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Multinomial processing trees (MPTs) are a popular class of cognitive models for categorical data.
Typically, researchers compare several MPTs, each equipped with many parameters, especially when
the models are implemented in a hierarchical framework. A Bayesian solution is to compute posterior
model probabilities and Bayes factors. Both quantities, however, rely on the marginal likelihood, a high-
dimensional integral that cannot be evaluated analytically. In this case study, we show howWarp-III bridge
sampling can be used to compute themarginal likelihood for hierarchicalMPTs.We illustrate the procedure
with two published data sets and demonstrate how Warp-III facilitates Bayesian model averaging.

Key words: multinomial processing tree, Bayesian model comparison, Bayes factor, bridge sampling,
Warp-III, posterior model probability, Bayesian model averaging.

Multinomial processing trees (MPTs; e.g., Riefer & Batchelder, 1988) are substantively
motivated stochastic models for the analysis of categorical data. MPTs allow researchers to test
theories about cognitive architecture by formalizing qualitatively different cognitive processes
that underlie performance in an experimental paradigm. MPTs are popular in various areas of
psychology and have been applied, for instance, in research on memory, perception, logical
reasoning, and attitudes (for reviews, see Batchelder & Riefer, 1999; Erdfelder et al., 2009; Hütter
& Klauer, 2016). MPTs are related to tree-based item response theory models as presented, for
instance, in Böckenholt (2012a, 2012b); Culpepper (2014), and De Boeck and Partchev (2012).1

Traditionally, parameter estimation in MPTs has relied on maximum likelihood methods for
aggregated data (Hu & Batchelder, 1994; Singmann & Kellen, 2013). Recently, however, MPT
modelers have become increasingly interested in using Bayesian hierarchical methods to examine
individual differences in model parameters (Klauer, 2010; Matzke, Dolan, Batchelder, &Wagen-
makers, 2015; Smith & Batchelder, 2010). Bayesian hierarchical modeling allows researchers
to simultaneously account for the differences and similarities between participants and typically
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provides more accurate statistical inference than the analysis of aggregated data, especially in sit-
uations with moderate between-subject variability and scarce participant-level data (e.g., Gelman
& Hill, 2007).

In typical applications, MPT modelers are interested in comparing a limited set of models.
Themodels can be nested, which is the casewhen testing parameter constraints (e.g., Batchelder&
Riefer, 1990; Singmann,Kellen,&Klauer, 2013), or non-nested,which is the casewhencomparing
structurally different models (e.g., Fazio, Brashier, Payne, & Marsh, 2015; Kellen, Singmann, &
Klauer, 2014). A wide range of model comparison and assessment methods exist both in the
frequentist and Bayesian framework, each with its own goals and operating characteristics, such
as Pearson’sχ2 test, the likelihood ratio test, information criteria such as AIC (Akaike, 1973), BIC
(Schwarz, 1978), DIC (Spiegelhalter, Best, Carlin, & van der Linde, 2002), andWAIC (Watanabe,
2010), leave-one-out cross-validation (Vehtari, Gelman, & Gabry, 2017), and posterior predictive
checks (Gelman, 2013; Meng, 1994; Robins, van der Vaart, & Ventura, 2000). Furthermore,
a range of powerful methods exist for analyzing multinomial data in particular (e.g., Bishop,
Fienberg, & Holland, 1975; Maydeu-Olivares & Joe, 2005). The goal of this case study is to
enrich the model comparison toolkit of MPT modelers by illustrating—with examples from the
literature—a computationally feasible approach to model comparison in hierarchical MPTs based
on Bayes factors and posterior model probabilities.2 Furthermore, the proposed approach also
enables Bayesian model averaging which we advocate as a principled way of testing parameter
constraints while fully taking into account model uncertainty.

Suppose one is interested in comparing a discrete set of M models denoted as M1,M2,

. . . ,MM with corresponding prior model probabilities p(M1), p(M2), . . . , p(MM ), which
satisfy the constraints p(Mi ) ≥ 0 ∀i ∈ {1, 2, . . . , M} and ∑M

i=1 p(Mi ) = 1. The posterior
model probability of Mi is then obtained using Bayes’ rule:

p(Mi | data)
︸ ︷︷ ︸

posterior model probability

= p(data | Mi )
∑M

j=1 p(data | M j ) p(M j )
︸ ︷︷ ︸

updating factor

× p(Mi )︸ ︷︷ ︸
prior model probability

, (1)

where p(data | Mi ) is the marginal likelihood of model Mi .
If model comparison involves assessing the tenability of parameter constraints in a set of

nested models, posterior model probabilities can be used to quantify the model-averaged evidence
that a parameter is free to vary or should be constrained across different groups or experimental
conditions (e.g., Hoeting, Madigan, Raftery, & Volinsky, 1999; Rouder, Morey, Verhagen, Swag-
man, & Wagenmakers, 2017). If the model comparison involves only two models,M1 andM2,
it is convenient to consider the odds of one model over the other one. Bayes’ rule yields:

p(M1 | data)
p(M2 | data)
︸ ︷︷ ︸
posterior odds

= p(data | M1)

p(data | M2)︸ ︷︷ ︸
Bayes factor BF 12

× p(M1)

p(M2)︸ ︷︷ ︸
prior odds

. (2)

Equation (2) shows that the change in odds brought about by the data is given by the ratio of the
marginal likelihoods of the models, a quantity known as the Bayes factor (Etz & Wagenmakers,
2017; Jeffreys, 1961; Kass & Raftery, 1995; Ly, Verhagen, & Wagenmakers, 2016).

Equations (1) and (2) illustrate that the computation of posterior model probabilities and
Bayes factors requires the computation of the marginal likelihood of the models. The marginal

2Note that posterior model probabilities can also be obtained using information criteria (e.g., Burnham & Anderson,
2002; Wagenmakers & Farrell, 2004).
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likelihood is obtained by integrating out the model parameters with respect to the parameters’
prior distribution:

p(data | Mi ) =
∫

�

p(data | θ ,Mi ) p(θ | Mi )dθ . (3)

The marginal likelihood includes a natural penalty for overdue model complexity and implements
a form of the principle of parsimony also known as Occam’s razor (e.g., Jefferys & Berger, 1992;
Myung & Pitt, 1997; Vandekerckhove, Matzke, & Wagenmakers, 2015).3 Although conceptu-
ally straightforward, in practice it is challenging to compute Bayes factors and posterior model
probabilities for hierarchical MPTs because the marginal likelihood features a high-dimensional
integral that cannot be solved analytically.

In this case study, we show howWarp-III bridge sampling (Meng & Schilling, 2002; Meng &
Wong, 1996, henceforth referred to as Warp-III ) can be used to estimate the marginal likelihood
for hierarchical MPTs. Warp-III may be used for nested and, crucially, also non-nested model
comparisons, for which simpler methods, such as the Savage–Dickey density ratio (Dickey &
Lientz, 1970), cannot be applied. Importantly, Warp-III is not specific to hierarchical MPTs; it
may be used to compute the marginal likelihood for a wide range of complex cognitive mod-
els. In fact, Warp-III improves upon simpler bridge sampling techniques (e.g., DiCiccio, Kass,
Raftery, & Wasserman, 1997, Gronau et al., 2017) by respecting potential skewness in the poste-
rior distribution—a typical consequence of estimating parameters of cognitivemodels from scarce
data (e.g., Ly et al., 2018; Matzke et al., 2015). Due to its accuracy and relatively straightforward
implementation, we believe that Warp-III is a promising and timely addition to the Bayesian
toolkit of cognitive modelers in general and MPT modelers in particular.

The article is organized as follows. We first introduce the latent-trait approach to hierarchical
MPTs. We then demonstrate how Warp-III can be used to estimate the marginal likelihood for
latent-traitMPTs. Lastly, we apply themethod to twomodel comparison problems from published
studies. The first example focuses on Bayesian model averaging for nested models; the second
example focuses on the computation of the Bayes factor for non-nested models.

