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Abstract. Baker and Rumely, Favre, Rivera, and Letelier, and Chambert-Loir proved
an important arithmetic equidistribution theorem for points of small height associated
to an adelic measure. To broaden the scope in which arithmetic equidistribution may
be employed, we generalize the notion of an adelic measure to that of a quasi-adelic
measure and show that arithmetic equidistribution holds for quasi-adelic measures as well.
We exhibit examples of non-adelic, quasi-adelic measures arising from the dynamics of
quadratic rational maps. In fact, we show that the measures that arise in applications of
arithmetic equidistribution theorems are typically not adelic. Finally, we motivate our
definition of a quasi-adelic measure by relating it to a seemingly different problem in
arithmetic dynamics arising from results of Call, Tate, and Silverman in the study of
abelian varieties.
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1. Introduction
Baker and Rumely [6, 7] and Favre, Rivera and Letelier [29], employing a potential-
theoretic approach, proved an important arithmetic equidistribution theorem for points of
small height associated to adelic measures defined on the Berkovich compactifications of
the projective line. Around the same time, Chambert-Loir, Thuillier, and Yuan [12, 54, 56],
using an approach based on Arakelov theory, established generalizations of this arithmetic
equidistribution theorem to projective varieties other than P1. The ‘adelic’ hypothesis
appears in all the aforementioned results. It appeared first in Zhang’s notion of an adelic
metrized line bundle [58, 59].

We briefly describe the arithmetic equidistribution theorem of [6, 7, 12, 29] next. Let k
be a product formula field, for example, a number field or the function field of a smooth
and projective curve. Denote by Mk its set of places. Let μ = {μv}v∈Mk

be a collection of
probability measures μv on the Berkovich projective line P1,an

v for v ∈ Mk . The measure
μ is adelic if all measures μv have continuous potentials gv and the potentials gv are trivial
at all but finitely many places v of k, meaning gv(·) = log+ | · |v . To each adelic measure,
we associate a height function ĥμ : P1(ksep) → R given by the sum of potential functions
of the measures μv . The main theorems of [7, 29] then assert that Galois orbits of points
tn ∈ P1(ksep) with ĥμ(tn) → 0 must equidistribute with respect to μv at all places v of k.

In this article, we extend the notion of an adelic measure in [6, 7, 12, 29] to that of
a quasi-adelic measure. Details appear in §2. Our results may be briefly summarized as
follows.
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• We prove an equidistribution theorem for heights associated to quasi-adelic measures
(Theorem 1.1).

• We show that non-adelic measures arise naturally in studying families of dynamical
systems ft : P1 → P1 (Theorem 1.3).

• We provide examples for which non-adelic measures are quasi-adelic (Theorem 1.4).
• We relate the notion of a quasi-adelic measure to the variation of canonical height as

studied by Silverman, Tate, and Call and Silverman originally in the setting of abelian
varieties (Theorem 1.6).

An early version of this article appeared in the preprint [55], containing a proof of
Theorem 1.1. The theorem was used in [22] to obtain an ‘unlikely-intersections’ statement
of dynamics on P1 in the setting where the measures were quasi-adelic but not adelic.

1.1. Quasi-adelic arithmetic equidistribution theorem. Our first result generalizes the
arithmetic equidistribution theorem in [6, 7, 12, 29]. We extend the notion of an adelic
measure to that of a quasi-adelic measure μ = {μv}v∈Mk

allowing more flexibility for
the potentials of μv . Instead of requiring them to be trivial at all but finitely many places,
we impose a certain summability condition. Any adelic measure is quasi-adelic. There
is a natural height function ĥμ : P1(ksep) → R associated to each quasi-adelic measure;
see §2.2. In contrast to the adelic case, this height can have non-trivial contributions
from infinitely many local heights. We establish that arithmetic equidistribution holds for
quasi-adelic measures as well. Our approach is potential-theoretic and follows the proof
strategy of [6, 7, 29].

THEOREM 1.1. Let k be a product formula field and let μ = {μv}v∈Mk
be a quasi-adelic

measure. Suppose that Sn is a sequence of Gal(ksep/k)-invariant subsets of P1(ksep) such
that |Sn| → ∞ and ĥμ(Sn) → 0 as n → ∞. Then for each v ∈ Mk , the sequence of
probability measures [Sn]v , weighted equally on the points in Sn, converges weakly to
μv on P1,an

v as n → ∞.

Theorem 1.1 can be motivated by conjectures in arithmetic geometry fitting in the theme
of ‘unlikely intersections’; see [57] for a great overview of related problems. We discuss
applications of Theorem 1.1 later. Broadly speaking, people are interested in the study of
families of rational maps ft : P1 → P1 parametrized by t in a quasi-projective algebraic
curve X. When X is the punctured Riemann sphere and ft is defined over a product formula
field k, Theorem 1.1 allows us to understand the distribution of parameters λ in X for which
the value c(λ) of a rational map c ∈ k(t) is preperiodic for fλ.

A family ft : P1 → P1 of rational maps parametrized by t in P1 and defined over a
field k yields a rational function f ∈ k(t)(z). We call a pair (f , c) ∈ k(t)(z)× k(t) where
degz f ≥ 2, a dynamical pair.

1.2. Dynamical pairs are typically not adelic. A dynamical pair induces a canonical
measure μf ,c = {μf ,c,v}v∈Mk

; see §4.3 for the precise definition. If μf ,c is adelic
(respectively quasi-adelic), then we call the dynamical pair (f , c) adelic (respectively
quasi-adelic). Many instances of these measures have been previously studied and are
well known to be adelic. For example, when f ∈ k(z) and c(t) = t , the measure μf ,c was
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introduced in [5, 6, 29] and is adelic. When f is a Lattès map induced by a multiplication
by m on an elliptic surface, the measure μf ,c is studied in [20, 23] and is adelic as well.
It came as a surprise when the first non-adelic dynamical pair appeared in [22]. Our next
main theorem demonstrates that, in fact, the measures μf ,c are typically not adelic. To
state our theorem, we introduce some terminology.

For f ∈ k(t)(z), we write ft (z) = Pt(z)/Qt(z) with coprime Pt , Qt ∈ k(t)[z]. We say
that α ∈ P1(ksep) is a degenerating parameter if degz(fα) < degz(f ). The degenerating
parameters of f form a finite set denoted by Sing(f ). For each α ∈ Sing(f ), we denote
by Hf ,α the common zero locus of Pα and Qα viewed as homogeneous polynomials of
degree degz(f ). Equivalently, Hf ,α is the complement of the maximal affine open subset
of P1 on which fα is a morphism. We say that the elements of Hf ,α are the α-holes of
f ; see §4. The notion of holes has appeared in [15, 16] where it played a crucial role in
studying compactifications of moduli spaces of rational maps.

Example 1.2. If ft (z) = ((z3 + z+ t)/z) ∈ Q(t)(z), then Sing(f ) = {0, ∞}, as we have

f0(z) = z2 + 1 and f∞(z) = ∞.

Moreover,

Hf ,0 = {0} and Hf ,∞ = {∞}.
We say that h ∈ k is an exceptional point of ϕ ∈ k(z) if it is a totally ramified fixed point

of ϕ2, or equivalently if (ϕ2)−1({h}) = {h} = ϕ2({h}). Recall that over a number field,
ϕ has an exceptional point if and only if ϕ2 can be conjugated to a polynomial in k[z].
Also, any ϕ can have at most 2 exceptional points, with equality only if it is conjugate to
z±d [50].

We can now state our second main result.

THEOREM 1.3. Let k be a number field or the function field of a smooth projective curve
defined over a field of any characteristic, and let f ∈ k(t)(z) be non-isotrivial of degree
degz f ≥ 2. Assume that there is an N ∈ N and an α ∈ P1(k) such that, for g := f N ,
(G1) α ∈ Sing(g) and degz(gα) ≥ 2 and
(G2) there exists an element of Hg,α that is not an exceptional point of gα and
(G3) if k is a function field, assume further that gα is not isotrivial.
Then, for any c ∈ k(t) such that
(C1) gnα(c(α)) /∈ Hg,α for all n ∈ N and
(C2) c(α) is not preperiodic under the action of gα ,
the dynamical pair (f , c) is not adelic.

A few remarks regarding Theorem 1.3 are in order.
(1) The conditions that guarantee the failure of the adelic hypothesis are geometric

in essence. They are related to degenerations of a dynamical pair. Remarkably though,
the reason for the said failure is arithmetic. Our proof of Theorem 1.3 relies on results
concerning integral points in orbits, established by Silverman [50, Theorem B] over
number fields and in [11, 38] for function fields of characteristic zero and p respectively.
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These allow us to generate infinitely many primitive divisors of certain dynamical
sequences, which in turn yield measures corresponding to non-archimedean places with
non-trivial potentials.

(2) In fact, when degz(f ) ≥ 3, the conditions in our theorem are typically satisfied,
even if we only allow N = 1 in Theorem 1.3. Indeed, let ft (z) = (Pt (z)/Qt(z)) ∈ k(t)(z)
but not belonging to k(z). Such f will degenerate at some α and we assume that α = 0
for simplicity. Then condition (G1) fails only if the specializations P0(z) and Q0(z) have
more than d − 1 ≥ 2 common factors. This in turn imposes strong algebraic relations
between the coefficients of Pt and Qt as functions of t. Thus in general, condition
(G1) holds. Condition (G2) is automatically satisfied when f0 has no exceptional point,
which is the case for ‘most’ maps. It is possible that f0 has an exceptional point
and condition (G2) still holds. For instance, note that ∞ is an exceptional point of
f0, as in Example 1.2. However, condition (G2) holds since ∞ is not a 0-hole. The
only ‘easy’ way for condition (G2) to fail is if f ∈ k(t)[z] is a polynomial. Then
the only holes are at ∞ and all specializations are polynomials, so have ∞ as an
exceptional point. Other examples in which (G2) fails come from Lattès maps, which are
adelic.

(3) Finally, as long as conditions (G1) and (G2) are satisfied, one can easily construct
c(t) ∈ k(t) satisfying (C1) and (C2) at will. In fact, our conditions for c are satisfied as
soon as the logarithmic Weil height of c(0) is large enough.

1.3. Quasi-adelic dynamical pairs. The first example of a non-adelic, quasi-adelic
dynamical pair was studied by DeMarco, Wang, and Ye [22], who considered the family of
rational maps gλ,t (z) = λz/(z2 + tz+ 1) for t ∈ P1(Q) where λ ∈ Q\{0} is not a root of
unity, or λ equals 1. They showed that the non-adelic dynamical pairs (gλ, 1) and (gλ, −1)
are quasi-adelic. It is more delicate to show the quasi-adelicity when λ is a root of unity
and the starting point c(t) is generic, so new techniques are required. As our third main
theorem, we provide more examples of quasi-adelic measures arising from dynamical pairs
(gλ,t , c) where λ is a root of unity.

THEOREM 1.4. Let λ �= 1 be a primitive root of unity and k be a number field with λ ∈ k.
Consider the rational function gλ,t (z) = λz/(z2 + tz+ 1) ∈ k(t)(z) and let c(t) ∈ k(t) be
such that 0 and ∞ are not in the orbit of c(∞) iterated under the map f∞(z) = z/(z2 + 1).
Then the measure μgλ,c = {μgλ,c,v}v∈Mk

is quasi-adelic. Furthermore, if c(∞) is not a
preperiodic point of f∞, then the measure μgλ,c is not adelic.

Notice that gλ,t degenerates only at t = ∞. The stated degeneration is the constant
map equal to 0. However, the behavior of the degeneration differs depending on whether
λ is a root of unity or not. If λ is not a root of unity, the degeneration of gnλ,t at t = ∞
is regular in that it is the nth iterate of gnλ,∞; the maps gnλ,t degenerate at t = ∞ to the
same constant map. A major difficulty in [22] was proving that the potentials of μgλ,±1,v

are continuous along this singularity. To this end, DeMarco, Wang, and Ye computed
certain homogeneous capacities explicitly. Their calculations were aided by the fact that
the degeneration of gnλ,t at t = ∞ is regular.
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However, when λ is a root of unity, the behavior of the degeneration at t = ∞ is more
complicated. More precisely, if λ is of order � ≥ 2, although the nth iterate gnλ,t degenerates
to a constant map when n < �, the �th iterate ft := g�λ,t degenerates to the degree 2 map
f∞(z) = z/(z2 + 1); see Proposition 5.1. Clearly, f∞(z) is not the �th iterate of gλ,∞.
This phenomenon, studied extensively in [16, 25, 40], adds an extra layer of difficulty to
controlling the potentials near ∞. We overcome the difficulties by working with the �th
iterate of gλ,t instead.

More importantly, in contrast to [22], we allow the starting point c to be general—it
only has to satisfy condition (C1) for N = �. In the absence of an explicit formula for c,
we cannot compute the precise homogeneous capacities as in [22]. However, using our
assumption for c, we are able to control the behavior of the potentials near the degenerating
parameter.

As a special case, Theorem 1.4 holds when the starting point c ∈ {1, −1} is a critical
point of gλ,t and the corresponding dynamical pairs (gλ,t , ±1) are not adelic. Combining
the techniques in [22] and the new ones developed in the proof of Theorem 1.4, one should
be able to prove that many other dynamical pairs are quasi-adelic as well. It is now natural
to ask the following.

