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Abstract

We investigate when a Legendrian knot in the standard contact R3 has a non-orientable
exact Lagrangian filling. We prove analogs of several results in the orientable setting,
develop new combinatorial obstructions to fillability, and determine when several fami-
lies of knots have such fillings. In particular, we completely determine when an alternating
knot (and more generally a plus-adequate knot) is decomposably non-orientably fillable and
classify the fillability of most torus and 3-strand pretzel knots. We also describe rigidity phe-
nomena of decomposable non-orientable fillings, including finiteness of the possible normal
Euler numbers of fillings and the minimisation of crosscap numbers of fillings, obtaining
results which contrast in interesting ways with the smooth setting.
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124 LINYI CHEN et al.

1. Introduction

The motivating question for this paper is: given a Legendrian link � ⊂ (S3, ξ0), how
does the existence of an exact Lagrangian filling L ⊂ (B4, ω0), orientable or not, restrict
the smooth knot type of �? We say that a smooth knot K is (orientably or non-orientably)
Lagrangian fillable if it has a Legendrian representative that has an exact (orientable or
non-orientable) Lagrangian filling.

Being orientably fillable is a strong condition on a smooth knot: the maximal Thurston–
Bennequin number is realised by the negative Euler characteristic of a Lagrangian filling
[9], every Lagrangian filling minimises the 4-ball genus [9], the HOMFLY bound on the
maximal Thurston–Bennequin number is sharp, and the knot is quasipositive [26] (using
[5, 17]). It is not yet clear exactly which smooth knots are orientably Lagrangian fillable,
though the class lies strictly between the set of positive knots [26] — and even some almost
positive knots [43] — and the set of quasipositive knots. Note that the motivating question
introduces an interesting distinction between Legendrian and transverse knots: the class of
transverse knots with symplectic fillings coincides with quasipositive knots [5], though not
all quasipositive knots are Lagrangian fillable.

Comparatively less is known about non-orientably fillable knots. Atiponrat [2] developed
an obstruction to the existence of a decomposable exact Lagrangian filling using the par-
ity of the number of “clasps” of a normal ruling, and used that obstruction to prove that
a maximal tb representative of the (4, −(2n + 5)) torus knot has no exact Lagrangian fill-
ing [1]. Capovilla–Searle and Traynor [8] studied non-orientable, but not necessarily exact,
Lagrangian endocobordisms; in developing obstructions to such endocobordisms, they pro-
duced examples of exact non-orientable fillings in a few families of knots, including some
twist knots and (p, −2) torus knots.

In this paper, we establish techniques for investigating non-orientable Lagrangian fillings
and apply those techniques to families of knots. In parallel to the orientable case, we begin
by making connections between the classical invariants of a Legendrian knot and the normal
Euler numbers of its non-orientable Lagrangian fillings:

PROPOSITION 1·1. If L is a Lagrangian filling of � with normal Euler number
e(L), then

tb(�) = −χ(L) − e(L).

Even though a knot has smooth fillings that realise infinitely many normal Euler numbers,
we prove:

PROPOSITION 1·2. For any given Legendrian knot, only finitely many Euler numbers
may be realised by exact decomposable non-orientable Lagrangian fillings.

That said, there is a sequence of knots for which the corresponding sequence of sets of
Euler numbers realised by Lagrangian fillings grows without bound; see Theorem 4·3.

Throughout the paper, in parallel to the fact that orientable Lagrangian fillings minimise
the smooth 4-genus, we present evidence which suggests that any non-orientable exact
Lagrangian filling with normal Euler number e minimises the crosscap number among all
smooth fillings with normal Euler number e. However, the proof of such a minimization
result is made difficult by the lack of an adjunction inequality for non-orientable surfaces.

https://doi.org/10.1017/S0305004123000440 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004123000440


Non-orientable Lagrangian fillings 125

Just as there is a connection between the HOMFLY polynomial and orientable fillings,
the existence of a non-orientable filling implies the sharpness of the Kauffman polynomial
bound on the maximal Thurston–Bennequin number; see Proposition 3·5.

Finally, extending Atiponrat’s work on rulings [2], we develop techniques for obstructing
decomposable non-orientable Lagrangian fillings, including the development of an easily
computable obstruction we call the resolution linking number. This obstruction is applied
to prove Theorem 1·5, below.

In the second half of the paper, we combine the obstructions discussed above with con-
structions in families to reveal hints of the geography of non-orientably fillable smooth
knots. We start by proving:

THEOREM 1·3. If K is positive, then K is orientably, but not non-orientably, decompos-
ably fillable.

We can completely characterise Lagrangian fillability of alternating knots. Cornwell, Ng
and Sivek [12] showed that an alternating knot is orientably fillable if and only if it is
positive; we extend their analysis to non-orientable fillings of alternating knots.

THEOREM 1·4. If K is alternating, then K is non-orientably decomposably fillable if and
only if K is not positive.

This theorem will follow from a more general result about plus-adequate knots; see
Theorem 5·1.

From these results, one might begin to suspect that non-orientable fillability is comple-
mentary to some notion of positivity, but it turns out that the existence of non-orientable
fillings is more subtle. First, there are Legendrian knots with both orientable and non-
orientable fillings; see Example 2·4. Second, the following two families contain knots which
realise every combination of quasipositivity and non-orientable fillability:

THEOREM 1·5. For p and q relatively prime with |p| > q, let T(p,q) denote the (p,q) torus
knot.

(i) T(p,q) is orientably fillable if and only if p > q > 0.

(ii) T(p,2) is non-orientably fillable if p < 0.

(iii) T(p,q) is not fillable if p < 0 and q is odd.

(iv) T(p,q) is not decomposably fillable if p < 0 and 4|q.

THEOREM 1·6. Let p1, p2, p3 > 0 and let K �= P(−p1, −p2, p2 − 1) be a 3-stranded pret-
zel knot. Then K is decomposably non-orientably fillable if and only if K is isotopic to a
pretzel knot of one of the following forms:

(i) P(p1, p2, p3);

(ii) P(−p1, −p2, −p3) with exactly one of the pi even;

(iii) P(−p1, p2, p3) with p1 odd;

(iv) P(−p1, −p2, p3) with p1 ≥ p2, p1 odd, and either p2 = p3 = 1 or p2 < p3; or

P(−p1, −p2, p3) with p1 ≥ p2, p2 ≥ p3 + 2, and one of the pi even.
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Remark 1·7. The reason we must exclude K = P(−p1, −p2, p2 − 1) from Theorem 1·6 is
because we do not have a max-tb front diagram for this family; whenever the front in
Figure 19 is tb-maximal, the conditions in case (iv) of the theorem apply so that K is not
decomposably non-orientably fillable.

Even with the evidence above, it is difficult to form a precise conjectural description of
smooth knot types that are non-orientably fillable. While one would naïvely hope to parallel
the conjecture that orientable fillings are related to the (quasi)positive hierarchy and the
sharpness of the HOMFLY bound, such hopes do not survive encounters with examples.
While there are no positive knots with non-orientable fillings, there exist examples of non-
orientably fillable knots that are neither quasipositive nor negative (e.g. 41) and examples
that are quasipositive (e.g. m(821), which has both orientable and non-orientable fillings). In
the other direction, the results above about negative torus knots and some pretzel knots show
that not all negative knots are non-orientably fillable. In fact, it seems that non-orientably
fillable knots are non-positive and, roughly, not too negative.

The remainder of the paper is organised as follows: in Section 2, we collect background
information on the normal Euler number and Lagrangian cobordisms, proving a generaliza-
tion of Proposition 1·1 at the end. Section 3 develops obstructions to Lagrangian fillings from
normal rulings, including a discussion of canonical rulings and the definition of the resolu-
tion linking number. We then proceed to examine the set of normal Euler numbers realised
by Lagrangian fillings, proving Proposition 1·2. Finally, Sections 5, 6 and 7 examine the
fillability of plus-adequate knots, torus knots, and 3-stranded pretzel knots, respectively.