1. Multinomial Processing Trees

Data for MPTs consist of categorical responses4 from several participants to a set of items.
MPTs are based on the assumption that these responses follow a multinomial distribution. MPTs
reparametrize the category probabilities of the multinomial distribution in terms of the model
parameters that represent the probabilities of latent cognitive processes (Riefer & Batchelder,
1988).

Consider the pair-clustering MPT depicted in Fig. 1. The model was developed for the mea-
surement of the storage and retrieval processes that determine the recall of semantically related
word pairs (Batchelder & Riefer, 1980). A typical pair-clustering study involves a free recall
memory experiment, where participants are presented with a list of study words in a word-by-
word fashion. The study list consists of two types of items: semantically related word pairs such
as knife–fork and words without a category partner (i.e., singletons), such as dog. After the study
phase, participants are required to recall as many of the study words as they can. Typically,
semantically related word pairs are recalled consecutively as a “pair-cluster.”

The model represents the interplay between the hypothesized latent cognitive processes in
a rooted tree structure. The pair-clustering MPT features K = 2 independent category systems.

3For details on the predictive interpretation of themarginal likelihood, see SupplementalMaterials available at https://
osf.io/rycg6/.

4Hu (2001), Heck and Erdfelder (2016), and Heck, Erdfelder, and Kieslich (2018b) proposed extensions that also
incorporate response times.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:17:00, subject to the Cambridge Core terms of use.

https://osf.io/rycg6/
https://osf.io/rycg6/
https://www.cambridge.org/core


264 PSYCHOMETRIKA

Figure 1.
Pair-clustering MPT. Available at https://tinyurl.com/yb7bma4e under CC license https://creativecommons.org/licenses/
by/2.0/.

Each category system corresponds to a separate multinomial distribution: one for word pairs
(k = 1) and one for singletons (k = 2). The category probabilities in each system are modeled
using a separate subtree with a finite number of branches.

Each branch of a subtree corresponds to a specific sequence of processing stages and termi-
nates in one of Lk possible response categories denoted as Ckl , where l = 1, . . . , Lk indexes the
lth of Lk possible responses in subtree k. In the pair-clustering MPT, the recall of word pairs is
scored into L1 = 4 categories: (1) Both words of the pair are recalled consecutively (C11); (2)
both words are recalled but not consecutively (C12); (3) only one word is recalled (C13); (4) no
word is recalled (C14). The recall of singletons is scored into L2 = 2 response categories: (1) The
word is recalled (C21); (2) the word is not recalled (C22).

The response category probabilities are expressed as a function of the MPT parameters,
θp ∈ (0, 1) ∀p ∈ {1, 2, . . . , P}, which can be collected in a vector θ = (θ1, θ2, . . . , θP ). The
pair-clustering MPT features four parameters: θ = (c, r, u, a). The cluster-storage parameter c
corresponds to the probability that a word pair is stored as a cluster in memory. The cluster-
retrieval parameter r corresponds to the conditional probability that a clustered word pair is
retrieved from memory during the test phase. The model assumes that stored and retrieved word
clusters are always recalled consecutively. The storage-retrieval parameter u corresponds to the
conditional probability that a member of a word pair is stored and retrieved, given that the word
pair was not clustered. The model makes the simplifying assumption that words from unclustered
pairs are never recalled consecutively. The singleton storage-retrieval parameter a corresponds to
the probability that a singleton is stored and retrieved. In many applications, researchers impose
the constraint that a = u.

The response category probabilities are obtained as follows. First, we obtain the probability
of each branch that terminates in a given response category. Let Bklm denote the mth of Mkl

branches that terminate in response category Ckl . The probability of branch Bklm is obtained by
traversing the tree from root to leaf and multiplying the encountered parameters:

Pr(Bklm | θ) =
P∏

p=1

θ
vklmp
p (1 − θp)

wklmp , (4)

where vklmp ≥ 0 and wklmp ≥ 0 are the number of nodes on branch Bklm that are related to
parameter θp, p = 1, . . . , P , and 1 − θp, respectively. Second, we sum the probabilities of the
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Mkl branches that terminate in Ckl :

Pr(Ckl | θ) =
Mkl∑

m=1

Pr(Bklm | θ). (5)

For instance, the probability of response category C14 is given by Pr(C14 | θ) = c (1− r)+ (1−
c) (1 − u)2.

The probability of the observed response frequencies across category systems denoted by
n = (n11, . . . , n1L1 , . . . , nK1, . . . , nK L K ), where nkl is the observed response frequency for
category l = 1, . . . , Lk in category system (subtree) k = 1, . . . , K , is given by a product-
multinomial distribution:

Pr(N = n | θ) =
K∏

k=1

⎧
⎨

⎩

Jk !
nk1! × nk2! × ... × nkLk !

Lk∏

l=1

[Pr(Ckl | θ)]nkl

⎫
⎬

⎭
, (6)

where Jk denotes the number of items in category system k (see also Klauer, 2010; Matzke et al.,
2015).

1.1. Bayesian Hierarchical MPTs: The Latent-Trait Approach

Bayesian hierarchical approaches explicitly model heterogeneity in participants by intro-
ducing a group-level distribution from which the participant-level parameters are drawn (e.g.,
Gelman & Hill, 2007; Gill, 2002; Lee, 2011; Lee & Wagenmakers, 2013; Rouder & Lu, 2005).5

Here we focus on Klauer’s (2010) latent-trait approach that relies on a multivariate normal group-
level distribution to describe the between-subject variability and the correlations between the
participant-level parameters.

To model participant heterogeneity, observed responses are aggregated over items, but not
over participants, resulting in a vector of category frequencies for each participant i : ni , i =
1, 2, . . . , I , where I is the total number of participants. Each participant obtains a participant-
specific parameter vector θ i of length P .

The latent-trait approach assumes that the probit-transformed participant-level parameter
vectors θ

′
i = �−1(θ i ) follow a P-dimensional multivariate normal distribution with mean vector

μ and covariance matrix �: θ
′
i ∼ NP (μ,�). The probit transformation �−1(θ i ) is defined

component-wise, where�−1(·) corresponds to the inverse of the cumulative distribution function
of the normal distribution. Priors are assigned toμ and�.We follow earlier implementations of the
latent-trait approach and assign independent standard normal distributions to the P components
of μ (Heck, Arnold, & Arnold, 2018a; Matzke et al., 2015). This choice corresponds to uniform
priors on the probability scale for the grand means. For the covariance matrix �, a convenient
prior choice would be an inverse Wishart prior with degrees of freedom ν = P + 1 and identity
scale matrix. This setting leads to uniform priors on the correlation parameters; however, this
choice is constraining on the standard deviation parameters. Although changing the degrees of
freedom ν affords more flexibility for modeling the standard deviations, it comes at the cost of
constraining the prior on the correlation parameters (Gelman & Hill, 2007).

This dilemma can be circumvented by using a scaled inverse Wishart prior as introduced by
Gelman and Hill (2007) and proposed in the context of hierarchical MPT modeling by Klauer
(2010). Compared to a regular inverse Wishart prior, the scaled version has the advantage that it

5Bayesian hierarchical models can be also used to account for heterogeneity in items instead of participants.
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allows one to model the standard deviations more flexibly while retaining the desirable uniform
prior on the correlation parameters. The scaled inverse Wishart prior is based on the following
decomposition of the covariance matrix �:

� = Diag(ξ) QDiag(ξ), (7)

where ξ is a vector of P scaling parameters and Q corresponds to the P × P unscaled covariance
matrix. The scaled inverse Wishart prior is obtained by placing a regular inverse Wishart prior on
the unscaled covariance matrix Q and a suitable prior on the vector of scaling parameters ξ .

We follow Klauer (2010) and assign Q an inverse Wishart prior with degrees of freedom
ν = P + 1 and scale matrix I P (i.e., P × P identity matrix). For the P components of ξ , we
follow Heck et al. (2018a) and use independent uniform priors that range from zero to ten. These
choices correspond to relatively diffuse priors for the standard deviations of the random effects
on the probit scale and uniform priors for the correlations between the random effects.