Question 1.5. Are all dynamical pairs (f , c) ∈ k(t)(z)× k(t) quasi-adelic?

1.4. Variation of canonical heights and applications of arithmetic equidistribution.
Recall that for each rational map ϕ ∈ F(z) of degree at least 2, defined over a product
formula field F, we have the Call–Silverman canonical height [10] defined as

ĥϕ : P1(F sep) → R≥0

x �→ lim
n→∞

h(ϕn(x))

deg(ϕ)n
.

Here h : P1(F sep) → R≥0 is the standard logarithmic Weil height. Thus, there are two nat-
ural heights associated with a dynamical pair (f , c) ∈ k(t)(z)× k(t); the Call–Silverman
canonical height ĥf (c) of c ∈ k(t) associated with the map f defined over the func-
tion field k(t), and for each specialization of t ∈ P1(ksep) such that degz(ft ) ≥ 2, the
Call–Silverman canonical height ĥft (c(t)).

By definition, the function t �→ ĥμf ,c (t) is equal to a multiple of t �→ ĥft (c(t)) plus a
constant term. In Proposition 6.1, we see that the stated constant term equals zero. Thus,
assuming that (f , c) is quasi-adelic, we infer that t �→ ĥft (c(t)) behaves like a Weil height
and further Theorem 1.1 yields that Galois orbits of points with small Call–Silverman
height equidistribution.

THEOREM 1.6. Let k be a number field. Let f ∈ k(t)(z) and c ∈ k(t) be such that
degz f ≥ 2 and the dynamical pair (f , c) is quasi-adelic. Then, the following hold.
(1) As t ∈ P1(k) varies, we have ĥft (c(t)) = ĥf (c)h(t)+O(1), where the implicit

constant only depends on f ∈ k(t)(z) and c ∈ k(t).
(2) Let {tn}n∈N ⊂ k be a non-repeating sequence of points with ĥftn (c(tn)) → 0.

The sequence of probability measures, weighted equally on the points in the
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Gal(k/k)-orbit of tn, converges weakly to μf ,c,v on P1,an
v as n → ∞ for each

v ∈ Mk .

The first part of Theorem 1.6 relates our definition of a quasi-adelic measure with
a theorem of Tate [53] from 1983 and its dynamical analogs. Let X be a smooth
projective curve defined over a number field k. Tate considered an elliptic surface
E → X and a section P : X → E, defined over k, and proved that the map t → ĥEt (Pt ),
associating to each t ∈ X(k) the Néron–Tate height of Pt in the corresponding fiber
Et is actually a height function on the curve X corresponding to a divisor of degree
equaling the geometric canonical height ĥE(P ) of P ∈ E(k(X)). More precisely, Tate
showed that there exists a divisor D = D(E, P) ∈ Pic(X)⊗ Q of degree ĥE(P ) such
that ĥEt (Pt ) = hD(t)+O(1), as t ∈ X(k) varies. Tate thus strengthened an earlier result
of Silverman [48] positing that ĥEt (Pt ) = ĥE(P )h(t)+ o(h(t)). Silverman [49, 51, 52]
strengthened Tate’s result to show that not only is the error term O(1), but the difference
behaves quite regularly. Replacing the Nèron–Tate height by the Call–Silverman canonical
height, it is natural to ask whether the analog of Tate’s result in the dynamical setting
holds.

Question 1.7. (Variation of Call–Silverman heights) Let k be a number field and (f , c) ∈
k(t)(z)× k(t). Do we have

ĥft (c(t)) = ĥf (c)h(t)+O(1)? (1.1)

Theorem 1.6 establishes that Question 1.7 is closely related to Question 1.5. To prove
that a dynamical pair is quasi-adelic, one has to understand whether it satisfies the variation
of heights. Our summability condition in the definition of a quasi-adelic measure is
manufactured so that (1.1) is satisfied. That said, it is not clear whether a pair satisfying the
variation of heights is quasi-adelic. Given that the definition of a quasi-adelic pair is given
by local conditions, more comparable to a local version of (1.1), it is a priori possible that
a pair fails to be quasi-adelic while still satisfying (1.1). We know do not know of any such
examples and expect that all pairs (f , c), as in Question 1.7, are quasi-adelic.

It seems that establishing the variation of Call–Silverman heights is a hard problem
in general, especially as there are only a few known partial results. Tate’s theorem [53]
implies that the answer to Question 1.7 is affirmative if f is a Lattès map associated to
an elliptic surface. Call and Silverman [10, Theorem 4.1] show that a weaker form of the
variation of Call–Silverman heights holds in general: ĥft (c(t)) = ĥf (c)h(t)+ o(h(t)) as
h(t) → ∞. Ingram [39] gave an affirmative answer to Question 1.7 when f is a polynomial
in z. Ghioca, Hsia, and Tucker [33, Theorem 5.4] proved that the answer to Question 1.7 is
still positive for dynamical pairs (f , c) upon imposing technical conditions on f, including
that ∞ is a superattracting fixed point of f and that f does not degenerate at t �= ∞.
Finally, Ghioca and the first author [36] showed that the variation of heights still holds
for (f , c) if f (z) = (zd + t)/z for d ≥ 2. A common feature in all the aforementioned
examples is that the corresponding dynamical pairs (f , c) are adelic, something that is not
often the case by Theorem 4.5. (While this paper was under review, DeMarco and the first
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author [21] established that the variation of heights holds for ‘globally Fatou’ dynamical
pairs.)

The second part of Theorem 1.6 has applications toward establishing a conjecture
motivated by far-reaching conjectures in arithmetic geometry from the theme of ‘unlikely
intersections’; see [4, Conjecture 1.10], [17, Conjecture 6.1], [32, Question 1.3], and [33,
Conjecture 2.3].

Conjecture 1.8. (Baker and DeMarco; Ghioca, Hsia and Tucker) Let k be a number
field and (f , ci) ∈ k(t)(z)× k(t) be non-preperiodic dynamical pairs for i = 1, 2, where
degz(f ) ≥ 2. Assume that there are infinitely many tn ∈ P1(k) such that ĥftn (c1(tn))+
ĥftn (c2(tn)) → 0 as n → ∞. Then c1, c2 are coincident, that is, there exists j ∈ {1, 2} and
a finite set E ⊂ P1 such that for U = P1 \ E, we have

{t ∈ U(k) : c1(t) and c2(t) are preperiodic for ft }
= {t ∈ U(k) : cj (t) is preperiodic for ft }.

Recall that over a number field k, preperiodic points are points with canonical height
equal to zero. Hence, a special case of Conjecture 1.8 asserts that if there are infinitely
many parameters t ∈ P1(k) such that both c1(t) and c2(t) are preperiodic under iteration
by ft , then either one of the ci is identically preperiodic for f or for each t ∈ U(k), c1(t)

is preperiodic under iteration by ft if and only if c2(t) is preperiodic under iteration by ft .
A special case of this conjecture, namely when f = zd + t and ci are constant, is

due to Zannier who proposed a dynamical analog of his theorem with Masser [42–44]
in the setting of elliptic surfaces. Baker and DeMarco [3] answered Zannier’s question,
establishing the first groundbreaking result leading to Conjecture 1.8. In fact, they also
proved that c1 and c2 are coincident if and only if cd1 = cd2 . Their theorem was generalized
in [20, 23, 31–33] to allow for more dynamical pairs and for replacing preperiodic points
with points of small canonical height in the spirit of Zhang’s dynamical Bogomolov
conjecture. Notably, Favre and Gauthier [28] settled the Baker–DeMarco conjecture in the
case of a polynomial map f. The common key ingredient in the aforementioned results is
the adelic equidistribution theorem in [7, 12, 29, 54, 56]. The second part of Theorem 1.6
implies that Conjecture 1.8 holds under the weaker assumption that the dynamical pairs
are quasi-adelic.

Other applications of adelic equidistribution theorems include the study of the distri-
bution of postcritically finite maps in the moduli space of rational functions, see [4, 22,
26, 27, 34, 35, 37]. Part 2 of Theorem 1.6 has various implications in this setting as well.
Moreover, a general strategy was introduced recently [18], using a quantitative (adelic)
equidistribution theorem on P1 [29], to obtain a uniform Manin–Mumford result for a
family of genus 2 curves defined over C. See also [19] for a result concerning the uniform
finiteness for the distribution of the ‘special’ points on P1. From Theorem 1.3, generic
dynamical pairs are non-adelic, so we expect a quantitative (quasi-adelic) equidistribution
theorem to be useful.

Finally, we point out that more general versions of Question 1.7 and Conjecture 1.8 have
been proposed in which dynamical pairs are allowed to be parametrized by curves other
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than P1 or by higher dimensional varieties. It would be interesting to have a quasi-adelic
equidistribution theorem in that setting as well.
Outline of the article. In §2, we introduce the notion of a quasi-adelic measure on P1 and
study some properties of this measure. In §3, we prove the quasi-adelic equidistribution
Theorem 1.1 and establish an important finiteness property for the height associated with a
quasi-adelic measure (see Proposition 3.2). In §4, we prove Theorems 1.3 and 4.5. In §5, we
prove Theorem 1.4, thus giving examples of dynamical pairs (f , c) that are quasi-adelic,
but fail to be adelic. Finally, in §6, we prove Theorem 1.6.

2. Quasi-adelic measure and some properties
In this section, we introduce the notion of a quasi-adelic measure and a quasi-adelic set.
Further, we define canonical heights associated with these measures and establish some of
their properties.

2.1. Preliminaries and basic notation. A product formula field is a field k together with
a set Mk consisting of pairwise inequivalent non-trivial absolute values, and a unique
positive integer Nv associated to each element of Mk such that the following holds.
• For each α ∈ k∗, we have |α|v = 1 for all but finitely many places v ∈ Mk , and the

product formula holds, ∏
v∈Mk

|α|Nvv = 1. (2.1)

In what follows, we often refer to the elements of Mk as places of k. Important examples
of product formula fields include number fields and function fields of smooth projective
curves. Let k and ksep be the algebraic and respectively separable closure of k. If the
characteristic of k is zero, then k = ksep. For each v ∈ Mk , let kv be the completion of
k with respect to | · |v , kv be an algebraic closure of kv , and Cv denote the completion of
kv . We also let P1,an

v be the Berkovich projective line over Cv . This is a canonically defined
path-connected compact Hausdorff space containing P1(Cv) as a dense subspace. For each
v ∈ Mk , we fix an embedding of k into Cv . We remark here that if v is archimedean, we
have Cv � C and P1,an

v � P1(C).
For each v ∈ Mk , there is a distribution-valued Laplacian operator � on P1,an

v . For its
definition and some examples, we refer the reader to [7, Ch. 5]. An important example is
the Laplacian of log+ |z|v := max{log |z|v , 0}. Note that the function log+ |z|v , which is
originally defined on P1(Cv) \ {∞}, extends naturally to a continuous real valued function
defined on P1,an

v \{∞}. The Laplacian of its extension, also denoted by log+ |z|v and taking
images in R ∪ {+∞}, is

� log+ |z|v = δ∞ − λv , (2.2)

where λv is the uniform probability measure on the complex unit circle {|z|v = 1} when v
is archimedean and a point mass at the Gauss point of P1,an

v when v is non-archimedean.
A probability measure μv on P1,an

v is said to have continuous potentials if μv − λv =
�g for some continuous function g : P1,an

v → R. We call the function g a potential of μv
and note that any two potentials of μv differ by a constant.
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If μv has continuous potentials, then there is a function g0
μv

: P1,an
v → R ∪ {+∞} such

that g : P1,an
v → R, defined by

g(z) = log+ |z|v − g0
μv
(z),

is a potential for μv and is continuous. We call the function Ghom
μv
(x, y) uniquely

determined by g0
μv

and defined as

Ghom
μv
(x, y) :=

⎧⎪⎪⎨
⎪⎪⎩
g0
μv
(x/y)+ log |y|v for x, y ∈ Cv and y �= 0,

log |x|v − g(∞) for x ∈ Cv , x �= 0, and y = 0,

−∞ for x = y = 0,

(2.3)

where g(∞) = limz→∞(log+ |z|v − g0
μv
(z)), a homogeneous potential of μv . If we

further require that the set

{(x, y) ∈ C2
v : Ghom

μv
(x, y) ≤ 0}

has homogeneous capacity equal to 1 (see [6, §3.3] and [14] for the definition of
homogeneous capacity), then the homogeneous potential is uniquely determined. We
denote it by Gμv and call it the normalized homogeneous potential of μv . Further, we
write

Mμv := {(x, y) ∈ C2
v : Gμv(x, y) ≤ 0}. (2.4)

Note that any homogeneous potential of μv differs from Gμv by a constant. An important
property of a homogeneous potential Ghom

μv
is that it scales logarithmically,

Ghom
μv
(αx, αy) = Ghom

μv
(x, y)+ log |α|v . (2.5)

For example, from (2.2), we get that the normalized homogeneous potential of λv is

Gλv(x, y) = log ‖(x, y)‖v and Mλv = D̄2(0, 1) ⊂ C2
v ,

where ‖ · ‖v is the maximum norm defined as ‖(x, y)‖v := max{|x|v , |y|v}.
Finally, we point out that for each probability measure μv on P1,an

v with continuous
potentials, we have a unique normalized Arakelov–Green function gμv : P1,an

v × P1,an
v →

R ∪ {+∞}. This is characterized by the differential equation �xgμv (x, y) = δy − μv and
the normalization ∫ ∫

gμv (x, y) dμv(x) dμv(y) = 0. (2.6)

Note that for points (x, y) ∈ C2
v , the normalized Arakelov–Green function gμv is given by

gμv (x, y) = − log |x̃ ∧ ỹ|v +Gμv(x̃)+Gμv(ỹ), (2.7)

where x̃ = (x1, x2) ∈ C2
v and ỹ = (y1, y2) ∈ C2

v are lifts of x and y respectively and |x̃ ∧
ỹ|v := |x1y2 − y1x2|v; see [6, 7] for more details.
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2.2. Quasi-adelic measure and canonical height function. Let μv be a probability
measure on P1,an

v with continuous potentials. We define the outer radius and inner radius
for μv as

rout(μv) := inf{r > 0 : Mμv ⊂ D̄(0, r)× D̄(0, r)},
rin(μv) := sup{r > 0 : D̄(0, r)× D̄(0, r) ⊂ Mμv }.

