neglects pressure
gradients and wake-recovery effects, it is unable to capture changes in time-averaged
quantities as a function of downstream distance. Mean-flow effects, such as pressure
recovery and turbulent entrainment of momentum from the free stream into the wake,
will alter the propagation velocity of travelling waves in the wake, the evolution of
streamwise-velocity gradients and ultimately the growth and saturation of the wake
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radius. In a strict sense, then, the model can only be used to predict perturbations about
time-averaged quantities, and an extension would be required to capture the effects of
wake recovery on the streamwise development of the time-averaged quantities themselves.
These constraints are especially evident in the far-wake region where turbulent momentum
entrainment contributes more significantly to wake recovery, as well as at high forcing
amplitudes (e.g. u∗ = 0.4) where additional nonlinearities not included in the model
become more significant. Despite these limiting assumptions, the dynamics described by
the model are observed to correlate with enhancements in wake recovery, suggesting that
these unsteady mechanisms strongly influence momentum transport into the wake.

It is also evident in the data that the assumption of radially uniform streamwise-velocity
profiles is a simplification that does not always represent the wake dynamics well,
particularly for x/D � 6. This source of error may contribute to the lack of agreement
observed between model predictions and experimental results for the streamwise-velocity
amplitude Û (shown in figure 22 in Appendix B). However, the dynamics of the wake
radius will not be as strongly affected by radial variations in u, since these depend only
on the radially averaged streamwise velocity (due to the control-volume foundations of the
equation that governs R, cf. Appendix A).

Additional limitations of the present approach suggest possibilities for future theoretical
work. First, the relationship between the turbine dynamics (including rotor inertia,
induction, thrust and power) and the inlet boundary condition of the model is not explicitly
defined. This was done intentionally to preserve the general applicability of the framework,
but an analytical connection could be derived by extending the framework of Wei &
Dabiri (2023) to include near-wake quantities, as done by Heck, Johlas & Howland (2023)
for yaw-misaligned turbines. Such an approach could allow other effects to be included
as well, including yaw and tilt misalignment or aeroelastic turbine-blade deformations
(cf. Rodriguez & Jaworski 2020). The recently developed unified momentum model of
Liew, Heck & Howland (2024) could serve as an effective analytical paradigm for these
kinds of extensions. Also, a more physically motivated model for the streamwise-velocity
autocovariance ˜U′U′ than the empirical linear fit used in this work could be implemented.
This should include a model for turbulent entrainment of momentum that would depend
on some parameterization of the Reynolds shear stress ũ′v′. Furthermore, the model could
account for the pressure oscillations that occur downstream of turbines with time-varying
thrust-force profiles. Finally, the vortex-dynamics analysis in § 2.2 only considers one-way
coupling from the wake properties to the induced motions of the vortex elements. The
effects of the vortices on the flow field in the wake have not been considered, primarily
because the treatment of the wake dynamics has been limited to 1-D while point vortices
generate velocity components in two dimensions.

The experimental approach taken in this study also involves necessary abstractions that
limit the direct applicability of these findings to utility-scale wind farms. The Reynolds
number regime in the experiments is two orders of magnitude lower than that of full-scale
wind turbines, which affects both the turbine aerodynamics (Miller et al. 2019) and
the wake properties (Piqué, Miller & Hultmark 2022). However, since the theoretical
framework neglects viscous stresses in the wake, the mechanisms identified in the study
should still be representative of those that would dominate the flow physics of full-scale
rotors. The experiments also only considered a narrow range of TSRs and did not measure
thrust forces on the turbine, which limit the conclusions that can be drawn from these data
regarding turbine aerodynamics and power generation.

The most significant limitation of this study regarding its applicability to real-world flow
scenarios is the lack of inflow turbulence in the towing tank. Since the flow in the tank was
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nominally quiescent before each run of the traverse, background turbulence in the facility
was minimal and wake recovery in the baseline case was slow relative to turbine wakes in
flows with higher turbulence intensities (cf. Duckworth & Barthelmie 2008). This could
suggest that the relatively large enhancements in wake recovery due to the surge motions
of the turbine may not be as significant in atmospheric boundary-layer conditions, where
the additional mixing provided by the unsteady wake dynamics may be overshadowed by
the mixing from the highly turbulent background flow. Experimental results from Kadum
et al. (2019) and large-eddy simulations by Li & Yang (2024) are in general agreement
with this hypothesis.