Note that these prior distributions have been proposed in a context of parameter estimation,
where the exact choice of the prior is irrelevant as long as sufficiently informative data are available.
In contrast, in the context of model comparison, the priors have an important and lasting effect:
As shown in Eq. (3), the marginal likelihood is obtained by taking a weighted average of the
probability of the data across all possible parameter settings where the weights correspond to
the parameters’ prior density. We argue that the standard normal and uniform priors for the
grand means and the correlations, respectively, provide a reasonable default setting also from the
perspective of model comparison. The choice of the prior for ξ is less straightforward. We report
the results corresponding to the default setting of the recently developed MPT software package
TreeBUGS (Heck et al., 2018a), butwe probed the robustness of our conclusionswith a sensitivity
analysis using ξp ∼ Uniform(0, ξmax)∀p ∈ {1, 2, . . . , P}, with ξmax = 2 instead of ξmax = 10, a
prior that was chosen based on the implied group-level distributions on the probability scale. As
the conclusions were unaffected by the choice of the upper bound, the results of the sensitivity
analysis are mentioned only briefly and are presented in more detail in Supplemental Materials
available at https://osf.io/rycg6/.

Under these prior settings, the probit-transformed participant-level MPT parameter vectors
can be written as:

θ
′
i = μ + ξ � ωi , (8)

where ωi is the P-dimensional vector with the unscaled random effects for participant i and
� denotes the Hadamard product (i.e., entry-wise multiplication, e.g., Liu & Trenkler, 2008).
The unscaled random effects are drawn from a P-dimensional zero-centered multivariate normal
distribution with covariance matrix Q: ωi ∼ NP (0, Q).

Note that themodel is overparameterized: ξ and Q cannot be interpreted separately. Similarly,
the unscaled random effects ωi cannot be interpreted on their own but need to be combined with
the scaling parameter vector ξ to form the random effects of interest. The scaling parameters
ξ , the unscaled covariance matrix Q, and the unscaled random effects ωi are not of interest in
themselves and are simply an artifact of using a flexible scaled inverse Wishart prior on �: The
parameters of interest are θ

′
i ,μ, and�. Therefore, the scaled inverseWishart prior can be regarded

as a form of parameter expansion (e.g., Gelman & Hill, 2007) which has been reported to speed
up convergence when fitting the model using Markov chain Monte Carlo sampling (MCMC; e.g.,
Gamerman & Lopes, 2006).

The reader is referred toKlauer (2010) andMatzke et al. (2015) for amore detailed description
of the latent-trait approach. Parameter estimation may proceed using MCMC sampling imple-
mented in standard Bayesian statistical software such as JAGS (Plummer, 2003) or Stan (Stan
Development Team, 2016).
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1.2. Computing the Marginal Likelihood

The marginal likelihood for latent-trait MPTs is given by:6

Pr(N = n) =
∫

...

∫ I∏

i=1

⎡

⎢
⎣

individual-level
︷ ︸︸ ︷
Pr(N i = ni | μ, ξ , ωi )

group-level
︷ ︸︸ ︷
p(ωi | Q)

⎤

⎥
⎦

priors
︷ ︸︸ ︷
p(Q)p(μ)p(ξ) dQdμdξdω1...dωI

=
∫

...

∫ I∏

i=1

[ K∏

k=1

{
Jk !

nik1! × nik2! × ... × nikLk !
Lk∏

l=1

[
Pr(Ckl | μ, ξ ,ωi )

]nikl

}

︸ ︷︷ ︸
Pr(N i =ni |μ,ξ ,ωi )

× (2π)−
P
2 |Q|− 1

2 exp

{

− 1

2
ω�

i Q−1ωi

}

︸ ︷︷ ︸
p(ωi |Q)

]

× 1

2
ν P
2 �P ( ν

2 )
|Q|− ν+P+1

2 exp

{

−1

2
tr
(
Q−1)

}

︸ ︷︷ ︸
p(Q)

× (2π)−
P
2 exp

{

− 1

2
μ�μ

}

︸ ︷︷ ︸
p(μ)

(ξmax)
−P

︸ ︷︷ ︸
p(ξ)

dQdμdξdω1...dωI , (9)

where �P (a) = π P(P−1)/4∏P
j=1 �

(
a + 1− j

2

)
and �(z) = ∫∞

0 xz−1e−x dx are the multivariate

and regular gamma function, respectively. In this parametrization, we do not need to explicitly
integrate out the participant-level parameter vectors θ i since they are functions of μ, ξ , and ωi

(see Eq. (8)).
We exploit the fact that the covariancematrix Q in Eq. (9) can be integrated out in closed form

(see also, Overstall & Forster, 2010); a detailed derivation is provided in Supplemental Materials.
The marginal likelihood is then given by:

Pr(N = n) =
∫

...

∫ I∏

i=1

⎡

⎣
K∏

k=1

{
Jk !

nik1! × nik2! × ... × nikLk !
Lk∏

l=1

[
Pr(Ckl | μ, ξ ,ωi )

]nikl

}
⎤

⎦

×�P ( ν+I
2 )

�P ( ν
2 )

π− I P
2

∣
∣��� + I P

∣
∣

ν+I
2

× (2π)−
P
2 exp

{

− 1

2
μ�μ

}

× (ξmax)
−P dμdξdω1...dωI , (10)

where � is an I × P matrix of the P-dimensional random effects vectors ωi of the I participants.
Even after integrating out Q, the expression for the marginal likelihood is still a high-dimensional
integral (i.e., P(I + 2) dimensions); the challenge is to find a method which yields accurate
estimates of this integral.

6We omit conditioning on the model for enhanced legibility.
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2. Warp-III Bridge Sampling for MPTs

We propose to useWarp-III bridge sampling (Meng & Schilling, 2002; Meng &Wong, 1996;
Overstall, 2010), an advanced version of bridge sampling, to evaluate the high-dimensional inte-
gral inEq. (10).Bridge sampling is a generalmethod for estimating normalizing constants7, a prob-
lem that is not only encountered in Bayesian inference, but also in likelihood-based approaches
(Gelman &Meng, 1998). We first outline the basic principles of bridge sampling and then present
the details of the advancedWarp-III method. The reader is referred to the recent tutorial by Gronau
et al. (2017) for a detailed explanation of the general bridge sampling approach.

Let ζ = (μ, ξ ,ω1, . . . ,ωI ) be the vector of quantities that must be integrated out to obtain
the marginal likelihood, so that

Pr(N = n) =
∫

Pr(N = n | ζ ) p(ζ )dζ . (11)

General bridge sampling is based on the following identity:

1 =
∫
bridge function

︷︸︸︷
h(ζ ) p(ζ | N = n)

proposal distribution
︷︸︸︷
g(ζ ) dζ

∫
h(ζ ) p(ζ | N = n)

︸ ︷︷ ︸
posterior distribution

g(ζ ) dζ
, (12)

where p(ζ | N = n) is the posterior distribution of ζ , g(ζ ) is the probability density function of a
proposal distribution, and h(ζ ) is a function such that 0 <

∣
∣
∫

h(ζ ) p(ζ | N = n) g(ζ )dζ
∣
∣ < ∞.