A quasi-adelic measure on P1 with respect to a product formula field k is a collection
μ = {μv}v∈Mk

of probability measures on P1,an
v , one for each v ∈ Mk , such that:

• μv has continuous potentials for each v ∈ Mk , and
• ∏

v∈Mk
rin(μv)

Nv > 0 and
∏
v∈Mk

rout(μv)
Nv < ∞.

Remark 1. Since Cap(Mμv ) = 1 and Cap(D̄2(0, r)) = r2, the radii satisfy 0 < rin(μv) ≤
1 ≤ rout(μv). The measure μ = {μv}v∈Mk

is adelic if we replace the second condition
by μv = λv or equivalently rin(μv) = rout(μv) = 1 for all but finitely many v ∈ Mk; see
[7, 29]. In other words, adelic measures satisfy Mμv = D̄2(0, 1) for all but finitely many
places v ∈ Mk .

If ρ, ρ′ are probability measures on P1,an
v , we define the μv-energy of ρ and ρ′ as

(ρ, ρ′)μv := 1
2

∫ ∫
P

1,an
v ×P

1,an
v \Diag

gμv (x, y) dρ(x) dρ′(y).

The μv-energy of ρ is defined as Iμv (ρ) := (ρ, ρ)μv .
We can now define the height associated with a quasi-adelic measure. Let S ⊂ P1(ksep)

be a finite Gal(ksep/k)-invariant set with cardinality |S| > 1. Let S̃ ⊂ C2
v be a lift of S,

that is, a Gal(ksep/k)-invariant set consisting of lifts x̃ ∈ ksep × ksep \ {(0, 0)} of elements
x ∈ S; in particular, |S̃| = |S|. We denote by [S]v the discrete probability measure on
P1,an
v supported equally on all elements of S. The canonical height of S associated to a

quasi-adelic measure μ = {μv}v∈Mk
is a number given by

ĥμ(S) : = |S|
|S| − 1

∑
v∈Mk

Nv · ([S]v , [S]v)μv

= |S|
|S| − 1

∑
v∈Mk

Nv

2|S|2
∑

x,y∈S,x �=y
gμv (x, y)

=
∑

x,y∈S,x �=y

∑
v∈Mk

Nv · (− log |x̃ ∧ ỹ|v +Gμv(x̃)+Gμv(ỹ))

2|S|(|S| − 1)

= 1
2|S|(|S| − 1)

∑
x̃,ỹ∈S̃,x �=y

∑
v∈Mk

Nv · (Gμv (x̃)+Gμv(ỹ)), by (2.1)

= 1
|S| ·

∑
x̃∈S̃

∑
v∈Mk

Nv ·Gμv(x̃). (2.8)
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Here, the constants Nv are the same as those appearing in the product formula. Therefore,
we have

ĥμ(S) = 1
|S| ·

∑
x̃∈S̃

∑
v∈Mk

Nv ·Gμv(x̃). (2.9)

Equation (2.9) allows us to extend the definition of our height to the case |S| = 1. If x ∈
ksep, we may take S to be equal to Gal(ksep/k) · x and use (2.9) to define the canonical
height of x as

ĥμ(x) := ĥμ(Gal(ksep/k) · x).
In the next proposition, we show that our height is finite and well defined.

PROPOSITION 2.1. Let k be a product formula field and μ = {μv}v∈Mk
a quasi-adelic

measure. For each Gal(ksep/k)-invariant set S, the height ĥμ(S) from (2.9) is independent
of the choice of lift for S and is a finite real number.

Proof. That ĥμ(S) is independent of the choice of lift S̃ of S follows from the product
formula of k once we recall that the homogeneous potential Gμv scales logarithmically;
see (2.5). To see that ĥμ(S) is a finite number, notice that from the definition of inner and
outer radii, we have

log rin(μv) ≤ 1
|S|

∑
x̃∈S̃
(log ‖x̃‖v −Gμv(x̃)) ≤ log rout(μv).

Summing this inequality over all places v ∈ Mk , we get

∑
v∈Mk

Nv log rin(μv) ≤
∑
v∈Mk

Nv

|S|
∑
x̃∈S̃
(log ‖x̃‖v −Gμv(x̃)) ≤

∑
v∈Mk

Nv log rout(μv),

which, using the definition of our height, yields

log
∏
v∈Mk

rin(μv)
Nv ≤ 1

|S|
∑
v∈Mk

∑
x̃∈S̃

Nv log ‖x̃‖v − ĥμ(S) ≤ log
∏
v∈Mk

rout(μv)
Nv .

(2.10)

Recall that μ is a quasi-adelic measure. Thus, log
∏
v∈Mk

rin(μv)
Nv and log

∏
v∈Mk

rout(μv)
Nv are real numbers. The proposition follows.

Remark 2. Equation (2.10) gives a comparison between the naive Weil height and the
height associated with a quasi-adelic measureμ; see Proposition 2.3 for a precise statement
in the case of a number field k.

Remark 3. The canonical height we defined is slightly different from that appearing in
[7, 29], but agrees with that in [22, 23]. The factor of |S|/|S| − 1 is included here to allow
for a better comparison of this measure-theoretic height with the Call–Silverman height;
see Proposition 6.1.
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2.3. Quasi-adelic set. In this section, we introduce the notion of a quasi-adelic set. This
has a geometric interpretation; hence in many applications, it is easier to manipulate than
a quasi-adelic measure. Analogous to the notion of the homogeneous filled Julia set in [6,
§3.2], we define a homogeneous set with continuous potential as

Mv := {(x, y) ∈ C2
v : Gv(x, y) ≤ 0}, (2.11)

whereGv is a homogeneous potential for a probability measure on P1,an
v having continuous

potentials. In what follows, we write GMv for Gv as in (2.11), thinking of GMv as the
potential associated to the homogeneous setMv with continuous potential. We also denote
the measure corresponding to GMv , by μMv . When v is an archimedean place, Mv having
continuous potential is equivalent to saying thatMv ⊂ C2

v � C2 is a compact, circled, and
pseudoconvex set, or that GMv is a continuous and plurisubharmonic function satisfying:
(1) GMv(αz) = GMv(z)+ log |α|v for all α ∈ Cv; and
(2) GMv(z) = log ‖z‖v +O(1).
See [14]. We point out here that there are many homogeneous sets with continuous
potential. If Fn : C2

v → C2
v is a sequence of homogeneous polynomials with deg(Fn) ≥ 1

such that the sequence of functions {log ‖Fn‖v/deg(Fn)}n≥1 converges uniformly to Gv
on C2

v\{(0, 0)}, then Gv is a homogeneous potential for some probability measure with
continuous potentials on P1,an

v ; see [6, §3]. Hence, Mv = {(x, y) ∈ C2
v : Gv(x, y) ≤ 0}

is a homogeneous set with continuous potential. As seen in [23, §2], its capacity can be
computed by the following limit:

Cap(Mv) = lim
n→∞ |Res(Fn)|−1/deg(Fn)2

v .

Analogous to the definition of the radii of μv , we define the outer and inner radii of
Mv as

rout(Mv) := inf{r > 0 : Mv ⊂ D̄(0, r)× D̄(0, r)},
rin(Mv) := sup{r > 0 : D̄(0, r)× D̄(0, r) ⊂ Mv}.

A product
∏
v∈Mk

r
Nv
v , with rv > 0 for each v ∈ Mk , converges strongly if∑

v∈Mk

Nv · |log rv| < ∞.

We define a quasi-adelic set (with respect to a product formula field k) to be a collection
M = {Mv}v∈Mk

of sets such that the following hold.
• For each v ∈ Mk , the set Mv is a homogeneous set with continuous potential.
• The products

∏
v∈Mk

rout(Mv)
Nv and

∏
v∈Mk

rin(Mv)
Nv converge strongly.

Note that there is a unique probability measure μMv with continuous potential associated
to a homogeneous set Mv with continuous potential. Hence, a quasi-adelic set M =
{Mv}v∈Mk

gives a measure μM = {μMv }v∈Mk
on P1. In the next theorem, proved in §3,

we will see that this measure is also quasi-adelic.

THEOREM 2.2. Let k be a product field and M = {Mv}v∈Mk
be a collection of homoge-

neous sets with continuous potential. Then we have the following.
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• If the set M = {Mv}v∈Mk
is quasi-adelic, then the corresponding measure μM =

{μMv }v∈Mk
is quasi-adelic.

• Suppose that for each v ∈ Mk , there are positive constants r ′v , rv such that
D̄2(0, r ′v) ⊂ Mv ⊂ D̄2(0, rv) and the products

∏
v∈Mk

r ′v
Nv ,

∏
v∈Mk

rv
Nv converge

strongly. Then the set M = {Mv}v∈Mk
is quasi-adelic. Moreover, the product∏

v∈Mk
Cap(Mv)

Nv converges strongly and for any Gal(ksep/k)-invariant S ⊂
P1(ksep), we have

ĥμM
(S) = 1

|S| ·
∑
x̃∈S̃

∑
v∈Mk

Nv ·GMv(x̃)+ 1
2

log
∏
v∈Mk

Cap(Mv)
Nv . (2.12)

2.4. Some properties. A number field k is naturally equipped with a set of inequivalent
absolute values Mk and positive integers {Nv}v∈Mk

making it a product formula field. For
any x ∈ k, the logarithmic Weil height of x is defined as follows:

h(x) := 1
[k : Q]

∑
v∈Mk

Nv · log+ |x|v . (2.13)

It is well defined and does not depend on the embedding of a number field k ↪→ Q. We
show that the canonical height associated to a quasi-adelic measure differs from a multiple
of the Weil height by a bounded amount.

PROPOSITION 2.3. Let k be a number field. Suppose μ = {μv}v∈Mk
is a quasi-adelic

measure. Then the canonical height ĥμ is bounded by the logarithmic Weil height h on
P1(k) as

log
∏
v∈Mk

rin(μv)
Nv ≤ [k : Q]h(x)− ĥμ(x) ≤ log

∏
v∈Mk

rout(μv)
Nv ,

for all x ∈ k.

Proof. Recall that ĥμ(x) = ĥμ(Gal(k/k) · x). The proposition follows by applying (2.10)
for S = Gal(k/k) · x, once one notices that then

1
|S|

∑
v∈Mk

∑
x̃∈S̃

Nv log ‖x̃‖v = [k : Q]h(x).

Finally, we note that similar to the set of adelic metrized line bundles which is closed
under taking tensor products, we have that the set of quasi-adelic metrics is closed under
taking certain linear combinations. For example, the average of two quasi-adelic measures
is a quasi-adelic measure.

3. Equidistribution of small points
In this section, we prove Theorems 1.1 and 2.2. The structure of the proof of Theorem 1.1
follows that of [6, Theorem 2.3] and [29, Theorem 6]. Moreover, we prove an important
finiteness property for the height associated to a quasi-adelic measure.

https://doi.org/10.1017/etds.2022.49 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.49


2746 N. M. Mavraki and H. Ye

3.1. Proof of quasi-adelic arithmetic equidistribution Theorem 1.1. By assumption,
{Sn}n≥1 is a sequence of subsets of P1(ksep) which are Gal(ksep/k)-invariant and the
cardinality |Sn| tends to infinity. For each v ∈ Mk , the μv-energy of the probability
measure [Sn]v on P1,an

v is given by

([Sn]v , [Sn]v)μv = 1
2|Sn|2

∑
x �=y∈Sn

gμv (x, y)

= 1
2|Sn|2

∑
x �=y∈Sn

(− log |x̃ ∧ ỹ|v +Gμv(x̃)+Gμv(ỹ)),

where x̃ ∈ C2
v and ỹ ∈ C2

v are lifts of x and y respectively. We begin with a lemma, which
follows the idea from [6, 29]. It asserts that the sequence {Sn}n≥1 is pseudo-equidistributed
with respect to gμv ; compare with [6, Definition 4.4], [6, Theorem 4.6], and [29, p. 349].

LEMMA 3.1. Let k be a product formula field and let μ = {μv}v∈Mk
be a quasi-adelic

measure. Suppose that Sn is a sequence of Gal(ksep/k)-invariant subsets of P1(ksep) such
that |Sn| → ∞ and lim supn→∞ ĥμ(Sn) ≤ 0. Then for each v ∈ Mk , we have

lim
n→∞([Sn]v , [Sn]v)μv = 0.

