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1. Introduction. Ko the spaces, in the terminology of Diendonné [2], are 
certain spaces X of real valued integrable functions. In this paper we consider 
the problem of representation of continuous linear functional on vector valued 
Ko the spaces. The elements of a Kôthe space X{B) are functions f (t), 0 < t < 1, 
with values in a Banach space B (see §2). In the case X = Lp, this problem 
was solved by Dieudonné [3]. In May 1952, the second of the present authors 
found that Dieudonné's methods also apply to spaces1 A(<£, p) for p > 1. 
However, difficulties arise even for spaces A(<£, 1), since Dieudonne's methods 
depend heavily on the reflexivity of the space X. This motivates an entirely new 
approach to the problem proposed here which is applicable for more general 
spaces X. Our main idea is the use of linear operators of class (b, o) of 
Kantorovitch [6; 8], which seem to provide the most natural way of handling 
the problem. In fact, this method is applicable also to cross-spaces B ® 5 X 
(see Schatten [12]) with a certain cross-norm ô, not symmetric with respect 
to B and X. Kôthe spaces X{B) are special cases of these B (&zX. In order 
not to complicate the exposition, we confine our attention to the simpler case of 
Kôthe spaces; functionals on cross-spaces will be discussed in a separate paper. 

In §2 we give the definition of a Kôthe space X and consider its properties 
as an abstract Banach lattice. Care must be taken not to exclude spaces such as 
X = L1 for which the conjugate space X* does not satisfy condition (f) of §2. 
Therefore these properties (which must also hold for X*) turn out to be partly 
weaker than those given in [8, p. 215]. In §3 we give our main results concerning 
linear functionals on spaces X(B). 

2. Kôthe spaces and Banach lattices. Let C be a non-empty class of 
positive integrable functions c{t). The Kôthe space X = Xc consists of all 
measurable functions f(f) for which 

(1) | | / | U = 8Up f \f(t)\c(t)dt<+ » . 

Received October 22, 1952. This investigation was carried out while the first author held 
a Fellowship at the Summer Research Institute of the Canadian Mathematical Congress in 
1952. 

s p a c e s A(0, p) for <j> —xa~~l were defined by Lorentz [10]; in his talks in Tubingen (1948) 
and Kingston (1950) he indicated the generalization to an arbitrary decreasing <f> [11]. State
ments made in this connection in [13, p. 273] are misleading: the manuscipt mentioned there 
was written after these talks; in the 1950 Report of the Summer Research Institute, Halperin 
gives its content as obtained jointly with Lorentz. 
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Without changing Xc or the value of | |/ | | we may assume that 
(a) C is normal: if c G C and 0 < C\(f) < c(t), then c\ G C; 
(b) C is convex', if c* 6 C, 0 < a* < 1, Sia* = 1, then 2atCi G C. 

We shall also assume that 
(c) if cn G C and cw(2) j c(J), then c ^ C; 
(d) 1 G C where 1(0 = 1 a.e. on (0, 1); 

(e) j c(0 i K l . c Ç C . 

Conditions (a), (d), (e) imply that all measurable functions c (t) with 0 < c {t) 
< 1 belong to C, condition (e) that all bounded functions belong to Xc. From 
the definition of ||/|| it follows that Xc is normal:/ G X and |g(/)| < |/(/)|imply 
g Ç I . Condition (d) and (1) also imply that all functions/ G Xc are integrable 
and that 

(2) J o l / ( O I * < l l / I U . 

It is easy to see that under these assumptions Xc is a Banach space. General 
Kôthe spaces of integrable functions were considered by Dieudonné [2]. Kôthe 
and Kôthe and Toeplitz in a series of papers beginning in 1934 were dealing 
with spaces of sequences of similar type. Dieudonné defines the Kôthe space Xc 

to consist of a l l / G L1 with J|/ | c dt < + oo for each c G C; under the assump
tions (a), (b), and (c) this is equivalent to our definition (given also in [11]). 
In fact, if J | / | c dt, c G C is not bounded for some / , there is a c G C with 
J|/ | c dt = + «5. For the proof, we choose cn G C with J|/ | cndt>nz (n = 1, 
2, . . .); then c = 2n~2 cw belongs to C by (a), (b), and (c), and J|/ | c dt > n 
for each n. On the other hand, if the conditions (a), (b), (c) are not assumed, 
Dieudonné's definition is more general than that given above. In what follows 
a Kôthe space Xc is always a space with C satisfying (a)-(e). 