2. Background notions

In this section, we recall basic notions about properly embedded non-orientable surfaces
and Lagrangian cobordisms between Legendrian links. We assume familiarity with the fun-
damentals of Legendrian knot theory in the standard contact R3; see [7, 20, 24, 45] for
introductions. The only new material in this section is contained in Proposition 2·5.

2·1. The normal Euler number

In order to analyse non-orientable surfaces (F, ∂F) ↪→ ([0, 1] × Y , {0, 1} × Y) with null-
homologous ends, we need an additional topological invariant first defined by Gordon and
Litherland [25]; see also [3, 37]. Any closed interval can stand in for [0, 1], and we will
make such substitutions below without further comment.

Suppose that F ⊂ [0, 1] × Y is a properly embedded surface with ∂F = K0 � K1 with
Ki ⊂ {i} × Y . Let F′ be a small transverse pushoff of F so that the pushoffs Ki

′ at the ends
both realise the Seifert framing. We compute the (relative) normal Euler number e(F) by
finding compatible local orientations for TF and TF′ at each intersection point in F ∩ F′ —
which may be used, together with an ambient orientation on [0, 1] × Y , to assign a sign to
each intersection — and then adding up the contributions at the intersection points.

There are several equivalent ways of defining the relative normal Euler number. Instead
of specifying the framing for F′ at the ends, we may take Seifert surfaces �i for Ki, and
consider the closed surface F̄ = F ∪ �0 ∪ �1. We then compute the intersection number of
F̄ and a small transverse pushoff F̄′ to get e(F). Another equivalent definition is to let F′ be
the image of a section of the normal S1 bundle of F and let K′

0 � K′
1 = ∂F′; following [25]

and [37, lemma 4·2], we then see that e(F) = lk(K0, K′
0) − lk(K1, K′

1).
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Remark 2·1. If F is orientable, then e(F) = 0 since F̄ represents the zero class in H2([0, 1] ×
Y; Z). Further, for any F, the normal Euler number is always even, as F̄ always represents
the zero class in H2([0, 1] × Y; Z/2Z).

As noted by Batson [3], we may use the normal Euler number to refine the minimal
4-dimensional crosscap number of a knot in S3. The e-crosscap number cre(K) of a knot
K is the minimal first Betti number of all properly embedded non-orientable surfaces F ⊂
B4 with ∂F = K and e(F) = e. The 4-dimensional crosscap number cr4(K) is simply the
minimum value of cre(K).

2·2. Lagrangian cobordisms

The formal definition of a cylindrical-at-infinity Lagrangian cobordism between
Legendrian submanifolds is the following.

Definition 2·2. Let �± be Legendrian links in the contact manifold (Y , ξ ), where ξ =
ker α. An (exact) Lagrangian cobordism L from �− to �+ is an exact properly embedded
Lagrangian submanifold of the symplectisation (R× Y , d(etα)) satisfying:

(i) there exists T+ ∈R such that L ∩ ([T+, ∞) × Y) = [T+, ∞) × �+;

(ii) there exists T− < T+ such that L ∩ ((−∞, T−] × Y) = (−∞, T−] × �−; and

(iii) the primitive of (etα)|L is constant at each end of L.

The cobordism L is a filling if �− = ∅.

The final condition in the definition of a cobordism is designed to allow cobordisms to be
concatenated while preserving exactness; see [10] for a more thorough discussion.

There are three types of elementary cobordisms that are useful for constructing
Lagrangian cobordisms:

Legendrian isotopy. A Legendrian isotopy from �− to �+ induces a Lagrangian cobor-
dism from �− to �+, though the construction is somewhat more complicated than simply
taking the trace of the isotopy [6, 16, 18].

0-handle. Adding a disjoint, unlinked maximal Legendrian unknot ϒ to � induces a
Lagrangian 0-handle cobordism from � to � � ϒ [6, 16].

1-handle. Performing an ambient surgery between two cusps of the front projection of �

as in Figure 1 induces a Lagrangian 1-handle cobordism [6, 13, 16]. A 1-handle attachment
may be oriented or unoriented depending on the orientation of � near the attaching regions;
see Figure 1. In practice, we will use the operation of “pinching” across the co-core of a
1-handle as we move down a cobordism.

A cobordism constructed by concatenating finitely many elementary cobordisms is called
decomposable. It is useful to introduce some notation: denote the decomposition of L into
elementary cobordisms by L = L1 � · · · � Ln, with Li going from �i−1 to �i. For more
information about constructing Lagrangian cobordisms, see [4].

Example 2·3. The figure-eight knot is non-orientably fillable by a Lagrangian Klein bottle
with normal Euler number 4; see Figure 2. The normal Euler number may be computed
combinatorially using Proposition 2·5, below.
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Fig 1. Attaching a 1-handle along a Legendrian link: (left) an oriented 1-handle and (right) an
unoriented 1-handle.

Fig. 2. A 0-handle and isotopy produce the unknot in the middle. Two subsequent 1-handles
yield a filling of a Legendrian figure-eight knot by a Klein bottle with normal Euler number 4.

Example 2·4. The m(821) knot is orientably fillable by a Lagrangian torus and non-
orientably fillable by a Lagrangian Klein bottle with normal Euler number 0; see Figure 3.

We finish this section by relating the normal Euler number, Euler characteristic, and
Thurston–Bennequin numbers of a Lagrangian cobordism; Proposition 1·1 is an immediate
corollary.

PROPOSITION 2·5. If L is a Lagrangian cobordism from �− to �+ with normal Euler
number e(L), then

tb(�+) − tb(�−) = −χ(L) − e(L).
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Fig. 3. Fillings of a Legendrian m(821) knot by a torus (left) and by a Klein bottle with normal
Euler number 0 (right). The middle isotopy at right is a cyclic permutation of the 3-copy of the
unknot [34].

Proof. We prove that e(L) = −tb(�+) + tb(�−) − χ(L) by calculating the normal Euler
number from the definition. It will prove useful to introduce an almost complex structure
J on the symplectisation R× Y that leaves the contact planes invariant and sends the sym-
plectisation direction to the Reeb vector field Rα . Note that this choice of almost complex
structure orients R× Y in a manner consistent with the symplectic structure.

Consider a Morse function f : L →R that agrees with the symplectisation coordinate t
outside of [T−, T+] × Y . Let X be the gradient of f (with respect to some metric). Since
L is Lagrangian, the vector field JX is normal to L when nonzero, with JX = Rα outside of
[T−, T+] × Y . Pushing L off along JX yields a surface L′ that intersects L at the critical points
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of f and has the contact (Thurston–Bennequin) framing at the ends. We correct the framing
of L′ at the ends by adjoining annuli that interpolate between L′ ∩ {T±} × Y and pushoffs of
L ∩ {T± ± 1} × Y that realise the Seifert framing at each end; call the result L′′.

It remains to compute the signed intersection number of L and L′′. The annuli contribute
−tb(�+) + tb(�−). The remaining intersection points arise from the critical points of f . A
local computation shows that each such intersection point p contributes (−1)1+indpf , which
yields a total contribution of −χ(L) from the critical points of f . The result follows.

3. Obstructions to Lagrangian Fillings from Normal Rulings

In this section, we use normal rulings of front diagrams to analyze decomposable
Lagrangian fillings, both orientable and not. We begin with the foundational definitions
of normal rulings, including their Euler characteristics and a new quantity that we term
the normal Euler number of a ruling. We then recall that a decomposable filling yields
a canonical ruling of the Legendrian link at the top [2], and we connect the topology of a
Lagrangian cobordism with the orientability, Euler characteristic, and normal Euler number
of the canonical ruling. Finally, we attach a quantity called the resolution linking number
to a ruling and show that it is invariant for rulings related by decomposable cobordism, hence
yielding an obstruction to the existence of a decomposable filling. In all of this work, the
non-orientable setting is the more subtle because of the non-vanishing of the Euler number.