With these considerations in mind, the theoretical framework and experimental
findings presented here still have important implications for the dynamics and control
of utility-scale wind turbines and wind farms. For onshore and fixed-bottom offshore
wind turbines, the unsteady wake dynamics explored in this study describe the effects
of dynamic induction control on the wake. Changing the collective pitch angle of the
turbine blades or the TSR of the turbine in a periodic manner will produce a periodic
variation in the turbine thrust force, thus exciting oscillations in streamwise velocity that
lead to travelling-wave propagation, tip-vortex aggregation and accelerated wake recovery.
In fact, similar dynamics have been reported in previous studies on dynamic induction
control. For instance, the vortical structures observed in the large-eddy simulations of
Munters & Meyers (2018) may be analogous to the vortex aggregates found in the present
study. Similarly, the 3-D flow measurements of van der Hoek et al. (2022) in the wake
of a turbine with periodic variations in collective blade pitch also show propagating
oscillations in the streamwise velocity in the near wake, as well as undulatory deformations
in the wake radius and changes in the tip-vortex dynamics. It is noteworthy that both of
these studies involve background flows with relatively high turbulence intensities and still
show qualitatively similar dynamics to the present findings. This supports the broader
applicability of the present work to utility-scale wind farms in more realistic atmospheric
conditions.

The results of this study also highlight the potential benefits of unsteady turbine
motion for wake-recovery enhancement. The typical methods for dynamic induction
control on stationary turbines are limited by the thrust variations that can be achieved
by changing the blade pitch angle and rotation rate. Surging the turbine back and
forth can lead to much larger thrust-force variations, since the thrust force scales with
the square of the rotor-frame velocity U∞ − U(t) (Johlas et al. 2021; Wei & Dabiri
2023). The unsteady platform motions of floating offshore wind turbines could thus be
leveraged to achieve faster wake recovery. This has recently been corroborated in the
findings of Messmer et al. (2024). These same unsteady motions can also be exploited
to enhance the power generation of the surging turbine itself (Wei & Dabiri 2022, 2023).
Therefore, the unsteady dynamics associated with the natural rocking motions of FOWTs
can be harnessed to achieve higher power densities in floating offshore wind farms
relative to their fixed-bottom counterparts. The enhancements in available power shown
in figure 17(c), taken together with the power-generation improvements of up to 6.4 %
above the stationary-turbine case reported by Wei & Dabiri (2022), suggest that these
increases in power density could be of the order of 10 % over conventional wind farms. It
is also important to note that the power-density benefits in the current and aforementioned
experimental studies were achieved without any active turbine control or array-scale
optimization. Thus, even greater enhancements may be possible with the addition of
physics-informed control strategies, though attention must be paid to the dynamic coupling
between the controller, turbine thrust force and floating-platform hydrodynamics (van den
Berg et al. 2023).
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5. Conclusions

This study demonstrates the effects of unsteady streamwise motions of a turbine on wake
dynamics and recovery. A theoretical model of the wake radius and streamwise velocity
in a wake with an oscillatory upstream boundary condition describes mechanisms for the
growth and propagation of travelling waves in the wake, which encourage the roll-up of
tip vortices into periodically shed vortical aggregates that advect into the far wake. These
dynamics scale with the amplitude of the turbine motions. Experimental measurements
in a towing-tank facility confirm the qualitative trends parameterized by the theoretical
approach, and additionally show enhancements in wake recovery and the corresponding
power available in the flow downstream of the turbine. These results support the findings
of prior investigations involving dynamic induction control strategies for improving
wind-farm power density. Taken together with power-generation enhancements observed
in periodically surging turbines, these flow physics could yield improvements of the order
of 10 % in floating offshore wind farms, relative to their fixed-bottom counterparts. The
theoretical approach and findings of this study can also be applied to dynamic induction
control strategies for traditional onshore and fixed-bottom offshore turbines in unsteady
streamwise flow conditions such as axial gusts, as well as the dynamics and control
of hydrokinetic turbine arrays in streamwise oscillatory tidal flows. Future work will
investigate the coupled effects of floating offshore platform motions and turbine control
schemes on wake recovery, as well as the unsteady loading effect of the travelling-wave
disturbances on downstream turbines in an array.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.999.
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Appendix A. Derivation of the governing equations

We consider incompressible and inviscid flow through a differential streamwise slice of
the larger wake control volume shown in figure 1, with streamwise width 2�x and central
radius R(x, t). The wake radius is assumed to vary linearly with streamwise position and
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Figure 19. Sketch of the differential control volume used to derive conservation relations for an unsteady,
radially deforming wake.

time, with spatial variation �xR over a streamwise distance of �x and a temporal variation
�tR over a time step of �t. The streamwise velocity through the differential control
volume is U|x−�x at the inlet and U|x+�x at the outlet. The pressure outside the radius
of the control volume is denoted p∞ and may vary with space and time. Radial velocities
are neglected, as these will generally be smaller than the streamwise velocities through the
control volume. The outer radius of the control volume has zero flow across its surface. A
sketch of this differential control volume is given in figure 19.