In X we introduce a partial ordering, writing/ < g if f(t) < g(t) a.e. With this 
order X becomes a Banach lattice [1; 5; 6; 8] with the following properties: 

( I ) / > 0 , g > 0 i m p l y / + £ > 0 ; 
(II) / > 0, a> 0 imply af > 0; 

(III) each finite set E C X is bounded from above; 
(IV) each set E C X bounded from above has a supremum/0 = U / = s u p / 

i n X . 
Property (IV) follows from the fact that the space S of all measurable func

tions has this property. The order induces the order-convergence (o-convergence) 
/ n —>/ (o), which for the space Xc is equivalent to fn(t) —>/(/) a.e. and to the 
existence of a g G X with |/w| < g. 

From (1) we deduce also: 
(V) l/l <|g| implies If/11 <||g||; 

(VI) if 0 < / n G X, fn Î / (where / G X or / is the element + oo), then 
ll/JI -HI/II- ( I n particular,/w Î + oo implies | | /J | -> oo.) 

A space Xc has a weak form of regularity: 
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(VII) each set E C X has a denumerable subset E' C E with sup E' = sup E. 
(This also follows from the corresponding property of S.) 

We finally note that a Ko the space Xc has a (weak) unit: 
(VIII) there is an element 1 Ç X such t h a t / H n\ \f for each 0 < / € X. 
The following lemma is implicitly contained in [8, pp. 201-203]: 

LEMMA. For a Banach lattice X satisfying I—VIII, the o-boundedness of a set 
E C X and the boundedness of the set 

i ? = { | | â | / i i 1 1 } -
fi Ç E are equivalent. Moreover, with g — sup \f\, where the supremum is taken for 
all f Ç E, and A = sup H we have A = \\g\\. 

First let A < + co. Each of the sets En = {|/| H ni} is bounded and for the 
gn = sup En we have gn t g = sup |/| (with g £ X or g = + <»). By VII, 

CO 

& = U (I/*, i n »i) 
for properly chosen fin 6 -E. By VI, 

Il «.H = lim || Û \u\nm ||<iim|| Û 1/i.iiKii. 

By VI, this shows that g (i. X and that E is bounded. We also have ||g|| < A. 
The converse is obvious. 

The dual space X' of a Kôthe space Xc is the set of all measurable g 
such that 

II* IU' = .sup f \g\ \f\dt< + oo. 

In other words, X' = Xct, where C consists of all elements/ £ X with 0 < / , 
11/11 < 1. It follows from (a)-(e) and VI that C also satisfies (a)-(e). Clearly, 
X' is a subspace of the conjugate space X*. A Kôthe space X is perfect if (X') r = X ; 
a reflexive space X is perfect, but not conversely (example: X = L1). 

THEOREM 1. If X is a separable perfect Kôthe space, then Xf is identical with 

Proof. In virtue of Lorentz [11, Theorem 3], X' is identical with X* if 
X = X c satisfies the condition 

(f) if / G X and %e is the characteristic function of the set e, then ||/xe|| ~~> 0 
with me —» 0. 

Hence we have to show that a separable perfect space X c has the property 
(f). The following proof uses an argument due to Kôthe [9, pp. 105-106]. 

We have Y' = X, and X is separable. It follows (by the usual method of a 
diagonal subsequence) that the unit sphere U in F is sequentially weakly com
pact (in the weak topology generated by X). If (f) is not fulfilled for X, there 
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is an / £ X and a sequence of sets en with rnen—*0 such that ||/xe»|| > 1-
Then for each n there is a function cn £ U such that ||cre||r < 1 and 

»i 

1/ | XenCndt > | . J 
Jo 

' 0 

The functions cn = cn Xen have the properties ||cn||y < 1, 
i i 

\f\cndt>\ J" 
Jo and cn(t) = 0 outside of the set en. By passing to a subsequence of the cn, if 

necessary, we may assume that the cn are weakly convergent to c, say, and that 
2rnen < + œ. Then the set lim sup en is of measure zero. Let e be disjoint with 
\jn>N en ; then 

J c(t) dt = I Xeëdt = lim I Xe cn dt = 0, 
e Jo rc^oo Jo 

so that c vanishes outside of \]n>N en> It follows that c vanishes a.e. But this is a 
contradiction : 

0 = f \f\cdt = lim f \f\cndt> 
JO n^co JO 

This completes the proof of Theorem 1. 