It follows from Eq. (12) that

Pr(N = n) =
∫

h(ζ )Pr(N = n | ζ ) p(ζ ) g(ζ )dζ
∫

h(ζ ) g(ζ ) p(ζ | N = n)dζ
= Eg(ζ )

[
h(ζ )Pr(N = n | ζ ) p(ζ )

]

Ep(ζ |N=n)

[
h(ζ ) g(ζ )

] . (13)

The bridge sampling estimate of the marginal likelihood is then obtained by sampling from g(ζ )

and p(ζ | N = n) and then using Monte Carlo approximations to estimate the expected values.
The optimal choice of h(ζ ), one that minimizes the relative mean-squared error of the esti-

mator, is given by:

ho(ζ ) ∝ [
s1 Pr(N = n | ζ ) p(ζ ) + s2 Pr(N = n) g(ζ )

]−1
, (14)

where si = Di
D1+D2

, i ∈ {1, 2}, where D1 and D2 denote the number of draws from p(ζ | N = n)

and g(ζ ), respectively, used to approximate the expected values (Meng & Wong, 1996). We set
D1 = D2. Note that ho is only optimal if the draws from the posterior distribution are independent
which is not the case with MCMC procedures. To account for this fact, we replace D1 in defining
the weights s1 and s2 by the effective sample size obtained using the coda R package (Plummer,

7Bridge sampling in its original form has been proposed to estimate a ratio of normalizing constants. This approach,
however, becomes challenging and inefficient in case the two models have different parameter spaces (e.g., non-nested
comparisons), and potentially very little overlap between the posterior distributions. For these cases, it may be easier and
more efficient to compute each normalizing constant separately (e.g., DiCiccio et al., 1997;Overstall&Forster, 2010). This
ensures that the two relevant distributions (i.e., proposal and posterior) for each of the separate bridge sampling applications
are close to each other yielding an efficient estimator. Therefore, we recommend computing each normalizing constant
separately to enable application of the method to a wide range of model comparison scenarios.
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Best, Cowles, & Vines, 2006).8 As ho(ζ ) depends on Pr(N = n), the very quantity we want to
estimate, we followMeng andWong (1996) and use an iterative scheme to update an initial guess
of the marginal likelihood until convergence:9

P̂r(N = n)(t+1) =
1

D2

D2∑

r=1

l2,r
s1 l2,r +s2 P̂r(N=n)(t)

1
D1

D1∑

j=1

1
s1 l1, j +s2 P̂r(N=n)(t)

, (15)

where l1, j = Pr(N=n|ζ ∗
j ) p(ζ ∗

j )

g(ζ ∗
j )

, l2,r = Pr(N=n|ζ̃ r ) p(ζ̃ r )

g(ζ̃ r )
, {ζ ∗

1, . . . , ζ
∗

D1
} are D1 draws from

p(ζ | N = n), and {ζ̃ 1, . . . , ζ̃ D2
} are D2 draws from g(ζ ).

A remaining question is how to choose g(ζ ). The precision of the bridge sampling estimator
is governed by the number of samples from g(ζ ) and the overlap between g(ζ ) and p(ζ | N = n)

(Meng & Wong, 1996). Therefore, g(ζ ) should closely resemble the posterior distribution. For
instance, we may choose a multivariate normal distribution for g with mean vector and covariance
matrix that match the corresponding quantities of the posterior samples. Although themultivariate
normal approach works well in many applications (e.g., Gronau et al., 2017; Overstall & Forster,
2010), it can be inefficient when the posterior distribution is skewed.

Warp-III improves upon the multivariate normal bridge sampling approach by matching, not
only the first two, but also the third moment (i.e., skewness) of g and the posterior distribution.
Consequently, in case there is no skewness, Warp-III results in estimates with the same precision
as the ones from the simpler multivariate normal approach. However, crucially, in the presence of
skewness, Warp-III is able to match g and the posterior distribution more closely which results in
a higher precision of the marginal likelihood estimates compared to the simpler approach. How
much of an improvement Warp-III is over the simpler multivariate normal approach may depend
on the particular example at hand.

InWarp-III, g is fixed to amultivariate standard normal distribution. The posterior distribution
is then manipulated—“warped”—so that its mean vector, covariance matrix, and skew match
g. Crucially, the warped posterior distribution retains the normalizing constant of the posterior
distribution. Figure 2 illustrates the rationale of theWarp-III transformation for the univariate case.
The histogram in the upper-left panel shows hypothetical “unbounded” posterior samples that can
range across the entire real line; the solid line shows the standard normal proposal distribution g.
The overlap between the two distributions is clearly suboptimal. Bridge sampling applied to these
two distributions can be thought of as “Warp-0” because the posterior distribution is not modified.
The upper-right panel illustrates “Warp-I”: Subtracting the mean of the posterior samples from all
posterior samples matches the first moment of the distributions. The lower-right panel illustrates
“Warp-II”: Dividing the zero-centered posterior samples by their standard deviation matches the
first two moments of the distributions. This approach is practically equivalent to the multivariate
normal bridge sampling approach described above. Lastly, the lower-left panel illustrates Warp-
III: Randomly assigning a minus sign to the standardized posterior samples matches also the third
moment of the distributions.

Warp-III assumes that all components of the parameter vector can range across the entire
real line. In the context of latent-trait MPTs, this assumption is not fulfilled since ξp ∈

8Specifically, we used the median effective sample size across all posterior components.
9In our experience, the exact value of the initial guess typically does not have a lasting influence on the resulting

estimate. Nevertheless, good initial values may lead to faster convergence. For implementation details, see Gronau et al.
(2017), especially Appendix B.
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Figure 2.
Matching the proposal and posterior distribution with warping. Histograms show the posterior distribution; density lines
show the standard normal proposal distribution. Available at https://tinyurl.com/y7owvsz3 under CC license https://
creativecommons.org/licenses/by/2.0/.

(0, ξmax) ∀p ∈ {1, . . . , P}. We therefore transform ξ so that ξ trans = �−1
(

ξ
ξmax

)
with Jaco-

bian (ξmax)
P NP (ξ trans; 0, I P ), whereNP (x; y, Z) denotes the probability density function of a

P-dimensional normal distribution with mean vector y and covariance matrix Z which is eval-
uated for the vector x.10 Let ψ = (μ, ξ trans,ω1, . . . ,ωI ) denote the resulting parameter vector
where all components are on the real line.

Warp-III is then based on applying the following stochastic transformation to ψ :

η = b︸︷︷︸
symmetry

× R−1
︸︷︷︸

covariance I

× (ψ − v)
︸ ︷︷ ︸
mean 0

, (16)

where b ∼ Bernoulli(0.5) on {−1, 1} and v corresponds to the expected value ofψ (i.e., the mean
vector). The matrix R is obtained via the Cholesky decomposition of the covariance matrix of ψ ,
denoted as S, thus, S = RR�. In practice, v and S are unknown and must be approximated using
the posterior samples. Note that Eq. (16) simply generalizes the intuition illustrated in Fig. 2 for
the univariate case to the general case with multiple parameters.

10As before, the probit transformation is defined component-wise.
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Due to the Bernoulli randomvariable b, thewarped posterior density has the form of amixture
density (see also Overstall, 2010, p. 70):

pη(η | N = n) = |R|
2

[
p̃ψ (v − Rη | N = n)

Pr(N = n)
+ p̃ψ (v + Rη | N = n)

Pr(N = n)

]

= p̃η(η | N = n)

Pr(N = n)
,

(17)

where p̃η(η | N = n) = |R|
2

[
p̃ψ (v − Rη | N = n) + p̃ψ (v + Rη | N = n)

]
denotes the un-

normalized warped posterior distribution and p̃ψ (· | N = n) denotes the un-normalized posterior
distribution that has been transformed to the real line (but not warped). This proves that the warped
posterior distribution retains the normalizing constant of the original posterior distribution.

TheWarp-III estimator of themarginal likelihood is thenderivedbyusing thewarpedposterior
distribution pη(η | N = n) instead of p(ζ | N = n) in Eq. (12). Equation (13) shows that this
results in a ratio of two expected values, where the numerator is an expected value with respect to
the multivariate standard normal proposal distribution g(η) and the denominator is an expected
value with respect to the warped posterior distribution pη(η | N = n). Hence, we could obtain
an estimate of the marginal likelihood by first warping the posterior samples using Eq. (16), then
sampling from the proposal distribution, and applying the iterative updating scheme in Eq. (15).