3·1. Normal rulings

A normal ruling is a combinatorial structure on the front diagram of a Legendrian link
inspired by the theory of generating families; see [41] for a broader overview. Essentially,
a ruling is a decomposition of a front diagram of a Legendrian � into a set of disks (called
“ruling disks”), each of which is planar isotopic to a maximal Legendrian unknot, with
additional restrictions to control the interaction of the disks where they meet. In light of
Theorem 3·4, below, we will conflate notation for a Legendrian knot and its front diagram
in this paper.

To define a normal ruling on �, we assume that the x coordinates of all crossings and
cusps are distinct. A normal ruling consists of a set ρ of crossings of �, called switches,
that satisfies a set of combinatorial conditions. To elucidate those conditions, let �ρ denote
a new Legendrian link obtained from � by resolving the switches of ρ into horizontal line
segments as in the left of Figure 4. We say that the components of �ρ to which the new
horizontal line segments belong are incident to the switch. The components of �ρ must
satisfy the following three conditions:

(i) each component of �ρ is planar isotopic to the standard diagram of the maximal
Legendrian unknot. In particular, each component bounds a ruling disk in the plane;

(ii) exactly two components are incident to each switch;

(iii) inside a small vertical strip around each switch, the ruling disks incident to the
crossing are either nested or disjoint; see the right of Figure 4.

A ruling ρ is oriented if all of its switches are positive crossings and unoriented
otherwise.

We attach two quantities to a normal ruling, the first a well-known analogue of the Euler
characteristic and the second a novel analogue of the normal Euler number. We first set
some notation. Denote by c(�) the number of right cusps. Let s+(ρ) (resp. s−(ρ)) be the
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Fig. 4. (Left) The resolution of switches in a ruling of a figure-eight knot. (Right) Possible
configurations of ruling disks at a switch in a ruling, up to reflection about the horizontal. After
this figure, we will no longer draw rulings with resolved crossings.

Fig. 5. For this Legendrian �, ruling ρ, and orientations o (solid arrows) and oρ (open arrows),
we have s+(ρ) = 3, s−(ρ) = 2, f+(ρ, o, oρ) = 2, and f−(ρ, o, oρ) = 0. The flipped region is
shaded. Thus, we have χ (ρ) = −1 and e2(ρ) ≡ 0.

number of positive (resp. negative) switches in ρ, with s(ρ) = s+(ρ) + s−(ρ). Finally, fix
orientations o on � and oρ on �ρ and consider the crossings of �ρ where the sign of the
crossing coming from o differs from the sign coming from oρ ; we refer to those crossings
as flipped crossings and the sections of �ρ on which o and oρ disagree the flipped region
or flipped strands. Let f+(ρ, o, oρ) (resp. f−(ρ, o, oρ)) be the number of flipped crossings
of �ρ with positive (resp. negative) sign with respect to oρ . See Figure 5 for an illustration
of this notation.

We are now ready to define the Euler numbers of a ruling.

Definition 3·1 ([11]). The Euler characteristic of a ruling ρ is an integer defined by

χ(ρ) = c(�) − s(ρ).

Kálmán [28] observed that χ(ρ) is the Euler characteristic of the (possibly immersed)
ruling surface �ρ constructed by connecting the ruling disks of ρ by bands at the switches.

Definition 3·2. The normal Euler number of a ruling ρ and orientations o and oρ is the
element of Z/2Z defined by
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e2(ρ) ≡ s−(ρ) + f+(ρ, o, oρ) − f−(ρ, o, oρ) mod 2.

It follows immediately from the definition that if ρ is orientable, then e2(ρ) = 0. To justify
the notation e2(ρ), we prove the following lemma.

LEMMA 3·3. The normal Euler number of a ruling does not depend on the orientations
o and oρ .

Proof. Since s−(ρ) does not depend on the choices of orientation, we need only prove
that f+(ρ, o, oρ) − f−(ρ, o, oρ) does not depend on o and oρ modulo 2. In fact, it suffices to
prove that f+(ρ, o, oρ) − f−(ρ, o, oρ) is invariant under a change of orientation of a single
component of the link �ρ .

Denote by πρ the orientation of �ρ obtained by switching the orientation on a single
component �

ρ
0 ⊂ �ρ . Let lk0(oρ) denote the sum of the linking numbers between �

ρ
0 and

all of the other components of �ρ with respect to the orientation oρ . If we label the flipped
crossings of �

ρ
0 by f 0±(ρ, o, oρ) and the non-flipped crossings of �

ρ
0 by f̄ 0±(ρ, o, oρ), then we

may compute

lk0(oρ) = 1

2

(
f 0+(ρ, o, oρ) + f̄ 0+(ρ, o, oρ) − f 0−(ρ, o, oρ) − f̄ 0−(ρ, o, oρ)

)
. (3·1)

Further, notice that passing from oρ to πρ swaps the sets of flipped and non-flipped
crossings on �

ρ
0 , and also reverses the signs of those crossings. That is, we obtain

f 0+(ρ, o, πρ) = f̄ 0−(ρ, o, oρ). (3·2a)

f 0−(ρ, o, πρ) = f̄ 0+(ρ, o, oρ) (3·2b)

Combining Equations (3·1) and (3·2) yields the following computation:

e2(ρ, o, oρ) − e2(ρ, o, πρ) = 2lk0(oρ) ≡ 0 mod 2,

which completes the proof of the lemma.

We may organise the set of rulings of a front diagram into the ruling polynomial [11]:

R�(z) =
∑

Rulingsρ

z1−χ(ρ).

The oriented ruling polynomial Ro
�(z) is defined similarly by summing over oriented rul-

ings. The ruling polynomials R� and Ro
� are Legendrian — in fact, smooth — invariants,

thus justifying our conflation of a Legendrian knot and its front diagram in our notation.
1

THEOREM 3·4 ([39]). Given a Legendrian link � with front diagram D:

(i) the ruling polynomial R�(z) is the coefficient of a−tb(�)−1 in the Kauffman polynomial
F�(a, z);

1 One can upgrade the oriented ruling polynomial to a graded ruling polynomial, which is an effective
Legendrian (as opposed to smooth) invariant [11].
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Fig. 6. Constructing a canonical ruling across a 1-handle.

(ii) the oriented ruling polynomial Ro
�(z) is the coefficient of a−tb(�)−1 in the HOMFLY

polynomial P�(a, z).

Combining this result with the upper bounds on the Thurston–Bennequin invariant from
the Kauffman and HOMFLY polynomials, we see that if a Legendrian knot � has a front
diagram with a ruling, then it must maximise tb [39].

3·2. Fillings and the existence of rulings

A fundamental link between rulings and fillings uses the machinery of Legendrian contact
homology, a Floer-type invariant of Legendrian submanifolds.

PROPOSITION 3·5. If a smooth knot K is fillable, then the Kauffman bound on the
maximal Thurston–Bennequin number is sharp and every Legendrian representative with
maximal Thurston–Bennequin number has a ruling.

Proof. Suppose that K has a Legendrian representative � with a Lagrangian filling
L. The Legendrian contact homology DGA of such a Legendrian has an augmentation
[14, 15]. That augmentation, in turn, yields a ruling of � [22, 40]. Theorem 3·4 then implies
both parts of the conclusion.

Remark 3·6. If the filling of K is orientable, then the augmentations and rulings are 2-graded,
and hence the ruling is also orientable.

3·3. Canonical rulings for decomposable fillings

In this section, we begin to explore a more subtle relationship between rulings and decom-
posable fillings. Atiponrat [2, lemma 2] proved that a decomposable filling L of a Legendrian
� induces a canonical ruling ρL on �; Pan also commented on this fact in [38, section 5·5]
and noted that the proof extends to cobordisms from �− to �+ with a given ruling on �−.
The proof, in essence, comes from Chekanov and Pushkar’s proof that rulings — even ori-
entable rulings — are invariant under Legendrian isotopy [11] and the fact that 0-handles
create and 1-handles merge ruling disks; see Figure 6 for an illustration of the latter. We
note, however, that the canonical ruling of a decomposable filling may not correspond with
the ruling produced by Proposition 3·5, though the canonical ruling construction does yield
an alternative — and more elementary — proof of the proposition in the case that the filling
is decomposable.
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The main result in this section is to refine the construction of a canonical ruling to relate
the orientability of the cobordism L with the orientability of the ruling ρL.