It is easy to check that the spaces A(</>, p) satisfy (a)-(f) (compare [10; 11]). 
The spaces A(<£, 1) are perfect [10], the spaces A($, p), p > 1 are reflexive [11]. 

Let B be a Banach space and X = Xc a Ko the space of real-valued functions. 
The space X(B) by definition consists of all functions f (/) from (0, 1) to B 
which are weakly measurable and such that ||f (t)\\ belongs to X. For separable 
spaces X, \\f(t)\\ is measurable whenever f (t) is weakly measurable [3]. We put 

(3) | | f HXCB) = II | | f ( 0 | | B | | X = SUP f | | f ( 0 \\c(f)dt. 
ctC JO 

It is easy to show that X(B) is a Banach space. If B is separable and Xc satisfies 
condition (f), X(B) is also separable, since elements of the type 

n 

X) *i Xei (t) 

with Xi Ç B and measurable and disjoint sets et are everywhere dense in X(B). 

3. Linear operators of class (6, o) and continuous linear functionals on X(B). 
Let 5 b e a Banach space and X a Banach lattice. A linear mapping / = U(x) 
from B to X is called an operator of class (b, o) if the set of the | U(x)\ for all 
\\x\\ < 1 is 0-bounded in X. Then 

(4) \U\= U \U(x)\ 
llxlki 

is the "abstract norm" of U. (In [8], U is defined to be of class (b, 6) if xn —> x 
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always implies U(xn) —• U(x) (o). From the lemma of §2 and [8, pp. 202, 187] 
it follows that a Banach lattice X satisfying I—VI11 is a K+ space, and then 
both definitions are equivalent [8, p 258]). We shall use sometimes the notation 
(x, g) for the value of the functional g Ç B* at x Ç B. 

The Lemma of §2 shows that in case when X satisfies I—VI11, a linear operator 
U is of class (b, o) if and only if 

(5) A = sup || U(pd) U U(x2) U . . . U U(xn) || < + » . 
Li iki 

THEOREM 2. The general form of an operator f = U{x) of class (b, 6) from a 
separable Banach space to a Kôthe space X c is given by 

(6) f(t) = (x,è(t)) 

where g(J) belongs to XC(B*). Moreover, \u\ is the function ||g(J)||B*-

Proof. For X = Lp, p > 1, this was given by Kantorovitch and Vulich 
[7, Theorem 14; or 8, p. 330], except for the last statement. 

If U is an operator of desired class, then it is also an operator of class (b, o) 
from B to L1. By the above theorem with X = L1, f(t) = (x, é (0) f° r e a c n 

x 6 B and almost all t, where g(T) is weakly measurable and | |é(0 | | Ç ^1-
We have 

\(x,é(t))\ =\f(t)\ <M(0lM! a.e.; 
this relation holds for each x and all / except for a set Ex of measure zero, which 
may depend on x. Since B is separable, it is easy to prove that there is a set E 
of measure zero such that 

|<*,g(o>l <M(olHI» x £ B,tiE. 
Then for t$.E, ||g(/)|| < \u\(t). This shows that g(/) G X(B*). 

On the other hand, from (6) we derive 

\f(t)\ = |<*,g(o>l<l |g(ol | . |HI. 
so that the conditions are sufficient and \u\(t) < | |g(0||• This completes the proof. 

If X is not separable, a representation formula for an operator of class (b, o) 
can still be given under stronger assumptions on X c . However, this will not be 
used for our main theorems, and we do not give full proofs. Here also, the case 
X c = EP has been discussed by Kantorovitch and Vulich [7]. 

We shall formulate the following properties of a class C = {c} : 
(g) C is average-invariant: if c Ç C, e C (0, 1) and if c is obtained from c by 

replacing its values on e by the average {me)~x^e c dt, then c Ç C. 
(h) There is a function A (e) > 0, A (e) —> oo for e —» 0 such that for each set 

e of measure me < e there is a c Ç C with c(t) > A(e) on e. 
This allows us to characterize the integrals 

F(t) = \ f(u) du 
Jo 

https://doi.org/10.4153/CJM-1953-064-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1953-064-4


LINEAR FUNCTIONALS ON KÔTHE SPACES 5 7 3 

of functions/ £ Xc. We say that a real function F(t) on (0, 1) is of bounded 
Xc-variation if, for all subdivisions 0 = tQ < h < . . . < tn = 1 of (0, 1), the 
functions F(t) defined by 