However, in line with the literature (e.g., Sinharay & Stern, 2005), we rewrite the expected
value in the denominator of Eq. (13) in terms of the unbounded posterior samples that are trans-
formed to the real line but are not warped; a derivation is provided in Supplemental Materials. The
estimate of the marginal likelihood is then obtained by applying the iterative scheme in Eq. (15)
using:

l1, j =
|R|
2

[
p̃ψ (2v − ψ∗

j | N = n) + p̃ψ (ψ∗
j | N = n)

]

g
(
R−1

(
ψ∗

j − v
)) , (18)

and

l2,r =
|R|
2

[
p̃ψ (v − Rη̃r | N = n) + p̃ψ (v + Rη̃r | N = n)

]

g(η̃r )
, (19)

where {ψ∗
1, . . . ,ψ

∗
D1

} are D1 draws from pψ (ψ | N = n) and {η̃1, . . . , η̃D2
} are D2 draws

from the proposal distribution g(η). Furthermore, p̃ψ (ψ | N = n) denotes the un-normalized
posterior density of the unbounded posterior samples; it is therefore written in terms of ξ trans and
is adjusted by the Jacobian term:11

p̃ψ (ψ | N = n) =
I∏

i=1

⎡

⎣
K∏

k=1

{
Jk !

nik1! × nik2! × ... × nikLk !
Lk∏

l=1

[
Pr(Ckl | μ, ξ trans,ωi )

]nikl

}
⎤

⎦

×�P ( ν+I
2 )

�P ( ν
2 )

π− I P
2

∣
∣��� + I P

∣
∣

ν+I
2

× (2π)−
P
2 exp

{

− 1

2
μ�μ

}

× (2π)−
P
2 exp

{

− 1

2
ξ�
transξ trans

}

. (20)

11Note that ξmax drops out of the expression because it cancels with the first term of the Jacobian. Implicitly, however,

it still influences the marginal likelihood because it appears in the transformation equation ξ trans = �−1
(

ξ
ξmax

)
. It is

also needed for evaluating Pr(Ckl | μ, ξ trans, ωi ) since in order to obtain the MPT parameters on the probit scale (i.e.,
Eq. (8)) we need to transform ξ trans back to ξ via the inverse transformation ξ = ξmax �

(
ξ trans

)
.
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Note that rewriting the expected value in terms of p̃ψ (ψ | N = n) is only a technical nicety. This
approach is identical to applying the Warp-III transformation to the posterior samples and then
using the iterative scheme with the warped posterior density and a multivariate standard normal
proposal distribution.

3. Empirical Examples

3.1. Example 1: Nested Model Comparison

We re-analyzed the pair-clustering data set reported in Riefer, Knapp, Batchelder, Bamber,
and Manifold (2002) using the hierarchical latent-trait approach.12 Experiment 4 examined the
memory of patients with brain damage due to prolonged alcoholism in comparison with a control
group of alcoholic patients without indications of brain damage. The participants attempted to
memorize the same list of 20 categorically relatedwordpairs in a series of six study-test trials.13 For
demonstration purposes, we focused on the free recall performance of the 21 control participants.
Specifically, we investigated whether the model parameters change from the first to the second
trial indicating a change in the storage and retrieval processes as a function of practice using
posterior model probabilities and Bayesian model averaging.

3.1.1. Model Specification To model differences in parameters, we augmented Eq. (8) with a
parameter vector that captures the difference in parameters between the two trials: δ = (δc, δr , δu).
The probit-transformed parameter vectors of participant i for the first trial (θ

′
1,i ) and the second

trial (θ
′
2,i ) are then obtained as follows:

θ
′
1,i =

group mean
for first trial
︷ ︸︸ ︷

μ − δ

2
+ ξ � ωi ,

θ
′
2,i = μ + δ

2︸ ︷︷ ︸
group mean

for second trial

+ ξ � ωi .

(21)

For an alternative approach tomodelingwithin-subject differences inmodel parameters, the reader
is referred to Rouder, Lu, Morey, Sun, and Speckman (2008).

Table 1 shows the 23 = 8 nested models that implement the eight sets of possible parameter
constraints. M1 allows all three parameters to vary between trials so that δ = (δc, δr , δu). In
contrast,M8 posits that none of the parameters vary between trials so that δ = (0, 0, 0). Models
M2 to M7 are between these extremes and allow either one or two parameters to vary between
trials.

We used independent zero-centered normal priors for the components of δ. We explored a
narrow (σ narrow

δ ≈ 0.52), medium (σmedium
δ ≈ 0.84), and a wide (σwide

δ ≈ 1.28) zero-centered
normal prior to assess the sensitivity of the results to thewidth of the test-relevant prior distribution.
As shown in Supplemental Materials, the standard deviations σδ were chosen to correspond to
small, medium, and large effects on the probability scale centered around 0.5. Priors for the
remaining parameters followed the specification described earlier.

12Data were obtained from https://bayesmodels.com/; see also Lee and Wagenmakers (2013).
13Riefer et al. (2002) did not administer singletons.
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Table 1.
Overview of the eight nested models for the analysis of the first two trials of the pair-clustering data set reported in Riefer
et al. (2002).

Free parameters Model

M1 M2 M3 M4 M5 M6 M7 M8

c � � � �
r � � � �
u � � � �

Note. M1 allows all three parameters to vary between trials, and M8 posits that none of the parameters
vary between trials. ModelsM2 toM7 are between these extremes.

Figure 3.
Posterior distributions of the probit group-level means (plotted on the probability scale) from the full model M1 for the
analysis of the first two trials of the pair-clustering data reported in Riefer et al. (2002). The solid lines correspond to
the posteriors for the first trial and the dotted lines to the posteriors for the second trial. Available at https://tinyurl.com/
y9a33l4t under CC license https://creativecommons.org/licenses/by/2.0/.

We estimated the posterior distribution of the model parameters using JAGS by adapting the
script provided by Matzke et al. (2015). The JAGS code is available in Supplemental Materials.
We ran three MCMC chains with overdispersed start values, discarded the first 4000 posterior
samples as burn in, and retained only every 20th sample to reduce autocorrelation. Results reported
below are based on a total of 90,000 posterior samples. Convergence of the MCMC chains was
assessed by visual inspection and the R̂ statistic (R̂ < 1.05 for all parameters; Gelman & Rubin,
1992).

Figure 3 shows the resulting posterior distributions of the probit group-level means from the
fullmodelM1; the parameterswere transformed back to the probability scale. The posteriorswere
computed using the medium prior setting (σmedium

δ )—results obtained with the narrow and wide
prior were highly similar and are not displayed. The plot of the posterior distributions based on
the alternative prior choice for the elements of ξ (i.e., uniform priors with upper bound ξmax = 2
instead of ξmax = 10) was visually almost indistinguishable from the one presented here and has
hence been relegated to Supplemental Materials. The cluster-storage c parameter did not change
substantially, whereas the storage-retrieval u, and especially the cluster-retrieval r parameter,
seemed to increase from the first trial to the second.

3.1.2. Computing Marginal Likelihoods with Warp-III Equation (20) was adjusted to include
the relevant prior distributions for the elements of δ. For each model, we split the 90,000 posterior
samples in two equal parts (first and secondhalf of the iterations per chain) and used thefirst part for
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Figure 4.
Posterior model probabilities (left panel) and posterior inclusion probabilities (right panel) for the analysis of the first two
trials of the pair-clustering data reported in Riefer et al. (2002) obtained with Warp-III bridge sampling. In the left panel,
the x-axis indicates which parameters were allowed to vary from the first to the second trial (e.g., c − u corresponds to
M3 where r was fixed between trials). Gray symbols show the results of the 50 repetitions, and black symbols display
the posterior model probabilities and posterior inclusion probabilities that are based on the median of the 50 estimated log
marginal likelihoods. Circles show results obtained with the narrow prior, diamonds with the medium prior, and triangles
with the wide prior. The dotted lines show the prior model probabilities and prior inclusion probabilities. Available at
https://tinyurl.com/yaxbj9o6 under CC license https://creativecommons.org/licenses/by/2.0/.

estimating R and v and the second part for the iterative updating scheme in Eq. (15) (Overstall &
Forster, 2010). Hence, D1 = D2 = 45, 000. To assess the accuracy of the resulting estimates, we
repeated this procedure 50 times.14 We implemented the procedure in R (R Core Team, 2016). For
efficiency, we parallelized the computations, and coded the computationally intensive elements in
efficient C++ code which was called from within R using Rcpp (Eddelbuettel et al., 2011). Using
a standard personal computer and four CPU cores, computing the marginal likelihood for each
repetition took less than one minute per model. The code is available in Supplemental Materials.