Proof. First we will show that for each v ∈ Mk , we have

lim inf
n→∞ ([Sn]v , [Sn]v)μv ≥ 0. (3.1)

For this, we follow the proof of [6, Lemma 3.17]. From the definition of the homogeneous
capacity, we have

lim inf
n→∞ inf

x̃1,x̃2,...,x̃n∈Mμv

1
n(n− 1)

∑
i �=j

− log |x̃i ∧ x̃j |v ≥ − log Cap(Mμv ) = 0. (3.2)

Let ε > 0 be an arbitrary small number. Since {|α|v : α ∈ Cv} is dense in R≥0, we can
choose lifts of x, y ∈ Sn, denoted by x̃, ỹ ∈ Mμv , such that

−ε < Gμv(x̃) ≤ 0 and − ε < Gμv(ỹ) ≤ 0.

Now, the definition of the energy function and (3.2) yield

lim inf
n→∞ ([Sn]v , [Sn]v)μv = lim inf

n→∞
1

2|Sn|2
∑

x �=y∈Sn
(− log |x̃ ∧ ỹ|v +Gμv(x̃)+Gμv(ỹ))

≥ −ε + lim inf
n→∞

(
− 1

2|Sn|2
∑

x �=y∈Sn
log |x̃ ∧ ỹ|v

)
≥ −ε.

Shrinking ε to zero, (3.1) follows. It remains to prove that for each v ∈ Mk , we have

lim sup
n→∞

([Sn]v , [Sn]v)μv ≤ 0.

Let v0 ∈ Mk be a fixed place. Let ε > 0. We will show that

lim sup
n→∞

([Sn]v0 , [Sn]v0)μv0
≤ ε. (3.3)
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The conclusion then follows letting ε → 0. For each v ∈ Mk and any δ > 0, we lift x, y ∈
Sn to x̃, ỹ ∈ Mμv such that

Gμv(x̃) ≥ −δ, Gμv(ỹ) ≥ −δ.
Since we know that Mμv is bounded by the polydisc with outer radius rout(μv), we have
‖x̃‖v , ‖ỹ‖v ≤ rout(μv). Hence, for a non-archimedean place v ∈ Mk , we have

log |x̃ ∧ ỹ|v ≤ log rout(μv)
2,

and

([Sn]v , [Sn]v)μv = 1
2|Sn|2

∑
x �=y∈Sn

(− log |x̃ ∧ ỹ|v +Gμv(x̃)+Gμv(ỹ))

≥
(

1 − |Sn|
|Sn|

)
δ −

∑
x �=y∈Sn

log rout(μv)

|Sn|2

=
(

1 − |Sn|
|Sn|

)
(δ + log rout(μv)). (3.4)

Shrinking δ to zero, we get that for all non-archimedean places v ∈ Mk:

([Sn]v , [Sn]v)μv ≥
(

1 − |Sn|
|Sn|

)
log rout(μv). (3.5)

It is well known that for a product formula field k, there are only finitely many archimedean
places; see [1, Ch. 12, Theorem 3]. Since μ = {μv}v∈Mk

is quasi-adelic, the product∏
v∈Mk

rout(μv)
Nv converges. Hence, we can choose a set M′

k ⊂ Mk such that the
following hold.
• M′′

k := Mk\(M′
k ∪ {v0}) has only finitely many places.

• All places in M′
k are non-archimedean and v0 �∈ M′

k .
• ∑

v∈M′
k
Nv · log rout(μv) ≤ ε.

Now the definition of the canonical height ĥμ gives

Nv0 · ([Sn]v0 , [Sn]v0)μv0
=

( |Sn| − 1
|Sn|

)
ĥμ(Sn)−

∑
v∈Mk\{v0}

Nv · ([Sn]v , [Sn]v)μv

=
( |Sn| − 1

|Sn|
)
ĥμ(Sn)−

∑
v∈M′′

k

Nv · ([Sn]v , [Sn]v)μv

−
∑
v∈M′

k

Nv · ([Sn]v , [Sn]v)μv .

This in turn, upon using (3.5), implies

Nv0 · ([Sn]v0 , [Sn]v0)μv0
≤

( |Sn| − 1
|Sn|

)
ĥμ(Sn)

−
∑
v∈M′′

k

Nv · ([Sn]v , [Sn]v)μv +
( |Sn| − 1

|Sn|
)

· ε.
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Since the set M′′
k contains only finitely many places and lim supn→∞ ĥμ(Sn) ≤ 0, by the

lower bound in (3.1), taking the superior limit in the above inequality yields

lim sup
n→∞

Nv0 · ([Sn]v0 , [Sn]v0)μv0
≤ lim sup

n→∞

(( |Sn| − 1
|Sn|

)
ĥμ(Sn)

−
∑
v∈M′′

k

Nv · ([Sn]v , [Sn]v)μv + ε

)

≤ lim sup
n→∞

ĥμ(Sn)+ ε ≤ ε, (3.6)

as claimed. This finishes the proof of the lemma.

The proof of Theorem 1.1 now follows as in [6, Theorem 4.9]; see also [29, Propositions
2.11 and 4.12]. The set of probability measures on P1,an

v is compact in the weak topology.
Hence, to show that [Sn]v converges weakly to μv as n → ∞, it suffices to show that any
convergent subsequence of [Sn]v converges to μv . Passing to a subsequence if necessary,
we may assume that [Sn]v converges to some νv ,

lim
n→∞[Sn]v = νv .

We have to show that νv = μv . By Lemma 3.1, the μv-energy Iμv (νv) of νv satisfies

0 = lim
n→∞([Sn]v , [Sn]v)μv = lim

n→∞
1
2

∫ ∫
P

1,an
v ×P

1,an
v \Diag

gμv (x, y) d[Sn]v(x) d[Sn]v(y)

≥ 1
2

∫ ∫
P

1,an
v ×P

1,an
v

gμv (x, y) dνv(x) dνv(y) by [6, Lemma 3.26]

= Iμv (νv).

Note, our assumption that the measures μv have continuous potentials implies that they are
log-continuous in the sense of [6, Definition 3.20]. By the energy minimization principle
[6, Theorem 3.25], where μv is the unique probability measure on P1,an

v minimizing the
μv-energy function Iμv (·) and Iμv (μv) = 0 ≥ Iμv (νv), we get that Iμv (μv) = Iμv (νv) and
νv = μv . This finishes the proof of Theorem 1.1.

3.2. Proof of Theorem 2.2. First, we show that M = {Mv}v∈Mk
is quasi-adelic implies

that μ = {μMv }v∈Mk
is quasi-adelic. Assume that M = {Mv}v∈Mk

is a quasi-adelic set.
For any r > 0, let

rMv := {(αx, αy) : (x, y) ∈ Mv , α ∈ Cv with |α|v ≤ r}.
From the definition of the capacity, we have Cap(rMv) = r2 Cap(Mv). Since GMv is a
homogeneous potential for μMv , the normalized homogeneous potentialGμMv is given by

GμMv (x, y) = GMv(x, y)+ 1
2 log Cap(Mv), (3.7)

and MμMv
= (1/

√
Cap(Mv))Mv . As a consequence,

rin(μMv ) = rin(Mv)√
Cap(Mv)

, rout(μMv ) = rout(Mv)√
Cap(Mv)

. (3.8)
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Moreover, as Cap(D̄2(0, r)) = r2,

rin(Mv) ≤ √
Cap(Mv) ≤ rout(Mv). (3.9)

Then by (3.8),

rin(Mv)

rout(Mv)
≤ rin(μMv ) ≤ 1 ≤ rout(μMv ) ≤ rout(Mv)

rin(Mv)
.

As M = {Mv}v∈Mk
is quasi-adelic, the products of inner and outer radii converge strongly.

Then the above inequalities imply that the products of the inner and outer radii of μ =
{μMv }v∈Mk

converge, that is, μ = {μMv }v∈Mk
is quasi-adelic.

Now assume that D̄2(0, r ′v) ⊂ Mv ⊂ D̄2(0, rv) and
∏
v∈Mk

r ′v
Nv ,

∏
v∈Mk

rv
Nv con-

verge strongly. Then the products
∏
v∈Mk

rout(Mv)
Nv and

∏
v∈Mk

rin(Mv)
Nv converge

strongly, since

r ′v ≤ rin(Mv) ≤ rout(Mv) ≤ rv .

Hence, M = {Mv}v∈Mk
is quasi-adelic. Moreover, by (3.9), the product of the capacities

converges strongly. Then the last formula for the canonical height is clear from (2.8) and
(3.7). This finishes the proof of Theorem 2.2.

3.3. A finiteness property. The following proposition is the analog of the last assertion
of [29, Theorem 1] for quasi-adelic measures. It will be useful in the last section in proving
the equidistribution of parameters t with small height with respect to ĥfc(t) (c(t)).

PROPOSITION 3.2. Let k be a product formula field. Suppose μ is a quasi-adelic measure.
Then for any δ > 0, there are at most finitely many x ∈ ksep with

ĥμ(x) < −δ.
Proof. Assume to the contrary that there are infinitely many xi ∈ ksep with ĥμ(xi) < −δ.
Let Sn = ⋃n

i=1 Gal(ksep/k) · xi . Then Sn is Gal(ksep/k)-invariant and |Sn| → ∞. By
(2.8), we get ĥμ(Sn) ≤ −δ. Moreover, from (3.1), we see that for each v ∈ Mk ,

lim inf
n→∞ ([Sn]v , [Sn]v)μv ≥ 0.

Replacing ĥμ(Snj ) in (3.6) by ĥμ(Sn) and letting ε tend to zero, we get

lim sup
n→∞

([Sn]v , [Sn]v)μv ≤ −δ,

which is a contradiction.

4. Non-adelic dynamical pairs (f , c) are typical
In this section, we aim to prove Theorems 1.3 and 4.5. We first introduce some notation
and terminology.

4.1. A dynamical pair on P1. Let k be a product formula field and let K = k(t). Recall
that a dynamical pair on P1 is a pair (f , c) ∈ K(z)×K with d := degz f ≥ 2. We say that
the pair (f , c) is isotrivial if there is a family of Möbius transformations Mt(z) ∈ K(z)
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such that bothMt ◦ ft ◦M−1
t (z) andMt(c(t)) are independent of t. Moreover, we say that

(f , c) is preperiodic if the starting point c ∈ K is preperiodic under f ∈ K(z), that is, if
there are integers m > n ≥ 0 with f n(c) = f m(c) ∈ K .

Recall further that we have the Call–Silverman canonical height function associated
to f ∈ K(z), denoted by ĥf : P1(K) → P1(K), determined uniquely by the properties
ĥf (f (c)) = d · ĥf (c) and ĥf (c) = h(c)+O(1). Alternatively, for c ∈ K , we can com-
pute the canonical height as

ĥf (c) := lim
n→∞

degt f
n(c)

dn
.

We note that ĥf (c) ≥ 0 and equality holds if and only if (f , c) is either isotrivial or
preperiodic; see [2, 17].

4.2. Homogenization. Let (f , c) ∈ K(z)×K be a dynamical pair with degree
d := degz f ≥ 2. In what follows, we choose lifts of ft (z) = Pt(z)/Qt(z) and c(t) =
A(t)/B(t). For the lift of f, we write

Ft1,t2(z, w) = (Pt1,t2(z, w), Qt1,t2(z, w)),

where Pt1,t2 , Qt1,t2 are homogeneous polynomials in (z, w) of degree d, with the coeffi-
cients of homogeneous polynomials in (t1, t2) of the same degree that are relatively prime.
For a lift of c, we write

C(t1, t2) = (A(t1, t2), B(t1, t2)),

where A and B are homogeneous polynomials in k[t1, t2] of the same degree and have no
common linear factor in k[t1, t2]. Moreover, we define

(AC,n(t1, t2), BC,n(t1, t2)) := Fnt1,t2(C(t1, t2)).

That is,

AC,0(t1, t2) = A(t1, t2) and BC,0(t1, t2) = B(t1, t2),

while for all n ≥ 0,

AC,n+1(t1, t2) = Pt1,t2(AC,n(t1, t2), BC,n(t1, t2)),

BC,n+1(t1, t2) = Qt1,t2(AC,n(t1, t2), BC,n(t1, t2)). (4.1)

Note that f nt (c(t)) = AC,n(t , 1)/BC,n(t , 1). We often work with dehomogenized coor-
dinates and when doing so, we identify P1(k) with A1(k) ∪ {∞} as follows. A point
[t1 : t2] ∈ P1(k) is seen as t1/t2 ∈ A1(k) when t2 �= 0 and as ∞ when t2 = 0.

We say that f ∈ K(z) degenerates at t ∈ A1(k) ∪ {∞} if degz(ft ) < d and write
Sing(f ) for the set of degenerating parameters. Notice that the set Sing(f ) is precisely
the zero locus of the resultant of the homogeneous polynomials Pt1,t2 , Qt1,t2 in (z, w),
which we denote by

Res(Ft1,t2) := Res(z,w)(Pt1,t2 , Qt1,t2) ∈ k[t1, t2] \ {0}.
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We remark here that Res(Ft1,t2) is a homogeneous polynomial in t1, t2. Thus,

Sing(f ) = {[α1 : α2] ∈ P1(k) : Res(Fα1,α2) = 0}.
We also work with a lift of f n(c) defined by coprime homogeneous polynomials. To write
the greatest common divisor of Fnt1,t2(C(t1, t2)), for each α ∈ P1(k), we let

uα(t1, t2) =
{
t1 − αt2 if α ∈ A1(k),

t2 if α = ∞.