P(t) = * [F(ti+1) - F(tt)], t £ (tuti+l) (i = 0, 1, . . . , n - 1 ) 

have uniformly bounded norms 11 F\ |X. Let Z c be a Kôthe space. Then a function 
F(i) with F(0) = 0 is an integral of a function/ Ç X c if F is of bounded Xc-
variation and if (h) holds. Conversely, any such integral is of bounded X c-varia
tion if (g) holds. The proof is similar to the proof of F. Riesz's theorem on inte
grals of functions / Ç IP. By means of this result we obtain 

THEOREM 3.2 If the Kôthe space Xc satisfies (g) and (h), the general form of 
an operator f — U(x) of class (b, o) from a Banach space B to Xc is given by 

f(t)=jt(x,G(t)) 

where G (t) is a mapping from (0,1) to B* such that the functions 

G(t) = ' l . ||G(*«.i) - G(tt) || B*, * 6 (ti,ti+1) (* - 0, 1 n - 1) 

have uniformly bounded norms in X. 

The proof consists in a direct construction of the function |f/|(/). 
We now come to our main subject: to linear continuous functionals on spaces 

Xc(B). We assume throughout the rest of this section that B is separable, 
that X satisfies condition (f), and that X' and X* are identical. Theorem 1 
provides examples of such X — all perfect separable Kôthe spaces belong to this 
class. More particular examples of such X are spaces A(<£, p), which reduce to 
Lv for 4>(x) = 1. 

THEOREM 4. There is a natural isomorphism between the spaces of (i) all 
continuous linear functionals L(f) on X(B); (ii) all functions g(/) belonging to 
X*(B*); (iii) all (b, 6)-operators U(x) mapping B into X*. The general form of a 
continuous linear functional Lit) on X{B) is given by 

(7) £(f) = j\i(t),é(.t))dt, 

where &(t) belongs to X*(J3*) and \\L\\ = ||g||. 

Proof. To each g the relation (7) lets correspond an L(f) which is clearly a 
continuous linear functional on X(B) with norm | | L | | < ||g||. Theorem 2 estab
lishes a (1, 1) correspondence between the U and the g. We shall show that to 
each L there corresponds a U. For a fixed x Ç B and variable/ Ç X, L(xf) 
is a continuous linear functional on X, which is characterized by a function 

2Added January 28, 1953. 
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g(t) from X'. The mapping x —» g defines a linear operator U(x) = g. The 
correspondence between x and g is given by 

(8) L(xf)= \){t)g{t)dt. 
J 0 

To show that U is of class {b, o), we shall prove (5) with A < | | L | | . We have to 
show that for each finite set of elements xt £ B (i = 1, . . . , n) with \\xi\\ < 1 
we have \\g\\ < ||L|| where g= U*=i|g*|, gt = U(xi). There are disjoint 
measurable sets et with Uïe* = (0, 1) and g(t) = \gi(t)\ on the set et. Put 
ti{t) — signgi(t), so that e*(/) = 0 outside of et. Let / 6 Xc be arbitrary 
and 

f(0 = E*</( 'W) . 
t=i 

Then by (8) 

(9) f / f * = Z f / l « * l * = E £(*«/««) = i(f )• 
t / 0 i *J et i 

On the other hand, 

iz(f)i< nzii.iif H = iiiii||ni:*«/««iiB||x 

= i m i - | | z i i * « n i / i M | | 

< I I £ | | . | | E I I * * I I I / I I X . , I | = i i i i i . i i f iu . 
Comparing this with (8) we obtain \\g\\ < \\L\\. 

Now let 

(io) (U(x))(t) = (x,m), é exm 
be the representation of U given by Theorem 2. For elements f of X(B) of the form 

n 

we have by (8) and (9) 

(11) L(i) = £ £(*«/,) = £ J y , £/(*,) * 

= f1Z/i(0<*,g(0>*= fV(0,g(0>*. 
t / 0 z t / 0 

Since both L and the last integral in (11) are continuous functional on X(B) 
and the set of the f of the above kind is everywhere dense in X(B), we obtain 
(7) for an arbitrary f £ X(B). 

We also have || \u\ || = \\g\\ > | | L | | > A = \\ \ll\ || which proves that 
| | L | | = |\g\|. This completes the proof. Theorem 4 may also be stated in the 
form (X(B))* = X*(B*). As a corollary we have: 

THEOREM 5. If the spaces B, X are separable and reflexive, then so is X(B). 
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In particular, the vector-valued spaces A((t>,p,B), p>\ are reflexive. 
In the case when B is a finite-dimensional Euclidean space, this was also proved 
by Ellis and Halperin [4]. 
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