3.1.3. Posterior Model Probabilities To formally quantify evidence for the differences in
parameters, we computed the posterior model probabilities of the eight models using the marginal
likelihoods obtained with Warp-III. We assumed that all models were equally likely a priori. The
left panel of Fig. 4 shows the posterior model probabilities for the narrow, medium, and wide
prior settings. The plot of the posterior model probabilities based on the alternative prior choice
for the elements of ξ (i.e., uniform priors with upper bound ξmax = 2 instead of ξmax = 10) was
visually almost indistinguishable from the one presented here and has hence been relegated to
Supplemental Materials. Formal model comparison confirmed the results of the visual inspection
of the posterior distributions shown in Fig. 3: M2, the model that allows for a difference in r
and u, received the most support from the data. As expected, the width of the test-relevant prior δ

influenced the value of the marginal likelihood, but it did not change the conclusions qualitatively.
Warp-III provided accurate estimates of the posterior model probabilities as indicated by the small
variability across the 50 repetitions (i.e., gray symbols). For this nested example, the posterior
model probabilities can be also obtained using the Savage–Dickey density ratio representation
of the Bayes factor (Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Grasman,
2010). As shown in Supplemental Materials, the Savage–Dickey procedure resulted in posterior
model probabilities that were highly similar to the ones obtained with Warp-III.

14We assessed the accuracy of the estimates conditional on the posterior samples, that is, for each repetition, we
used the same posterior samples but generated new samples from the proposal distribution. Whenever feasible, it may be
advantageous to also generate new posterior samples in each repetition.
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3.1.4. Bayesian Model Averaging Bayesian model averaging does not require researchers to
commit to a single “best”model; it allows researchers to acknowledge uncertainty about the choice
of the correctmodel (e.g.,Hoeting et al., 1999;Rouder et al., 2017). This is achieved by considering
the posterior inclusion probabilities of the parameters. Posterior inclusion probabilities quantify
the model-averaged evidence for a change in a given parameter; they can be obtained by summing
the posterior model probabilities of the models that allow the parameter to differ between the
trials. For instance, the posterior inclusion probability of the c parameter is obtained by summing
the posterior model probabilities of M1, M3, M4, and M6. Posterior inclusion probabilities
are then compared to the prior inclusion probabilities, in this case 0.5, which are obtained in an
analogous manner but based on the prior model probabilities.15 The right panel of Fig. 4 shows
the posterior inclusion probabilities for the three prior settings. The plot of the posterior inclusion
probabilities based on the alternative prior choice for the elements of ξ (i.e., uniform priors with
upper bound ξmax = 2 instead of ξmax = 10) was visually almost indistinguishable from the one
presented here and has hence been relegated to Supplemental Materials. The posterior inclusion
probabilities of the r and u parameter are higher than the prior inclusion probabilities, indicating
evidence for a difference in these parameters between trials. In contrast, the posterior inclusion
probability of c is lower than the corresponding prior inclusion probability, indicating evidence for
invariance between the trials. As before, the width of the δ prior does not change the conclusions
qualitatively.

3.1.5. Substantive Contribution The data from Riefer et al. (2002) have been analyzed in
a number of articles. The original article analyzed the aggregated data (an approach known to
suffer from limitations in case there is heterogeneity across participants, e.g., Klauer, 2006) and
considered the p values of G2 statistics to investigate whether parameters differ across trials.
Smith and Batchelder (2010) re-analyzed a subset of the data using the hierarchical beta-MPT
model (which specifies group-level beta distributions and thus differs from the latent-trait approach
that we used).16 To investigate whether parameters differ across trials, Smith and Batchelder (a)
considered the posterior distribution of the difference between trials for the group-level mean
parameters and (b) ran a classical paired sample t test on the individual-level parameter estimates.
These approaches, however, do not allow one to quantify evidence for an invariance (i.e., a simpler
model where some parameters do not differ across trials) on a continuous scale in a systematic
way and, crucially, they do not allow one to disentangle “absence of evidence” (i.e., the data
are uninformative) and “evidence of absence” (i.e., the data support a simpler model).17 These
shortcomings can be addressed by computing Bayes factors and posterior model and posterior
inclusion probabilities. “Absence of evidence” can be inferred fromBayes factors close to one and
posteriormodel and posterior inclusion probabilities close to the corresponding prior probabilities.
In contrast, “evidence of absence” can be inferred from large Bayes factors in favor of the simpler
model, and in situations when the posterior model probability of the simpler model is the highest
or when the posterior inclusion probability is smaller than the prior inclusion probability.

Our Bayesian re-analysis suggests that there is strong evidence that the probability of retriev-
ing word pairs that have been stored as a cluster (i.e., r ) changed from the first to the second
trial. Furthermore, there is evidence that the probability of storing and retrieving words that have
not been stored as a cluster (i.e., u) differed between the two trials. Crucially, our approach also
allowed us to conclude that there is some evidence that the probability of storing a word pair as a

15The change from prior inclusion odds to posterior inclusion odds can also be quantified by means of an inclusion
Bayes factor (not reported).

16Note that this data set has been also analyzed inLee andWagenmakers (2013, chapter 14). In this case, the hierarchical
latent-trait approach was used; however, no explicit model comparison or hypothesis testing was conducted.

17Note also that it is well known that the two-step procedure (b) used by Smith and Batchelder can yield biased
conclusions (Boehm, Marsman, Matzke, & Wagenmakers, 2018).
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cluster (i.e., c) did not change from the first to the second trial (although this evidence is not that
pronounced since the posterior inclusion probability for a difference in c is—depending on the
prior choice—relatively close to the prior inclusion probability of .5). Another key improvement
in our analysis over the above-mentioned analyses is the use of Bayesian model averaging. In this
example, M2 received the highest posterior probability; however, M1 also received substantive
posterior probability. Therefore, selecting a single best model (i.e., M2) and basing final infer-
ence solely on this model might be suboptimal at best and misleading at worst. In contrast, when
using the model-averaged posterior inclusion probabilities for drawing conclusions about which
parameters differ between trials, one takes into account all models under consideration according
to their plausibilities in light of the observed data.

Finally, note that onemight argue that this data set is relatively small and is thus uninformative.
However, one strength of the Bayesian approach is that it allows one to quantify whether the data
are informative or not. For this example, the Bayesian results suggest that the data are in fact
informative which is indicated by posterior model/inclusion probabilities that are quite different
from the corresponding prior probabilities.

3.2. Example 2: Non-Nested Model Comparison

We re-analyzed data from Experiment 2 reported by Fazio et al. (2015) who investigated
the influence of knowledge on the illusory truth effect. The illusory truth effect refers to the
phenomenon that, in the absence of knowledge about the truth status of a statement, repeated
statements are easier to process and are judged more truthful than new statements. Fazio et al.,
however, provided evidence that participants tend to rely on the ease of processing (i.e., fluency)
even when they have knowledge about the statement.

We re-analyzed data from 39 participants who indicated the truthfulness (i.e., “true”/“false”)
of 176 statements, half of which were true and half of which were false. Half of the statements
were likely to be known according to general knowledge norms (“known” statements) and half of
them were likely to be unknown (“unknown” statements). An example of a true known statement
is “The Pacific Ocean is the largest ocean on Earth.” An example of a false unknown statement is
“Billy the Kid’s last name is Garrett.” Tomanipulate fluency, half of the statements were presented
twice, once in the exposure phase and once in the truth-rating phase, whereas the other half was
only presented in the truth-rating phase. Hence, the experiment had a 2 (truth status: true vs.
false) × 2 (assumed knowledge: known vs. unknown) × 2 (repetition: repeated vs. not repeated)
balanced within-subject design, and each cell of the design featured 22 statements.