PROPOSITION 3·7. Suppose L is a decomposable cobordism from �− to �+, that �+
is connected, and that ρ is an orientable ruling of �−. The canonical ruling ρL of �+ is
orientable if and only if L is.

Proof. We use the notation L = L1 � · · · � Ln. First note that since �+ is connected, the
lack of 2-handles in the decomposition of L implies that Li � · · · � Ln is connected for
any i.

The key observation is that L is orientable if and only if all of the 1-handles used to con-
struct L are oriented. Indeed, let Li be the cobordism induced by the topmost non-orientable
1-handle. Since there are no 2-handles and �+ is connected, we see that Li+1 � · · · � Ln is
connected. Thus, we may form a curve γ in Li+1 � · · · � Ln connecting the two points in
the cosphere. As Li+1 � · · · � Ln is orientable, a neighborhood N of γ is a rectangle with
proper boundary oriented by �i. Attaching the co-core of the non-oriented 1-handle to N
along ∂N ∩ �i yields a Möbius strip. Thus, Li � · · · � Ln is non-orientable, and hence L is
as well. The reverse direction is obvious.

We are now ready to prove the proposition. Suppose that L is orientable. Since Legendrian
isotopy and the addition of a 0-handle preserve orientability of the canonical ruling, we
need only consider 1-handles. The observation above shows that the 1-handles in L are all
oriented. It is clear that the canonical ruling procedure in Figure 6 creates an orientable
ruling on �i from an orientable ruling on �i−1. Thus, if L is orientable, then ρL is orientable
if ρ is.

Conversely, suppose that ρL is orientable. Reversing the procedure for extending a canon-
ical ruling across a 1-handle entails pinching across a ruling disk. If a ruling disk is oriented,
then the Legendrian is oriented in opposite directions along the top and bottom strands of
that ruling disk. Thus, we must have that every 1-handle in L is oriented. Thus, we see that
L is orientable.

Proposition 3·7 is an effective obstruction to the existence of a decomposable non-
orientable filling. We encapsulate the obstruction in the following corollary, which follows
from the idea that a non-orientable decomposable filling of � induces a non-orientable rul-
ing on �, which, in turn, is counted by the ruling polynomial but not the oriented ruling
polynomial.

COROLLARY 3·7. If � has a non-orientable decomposable filling, then

R�(z) �= Ro
�(z).

Example 3·9. We saw in Example 2·3 that the figure-eight knot has a non-orientable
decomposable filling. As promised by the corollary, one can compute that R�(z) �= Ro

�(z)
and hence that the relevant coefficients of the HOMFLY and Kauffman polynomials for the
figure-eight knot differ.

Remark 3·10. Since the condition on the ruling polynomials in Corollary 3·8 can be read off
of the HOMFLY and Kauffman polynomials of the underlying smooth knot, it follows that
the obstruction to the existence of a decomposable non-orientable filling does not depend on
the (maximal) Legendrian representative.
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Fig. 7. Choices of orientation for �ρ around an R0 move that satisfy the three conditions in the
proof when the upper left switch is positive. Similar choices may be made with the upper left
switch is negative.

3·4. Canonical rulings and Euler numbers

In this section, we relate the topology of a decomposable Lagrangian cobordism to the
Euler numbers of the corresponding canonical ruling.

PROPOSITION 3·11. If L is a decomposable Lagrangian cobordism from �− to �+, ρ a
ruling of �−, and ρL the canonical ruling of �+ induced by L, then

χ(ρL) − χ(ρ) = χ(L).

Proof. We check the relation for each of the elementary cobordisms. The equation holds
for cobordisms induced by Legendrian isotopies since χ(ρ) is a Legendrian isotopy invariant
and the Euler characteristic of a cylinder vanishes. The equation holds for the addition of a
0-handle since the new maximal unknot raises χ(ρ) by 1 as we get a new ruling disk with
no new switches; this matches the Euler characteristic of a disk. Finally, the equation holds
for the addition of a 1-handle, as χ(ρ) changes by −1 with the loss of a right cusp and no
change to the switches; this matches the Euler characteristic of a pair of pants.

PROPOSITION 3·12. Let L be a decomposable Lagrangian cobordism from �− to �+, ρ

a ruling of �−, and ρL the canonical ruling of �+ induced by L. We compute that

e2(ρL) − e2(ρ) ≡ 1

2
e(L) mod 2.

Proof. We check the relation for each of the elementary cobordisms, this time working
one Reidemeister move at a time for cobordisms induced by Legendrian isotopy. In these
cases, we use the ruling correspondence laid down in [11]; see also [2]. Note that for all but
the 1-handle case, the normal Euler number of the cobordism vanishes, so in those cases we
must prove that e2 does not change.

Reidemeister 0. If neither or both crossings are switched, or there are more than two
ruling disks involved, then the rulings before and after an R0 move are combinatorially
identical. Thus, we need only consider the case where there is a single switch and only two
ruling disks appear locally, as in Figure 7.

We claim that we can choose orientations on the two ruling disks that satisfy the following
three conditions on both sides of the R0 move:
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Fig. 8. The normal Euler numbers of the corresponding rulings are equal across (left) an RI
move (the switch is positive), (center) an RII move, or (right) a 0-handle.

(i) exactly one flipped strand passes smoothly through any negative switch or negative
crossing;

(ii) exactly zero or two flipped strands pass through any positive switch or positive
crossing; and

(iii) the flipped strands are identical away from the local picture on both sides of the R0
move.

In fact, one such choice is to orient the two ruling disks counterclockwise, as confirmed
for configurations where the upper left switch is positive in Figures 7; a similar check can
be made in the case that the upper left switch is negative. With such choices in hand, it is
straightforward to see that a negative switch on one side of the R0 move is paired with a
f+ crossing on the other, thus balancing the contributions to e2; there are no f− crossings to
balance by our choices.

Reidemeister I. There are no new negative switches or flipped crossings in this case, so
e2 does not change. See the left side of Figure 8.

Reidemeister II. There are no new negative switches in this case, and any flipped
crossings arise in oppositely-signed pairs. Thus, e2 does not change. See the center of
Figure 8.

Reidemeister III. If no crossing or all three crossings are switched, then the local
contributions to e2 before and after the RIII move are identical.

If a single crossing is switched and is positive, then we may orient the components of
�

ρ
− so that no flipped regions appear in the local picture of the RIII move. It follows that

there are no local contributions to e2 before and after the RIII move. If the single switch is
negative, then we may orient the components of �

ρ
− so that exactly one flipped strand passes

smoothly through the negative switch and no other strands are flipped. In this case, there is
one flipped crossing that has the same sign before and after the RIII move; see Figure 9.

If two crossings are switched, then as in the R0 cases, we may choose orientations on the
components of �

ρ
− so that the flipped strands are identical away from the local picture on

both sides of the RIII move and so that local contributions to e2 match; see Figure 10.
Thus, for any RIII move, e2 does not change.
0-handle. There are no new negative switches or flipped crossings in this case, so e2 does

not change. See the right side of Figure 8.
1-handle. In this case, Proposition 2·5 shows that e(L) = tb(�−) − tb(�+) + 1.
If the 1-handle is orientable, then the orientations on �− and �+ match outside a neigh-

borhood of the 1-handle, and hence so do the signs of all of the crossings. Since the signs
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Fig. 9. One case of an RIII move with one negative switch. There are choices of orientations on
the components of �ρ so that there is one smooth flipped strand and the flipped crossings have
the same signs before and after the move.

Fig. 10. For each possible orientation (up to an overall reversal) of the strands of an RIII move
with two switches, we display orientations on the components of �ρ so that the flipped strands
are identical away from the local picture and so that local contributions to e2 match. In particular,
note that s− and f− cancel.

of the crossings are unchanged but �+ has one fewer cusp than �−, we have e(L) = 0.
On the other hand, we may choose orientations on the resolved diagram �

ρ
− so that the

cusps involved in the 1-handle are either both flipped or both not flipped; choose the corre-
sponding orientation on �

ρL+ . Since the signs of the switches are the same before and after
the 1-handle, as are the signs of the crossings in the flipped regions, we see that e2 is also
unchanged.