First, we derive the relation for conservation of mass, given in final form as (2.3). The
integral form of mass conservation for the differential control volume is

∂

∂t

∫
cv

ρ dV +
∫

cs
ρU dA = 0, (A1)

where
∫

cv dV denotes integration over the control volume,
∫

cs dA is a flux integral over
the control surface and ρ is the fluid density. We use a second-order finite-difference
approximation for the growth in the control volume as a function of time:

∂V
∂t

≈ V|t+�t − V|t−�t

2�t
. (A2)

The volume of the control volume can be calculated from the volume of a partial cone
with height h and radii R1 and R2,

V = 1
3πh(R2

1 + R1R2 + R2
2). (A3)

We therefore obtain the unsteady volumetric growth in the control volume as

∂V
∂t

≈ 2π�x(R2 + 2R�tR) − 2π�x(R2 − 2R�tR)

2�t
= 4πR�x

�tR
�t

, (A4)

where we have neglected terms of order �2 and above. Including the flux terms, (A1)
becomes

∂

∂t

∫
cv

dV +
∫

cs
U dA = 4πR�x

�tR
�t

+ πU|x+�x(R + �xR)2 − πU|x−�x(R − �xR)2

≈ 4πR�x
�tR
�t

+ πU|x+�x(R2 + �xR) − πU|x−�x(R2 − �xR) = 0, (A5)

again neglecting higher-order products of �. Assuming U varies linearly with x, we can
write U|x+�x + U|x−�x = 2U and U|x+�x − U|x−�x = 2�xU. Simplifying the relation
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for continuity, we obtain

4R�x
�tR
�t

+ 2R2�xU + 4RU�xR = 0. (A6)

Dividing by 4r�x and taking the limits as �x → 0 and �t → 0, we arrive at the
differential form of the continuity equation,

∂R
∂t

+ 1
2

R
∂U
∂x

+ u
∂R
∂x

= 0, (A7)

which corresponds to (2.3).
A similar process can be undertaken to derive the differential form of the momentum

equation (see (2.4)). The integral form of conservation of momentum in the streamwise
direction is

∂

∂t

∫
cv

ρU dV +
∫

cs
ρU2 dA = −

∫
cs

p dA. (A8)

The unsteady term can be integrated over the differential control volume using cylindrical
coordinates,

∂

∂t

∫
cv

U dV = 2π

∫ �x

−�x

∂

∂t

∫ R(t)

0
Ur′ dr′dx′ = 2π

∫ �x

−�x

[
UR

∂R
∂t

+
∫ R(t)

0

∂

∂t
Ur′ dr′

]
dx′

≈ 2π�x
(

2UR
∂R
∂t

+ R2 ∂U
∂t

)
, (A9)

employing the Leibniz integral rule and neglecting higher-order terms in the integration
over x′. For the advection term, we have∫

cs
U2 dA = U|x+�x

2π(R + �xR)2 − U|x−�x
2π(R − �xR)2

≈ πR2(U|x+�x
2 − U|x−�x

2) + 2πR�xR(U|x+�x
2 + U|x−�x

2)

= πR2(U|x+�x + U|x−�x)(U|x+�x − U|x−�x)

+ 2πR�xR((U|x+�x + U|x−�x)
2 − 2U|x+�xU|x−�x)

≈ 4πRU(R�xU + U�xR), (A10)

where we have neglected higher-order terms, completed the square and noted that
U|x+�xU|x−�x = (U + �U)(U − �U) ≈ U2. For a pressure distribution outside of the
wake p∞ that does not vary in the radial direction, the pressure contribution to the
momentum balance may be written as∫

cs
p dA = π(R + �xR)2p|x+�x − π(R − �xR)2p|x−�x − 2π

∫ R+�xR

R−�xR
r′p∞ dr′

≈ π(R2 + 2r�xR)p|x+�x − π(R2 − 2r�xR)p|x−�x − 4πp∞R�xR

= 2πR(R�xp + 2( p − p∞)�xR). (A11)

Finally, putting all of these terms together, the momentum equation over the differential
control volume is given by

2π�x
(

2UR
∂R
∂t

+ R2 ∂U
∂t

)
+ 4πRU(R�xU + U�xR) = 2πR(R�xp + 2( p − p∞)�xR),

(A12)

1000 A66-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

99
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.999


Wake dynamics of wind turbines in unsteady streamwise flow

0.30

0.25

0.20

0.15

0.10

0.05

–0.05

0

0.30

0.25

0.20

0.15

0.10

0.05

–0.05

0

0 2 4 6 8

x/D
10 12 0 2 4 6 8

x/D
10 12

W
ak

e-
ra

d
iu

s 
am

p
li

tu
d
e,

 R̂
/D

(a) (b)