Moreover, we letmC,n(α) be the maximal integerm ∈ N with umα |AC,n and umα |BC,n. Then,

gcd(F nt1,t2(C(t1, t2))) =
∏

α∈Sing(f )

uα(t1, t2)mC,n(α).

We point out here that for each α ∈ Sing(f ), the sequence {mC,n(α)/d
n}n∈N converges as

n → ∞ since {mC,n+1(α)− d ·mC,n(α)}n∈N is uniformly bounded. We associate a lift of
f n(c) with lifts Ft1,t2 and C of f and c respectively, defined by

FC,n(t1, t2) := Fnt1,t2(C(t1, t2))/gcd(F nt1,t2(C(t1, t2)).

This is given by coprime homogeneous polynomials in the variables (t1, t2) and
deg FC,n(t1, t2) = degt f

n
t (c(t)).

Next, we introduce measures associated with each dynamical pair.

4.3. Measure associated to a dynamical pair: a family of rescaled ‘bifurcation’ measures.
Let k be a product formula field and K = k(t) as before. In this section, we introduce the
canonical measureμf ,c = {μf ,c,v}v∈Mk

associated to a non-isotrivial and non-preperiodic
dynamical pair (f , c). Recall that for each v ∈ Mk and z, w ∈ Cv , we write ‖(z, w)‖v =
max{|x|v , |y|v}. Since (f , c) is not preperiodic and non-isotrivial, one has ĥf (c) �= 0 and
in particular deg FC,n �= 0 for sufficiently large n. To see this, in the case of f being
non-isotrivial, we refer to [2, Theorem 1.6]; however, when f is isotrivial but (f , c) is
non-isotrivial, an easy argument following [7, Lemma 10.1] indicates that ĥf (c) > 0. For
n sufficiently large, we let

GF ,C,n,v(t1, t2) := log ‖FC,n(t1, t2)‖v
deg FC,n

.

By a telescopic argument as in [8] or [30], this sequence converges locally uniformly on
C2
v \ ({(0, 0)} ∪ π−1(Sing(f ))). We denote its limit by

GF ,C,v(t1, t2) := lim
n→∞ GF ,C,n,v(t1, t2).

Note that for non-archimedean places, GF ,C,v extends to the product of Berkovich affine
lines A1,an

v × A1,an
v \ {(0, 0)}; see [7, Ch. 10]. By slight abuse of notation, we also denote

its extension by GF ,C,v . Let π : C2
v \ {(0, 0)} → P1(Cv) be the standard projection map.

We define a measure μf ,c,v on P1(Cv) \ Sing(f ) by

μf ,c,v := π∗ddc(t1,t2)GF ,C,v(t1, t2). (4.2)
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When v is archimedean so that Cv � C and P1,an
v � P1(C), this measure is a rescaled

bifurcation measure. Indeed, the bifurcation measure associated to (f , c) is defined on
P1(Cv)\Sing(f ) by

π∗ddc(t1,t2)

(
lim
n→∞

1
dn

log ‖Fnt1,t2(C(t1, t2))‖v
)

.

It is an important measure in dynamics as it is supported exactly at the set of
non-degenerating parameters t = λ at which (f , c) is unstable, that is, the sequence
of holomorphic functions {t �→ f nt (c(t))} is not normal near λ. Recall here that the family
ft is stable at λ if the Julia set moves holomorphically for a small perturbation of t at λ, or
equivalently if the dynamical pairs (f , c) (upon passing to a finite branched cover of P1)
are stable at λ for each critical point c; see [41, 45]. We refer the reader to [13, 14, 24] for
more details.

In the following proposition, we show that the definition of μf ,c,v extends naturally
to give a probability measure on P1,an

v for each v ∈ Mk . When deg FC,n is not zero, we
write

μf ,c,n,v := π∗ddc(t1,t2)GF ,C,n,v(t1, t2)

to denote the probability measure on P1,an
v associated to FC,n for v ∈ Mk . This measure

is independent of the choice of lifts for f and c.

PROPOSITION 4.1. Let (f , c) ∈ K(z)×K be a non-isotrivial and non-preperiodic
dynamical pair. For each v ∈ Mk , the sequence of measures μf ,c,n,v on P1,an

v converges
weakly to a probability measure μf ,c,v on P1,an

v as n → ∞. Moreover, μf ,c,v has
continuous potentials if and only if GF ,C,v extends continuously to C2

v\{(0, 0)}.
Proof. First we assume that v ∈ Mk is an archimedean place, so that Cv � C and P1,an

v �
P1(C). Thus, we may work on P1(C). Notice that GF ,C,n,v(t1, t2) is a plurisubharmonic
function on C2\{(0, 0)} and recall that the sequence GF ,C,n,v converges locally uniformly
on C2 \ ({(0, 0)} ∪ π−1(Sing(f ))). Hence, the sequence of probability measures μf ,c,n,v

converges weakly to the rescaled bifurcation measure μf ,c,v on P1(C)\Sing(f ). Since the
space of probability measures on P1(C) is compact in the weak topology, to show that
μf ,c,n,v has a unique limit, it suffices to prove that for any convergent subsequence of
μf ,c,n,v , the limit admits no point mass on Sing(f ). Without loss of generality, we may
assume that 0 ∈ Sing(f ). We have to show that for any ε > 0, there is a radius r > 0 and
an integer N > 0, such that for all n ≥ N , μf ,c,n,v(D(0, r)) < ε. Suppose that this is not
the case. Then we may find integers nj → ∞ and a sequence of radii rnj → 0 such that

μf ,c,nj ,v(D(0, rnj )) → ε0 > 0,

as j → ∞. Let Pnj (t) be a potential function of μf ,c,nj ,v|D(0,rnj ). We have

Pnj (t) :=
∫

log |t − s|v d(μf ,c,nj ,v|D(0,rnj )) → ε0 log |t |v
locally uniformly on a punctured disk centered at 0. Hence, the sequence of subharmonic
functions GF ,C,nj ,v(t , 1)− Pnj (t) converges locally uniformly to a subharmonic function
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GF ,C,v(t , 1)− ε0 log |t |v on a punctured disk. So we can find some L0 > 0 and r0 > 0,
such that for all big nj , we have

sup
|t |=r0

(GF ,C,nj ,v(t , 1)− Pnj (t)) < L0.

From [17, Proposition 3.1], one has GF ,C,v(t , 1) = o(log |t |v). Then for very small t, we
can find nj big enough such that

GF ,C,nj ,v(t , 1)− Pnj (t) > −ε0

2
log |t |v > L0,

which is a contradiction as the subharmonic function GF ,C,nj ,v(t , 1)− Pnj (t) achieves
its maximal value on the boundary of D(0, r0). Since all GF ,C,n,v are bounded above
uniformly near 0, GF ,C,v(t , 1) is bounded above and subharmonic on the punctured disk
centered at 0. By [47, Theorem 3.6.1], GF ,C,v(t , 1) has a unique extension to a subhar-
monic function in a disk centered at 0, with GF ,C,v(0, 1) := lim supt→0 GF ,C,v(t , 1).
Because GF ,C,v(t , 1) = o(log |t |v) and μf ,c,v({0}) = 0, the extended subharmonic func-
tion is a potential of μf ,c,v near 0. Hence, μf ,c,v has continuous potential if and only if
GF ,C,v(t1, t2) can be extended continuously. For properties of subharmonic functions, we
refer the reader to [47].

Assume now that v ∈ Mk is non-archimedean. Each FC,n,v determines a probability
measure μf ,c,n,v with continuous potential on P1,an

v defined on P1(Cv) by

gf ,c,n,v(x) = log ‖x̃‖v −GF ,C,n,v(x̃).

The measure is given by

μf ,c,n,v := �gf ,c,n,v + λv . (4.3)

Here, λv is the probability measure supported on the Gauss point. For any neighbor-
hood U ⊂ P1(Cv) of Sing(f ), the sequence GF ,C,n,v(x̃) converges uniformly for x ∈
P1(Cv)\U . Since P1(Cv) is dense in P1,an

v , we also have that for any neighborhood of
Uan of Sing(f ) in P1,an

v , the function gf ,c,n,v(x) converges uniformly on P1,an
v \Uan as

n → ∞. Hence, from (4.3), we see that the limit

gv(x) := lim
n→∞ gf ,c,n,v(x) = log ‖x̃‖v −GF ,C,v(x̃)

is an element of BVD(P1,an
v ) (see [7, Definition 5.11]), with

μf ,c,v − λv := �gv .

It is clear that the probability measure μf ,c,v is the unique limit of {μf ,c,n,v} on P1,an
v , with

potential gv . Since the potential function of μf ,c,v is unique up to a constant, we have that
μf ,c,v has a continuous potential if and only if gv can be extended continuously to Sing(f ),
or equivalently if and only if GF ,C,v can be extended continuously on C2

v\{(0, 0)}.
We are indebted to Laura DeMarco for sharing the idea of the following proposition.

PROPOSITION 4.2. Let (f , c) ∈ K(z)×K be a non-isotrivial and non-preperiodic
dynamical pair and v ∈ Mk . We write MF ,C,v = {(λ1, λ2) ∈ C2

v \ {(0, 0)} :
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GF ,C,v(λ1, λ2) ≤ 0}. Suppose that GF ,C,v extends continuously to C2
v\{(0, 0)}.

Then,

Cap(MF ,C,v) ≤ lim inf
n→∞ | Res FC,n|−1/ deg(FC,n)

2

v .

Proof. Let v ∈ Mk and write GF ,C,n,v(t1, t2) := log ‖FC,n(t1, t2)‖v/deg FC,n and

Mn,v := {(s1, s2) ∈ C2
v \ {(0, 0)} : GF ,C,n,v(s1, s2) ≤ 0}.

From [23, Proposition 2.1], we have Cap(Mn,v) = | Res(FC,n)|−1/ deg(FC,n)
2

v . We are going
to prove that for any ε ∈ |C∗

v|v , there exists an N ∈ N such that for any n ≥ N , we have

GF ,C,n,v(t1, t2)−GF ,C,v(t1, t2) < ε. (4.4)

This will imply that MF ,C,v ⊂ eεMn,v and hence, by the monotonicity of the homoge-
neous capacity, Cap(MF ,C,v) ≤ e2ε Cap(Mn,v) for all n ≥ N . Since |C∗

v|v is dense in
R≥0, the proposition follows. Note that GF ,C,n,v(t1, t2) converges locally uniformly to
GF ,C,v(t1, t2) away from π−1(Sing(f )). Hence, it suffices to prove that (4.4) holds in
a small neighborhood of π−1(Sing(f )). To this end, we may assume without loss of
generality that 0 ∈ Sing(f ) and show that there exists an r > 0, such that for all t ∈ Cv

with |t |v ≤ r , we have GF ,C,n,v(t , 1) < GF ,C,v(t , 1)+ ε for large n. Since GF ,C,v(t , 1) is
continuous, we can choose r small enough such that for |t |v ≤ r , we have |GF ,C,v(t , 1)−
GF ,C,v(0, 1)| < ε/3. Moreover, enlarging N if necessary, we may further assume that
GF ,C,n,v(t , 1) < GF ,C,v(t , 1)+ ε/3 < GF ,C,v(0, 1)+ 2ε/3, when |t |v = r . Then, since
GF ,C,n,v(t , 1) is subharmonic, by the maximum principle (see [7, Proposition 8.14] when
v is non-archimedean), we get

GF ,C,n,v(t , 1) < GF ,C,v(0, 1)+ 2ε/3 < GF ,C,v(t , 1)+ ε

for all t ∈ Cv with |t |v ≤ r and n ≥ N , as claimed.

Definition 4.3. We call a non-preperiodic and non-isotrivial dynamical pair (f , c) adelic
or quasi-adelic if the corresponding measure μf ,c = {μf ,c,v}v∈Mk

, defined in Proposition
4.1, is adelic or quasi-adelic respectively.

4.4. A generic dynamical pair is not adelic. Let k be a number field or the function
field of a smooth projective curve defined over a field (of arbitrary characteristic) and
let α ∈ k (or α = ∞ ∈ P1(k)). To simplify our notation, for a homogeneous polynomial
H(x, y) defined over a ring R and an element χ ∈ R, we write H(χ) := H(χ , 1) and
H(∞) := H(1, 0). In particular,

Pα(z, w) := Pα,1(z, w) and Qα(z, w) := Qα,1(z, w), when α ∈ k and

P∞(z, w) := P1,0(z, w), Q∞(z, w) := Q1,0(z, w)

We let

Rα(z, w) := gcd(Pα(z, w), Qα(z, w)),
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with Rα(z, 1) being a monic polynomial. Then

Pα = Rα · P ∗
α and Qα = Rα ·Q∗

α , (4.5)

where P ∗
α (z, w), Q

∗
α(z, w) are homogeneous polynomials with no common linear factor

over k. Note that Rα �= 1 if and only if α ∈ Sing(f ). We define the set of α-holes of f by

Hf ,α := {[λ1 : λ2] ∈ P1(k) : Rα(λ1, λ2) = 0}.
Abusing notation slightly, we often view Hf ,α as a subset of k̄ ∪ {∞} identifying P1(k)

with k̄ ∪ {∞}. Under this identification, Hf ,α consists of t ∈ k̄ such that Rα(t , 1) = 0
together with possibly ∞ in the event that Rα(1, 0) = 0.