If the 1-handle is not orientable, then a closer analysis is needed. For any choice of ori-
entation of �+, there is a “reversing strand” along which the orientation of �+ and that
of �− disagree; see the example in Figure 11. Along the reversing strand, flipped regions
and crossing signs (at least at those crossings for which exactly one strand is the reversing
strand) are opposite for �− and �+.

In the expression for e(L), we see that the elimination of a right cusp in �+ cancels the
+1. Thus, we need only compare how changes in crossing signs change tb and e2. Suppose
that the reversing strand changes a crossing from positive to negative. On one hand, we may
compute the local contribution to the change in tb to be 1

2 (tb(�−) + tb(�+)) = 1. On the
other hand, if the crossing is a switch, then s−(ρ) increases by 1 and hence so does e2. If
the crossing contributes to f−, then the reversing strand unflips the crossing, and hence f−
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Fig. 11. A non-orientable 1-handle induces a “reversing strand” (highlighted at top) along which
the orientations of �− and �+ disagree, and hence along which flipped regions and crossing
signs (at least at those crossings for which exactly one strand is the reversing strand) are reversed.

decreases by 1, implying that e2 increases by 1. Note that such a crossing cannot contribute
to f+. Finally, if the crossing is not flipped, then the reversing strand flips it to contribute to
f+, implying that e2 increases by 1. A similar analysis holds if the crossing changes from
negative to positive. In all cases, the change in e2 matches that of 1

2 e(L).

3·5. The resolution linking number

Not every ruling need be the canonical ruling of a Lagrangian filling. Atiponrat [2] defined
one obstruction, the parity of the number of “clasps” in a ruling that, loosely speaking,
quantifies how far the ruling surface is from being a ribbon surface. In this section, we define
a more computable obstruction based on the linking between the boundaries of ruling disks.
We suspect that Atiponrat’s parity and the unoriented resolution linking number contain the
same information.

Definition 3·13. Let ρ be an orientable ruling on a Legendrian link �. The resolution
linking number rlk(ρ) is defined to be the sum of the pairwise linking numbers of the
oriented link �ρ . For any ruling ρ of �, the unoriented resolution linking number rlk2(ρ)
is defined to be the mod 2 reduction of the sum of the pairwise linking numbers of the link
�ρ with any chosen orientation of the components.

Note that rlk2 is well-defined, as changing the orientation of a single component �i of �ρ

would negate the linking numbers between �i and the other components, but those negations
do not change the parity of the result.

It turns out that the resolution linking numbers are combinations of familiar invariants.
The first item in the lemma is due to [31].

LEMMA 3·14.

(i) The oriented resolution linking number satisfies

rlk(ρ) = 1

2
(tb(�) + χ(ρ)). (3·3)
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(ii) For any choice of orientations � and of �ρ , the unoriented resolution linking number
satisfies

rlk2(ρ) ≡ 1

2
(tb(�) + χ(ρ) + 2e2(ρ)) mod 2. (3·4)

We see immediately that the set of all oriented resolution linking number values of a
Legendrian � is a topological quantity.

COROLLARY 3·15. The set of all oriented resolution linking numbers for a Legendrian
� is determined by the exponents of the variable z, shifted by tb(�), in the coefficient of
atb(�)−1 in the HOMFLY polynomial.

Proof of Lemma 3·14. Generalising notation from Lemma 3·3, denote by f̄± the non-
flipped crossings of �ρ . The proof of (ii) follows from adding up the following identities for
some choices of orientation o and oρ , and then slightly generalising the proof of Lemma 3·3
to see that rlk2(ρ) = 1

2

(
f+ + f̄+ − f− − f̄−

)
:

tb(�) = (f̄+ + f− + s+(ρ)) − (f̄− + f+ + s−(ρ)) − c(D)

χ(ρ) = c(D) − s+(ρ) − s−(ρ)

2e2(ρ) = 2(s−(ρ) + f+ − f−).

The proof of (i) follows the same computation, this time noting that all of the steps work
over the integers, and that the quantities s−(ρ) and f±(ρ) vanish.

If � has an orientable decomposable filling L, then, on one hand, we know tb(�) =
−χ(L), while on the other, we have χ(ρL) = χ(L). Thus, when ρ is the canonical ruling
for a filling L, the first formula in the lemma above shows that rlk(ρ) vanishes. The contra-
positive of this string of ideas shows that the resolution linking number is an obstruction to
the existence of an orientable decomposable filling. A similar line of reasoning applies to
non-orientable fillings and rlk2. This perspective leads to Theorem 3·16.

THEOREM 3·16. If L is an orientable decomposable cobordism from �− to �+ and that
ρ is an oriented ruling of �−, then

rlk(ρL) = rlk(ρ). (3·5)

The equation holds modulo 2 for non-orientable decomposable cobordisms and rulings with
rlk2 in place of rlk.

Proof. The proof follows directly from Lemma 3·14 and Propositions 2·5, 3·11 and 3·12.

COROLLARY 3·17. If all orientable rulings ρ of � have nonzero resolution linking num-
ber, then � has no orientable filling; a similar fact for rlk2(�, ρ) and fillings of any type
also holds.

Example 3·18. The unique orientable ruling ρ of the figure-eight knot has rlk(�, ρ) = 1.
Thus, the figure-eight knot does not have an orientable decomposable filling. Of course, the
conclusion follows even more easily from the fact that the maximal tb of the figure-eight
knot is −3, which cannot be −χ(L) for any surface L. We will put the corollary to more
subtle use in Section 6.
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Fig. 12. The three rulings of a maximal tb front diagram for a mirror 52 knot.

4. Rigidity of the Euler number

If L is a filling of �, the relation tb(�) = −χ(L) − e(L) from Proposition 2·5 leaves open
the possibility of non-orientable fillings realizing infinitely many distinct normal Euler num-
bers. On one hand, infinitely many normal Euler numbers may, indeed, be realised by smooth
fillings of any knot. By connected summing any smooth slice surface of a knot with a smooth
nonorientable surace of arbitary Euler number in the four-ball, every Euler number within
the constraints of [32] may be realised. In the decomposable setting, however, this is not
possible, as stated in Proposition 1·2.

Proof of Proposition 1·2. A front diagram of a Legendrian knot supports only finitely
many rulings, and hence only finitely many Euler characteristics of decomposable fillings by
Proposition 3·11. It follows that there are only finitely many possible normal Euler numbers.

Example 4·1. We claim that any maximal Thurston–Bennequin Legendrian torus knot
of the form T(−p, 2) has only one Euler number realised by a decomposable Lagrangian
filling. Recall from [21, theorem 4·4] that there exists a unique such Legendrian for each
rotation number in {±1, . . . , ±(p − 2)}. It is straightforward to check that each such knot
has a unique non-orientable ruling. Thus, every decomposable filling of T(−p, 2) — and
there is at least one such — must have the same Euler characteristic and hence the same
Euler number.

Example 4·2. We claim that the Legendrian front � of the m(52) knot shown in Figure 12
has only one Euler number realised from a decomposable Lagrangian filling. It is straight-
forward to compute that � has exactly three rulings, as pictured in the figure. We compute
that the rightmost two rulings have rlk2 = 1, so by Theorem 3·16, we know that neither of
these rulings can correspond to a decomposable filling. Thus any decomposable Lagrangian
filling of � may only realise a single Euler number.

In fact, as we shall see in Section 5, since the 52 knot is a non-positive alternating knot,
it must have a non-orientable filling corresponding to the ruling which switches at every
crossing.

Although we will not go into detail here, one can also use other techniques to restrict
the number of possible normal Euler numbers of a non-orientable Lagrangian filling. For
example, we may use an ungraded version of the Seidel isomorphism as in [30] to restrict
the possible topologies, and hence Euler numbers, of non-orientable fillings.