Quasisteady, λ0 = 4.50
u∗ = 0.2, k = 1.89

Quasisteady, λ0 = 5.07
u∗ = 0.2, k = 1.89

Figure 20. Amplitude of the wake radius, calculated from unsteady measurements with u∗ = 0.2 and k = 1.89
(darker lines) and quasisteady flow measurements at U∞ = 0.8 and 1.2 ms−1 (lines with uncertainty bounds).
Cases with λ0 = 4.50 (a) and λ0 = 5.07 (b) are shown.

which, after dividing by 2πR�x and taking the limit as �x → 0, yields

R
∂U
∂t

+ 2U
(

∂R
∂t

+ R
∂U
∂x

+ U
∂R
∂x

)
= − 1

ρ

(
R

∂p
∂x

+ 2
∂R
∂x

( p − p∞)

)
. (A13)

Subtracting (A7) from this equation gives

∂U
∂t

+ U
∂U
∂x

= − 1
ρ

∂p
∂x

− 2
ρR

∂R
∂x

( p − p∞). (A14)

If we assume that the pressure outside the wake is radially homogeneous, i.e. p∞ = p(x),
then the extra pressure term becomes zero and we arrive at the 1-D Euler equation,

∂U
∂t

+ U
∂U
∂x

= − 1
ρ

∂p
∂x

, (A15)

which corresponds to (2.4).

Appendix B. Further discussion of the quasisteady wake approximation

The results presented in this study highlight the importance of unsteady fluid dynamics in
the wakes of turbines with time-varying thrust profiles. The travelling-wave solutions and
tip-vortex roll-up behaviours are not phenomena that can be obtained from quasisteady
flow assumptions. To demonstrate this even more clearly, the streamwise variations in the
wake-radius amplitude r̂ and streamwise-velocity amplitude Û are shown in figures 20 and
21 for both loading conditions. The dark-coloured lines are taken from unsteady cases with
u∗ = 0.2 and k = 1.89, while the lines with shaded uncertainty intervals are calculated
by subtracting the wake radius and streamwise velocity across steady-flow cases with
U∞ = 0.8 ms−1 and U∞ = 1.2 ms−1 to represent an effective surge-velocity amplitude of
u∗ = 0.2 (with k = 0). The differences between the representative quasisteady amplitudes
and the measured unsteady amplitudes are clear. For the wake radius in the unsteady case,
the amplitude increases with downstream distance. The differences in wake radius across
the quasisteady flow representations are small in comparison and do not display the same
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Figure 21. Amplitude of the streamwise velocity, calculated from unsteady measurements with u∗ = 0.2 and
k = 1.89 (darker lines) and quasisteady flow measurements at U∞ = 0.8 and 1.2 ms−1 (lines with uncertainty
bounds). Cases with λ0 = 4.50 (a) and λ0 = 5.07 (b) are shown.
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Figure 22. Comparison between theoretical and experimental results for the amplitude of the streamwise
velocity Û/U∞, plotted as a function of surge-velocity amplitude u∗, for λ0 = 4.50 (a) and λ0 = 5.07 (b).
Experimental data are shown as coloured markers, model solutions are shown as darker-coloured open markers,
and results obtained from quasisteady measurements are given as coloured open markers with error bars (at
u∗ = 0.2 only). Linear interpolations between the model solutions are shown as dashed lines. The colours and
shapes of the markers correspond to their streamwise locations in the wake. The model shows some qualitative
agreement with the trends observed in the data, but is not quantitatively accurate.

growth and saturation as seen in the measurements. Likewise, the streamwise-velocity
amplitude shows opposite trends between the unsteady and quasisteady measurements.
While Û decays with downstream distance in the unsteady case, in accordance with
the modelling framework from § 2.1, the quasisteady amplitude grows. This is due to
differences in the steady-flow velocity deficit between the two quasisteady datasets. These
comparisons further underscore the need for dynamic models of the flows in unsteady
turbine wakes.
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For the sake of completeness, we also plot the amplitudes of the radially averaged
streamwise velocity as a function of surge-velocity amplitude, shown for both loading
conditions in figure 22. Unlike the wake-radius amplitudes shown previously in figure 15,
the streamwise-velocity amplitudes computed by the model strongly underpredict the
measured data for most cases. This is likely due to the effects of wake recovery,
which more directly impact the streamwise velocity than the wake radius. Despite
this lack of quantitative agreement, the model still captures the trends in the data:
the streamwise-velocity amplitude is shown to increase with increasing surge-velocity
amplitude, and decrease with increasing streamwise distance. In accordance with the
comparisons shown in figure 21, the quasisteady amplitudes show the opposite trend
with streamwise distance. Though for this quantity the modelling approach does not yield
accurate quantitative predictions, these results suggest that the unsteady flow physics it
parameterizes are to some extent reflective of the full dynamics of unsteady turbine wakes.
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