Next, we define our notion of an α-generic dynamical pair (f , c) and subsequently state
our theorem.

Definition 4.4. Let (f , c) ∈ k(t)(z)× k(t) be a dynamical pair. Assume that f is not
isotrivial and degz f ≥ 3. Let α ∈ Sing(f ). We say that (f , c) is α-generic if the following
properties are satisfied.
(P1) degz(fα) ≥ 2.
(P2) There exists ρ ∈ Hf ,α that is not a totally ramified fixed point of f 2

α .
(P3) For all n ∈ N, we have f nα (c(α)) /∈ Hf ,α .
(P4) c(α) is not preperiodic for fα .
(P5) If k is a function field, then fα is not isotrivial.

With this terminology in place, Theorem 1.3 reduces to the following statement.

THEOREM 4.5. Let k be a number field or the function field of a smooth projective curve.
Let f ∈ k(t)(z) with degz f ≥ 3 that is not isotrivial. Let c ∈ k(t) that is not preperiodic
for f. If there is an α ∈ Sing(f ) such that (f , c) is α-generic, then (f , c) is not adelic.

Before we proceed to the proof of Theorem 4.5, let us see how it implies Theorem 1.3.
First we make a useful observation.

Remark 4. A dynamical pair (f , c) ∈ k(t)(z)× k(t) is adelic if and only if the pair (M ◦
f n ◦M−1, M(fN(c))) is adelic for some n, N ∈ N and a Möbius transformation M(z) ∈
k(t)(z). This observation allows us to apply Theorem 4.5 in cases when degz f = 2, as
in §5.

Theorem 4.5 ⇒ Theorem 1.3. Let (f , c), N ∈ N, g := f N , and α ∈ Sing(g) be as in
Theorem 1.3. Our assumption that 2 ≤ deg(gα) < dN guarantees that degz(g) ≥ 3. Our
assumptions on (g, c) and α yield that the pair (g, c) is α-generic. Note here that since f is
not isotrivial, we also have that g = f N is not isotrivial. Thus by Theorem 4.5, we get that
(f N , c) is not adelic. In light of Remark 4, this implies that (f , c) is not adelic. Theorem
1.3 follows.

We now establish some preliminary results toward the proof of Theorem 4.5. Let S ⊂
Mk be a finite set containing all the archimedean places (if they exist). We denote the set
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of S-integers of k by

OS,k := {α ∈ k : |α|v ≤ 1 for all v /∈ S}.
If ϕ ∈ k(z) is a rational map and α ∈ k, we denote the orbit of α under the action of ϕ as

Oϕ(α) = {ϕn(α) : n ∈ N}.
The following theorem will play a crucial role in our proofs. We thank Patrick Ingram for
referring us to it.

THEOREM 4.6. [50, Theorem 2.2] Let k be a number field. Let ϕ ∈ k(z) be a rational
map of degree at least 2 such that ϕ2(z) /∈ k[z] and let α ∈ k. Let S ⊂ Mk be a finite set
containing all the archimedean places. Then, |Oϕ(α) ∩ OS,k| < ∞.

We point out here that an analog of Theorem 4.6 also holds for function fields of curves;
see [11, 38] for the case of characteristic 0 and p. Here we need to assume that ϕ is not
isotrivial.

THEOREM 4.7. [38, Theorem 1] and [11, Theorem 1.4] Let k be a function field of a
smooth projective curve. Let ϕ ∈ k(z) be a rational map of degree at least 2 that is not
isotrivial and is such that ϕ2(z) /∈ k[z]. Let α ∈ k. Let S ⊂ Mk be a finite set. Then
|Oϕ(α) ∩ OS,k| < ∞.

LEMMA 4.8. Let k be either a number field or a function field of a smooth projective
curve. Let ϕ ∈ k(z) be a rational map of degree at least 2 such that ϕ2(z) /∈ k[z]. If k is a
function field, assume that ϕ is not isotrivial. Let (α, β) ∈ k2 \ {(0, 0)} be such that α/β is
not preperiodic for ϕ. Let {an} and {bn} be the sequences defined as follows. For a choice
of coprime homogeneous polynomials P , Q ∈ k[z, w] such that ϕ = [P : Q], we let

a0 = α and b0 = β, and for all n ≥ 0,
an+1 = P(an, bn), bn+1 = Q(an, bn).

Then there are infinitely many non-archimedean places v ∈ Mk such that |bn|v < 1 for
some n ∈ N.

Proof. We assume that the statement is false and then derive a contradiction. Then there
exists a finite set S ⊂ Mk containing the archimedean places such that |bn|v ≥ 1 for all
v /∈ S and all n ∈ N. We may enlarge the set S, if necessary, to assume that the coefficients
of P and Q are in OS,k and that for all v /∈ S, we have max{|α|v , |β|v} = 1. Then for
all v /∈ S and all n ∈ N, we have max{|an|v , |bn|v} ≤ 1. Recall that by our hypothesis,
we have |bn|v ≥ 1. Thus, |bn|v = 1 and |an|v ≤ 1 for all v /∈ S and all n ∈ N. Therefore,
ϕn(α/β) = (an/bn) ∈ OS,k for all n ∈ N. Since α/β is not preperiodic for ϕ and further
if k is a function field ϕ is not isotrivial, in view of Theorems 4.6 and 4.7, we get that
ϕ2 ∈ k[z]. This contradicts our assumption and concludes the proof.

LEMMA 4.9. Let (f , c) ∈ k(t)(z)× k(t) be a dynamical pair and let α ∈ Sing(f ) be such
that deg(fα) ≥ 1. Assume that for all n ∈ N, we have f nα (c(α)) /∈ Hf ,α . Then,

mC,n(α) = 0
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for all n ∈ N. In particular, for all n ∈ N, we have

gcd(F nt1,t2(C(t1, t2))) =
∏

β∈Sing(f )\{α}
uβ(t1, t2)mC,n(β).

Proof. Let α ∈ P1(k) be as in the statement of the lemma. Note that

mC,0(α) = min{ordα A, ordα B} = 0. (4.6)

We will show that mC,n(α) = 0 for all n ∈ N. Assume the contrary and let N ∈ N be the
smallest integer such that mC,N(α) > 0. By (4.6), we have N ≥ 1. Since mC,N(α) > 0,
(4.1) yields

Pα(AC,N−1(α), BC,N−1(α)) = Qα(AC,N−1(α), BC,N−1(α)) = 0.

Hence, by (4.5), we get that either

P ∗
α (AC,N−1(α), BC,N−1(α)) = Q∗

α(AC,N−1(α), BC,N−1(α)) = 0 (4.7)

or

Rα(AC,N−1,α(α), BC,N−1,α(α)) = 0. (4.8)

If (4.7) is true, then (AC,N−1(α), BC,N−1(α)) �= (0, 0) is a common zero of P ∗
α , Q∗

α ,
contradicting the fact that they do not share a common linear factor.

If however (4.8) holds, then

AC,N−1(α)

BC,N−1(α)
∈ Hf ,α . (4.9)

Nonetheless, by our assumption, f nα (c(α)) /∈ Hf ,α for all n ≤ N − 1. Moreover, the
minimality of N implies that mC,n(α) = 0 for all n ≤ N − 1. Hence,

f nα (c(α)) = AC,n(α)

BC,n(α)

for all n ≤ N − 1. Thus, (4.9) yields

f N−1
α (c(α)) = AC,N−1(α)

BC,N−1(α)
∈ Hf ,α ,

contradicting our assumption that the orbit of c(α) under iteration by fα never meets the
set Hf ,α . In both cases, we got a contradiction. Thus, the lemma follows.

Before stating the next proposition, we recall that ∞ is a totally ramified fixed point of
a rational map ψ ∈ k(z) if and only if ψ ∈ k[z].

PROPOSITION 4.10. Let (f , c) ∈ k(t)(z)× k(t) be a dynamical pair with degz f ≥ 3.
Assume that f is not isotrivial. Let α ∈ Sing(f ) be such that (f , c) is α-generic. Then
there are infinitely many v ∈ Mk such that for some nv ∈ N, we have

max{|AC,nv (α)|v , |BC,nv (α)|v} < 1.
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Proof. Let α ∈ Sing(f ) be such that (f , c) is α-generic. To simplify the notation,
throughout this proof, we write an := AC,n(α) and bn := BC,n(α). Since (P3) holds, by
Lemma 4.9 we know that not both of an and bn are zero. We have

an+1 = Pα(an, bn) = Rα(an, bn)P ∗
α (an, bn),

bn+1 = Qα(an, bn) = Rα(an, bn)Q∗
α(an, bn), (4.10)

for all n ∈ N. We define auxiliary sequences {a∗
n} and {b∗

n} as a∗
0 := a0, b∗

0 := b0 and

a∗
n+1 := P ∗

α (a
∗
n , b∗

n), b∗
n+1 := Q∗

α(a
∗
n , b∗

n) for n ≥ 1.

Then, for all n ∈ N, we have

an =
n−1∏
i=0

Rα(a
∗
i , b∗

i )
dn−1−i · a∗

n ,

bn =
n−1∏
i=0

Rα(a
∗
i , b∗

i )
dn−1−i · b∗

n. (4.11)

Let S ⊂ Mk be a finite set of places, containing the archimedean ones, such that for
all v /∈ S, the coefficients of P ∗

α and Q∗
α are v-adic integers, |Res(P ∗

α , Q∗
α)|v = 1 and

max{|a∗
0 |v , |b∗

0|v} = 1. Then invoking [7, Lemma 10.1], for all n ∈ N and v /∈ S, we have

max{|a∗
n|v , |b∗

n|v} = 1. (4.12)

We may enlarge the set S, if necessary, to assume that the elements of Hf ,α ∩ k are v-adic
integers for all v /∈ S. Thus, also the coefficients of Rα are v-adic integers for v /∈ S.
Combining then (4.11) with (4.12), we get that

max{|an+1|v , |bn+1|v} ≤ |Rα(a∗
n , b∗

n)|v ≤ |uρ(a∗
n , b∗

n)|v (4.13)

for all v /∈ S and n ∈ N and for any ρ ∈ Hf ,α . Now let ρ ∈ Hf ,α be as in (P2). We claim
that there are infinitely many v ∈ Mk such that

|uρ(a∗
n , b∗

n)|v < 1 (4.14)

for some n ∈ N. By (4.13), it is clear that this suffices to prove this proposition. To prove
(4.14), we use Lemma 4.8. If ρ = ∞, our claim follows. Otherwise, let Mρ(z, w) =
(w + ρz, z) and (P̂ ∗

α , Q̂∗
α) = M−1

ρ ◦ (P ∗
α , Q∗

α) ◦Mρ . Consider the morphism ĝα : P1 →
P1 defined by

[z : w] �→ [P̂ ∗
α (z, w) : Q̂∗

α(z, w)].

Since ρ ∈ Hf ,α is not a totally ramified fixed point of f 2
α as in (P2), we know that ∞ is not

a totally ramified fixed point of ĝ2
α . Moreover, by (P4), we have |Oĝα (b0/a0 − ρb0)| = ∞

and by (P1), we have deg(ĝα) ≥ 2. Thus, by Lemma 4.8 applied to the rational map ĝα and
(b0, a0 − ρb0), our claim follows. This finishes our proof.

We are now ready to prove the main result of this section: In most cases, (f , c) is not
adelic.
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4.5. Proof of Theorem 4.5. Let f and c be as in the statement of the theorem. Let α ∈
Sing(f ) be such that (f , c) is α-generic and assume to the contrary that (f , c) is adelic.
Then there is a finite set S ⊂ Mk such that for all v /∈ S, we have

GF ,C,v(t1, t2) = log ‖(t1, t2)‖v + cv (4.15)

for a constant cv . Denote by P ⊂ Mk the infinite set of places satisfying the conclusion of
Proposition 4.10. In other words, for v ∈ P, there exists nv ∈ N such that

max{|AC,nv (α)|v , |BC,nv (α)|v} < 1.

Enlarging the set S if necessary, we may further assume that for all v /∈ S, the following
hold.
(S1) |α|v = 1 if α �= 0, ∞.
(S2) For all β ∈ Sing(f ) \ {α}, we have |uβ(α)|v = 1 and if β �= 0 also |uβ(0, 1)|v = 1.
(S3) The coefficients of Ft1,t2(z, w) ∈ k[t1, t2, z, w] are v-adic integers.
(S4) | Res(t1,t2)(A, B)|v = 1 and the coefficients of C(t1, t2) = (A, B) are v-adic

integers.
(S5) All coefficients of Res(Ft1,t2) are v-adic units.

We aim to prove that (4.15) does not hold for places in the infinite set P \ S, thus leading
to a contradiction. To do so, we will evaluate (4.15) at two distinct points that yield distinct
values for cv when v ∈ P \ S.

Let v ∈ P \ S. In the rest of this proof, for t0 ∈ Cv , we write

T0 =
{
(t0, 1) if α ∈ A1(k),

(1, t0) if α = ∞.

View both T0 and α as elements of P1. Since by Lemma 4.9 either AC,nv (α) or BC,nv (α)

is non-zero and v is non-archimedean, we may choose T0 �= (0, 1) sufficiently close to α
in the v-adic topology to be such that the following hold.
(T1) 0 < |uα(T0)|v < 1.
(T2) max{|AC,nv (T0)|v , |BC,nv (T0)|v} ≤ max{|AC,nv (α)|v , |BC,nv (α)|v}.