In contrast to the examples above, there is no universal upper bound on the cardinality
of the set of normal Euler numbers realised by exact non-orientable fillings. The under-
lying idea is to iterate the tb-twisted Whitehead double construction, denoted Wh(�) and
illustrated in Figure 13. We observe that each iterated double has an orientable torus filling
(which by necessity has Euler number 0), and then we inductively promote each fillable
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Fig. 13. The tb-twisted Whitehead double Wh(�), drawn with a solid line, of a Legendrian knot
�, drawn with a dotted line.

Fig. 14. Threading an unknot through a Whitehead double.

ruling for an iterated double to a fillable ruling on the next iterate with increased Euler num-
ber. In particular, the desired set of fillings for the nth double consists of the torus filling,
together with the set of inductively promoted torus fillings of each previous double.

THEOREM 4·3. The sequence of Legendrian links �0, �1, �2, . . . such that �n =
Wh(�n−1) has the property that, for n ≥ 1, �n has at least n rulings induced by fillings
with distinct non-negative Euler numbers.

Proof. To begin the construction, let �0 be any Legendrian knot, and let �1 = Wh(�0);
we may place the clasp near a right cusp of �0 as in Figure 13. As shown in [6,
section 5·1], the Legendrian �1 has a decomposable orientable filling by a Lagrangian torus
L; in particular, e(L) = 0.

Working inductively, suppose that �n−1 is a tb-twisted Whitehead double that has decom-
posable fillings {L1, . . . , Ln−1} with distinct Euler numbers ei = e(Li). Denote by ρi the
canonical ruling induced by Li. For each Li and ρi, we will construct a decomposable filling
L̂i for �n = Wh(�n−1) with canonical ruling ρ̂i and Euler number êi = ei + 4.

We begin by constructing ρ̂i on �n. As shown in Figure 14, start with the diagram of
�n−1 and a maximal unknot just below and to the right of the upper cusp near the clasp.
Thread the unknot through the center of the Whitehead double pattern as in the figure, ini-
tially bypassing the clasp of �n−1 and creating new ruling disks and switches when passing
through a pair of cusps of �n−1, until the process returns to the clasp. Correct the diagram
near the clasp as in Figure 15, defining the ruling ρ̂i depending on the structure of ρi near
the clasp as in the figure.

It is straightforward to check that the process above yields a front diagram for �n =
Wh(�n−1) with a ruling ρ̂i. To construct L̂i, pinch across ρ̂i just to the left of each of
the four switches of the inner ruling disks and an additional pinch as in Figure 15, then
unthread the resulting unknot from �n−1, and finally remove the unknot with a 0-handle
move. We have returned to �n−1 with ρi, which we know is the canonical ruling for Li; we
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Fig. 15. Completing the threaded diagram to an iterated Whitehead double, complete with new
rulings depending on the existing ruling near the old clasp.

complete L̂i by concatenating with Li. Lastly, we may compute that χ(ρ̂i) = χ(ρi) − 4 using
Proposition 3·11 and the fact that χ(L) = −4 since L was constructed using five 1-handles
and one 0-handle. It follows from Proposition 2·5 and the fact that tb(�i) = 1 (since all �i

are Whitehead doubles) that e(L̂i) = e(Li) + 4.
In all, the collection of fillings {L̂1, . . . , L̂n−1, Ln}, where Ln is the standard orientable

genus 1 filling of �n, yields n different Euler numbers {e1 + 4, . . . , en−1 + 4, 0}.
Remark 4·4. When �0 is the maximal tb unknot, we see that �2 (the Whitehead double
of the trefoil) has both orientable and non-orientable fillings. This construction (not coinci-
dentally, we believe) coincides with Sivek’s construction of examples of Legendrians whose
Chekanov–Eliashberg DGAs have augmentations that induce multiple distinct linearised
Legendrian contact homologies [42]. Another example of a Legendrian knot having augmen-
tations that induce multiple linearized Legendrian contact homologies is the m(821) knot. As
we saw in Example 2·4, this knot also has both orientable and non-orientable fillings.

5. Plus-adequate knots

We shift our attention from obstructions to the existence of non-orientable fillings to
constructions of such fillings. The underlying goal is to uncover hints of the geogra-
phy of non-orientably fillable smooth knots, which appears to be more complicated than
that of orientably fillable knots. In this section, we concentrate on plus-adequate knots,
which simultaneously generalise positive and alternating knots; we will obtain proofs of
Theorems 1·3 and 1·4 as corollaries of the main work in this section.

We begin by defining plus-adequate knots as in [29]. Given a smooth knot diagram D, we
form s+(D) by resolving all of the crossings as in Figure 4(a). The diagram D is plus-
adequate if the two segments in the resolution near every crossing belong to different
components of s+(D); a knot K is plus-adequate if it has a plus-adequate diagram.

THEOREM 5·1. Every plus-adequate knot K has a Legendrian representative � with a
decomposable filling. The filling is orientable if and only if K is positive.

Proof. Kálmán showed that every plus-adequate knot K has a Legendrian representative
� with a normal ruling ρ in which all crossings of � are switches of ρ [27]. Carrying out
the procedure in [26, section 5] without regard for orientation, we obtain a decomposable
filling L of � with canonical ruling ρ.

If L is orientable, then by Proposition 3·7, we must have that ρ is orientable. Since ρ has
a switch at every crossing, we see that the front diagram for � has only positive crossings,
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and hence K is positive. Conversely, if K is positive, then as noted in [44], there exists a
Legendrian representative � of K that has only positive crossings. Thus, every ruling of
� is orientable, so Proposition 3·7 implies that there are no non-orientable decomposable
fillings of �. Using Corollary 3·8, and Remark 3·10 in particular, we see that the result holds
for any Legendrian representative of K.

Theorems 1·3 and 1·4 follow as immediate corollaries. Alternating knots also provide
evidence for the conjecture about minimal crosscap numbers mentioned in the introduction.

PROPOSITION 5·2. Let L be a non-orientable decomposable filling with Euler number e
of an alternating Legendrian knot � whose canonical ruling is switched at every crossing
in a reduced alternating diagram. The filling L realises the minimal crosscap number γ e

4 (�)
of all smooth fillings of � with normal Euler number e.

Proof. We certainly have γ e
4 (�) ≤ b1(L) by definition. To obtain the reverse inequality,

we use the Gordon and Litherland signature bound [25]:
∣∣∣σ (�) + e

2

∣∣∣ ≤ γ e
4 (�). (5·1)

In particular, we compute the left-hand side in terms of quantities related to L. Since the
canonical ruling ρL is switched at every crossing, the number of (positive or negative) cross-
ings coincides with the number of (positive or negative) switches. First, by Proposition 3·11,
we have

χ(L) = c(�) − s(ρ). (5·2)

Next, by Proposition 2·5, we see that

e(L) = −χ(L) − tb(�) = 2s−(ρ). (5·3)

Finally, building on [36, p.1646], we derive that

σ (�) = c(�) − s+(ρ) − 1. (5·4)

Note that our signature is normalised opposite to that of [36], with the right-handed trefoil
having signature −2.

Inserting Equations (5·3) and (5·4) into the inequality (5·1), and then using Equation (5·2),
we obtain

b1(L) = |χ(L) − 1| ≤ γ e
4 (�),

thus proving the proposition.

Remark 5·3. The signature bound is not always sufficient to show that non-orientable
Lagrangian fillings of plus-adequate knots realise the minimal crosscap number. The
Kinoshita–Terasaka knot 11n42, shown in Figure 16, is such an example, as its canonical
filling has b1(L) = 7 while the signature bound only yields γ e

4 (�) ≥ 5.
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Fig. 16. A Legendrian Kinoshita–Terasaka 11n42 knot.

6. Torus knots

This section is devoted to the proof of Theorem 1·5, which characterizes the fillability of
many torus knots. Recall that we adopt the convention that for p, q relatively prime with
|p| > q > 0, T(p, q) denotes the (p, q) torus knot.