3.2.1. Model Specification Fazio et al. (2015) constructed two MPTs to study the illusory
truth effect. The knowledge-conditional model depicted in the top panel of Fig. 5 assumes that
participants rely on knowledge when assessing truthfulness and only rely on fluency when they
are unable to retrieve knowledge about the statement. Parameter k represents the probability of
retrieving knowledge about the statement from memory. If knowledge is retrieved, participants
are assumed to give the correct response (i.e., “true” for true statements and “false” for false
statements). If no knowledge is retrieved with probability 1− k, participants rely on fluency with
probability f and respond “true.” If participants do not rely on fluencywith probability 1− f , they
guess “true” with probability g and “false” with probability 1 − g. Responses to true statements
are scored into the categories C11 (correct “true” response) and C12 (incorrect “false” response).
Responses to false statements are scored into the categories C21 (incorrect “true” response) and
C22 (correct “false” response). In contrast, the fluency-conditional model depicted in the bottom
panel reflects the notion that participants mainly rely on fluency and only use knowledge in the
absence of fluency. The models feature the same set of parameters, but they assume a different
conditional probability structure.
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Figure 5.
Knowledge-conditional (top panel) and fluency-conditional (bottom panel) MPTs. Available at https://tinyurl.com/
ya8sovfr under CC license https://creativecommons.org/licenses/by/2.0/.

For each model, we replicated the two subtrees four times (i.e., a total of eight subtrees per
model) to accommodate the design of the experiment: The first replicate corresponded to known
true and false statements that were not repeated, the second to known true and false statements
that were repeated, the third to unknown true and false statements that were not repeated, and the
fourth to unknown true and false statements that were repeated. Following Fazio et al. (2015), we
used separate knowledge parameters for known (kk) and unknown (ku) statements, and separate
fluencyparameters for repeated statements ( fr ) and statements shownonlyonce ( fn). Theguessing
parameter g was constrained to be equal across the four replicates. We implemented the models
within the hierarchical latent-trait approach, using the prior specifications described earlier.

We estimated the posterior distribution of themodel parameters usingJAGS, ran threeMCMC
chains with overdispersed start values, discarded the first 4000 posterior samples as burn in,
and retained only every 50th sample. Results reported below are based on a total of 180, 000
posterior samples. The posterior distributions of the group-level mean parameters are displayed
in Supplemental Materials.

3.2.2. Computing Bayes Factors with Warp-III For each model, we split the 180, 000 posterior
samples in two equal parts (first and second half of the iterations per chain) and used the first
part for estimating R and v and the second part for the iterative updating scheme in Eq. (15)
(D1 = D2 = 90, 000). Using a standard personal computer and four CPU cores, computing the
marginal likelihood took approximately three minutes per model.

The resulting marginal likelihoods were used to compute the Bayes factor in favor of the
fluency-conditional model over the knowledge-conditional model. To assess the accuracy of the
resulting Bayes factor, we repeated this procedure 50 times. Estimates of the Bayes factor ranged
from 1.3 × 1042 to 3.6 × 1043 in favor of the fluency-conditional model. Estimates of the Bayes
factor based on the alternative prior choice for the elements of ξ (i.e., uniform priors with upper
bound ξmax = 2 instead of ξmax = 10) ranged from 1.7 × 1041 to 1.7 × 1043 in favor of the
fluency-conditional model. In line with the conclusion drawn by Fazio et al. (2015) based on
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Figure 6.
Log Bayes factor estimates in favor of the fluency-conditional (FC) model over the knowledge-conditional (KC) model
as a function of the number of posterior samples. The Warp-III estimates are displayed in white, and the estimates based
on the simpler multivariate normal approach are displayed in gray. Available at https://tinyurl.com/ydbfev7w under CC
license https://creativecommons.org/licenses/by/2.0/.

the G2 statistic, this result provides overwhelming evidence in favor of the fluency-conditional
model.18

Figure 6 displays theWarp-III Bayes factor estimates (on the log scale) in white as a function
of the number of posterior samples used in the bridge sampling procedure.19 As a comparison,
the estimates based on the simpler multivariate normal bridge sampling approach are displayed
in gray. As the number of posterior samples increases, the Bayes factor estimates become more
precise. For this particular example, it is apparent that the Warp-III estimates are less variable
than the estimates based on the simpler multivariate normal approach.

3.2.3. Substantive Contribution The authors of the original article analyzed the aggregated data
(again, an approach known to be suboptimal in case there is heterogeneity across participants) and
considered the G2 statistics with corresponding p values. Based on the fact that the knowledge-
conditional model had a larger, significant G2 statistic compared to the fluency-conditional model
that had a lower, nonsignificant G2 statistic, the authors concluded that the knowledge-conditional
model fit the data poorly and the fluency-conditional model fit the data well. Therefore, the authors
favored the fluency-conditional model based on two binary accept–reject decisions. This makes
it difficult to gauge the degree of support that the data provide in favor of the fluency-conditional
model. The Bayes factor may be 10, or 100, or 1000—these are very different levels of evidence.
In fact, our analysis shows that the Bayes factor is about 1.3 × 1042–3.6 × 1043 in favor of the
fluency-conditional model, which represents an overwhelming amount of evidence.

18Although the Bayes factor indicates overwhelming evidence in favor of the fluency-conditional model, it should be
kept in mind that the Bayes factor quantifies the evidence of two models relative to each other. In practice, researchers
should also check that the model that is favored by the Bayes factor provides an adequate fit to the observed data (e.g.,
Steingroever, Wetzels, & Wagenmakers, 2014).

19Posterior sample sizes smaller than 180,000 were obtained by considering only a subset of the 180,000 posterior
samples for eachmodel (i.e., no new posterior samples were obtained). Note that the same posterior sample sizes were used
for the Warp-III and the simpler multivariate normal approach, but the results of the two methods are displayed with an
offset to avoid overlapping symbols. Plots for each model’s marginal likelihood estimates are presented in Supplemental
Materials.
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It could be argued that, since the compared models have the same number of parameters,
comparing G2 statistics may result in choosing the same model as based on considering AIC or
BIC. AIC is asymptotically equivalent to cross-validation (Stone, 1977) which is known to be
inconsistent in the sense that, when the number of observations goes to infinity, the data-generating
model will not be chosen with certainty (Shao, 1993). In contrast, when using Bayes factors,
model selection consistency is generally fulfilled (Bayarri, Berger, Forte,&García-Donato, 2012).
Although the BIC is a rough approximation of the Bayes factor, we believe that it is better to
compute proper Bayes factors which are transparent with respect to the prior assumptions.

Finally, one might argue again that this data set is relatively small and is thus uninforma-
tive. However, the resulting Bayes factor is very different from 1, indicating that the data are
in fact highly informative with respect to adjudicating between the fluency-conditional and the
knowledge-conditional models.

4. Discussion

Bayesian hierarchical techniques forMPTmodeling are increasingly popular. Current hierar-
chical MPT approaches, however, do not incorporate Bayesian model comparison methods based
on Bayes factors and posterior model probabilities, possibly because of the computational chal-
lenges associated with the evaluation of the marginal likelihood. In this article, we addressed this
challenge and showed how Warp-III bridge sampling can be used to obtain accurate and stable
estimates of the marginal likelihood of hierarchical MPTs. We applied the method to model com-
parison problems from two published studies and illustrated how the marginal likelihood can be
used for Bayesian model averaging and for the computation of the Bayes factor.

Our examples highlighted thatBayesianmodel comparisonbasedonposteriormodel/inclusion
probabilities and Bayes factors allows researchers to disentangle between “absence of evidence”
and “evidence of absence.” Note that it is crucial in all stages of cognitive model development,
validation, and application that one is able to quantify evidence in favor of invariances (i.e., “evi-
dence of absence”) in a coherent and systematic way. For model development and validation, it is
important to show that certain experimental manipulations selectively influence only a subset of
the model parameters, whereas the remaining parameters are unaffected (i.e., selective influence
studies). Once a cognitive model has been established as a valid measurement tool, it can be used,
for instance, to investigate which subprocesses are targeted by new experimental manipulations
or which subprocesses differ or do not differ in clinical subpopulations (cognitive psychometrics;
e.g., Riefer et al., 2002). In these applications, it is important to be able to quantify evidence for
a difference but, crucially, also for an invariance since one might wish to make statements of the
form “there is evidence that retrieval processes are not affected.”