Next, we show that evaluating (4.15) at T0 gives cv < 0. To this end, recall that

FC,n(t1, t2) =
(

AC,n(t1, t2)
gcd(F nt1,t2(C(t1, t2))

,
BC,n(t1, t2)

gcd(F nt1,t2(C(t1, t2))

)
, (4.16)

where by Lemma 4.9, we have

gC,n(t1, t2) := gcd(F nt1,t2(C(t1, t2)) =
∏

β∈Sing(f )\{α}
uβ(t1, t2)mC,n(β).

Combining (S2) and (T1), the ultrametric inequality gives |uβ(T0)|v = 1 for all β ∈
Sing(f ) \ {α}. This in turn yields |gC,n(T0)|v = 1 for all n ∈ N. Thus, evaluating (4.16)
at T0, we have

‖FC,n(T0)‖v = ‖FnT0
(C(T0))‖v = ‖(AC,n(T0), BC,n(T0))‖v . (4.17)
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Note that by (S1) and (T1), we have ‖T0‖v ≤ 1. Combining this with (S3), (4.17) yields

‖FC,n+1(T0)‖v ≤ ‖FC,n(T0)‖dv .

An easy argument by induction and (T2) yield that for all n ≥ nv , we have

‖FC,n(T0)‖v ≤ max{|AC,nv (α)|v , |BC,nv (α)|v}d
n−nv

< 1,

where the last inequality follows from our assumption that v ∈ P. We now have

cv = lim
n→∞

log ‖FC,n(T0)‖v
deg(FC,n)

≤ log max{|AC,nv (α)|v , |BC,nv (α)|v}
dnv · ĥf (c)

< 0, (4.18)

as claimed. We point out here that by our assumption f is not isotrivial. Hence, our property
(P4) guarantees that ĥf (c) �= 0; see [2, 17].

However, we can choose S0 = (s0, 1) ∈ C2
v to be such that for all β ∈ Sing(f ), we

have |s0|v = |uβ(S0)|v = 1. Then, upon using (S3), we get that the coefficients of FS0 are
v-adic integers. Moreover, by (S5) and since |uβ(S0)|v = 1 for all β ∈ Sing(f ), we have
| Res(z,w)(FS0)|v = 1. Therefore, [7, Lemma 10.1] yields that ‖FS0(z, w)‖v = ‖(z, w)‖dv .
Since by (S4) we have that C has good reduction and moreover ‖S0‖v = 1, another
application of [7, Lemma 10.1] yields ‖C(S0)‖v = 1. Thus, an easy argument by induction
yields ‖FnS0

(C(S0))‖v = 1. By our choice of S0, we have |gC,n(S0)|v = 1 for all n ∈ N.
Hence, ‖FnS0

(C(S0))‖v = ‖FC,n(S0)‖v = 1 for all n ∈ N. Therefore,

cv = lim
n→∞

log ‖FC,n(S0)‖v
deg(FC,n)

= 0.

This contradicts (4.18) and finishes the proof of our theorem.

5. Quasi-adelicity for almost all starting points
We study the family gλ,t (z) := λz/(z2 + tz+ 1), where λ is an �th primitive root of unity
for � ≥ 2, and aim to prove Theorem 1.4. We show that for a ‘generic’ c, the dynamical
pair (gλ, c) is quasi-adelic but is not adelic. In particular, for c ∈ {1, −1} being a critical
point of gλ, the pairs (gλ, 1), (gλ, −1) are quasi-adelic but not adelic. We refer the reader
to [9, 46] for the pictures of the bifurcation of (gλ, ±1).

5.1. Homogeneous lifts. Throughout the rest of this section, we fix a primitive �th root
of unity λ with order at least 2. It is more convenient to work with the �th iterate of gλ,t (z),
which we denote by

ft (z) := g�λ,t (z).

It is easy to see that gλ degenerates at t = ∞. Thus, Sing(f ) = {∞}. Throughout this
section, we write

d := 2�, d1 := 2�−1 − 1, d2 := 2�−1.

At times, we also use notation introduced in §4. We fix a homogeneous lift of gλ,t (z) as

Gt1,t2(z, w) := (t2λzw, t1zw + t2(z
2 + w2)).
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The following proposition enables us to show that g�λ degenerates to f∞(z) := z/(z2 + 1)
at t = ∞.

PROPOSITION 5.1. Let λ be an �th primitive root of unity. The �th iterate of Gt1,t2 is
given by

G�t1,t2(z, w) = t
d2
2 · (τ · (t1zw)d1zw + t2(. . .), τ · (t1zw)d1(z2 + w2)+ t2(. . .)),

for some non-zero τ ∈ Z[λ]. In particular, f = g�λ degenerates to f∞(z) = z/(z2 + 1) at
t = ∞.

Proof. We prove this proposition by induction. Notice that, inductively for 2 ≤ n ≤ �, one
has Gnt1,t2 = (Pn, Qn), where

Pn(z, w) = t2
n−1

2 ((zw)2
n−1
αnt

2n−1−1
1 + (zw)2

n−1−1(z2 + w2)ηnt2t
2n−1−2
1 + t22 (. . .)),

Qn(z, w) = t2
n−1−1

2 ((zw)2
n−1
βnt

2n−1

1 + (zw)2
n−1−1(z2 + w2)τnt2t

2n−1−1
1 + t22 (. . .)),

(5.1)

for constants αn, βn, ηn, and τn depending on λ. From the iteration formula, we get α2 =
λ2, η2 = λ2, β2 = 1 + λ, τ2 = λ+ 2 and for all n ≥ 2, we have{

αn+1 = λ · αn · βn,

βn+1 = βn · (αn + βn),
and

{
ηn+1 = λ · (αn · τn + βn · ηn),
τn+1 = αn · τn + βn · ηn + 2βn · τn.

Consequently, for n ≥ 3, we have

αn = λn ·
n−2∏
i=1

(1 + λ+ · · · + λi)2
n−2−i

,

βn = (1 + λ+ · · · + λn−1) ·
n−2∏
i=1

(1 + λ+ · · · + λi)2
n−2−i

.

Since λ is an �th primitive root of unity, we have α� �= 0 and β� = 0. It remains to show
that

τ := τ� = α�. (5.2)

Let z0 be a primitive 6th root of unity and notice that z0/(z
2
0 + 1) = 1. Since β� = 0, from

the expression of G�t1,t2(z0, 1) in (5.1), we get

lim
t1=1,t2→0

P�(z0, 1)
Q�(z0, 1)

→ α�

τ�
,

or equivalently,

lim
t→∞ g�λ,t (z0) = α�

τ�
. (5.3)
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We are going to show that this limit is equal to one, and hence equation (5.2) follows.
Notice that

gλ,t (z0) = λz0

1 + tz0 + z2
0

= λ

t
·
(

1 − 1
t

+ o

(
1
t

))

for t → ∞. Using the expression of gλ,t (z) = λ · z/(1 + t · z+ z2), inductively we get

gnλ,t (z0) = 1
t

· λn

1 + λ+ · · · + λn−1 ·
(

1 − 1
1 + λ+ · · · + λn−1 · 1

t
+ o

(
1
t

))

for all 1 ≤ n ≤ �− 1 as t → ∞. Consequently, we have

g�λ,t (z0) = gλ,t (g
�−1
λ,t (z0))

= gλ,t

(
1
t

· λ�−1

1 + λ+ · · · + λ�−2 ·
(

1 − 1
1 + λ+ · · · + λ�−2 · 1

t
+ o

(
1
t

)))

= 1/t · λ · λ�−1/(1 + λ+ · · · + λ�−2) · (1 − 1/(1 + λ+ · · · + λ�−2) · 1/t + o(1/t))
1 + t · 1/t · λ�−1/(1 + λ+ · · · + λ�−2) · (1 − 1/(1 + λ+ · · · + λ�−2) · 1/t + o(1/t))+ o(1/t)

= 1/t · 1/(1 + λ+ · · · + λ�−2) · (1 − 1/(1 + λ+ · · · + λ�−2) · 1/t + o(1/t))
1 + (−1) · (1 − 1/(1 + λ+ · · · + λ�−2) · 1/t + o(1/t))+ o(1/t2)

,

where in the last equality, we used the fact that λ� = 1 and 1 + λ+ · · · + λ�−1 = 0.
Letting now t → ∞, we get g�λ,t (z0) → 1. Combining this with (5.3), we get (5.2). The
proposition follows.

Let us now fix a lift of ft in homogeneous coordinates (t1, t2) as

Ft1,t2(z, w) : = (Pt1,t2(z, w), Qt1,t2(z, w)) := G�t1,t2(z, w)/(τ · td2
2 )

= ((t1zw)
d1zw + t2(. . .), (t1zw)d1(z2 + w2)+ t2(. . .)). (5.4)

Notice that at the point at infinity, our lift specializes to the map

F1,0(z, w) = ((zw)d1zw, (zw)d1(z2 + w2)),

which is a homogeneous lift of

f∞(z) = z

z2 + 1
.

Keeping the notation as in §4, we have Rf ,∞(z, w) = (zw)d1 , and hence Hf ,∞ = {0, ∞}.
We let k be a number field containing λ, so that f ∈ k(t)(z). We fix a starting point c ∈ k(t)
satisfying 0, ∞ /∈ Of∞(c(∞)) so that condition (P3) in Definition 4.4 holds for the pair
(f , c). We also fix a homogeneous lift of the starting point c, with coefficients in Ok , as

C(t1, t2) := (A(t1, t2), B(t1, t2)),

and write

FC,n(t1, t2) = Fnt1,t2(C(t1, t2))/gcd(F nt1,t2(C(t1, t2))) = (AC,n(t1, t2), BC,n(t1, t2)).

LEMMA 5.2. For all n ∈ N, we have gcd(F nt1,t2(C)) = 1. Hence,

FC,n(t1, t2) = Fnt1,t2(C(t1, t2)).
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Proof. As Sing(f ) = {+∞}, deg(f∞) = 2, and we have assumed that f n∞(c(∞)) /∈
Hf ,∞ = {0, ∞}, this follows from Lemma 4.9. Notice that here,

gcd(F nt1,t2(C(t1, t2))) =
∏

β∈Sing(f )\{∞}
uβ(t1, t2)mC,n(β) = 1,

as the product is empty.

LEMMA 5.3. We have deg(FC,n) = d1 · (dn − 1)/(d − 1)+ dn · deg(c) for all n ∈ N.
In particular, the dynamical pair (f , c) is not preperiodic. Furthermore, ĥf (c) =
(d1/(d − 1))+ deg(c) �= 0.

Proof. Since 0, ∞ /∈ Of∞(c(∞)), we get deg(AC,n) = deg(BC,n) for all n ∈ N. The
lemma now follows inductively from the recursive definition of FC,n as in Lemma 5.2.

When there is no scope for confusion, we use an and bn to denote AC,n(1, 0) and
BC,n(1, 0) respectively. From Lemma 5.2, we see that

an+1 = (anbn)
d1 · anbn,

bn+1 = (anbn)
d1 · (a2

n + b2
n) (5.5)

for all n ∈ N. We also make use of auxiliary sequences {a∗
n}, {b∗

n} ⊂ k defined by

a∗
0 := a0, b∗

0 := b0,

a∗
n+1 := a∗

nb
∗
n, b∗

n+1 := a∗
n

2 + b∗
n

2 for n ≥ 1. (5.6)

Notice that if we let

αn :=
n−1∏
i=0

(a∗
i b

∗
i )
d1·dn−i−1

, (5.7)

then for n ≥ 1, we have an = αna
∗
n and bn = αnb

∗
n.

5.2. Continuity of the escape rate. To prove that (f , c) is quasi-adelic, we need to first
show that the escape rate GF ,C,v is a continuous function.

THEOREM 5.4. The functions log ‖FC,n(t1, t2)‖v/deg(FC,n) converge locally uniformly
on C2

v \{(0, 0)} to the function GF ,C,v . In particular, GF ,C,v is continuous.

Before we proceed to the proof of this theorem, we establish some lemmata. First we let

FC,n(1, s) = (AC,n(1, s), BC,n(1, s)) = (AC,n(1, 0)+ spn(s), BC,n(1, 0)+ sqn(s)).

LEMMA 5.5. For each v ∈ Mk , we have γv ∈ R satisfying the following:
• γv := limn→∞(log |AC,n(1, 0)|v/dn) = limn→∞(log |BC,n(1, 0)|v/dn); and
• lim supn→∞(log |pn(0)|v/dn), lim supn→∞(log |qn(0)|v/dn) ≤ γv .

Proof. By [7, Lemma 10.1], the recursive definition of {a∗
n}, {b∗

n} in (5.6) implies that there
is a set of constants {Lv : v ∈ Mk} and a finite set S ⊂ Mk such that Lv = 1 for all v /∈ S
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and for all v ∈ Mk , we have Lv ≥ 1 and

max{|a∗
n|v , |b∗

n|v} ≤ L2n
v for all n ∈ N. (5.8)

Now let L = ∏
v∈Mk

L
Nv
v . Invoking the product formula, (5.8) yields

min{|a∗
n|v , |b∗

n|v} ≥ 1
L2n . (5.9)

Moreover, (5.8) implies

max{|a∗
n|v , |b∗

n|v} ≤ L2n . (5.10)

In particular, (5.9) and (5.10) yield that limn→∞(log |a∗
n|v/dn) = limn→∞(log |b∗

n|v/dn) =
0 and for {αn} as in (5.7), the sequence

log |αn|v
dn

=
n−1∑
i=0

d1 · log |a∗
i b

∗
i |v

di+1

converges. Denoting its limit by γv , we have established the following:

γv = lim
n→∞

log |an|v
dn

= lim
n→∞

log |bn|v
dn

= lim
n→∞

log |αn|v
dn

.