We may dispose of the first three claims of the theorem quickly. If p > q > 0, then T(p,
q) is positive and hence orientably fillable [26]. Conversely, suppose p < 0 and T(p, q)
were fillable. The maximal Thurston–Bennequin number of T(p, q) is pq < −1 [21], but
a Legendrian representative � with orientable filling L would have −1 ≤ −χ(L) = tb(�), a
contradiction.

Second, note that for p < 0, T(p,2) is alternating and non-positive, and hence has a non-
orientable filling by Theorem 5·1.

Third, Epstein and Fuchs [19] show that the Kauffman bound is not sharp for p < 0 and q
odd. Theorem 3·4 then shows that no Legendrian representative of T(p, q) has a ruling, and
hence, by Proposition 3·5, no Legendrian representative of T(p, q) has a filling.

We arrive at the case where p < 0 and q is even and greater than 2. Note that Capovilla–
Searle and Traynor [8, corollary 1·3] claimed that these knots were fillable, but the claimed
filling in Figure 12 only works when p and q are both even. Atiponrat proved that T(p,4) is
not decomposably fillable in [1, 2]. We will simplify Atiponrat’s proof by using the unori-
ented resolution linking number in place of the clasp parity, and we will extend the result to
encompass any q divisible by 4.

The proof proceeds in two steps: first, in Lemma 6·1, we show that any maximal
Legendrian representative of T(p, q) with p < 0 and q even has a unique ruling, which is
necessarily non-orientable since T(p, q) is a negative knot. Second, in Lemma 6·2, we com-
pute the unoriented resolution linking number of this ruling, and show that it is non-zero
when 4|q. These two lemmas, combined with Corollary 3·17, then complete the proof of the
last part of Theorem 1·5.

LEMMA 6·1. Any maximal Legendrian representative of T(p,q) with p < 0 and q even
has a unique ruling ρ.

Proof. By Theorem 3·4, it suffices to show that the coefficient a−pq−1 of the Kauffman
polynomial of T(p, q) is z. By a theorem of Yokota [46] as interpreted by [19],2 the Kauffman
polynomial of T(p, q) when q is even may be expressed as

2 In [19], the convention is that p ≥ q > 0 and negative torus knots are of the form T(−p, q); we have changed
the signs of p in the formulae to conform to our convention.
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Fig. 17. A front diagram for a Legendrian negative torus knot T(p, q) with
|p| = (n1 + n2 + 1)q + r. The unique ruling of this front is indicated.

F(a, z) = a−pqz

a + z − a−1
(Gp,q(a, z) + 1),

where Gp,q(a, z) has maximal degree p + q in a. Thus, the highest degree in
a−pqz(Gp,q(a, z) + 1) is −pq and the leading term is za−pq. It follows from the formula above
that the leading term of F(a, z) is za−pq−1, as required.

We proceed to construct the ruling ρ promised by Lemma 6·1. Write |p| = (n1 + n2 +
1)q + r for some non-negative ni. Any maximal Legendrian representative of T(p, q) with
p < 0 is isotopic to a Legendrian with a front diagram as in Figure 17 for some choice of n1

and n2 [21, remark 4·5].

To produce the ruling ρ, first consider the strands at the top of the diagram in Figure 17,
numbering them from top to bottom. For k ≤ q/2, pair strands k and q/2 + k, adding a switch
where they meet in the left- and right-hand lattices of crossings. Add switches at all crossings
in the same columns as the switches arising from the top strands. This produces ruling disks
shaped like rhombi in the crossing lattices and ruling disks across the bottom strands in the
same pattern as at the top. To check that this is a normal ruling, notice that the pair of ruling
disks incident to any switch is disjoint.

LEMMA 6·2. Let � be maximal Legendrian representative of T(p,q) with p < 0 and q
even, and let ρ be the unique ruling of �. We may compute that

rlk2(ρ) ≡
{

0 q ≡ 2 mod 4,
1 q ≡ 0 mod 4.

Proof. The front diagram of � in Figure 17 has |p|(q − 1) crossings and |p| right cusps.
It follows that there are |p| ruling disks and |p| switches for ρ, as each ruling disk has two
switches and each switch is incident to two ruling disks. Thus, the link �ρ has |p|(q − 2)
crossings. Orienting all of the components of �ρ counterclockwise, we see that each two-
component sublink of �ρ is either the unlink or a negative Hopf link; in particular, all of the
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crossings of �ρ are negative. Thus, we see that

rlk2(ρ) ≡ p
(q

2
− 1

)
mod 2,

and the lemma follows.

We end this section with a conjecture about the remaining cases.

CONJECTURE 6·3. The only non-orientably fillable torus knots are of the form T(p,2)
with p < 0.

To prove such a conjecture, one would need a more powerful invariant than rlk2. An
integral lift of rlk2 using a formula similar to that in Lemma 3·14, which would include a
combinatorial translation of the normal Euler number for a ruling, may suffice.

7. Pretzel knots

This section is devoted to the proof of Theorem 1·6, which determines which 3-stranded
pretzel knots are non-orientably fillable, except for one small family. Let P( ± p1, ±p2, ±p3)
for p1, p2, p3 > 0 be the 3-stranded pretzel knot, where each twist box contains pi half twists
with a positive (resp. negative) sign indicating left-handed (resp. right-handed) twists. We
will make frequent use of the well-known fact that if P(−p1, p2, p3) is a knot, then at most
one of p1, p2, p3 is even.

Front diagrams for all maximal tb Legendrian pretzel knots were determined by Ng in
[35, section 6], except for the family P(−p1, −p2, p3) with p1 ≥ p2 = p3 + 1. The maximal
tb of this exceptional case is still unknown.

Any 3-stranded pretzel knot may be presented as one of the five forms listed below, with
maximal tb front diagrams for each of the five forms shown in Figures 18 and 19:

(i) P(p1, p2, p3);

(ii) P(−p1, −p2, −p3);

(iii) P(−p1, p2, p3);

(iv) P(−p1, −p2, p3) with p1 ≥ p2, p2 ≤ p3 + 1;

(v) P(−p1, −p2, p3) with p1 ≥ p2 ≥ 2 and p2 ≥ p3 + 2.

These five forms correspond exactly to the cases in Theorem 1·6. Note that the exceptional
family is in case (4) with p2 = p3 + 1, and this family is exactly the one mentioned in the
statement of Theorem 1·6.

Remark 7·1. In cases (i)–(ii), in case (iii) with det(K) < 0, and in cases (iv)–(v) with
det(K) > 0, the 4-dimensional crosscap number is minimized by the Lagrangian filling
among surfaces with the same Euler number. One can check this assertion by appealing
to Proposition 5·2 for the first two cases, and calculating the signature of each knot in the
last three cases using the Goeritz matrix.

Proof of Theorem 1·6.
Case (1). P(p1, p2, p3). Since these pretzel knots are all non-positive and alternating,

Theorem 1·4 implies that each knot in the family admits a decomposable non-orientable
filling.
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Fig. 18. Maximal tb front diagrams for P(p1, p2, p3) (top left), P(−p1, −p2, −p3) (top right),
and P(−p1, p2, p3) (bottom).

Fig. 19. Front diagrams for P(−p1, −p2, p3) with p1 ≥ p2 ≥ 2 and either p2 < p3 + 1 (top left
with a = p3 − p2 + 1, b = p2 − 2, c = p1 − p2 + 1), p2 = p3 + 1 (top right); or p2 ≥ p3 + 2 (bot-
tom left with d = p2 − p3 − 1, e = p1 − p3 − 1). These have maximal tb, with the possible
exception of the p2 = p3 + 1 case.

Case (2). P(−p1, −p2, −p3). These pretzel knots are all alternating and are posi-
tive if and only if all of the pi are odd. It follows that if one of the pi is even,
then P(−p1, −p2, −p3) admits a decomposable non-orientable filling. Further, if all the
pi are odd then P(−p1, −p2, −p3) admits no decomposable non-orientable filling by
Theorem 1·3.