There are often a number of different candidate models for the analysis of observed data. In
Example 1, we demonstrated how Bayesian model averaging can be used to draw conclusions
that fully take into model uncertainty. In our opinion, Bayesian model averaging is an extremely
powerful approach and, to the best of our knowledge, it is currently not used in the context of
hierarchical MPTs and cognitive modeling more generally. We believe that attending researchers
to this approach and providing the computational tools to facilitate its application (i.e., Warp-III)
is one of the key contributions of this work.

Our examples illustrated that Warp-III is relatively straightforward to implement once pos-
terior samples from the models have been obtained with MCMC sampling. Another advantage of
Warp-III bridge sampling is its relative speed. In our experience, the Warp-III procedure requires
much less computational time than the MCMC sampling from the posterior. One of the cru-
cial determinants of the computational time of Warp-III is how long it takes to evaluate the
un-normalized posterior density. To maximize speed for our applications, we implemented the
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un-normalized posterior density functions in C++ code called from within R via Rcpp (Eddel-
buettel et al., 2011). Compared to a simpler bridge sampling version which only matches the
first two moments of the proposal and the posterior (e.g., Overstall & Forster, 2010), Warp-III is
expected to take about twice as long for a fixed number of samples due to the mixture represen-
tation of the warping procedure which requires evaluating the un-normalized posterior twice as
often as for the simpler bridge sampling version. However, Warp-III is also expected to be more
accurate in case the posterior is skewed which means there might be a speed–accuracy trade-off.

Despite its computational simplicity, Warp-III should not be applied blindly. Specifically,
as we demonstrated for our empirical examples, it is important to assess the variability of the
resulting model comparison measure—such as posterior model probabilities or Bayes factors—
by repeating the Warp-III procedure multiple times. When the measure of interest clearly favors a
given model, as in our second example, some fluctuation is not necessarily concerning. However,
in situations where the fluctuation influences which model is favored, researchers should either
increase the number of posterior and proposal samples to decrease the variability of the estimate,
or, if this solution is practically infeasible, they should acknowledge that the estimate does not
support firm conclusions about the relative predictive adequacy of the models.

The accuracy of the estimate is governed not only by the number of samples but also by the
overlap between the proposal and the posterior distribution. Warp-III attempts to maximize this
overlap by matching the mean vector, covariance matrix, and the skew of the two distributions.
However, in case the posterior distribution exhibits multiple modes, the overlap may not be
sufficiently close. Researchers should carefully check whether multimodalities occur in their
application. If this is the case, repeated runs of the Warp-III procedure could be used to obtain
an impression of the stability of the estimate. Nevertheless, it should be kept in mind that Warp-
III is not designed for multimodal posterior distributions and results should be interpreted with
caution. The development of bridge sampling procedures for multimodal posterior distributions
is currently ongoing (e.g., Frühwirth–Schnatter, 2004; Wang & Meng, 2016). Note, however,
that this is not a very severe limitation of the Warp-III method, since posterior distributions are
unimodal in many models used in psychology—they even converge to normal distributions under
specific conditions (Dawid, 1970).

Relatedly, note that we use the unscaled effects ωi and the scaling parameters ξ directly
in the bridge sampling procedure—but technically, these are only identified jointly. Therefore,
MCMC chains for these parameters may look irregular and exhibit, for instance, multiple modes,
decreasing the efficiency of the Warp-III procedure as mentioned above. Although this was not
the case for our applications, we advise researchers to carefully monitor the MCMC chains of the
unidentified unscaled effects and scaling parameters.

On a more theoretical note, as Eq. (3) illustrates, Bayesian model comparison is sensitive
to the choice of the prior distribution. We relied on relatively standard priors for the group-level
parameters, but also established the robustness of our conclusions with a series of sensitivity ana-
lyses (see also Supplemental Materials). Nevertheless, we do not suggest that our prior choices
should be considered as the gold standard for model comparison in hierarchical MPTs. Several
approaches are available for specifying theoretically justified prior distributions for cognitive
models (Lee & Vanpaemel, 2018; see also Heck & Wagenmakers, 2016, for specifying order
constraints in MPTs). We believe that the increasing popularity of hierarchical MPTs will enable
researchers to specify informative paradigm-specific and model-specific prior distributions based
on experience with the models (e.g., typical parameter ranges and effect sizes). The dependency
on the prior is sometimes considered as a weakness of Bayes factor model comparisons (e.g.,
Aitkin, 2001). Some researchers and statisticians even conclude that due to this reason, the use
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of Bayes factors is not recommended (e.g., Gelman et al., 2014, chapter 7.4).20 In contrast, we
believe that the ability to incorporate prior knowledge is an advantage of Bayesian inference;
we consider the prior as integral part of the model which should be chosen just as carefully
as the likelihood (e.g., Vanpaemel, 2010). Ideally, researchers should preregister their priors
before data collection (Chambers, 2013, 2015) to ensure that these are used to express genuine
prior knowledge and not to increase researchers’ degrees of freedom in obtaining the desired
results. Note that we are not the first to advocate a Bayesian approach to hierarchical MPTs.
However, to the best of our knowledge, we are the first who advocate Bayesian model com-
parison using posterior model/inclusion probabilities and Bayes factors and provide the tools to
compute these quantities for hierarchical MPTs. Equipped with a feasible approach for com-
puting the relevant quantities for Bayesian model comparison, one could, in principle, specify
an informed prior for the models themselves in addition to the specification of the parame-
ter prior. This way one could incorporate prior knowledge about how likely each model is or
one could, if desired, incorporate a penalty for multiple comparisons as described in Scott and
Berger (2010).

Although we focused exclusively on latent-trait MPTs, Warp-III is not limited to the latent-
trait approach or other hierarchical MPTs, such as the beta-MPT (Smith & Batchelder, 2010) or
the crossed random effects approach (Matzke et al., 2015). Warp-III may be used to compute the
marginal likelihood for a large variety of cognitive models. For instance, the simple multivariate
normal bridge sampling approach has been recently applied to hierarchical reinforcement learning
models (Gronau et al., 2017). We believe that Warp-III may be especially useful for so-called
sloppy models with highly correlated parameters (Brown & Sethna, 2003), including but not
limited to race models of response times, which often yield skewed posterior distributions (e.g.,
Brown & Heathcote, 2008; Matzke, Love, & Heathcote, 2017). The Warp-III methodology also
lends itself to model comparison in extensions of hierarchical cognitive models that impose on
the model parameters a statistical structure such as a linear regression, factor analysis, or analysis
of variance (e.g., Boehm, Steingroever, &Wagenmakers, 2017; Heck et al., 2018a; Turner, Wang,
& Merkle, 2017; Vandekerckhove, 2014). The application of Warp-III to complex experimental
designs is ongoing work in our laboratory.

Although Warp-III is a general procedure for computing the marginal likelihood, depending
on the situation, other approaches may be better suited for the model comparison problem at
hand. If researchers focus on non-hierarchical implementations of cognitive models, importance
sampling may be an easier solution, particularly in the context of MPTs (Vandekerckhove et al.,
2015). If the focus is on nested models, the Savage–Dickey density ratio is an easier and faster
alternative. Lastly, if the number of models under consideration is very large, Reversible Jump
MCMC (Green, 1995) might be the appropriate choice. Nevertheless, we believe that in most
applications of hierarchical cognitive models, the research question concerns the comparison of
a limited set of possibly non-nested models. In these situations, Warp-III provides a straightfor-
ward and accurate method for computing the marginal likelihood for a wide range of complex
models.

5. Data Availability Statement

The datasets analyzed during the current study are available on the Open Science Framework:
https://osf.io/rycg6/.

20Another objection is that Bayes factors are often used to compare nested models where certain values of continuous
parameters are treated as “special” (since the parameters are fixed to these values). These researchers often favor continuous
model expansion instead (e.g., Gelman et al., 2014, chapter 7.4; Gelman & Rubin, 1995).
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