Case (3). P(−p1, p2, p3). One can easily check that if p1 is even then P(−p1, p2, p3) is
positive, in which case it has no decomposable non-orientable filling. Conversely, if p1 is
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Fig. 20. A vertical slice of a front diagram for Case (iv) and (v) pretzel knots with possible
normal rulings. A single twist is shown on the left, and two twists on the right.

odd then P(−p1, p2, p3) is non-positive and plus-adequate by work of [23], and therefore
admits a decomposable non-orientable filling by Theorem 5·1.

For the last two cases (iv) and (v), we will explicitly construct fillings for the knots
in the families of Theorem 1·6, and show that all other knots in each case do not have
non-orientable normal rulings. Theorem 3·7 will then imply the desired result. Before con-
sidering each case individually, note first that in either case (iv) or (v), the cusps inside the
vertical (dashed) twist boxes at the right of the diagram must form ruling disks in pairs. In
both cases, there are exactly three left and right cusps not contained in twist boxes, so we
will consider how these cusps may form ruling disks.

We will start by examining the vertical slice of the front diagram shown in Figure 20,
given by the double-stranded twist box and the two parallel strands below it. The idea of
the proof in both cases (iv) and (v) is to restrict the rulings on this region which could
possibly extend to normal rulings on the entire knot. Then, we will build normal rulings for
the pretzel knots in cases (iv) and (v) from the rulings in this region, and examine the (non)-
orientability of these rulings to get restrictions on the pi. Finally, for every case which admits
a non-orientable normal ruling, we will explicitly construct a decomposable non-orientable
filling associated to that ruling.

In Figure 20, there are six strands in total, and each top and bottom strand of each of
the three ruling disks not contained in twist boxes must pass through the region depicted.
In particular, each strand in the region corresponds to a strand of one of these ruling disks.
With a single double-stranded twist, one may check that there are only five ways of pairing
these strands to form (potentially) normal rulings, shown on the left of Figure 20. Though
we omit, for simplicity, the cases which do not yield normal rulings, one could verify this
claim by first observing that there can be no switches in this region, and second, checking
that (up to relabeling), the cases shown are the only non-switched normal rulings for this
region. It follows that for arbitrary numbers of double-stranded twists, there are also only
five potential rulings, given by juxtaposing possible rulings on each individual twist, shown
on the right of Figure 20.

Case (4). P(−p1, −p2, p3) with p1 ≥ p2 and p2 ≤ p3 + 1. In this case, we will show that
only pretzel knots with p1 odd and either p2 = p3 = 1 or p2 < p3 have non-orientable fillings,
as stated in Theorem 1·6(iv).
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Fig. 21. Normal rulings for case (iv) pretzel knots with p2 ≥ 2. The top four diagrams depict the
case p2 = 3 as a model for cases when p2 is odd, while the bottom two diagrams depict the case
p2 = 4 as a model for cases when p2 is even.

First, for the case p2 > 1, the possible normal rulings built from the regions in Figure 20
are shown in Figure 21, where p2 is assumed to be odd in the top two rows and even in the
bottom row. Note that only the cases p2 = 3, 4 are shown, for simplicity, though the same
arguments apply with arbitary p2 of the same parity. One can check that, in the vertical
slice from Figure 20 (indicated by the dashed box in Figure 21), the rulings which are not
included cannot be extended to normal rulings in this case. Also, in the top two rows, the
rulings in each row are the same up to change of orientation outside the twist boxes, though
the given orientations are determined by the pi. We will now examine what conditions on
the pi are necessary to realise the rulings shown, with the given orientations, and when these
rulings may be non-orientable.

For the top left ruling in Figure 21 to have the given orientation, we must have that p2

is odd, p3 − p2 + 1 is even and at least two (so that the ruling can switch at one of the
crossings in the left twist box), and that p1 = p2 (so that there is only a single crossing in
the right twist box). In particular, we have that p1 and p2 are odd, p3 is even, p2 < p3 and
p1 = p2. For the top right, the conditions are similar except that p3 must be odd instead. Here,
the ruling is non-orientable only if it switches at (at least) one of the crossings in the left
twist box. Whenever these conditions are met, the pinch moves shown yield non-orientable
fillings.

For the left ruling in the second row in Figure 21 to have the given orientation, we must
have that all of the pi are odd, and for it to be non-orientable we must have that p3 − p2 + 1 ≥
3 (so that the ruling can switch at one of the crossings in the left twist box). In particular,
we have that all the pi are odd and p2 < p3. For the right ruling in that row, the conditions
are the same except that p3 must be even instead. Again, the pinch moves shown yield
non-orientable fillings.
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Fig. 22. Normal rulings for case (4) pretzel knots with p2 = 1.

For the left ruling in the third row in Figure 21 to be non-orientable, we must have that
p2 is even, p1 and p3 are odd, and p3 − p2 + 1 ≥ 1. Because p2 and p3 have opposite parity,
this implies p2 < p3. So, we must have that p2 is even, p1 and p3 are odd, and p2 < p3. The
ruling on the right is always orientable, and hence is not associated to a non-orientable filling.
As above, whenever these conditions are met, the pinch moves shown yield non-orientable
fillings.

Finally, we will deal with the case where p2 = 1. The only normal ruling in this case
(outside of the twist boxes) is the one shown in Figure 22. One may check that the only two
possible orientations on the strands of the knot which make this ruling non-orientable are
the ones shown in the Figure. For the orientation on the left, we must have that p3 is even
and this implies that p1 must be odd for K to be a knot. For the orientation on the right, we
must have that p1 and p3 are both odd. In particular, the knot has a non-orientable normal
ruling exactly when p1 is odd, regardless of the parity of p3. For these rulings, the pinch
moves shown yield non-orientable fillings.

Finally, we may verify that in each case, we must have p1 is odd, and either p2 < p3 or
p2 = p3 = 1. Furthermore, any tuple (p1, p2, p3) satisfying at most one of p2 or p3 is even
(so that the corresponding pretzel knot is a knot), p1 is odd, p1 ≥ p2 ≥ 1, and p2 < p3 (or
p2 = p3 = 1) satisfies the conditions necessary to realise one of the non-orientable rulings
from Figure 21.

Remark 7·2. Note that, if K = P(−p1, −p2, p2 − 1) has a maximal tb front of the form shown
in Figure 19, the proof above shows that K does not have a decomposable, non-orientable
filling. Moreover, if we had a maximal tb front for this exceptional case, the techniques of
this section could likely be used to classify when this final case is fillable, thereby completing
the fillability classification of all 3-stranded pretzel knots.

Case (5). P(−p1, −p2, p3) with p1 ≥ p2 ≥ 2 and p2 ≥ p3 + 2.

The possible normal rulings built from the regions in Figure 20 are shown in Figure 23,
where p3 is odd in the top two rows and even in the bottom row. One may easily verify that
the regions from Figure 20 not included in Figure 23 cannot be extended to normal rulings.
The two rulings in the middle row in Figure 23 are orientable (regardless of the orientation
on the dashed strands), and the rulings on the right in each row are all related to their adjacent
rulings on the left by R0 moves.

In the top left ruling in Figure 23, we must have that p3 is odd, and one can check that
this ruling is nonorientable exactly when one of p1 or p2 is even. When these conditions are
met, the pinch moves shown yield nonorientable fillings.

In the bottom left ruling in Figure 23, we must have that p3 is even, and for the pretzel
knot to be a knot it follows that p1 and p2 must both be odd. In this case, one can check that
the ruling is nonorientable, and the pinch moves shown yield nonorientable fillings.
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Figure 23. Normal rulings for case (5) pretzel knots. The top four diagrams depict the case
p3 = 1 as a model for cases where p3 is odd, while the bottom two diagrams depict the case
p3 = 2 as a model for cases where p3 is even.

Finally, as before, any tuple (p1, p2, p3) with exactly one of the pi even, p1 ≥ p2 ≥ 2, and
p2 ≥ p3 + 2 satisfies the conditions necessary to realise one of the non-orientable rulings in
Figure 23.
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