The first part of the lemma follows. Now let cn and en be the constant terms of the
polynomials pn(s) and qn(s) respectively. From the recursive definition of FC,n as in
Lemma 5.2, we see that there are homogeneous �, � ∈ k[z, w] of degree d and �i , �i ∈
k[z, w] for i = 1, 2 of degree d − 1, such that

cn+1 = �(an, bn)+ cn ·�1(an, bn)+ en ·�2(an, bn),

en+1 = �(an, bn)+ cn ·�1(an, bn)+ en ·�2(an, bn) (5.11)

for all n ≥ 0. Define auxiliary sequences {c∗n}, {e∗n} ⊂ k as cn = αn · c∗n and en = αn · d∗
n .

We will show that

lim sup
n→∞

log |c∗n|v
dn

, lim sup
n→∞

log |e∗n|v
dn

≤ 0. (5.12)

Having proved this, the second part of our lemma will follow, since

lim sup
n→∞

log |cn|v
dn

, lim sup
n→∞

log |en|v
dn

≤ lim
n→∞

|αn|v
dn

= γv .

To prove (5.12), first notice that by (5.7), we have αdn/αn+1 = 1/(a∗
nb

∗
n)
d1 . The recursive

formulas in (5.11) can now be written as

c∗n+1 = �(a∗
n , b∗

n)+ c∗n ·�1(a
∗
n , b∗

n)+ e∗n ·�2(a
∗
n , b∗

n)

(a∗
nb

∗
n)
d1

,

e∗n+1 = �(a∗
n , b∗

n)+ c∗n ·�1(a
∗
n , b∗

n)+ e∗n ·�2(a
∗
n , b∗

n)

(a∗
nb

∗
n)
d1

. (5.13)
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LetLn,v := max{|c∗n|v , |e∗n|v}. By (5.8) and (5.9), we get that there is some constantL0 ≥ 1
such that

max
{
|�(a∗

n , b∗
n)|v , |�i(a∗

n , b∗
n)|v , |�(a∗

n , b∗
n)|v , |�i(a∗

n , b∗
n)|v ,

1

|a∗
nb

∗
n|d1
v

}
≤ L2n

0

for i = 1, 2 and all v ∈ Mk . Combining this with (5.13), we see that there is some r ≥ 1
such that

Ln+1,v ≤ r2n max{1, Ln,v}
for all n ∈ N. An easy argument by induction now yields that Ln,v ≤ rn2n max{1, L0,v} for
all n ∈ N. Therefore,

lim sup
n→∞

log Ln,v

dn
≤ 0,

and (5.12) follows. This finishes our proof.

The next two propositions show that our escape rate function is a locally uniform limit
near the degenerate point at t2 = 0.

PROPOSITION 5.6. Let v ∈ Mk . For every ε ∈ (0, 1), there exist δ > 0 and an integer
N > 0 such that

log ‖FC,n(1, s)‖v
deg(FC,n)

− d − 1
d1 + (d − 1) deg(c)

· γv < ε

for all |s|v < δ and n ≥ N .

Proof. Let ε ∈ (0, 1). Recall that

lim
n→∞

dn

deg(FC,n)
= d − 1
d1 + (d − 1) deg(c)

(5.14)

by Lemma 5.3. Thus, it suffices to establish that there exist δ > 0 and an integer N > 0
such that

log ‖FC,n(1, s)‖v
deg(FC,n)

− dn

deg(FC,n)
· γv < ε (5.15)

for n ≥ N and |s|v < δ. Throughout this proof, we write

h := max
{

1,
d − 1

d1 + (d − 1) deg(c)

}
.

By Lemma 5.5, there exists large N ∈ N such that

max{|AC,N(1, 0)|v , |BC,N(1, 0)|v} <
(

1 + ε

4h

)dN
eγv ·dN . (5.16)

Moreover by (5.14), we may choose N ∈ N large enough such that∣∣∣∣ dN+i

deg(FC,N+i )
− d − 1
d1 + (d − 1) deg(c)

∣∣∣∣ < ε

4
(5.17)
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for all i ≥ 0, and we may further assume that

log 8
dN

<
ε

4h
.

Let L = 8(1 + ε/4h)d
N
eγv ·dN . By (5.16), we can find some 0 < δ < 1 such that for

|s|v < δ, we have

‖FC,N(1, s)‖v < L

8
. (5.18)

Recall from Lemma 5.2 that FC,n(1, s) = Fn1,s(C(1, s)) for all n ∈ N. From the expression
of F1,s = (zd/2wd/2 + s(. . .), (zw)d1(z2 + w2)+ s(. . .)), shrinking δ if necessary and
applying F1,s repeatedly to (5.18), we get

‖FC,N+i (1, s)‖v < Ld
i

8

for all i ≥ 0. Therefore, recalling the definition of L, we get

log ‖FC,N+i (1, s)‖v
deg(FC,N+i )

<
di

deg(FC,N+i )
log L− log 8

deg(FC,N+i )

≤ di

deg(FC,N+i )
log 8 + dN+i

deg(FC,N+i )
log

(
1 + ε

4h

)
+ dN+i

deg(FC,N+i )
γv

= di+N

deg(FC,N+i )
· log 8
dN

+ dN+i

deg(FC,N+i )
· ε

4h
+ dN+i

deg(FC,N+i )
γv .

This inequality combined with our assumptions on N ∈ N yield

log ‖FC,N+i (1, s)‖v
deg(FC,N+i )

− dN+i

deg(FC,N+i )
γv < ε

for all i ≥ 0 and |s|v < δ. The proposition follows.

To show that the convergence is uniform from below, we will first need the following
weaker estimate.

LEMMA 5.7. Let v ∈ Mk . For all s ∈ Cv with |s|v ≤ 1 and (z, w) ∈ C2
v \{(0, 0)}, we

have

‖F1,s(z, w)‖v
‖(z, w)‖dv

≥ |τ |−1
v

|s|3·d2−2
v

4d−1 .

Consequently, for all n > j and s ∈ Cv with |s|v ≤ |τ |v , we have

log ‖FC,n(1, s)‖v
dn

≥ log ‖FC,j (1, s)‖v
dj

+ log(|s|3d2−2
v )

dj
− log(|τ |v4d−1)

dj
.
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Proof. SetGs(z, w) = (sλzw, sz2 + zw + sw2). We will first see that for all s ∈ Cv with
|s|v ≤ 1, we have

‖Gs(z, w)‖v ≥ |s|2v
4

‖(z, w)‖2
v . (5.19)

Note that by the homogeniety and symmetry of Gs , we may assume that w = 1 and
|z|v ≤ 1. Then we have that either |λsz|v ≥ (|s|2v/4) or |z|v < |s|v/4, in which case |s +
z+ sz2|v ≥ |s|v − (|s|v/4)− (|s|3v/16) ≥ 1

4 |s|2v . In both cases, ‖Gs(z, 1)‖v ≥ (|s|2v/4),
and our claim follows. Note that by the definition of Ft1,t2 in (5.4), we have

‖F1,s(z, w)‖v = ‖τ−1s−d2 ·G�s(z, w)‖v = |τ |−1
v |s|−d2

v · ‖Gs(G�−1
s (z, w))‖v .

Repeated applications of (5.19) now give

‖F1,s(z, w)‖v ≥ |τ |−1
v

|s|2+22+···+2�−d2
v

41+2+22+···+2�−1 ‖(z, w)‖dv = |τ |−1
v

|s|3·d2−2
v

4d−1 ‖(z, w)‖dv .

The first conclusion of the lemma follows. The second conclusion of the lemma follows
from the first, once we observe that∥∥∥∥ FC,n(1, s)

FC,j (1, s)dn−j

∥∥∥∥
v

=
∥∥∥∥ FC,n(1, s)
FC,n−1(1, s)d

· FC,n−1(1, s)d

FC,n−2(1, s)d2 · · · FC,j+1(1, s)d
n−j−1

FC,j (1, s)dn−j

∥∥∥∥
v

.

This concludes the proof of the lemma.

PROPOSITION 5.8. Let v ∈ Mk . For every ε > 0, there exists δ > 0 and an integerN > 0
such that

log ‖FC,n(1, s)‖v
deg(FC,n)

− d − 1
d1 + (d − 1) deg(c)

· γv > −ε

for all |s|v < δ and n ≥ N .

Proof. Recall our notation FC,n(1, s) = (An(s), Bn(s)) = (an + spn(s), bn + sqn(s)).
Let ε > 0 be small. Since by Lemma 5.2 we have FC,n+1(1, s) = F1,s(FC,n(1, s)), one
can find

�3(x, y, z, w), �3(x, y, z, w) ∈ k[s][x, y, z, w]

depending only on � and homogeneous in x := (x, y, z, w) of degree d, such that

pn+1(s) = �3(an, bn, pn(s), qn(s)) and qn+1(s) = �3(an, bn, pn(s), qn(s)) (5.20)

for all n ≥ 0. Moreover, one can find a large L0 > 0 such that

‖�3(x)‖v ≤ L0 · ‖x‖dv and ‖�3(x)‖v ≤ L0 · ‖x‖dv . (5.21)

Enlarging L0 ≥ 1 if necessary, we may assume

(3d2 − 2) · d · log
(

1 − ε/L0

1 + ε/L0

)
> −ε

4
. (5.22)
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In view of Lemma 5.5, we can find a large N ∈ N such that

max{|pN(0)|v , |qN(0)|v} <
(

1 + ε

L0

)dN
· eγv ·dN (5.23)

and also(
1 − ε

L0

)dN+i

· eγv ·dN+i
< |aN+i |v , |bN+i |v <

(
1 + ε

L0

)dN+i

· eγv ·dN+i
, (5.24)

for all i ≥ 0. By Lemma 5.3, enlarging N if necessary, we may further assume that

dN+i

deg(FC,N+i )
>

d − 1
d1 + (d − 1) deg(c)

− ε

L0 · max{1, γv} (5.25)

for all i ≥ 0 and that

(3d2 − 2)
(

log ε
dj

− log L0

dN−1

)
− log(|τ |v4d−1)

dj
> −ε

4
(5.26)

for all j ≥ N .
Define L := L0 · ((1 + ε/L0)e

γv )d
N

. By (5.23) and (5.24), we can find a small 0 < δ <

min{1, |τ |v} such that if |s|v < δ, then

max{|pN(s)|v , |qN(s)|v} < L

L0
. (5.27)

Combining this with the recursive relations defining pn(s), qn(s) given in (5.20) and
inequalities (5.21) and (5.24), and since L0 ≥ 1, we get inductively that if |s| < δ, then
for all i ≥ 0, we have

max{|pN+i (s)|v , |qN+i (s)|v} < Ld
i

L0
. (5.28)

Now choose an integer N ′ > N such that

δ′ := ε(1 − ε/L0)
dN

′

(1 + ε/L0)d
N ′
Ld

N ′−N
0

< δ.

We will show that if |s|v < δ′ and n ≥ N ′, we have

log ‖FC,n(1, s)‖v
deg(FC,n)

≥ d − 1
d1 + (d − 1) deg(c)

γv − ε. (5.29)

Denote by δj := ε(1 − ε/L0)
dj /(1 + ε/L0)

dj Ld
j−N

0 > 0. If j ≥ N ′ > N and |s|v ≤ δj ≤
δ′ < δ, we have

log ‖FC,j (1, s)‖v
dj

≥ log |aj + spj (s)|v
dj

≥ log(|aj |v − |spj (s)|v)
dj

≥ 1
dj

log
((

1 − ε

L0

)dj
· eγv ·dj − |s|vLdj−N

L0

)
, (5.30)
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where the last inequality follows by (5.24) and (5.28). Therefore, since |s|v ≤ δj , we get

log ‖FC,j (1, s)‖v
dj

≥ log
(

1 − ε

L0

)
+ γv + log

(
1 − ε

L0

)
≥ −ε

4
+ γv , (5.31)

when ε > 0 is sufficiently small and L0 is large enough. Combining this with (5.25), we
get

log ‖FC,j (1, s)‖v
deg(FC,j )

≥ d − 1
d1 + (d − 1) deg(c)

γv − ε,

and (5.29) holds. If however for n ≥ N ′ we have δn < |s|v < δ′, then there is some j with
N ′ ≤ j < n such that δj+1 < |s|v ≤ δj < |τ |v . By Lemma 5.7, we have

log ‖FC,n(1, s)‖v
dn

≥ log ‖FC,j (1, s)‖v
dj

+ log(|s|3d2−2
v )

dj
− log(|τ |v4d−1)

dj
.

This, upon using (5.26) and (5.31), yields

log ‖FC,n(1, s)‖v
dn

≥ −ε
4

+ γv + log(|s|3d2−2
v )

dj
− log(|τ |v4d−1)

dj

≥ −ε
4

+ γv + (3d2 − 2)
(

log ε
dj

− log L0

dN−1

)
+ d · log

(
1 − ε/L0

1 + ε/L0

)
− log(|τ |v4d−1)

dj

≥ −ε
4

+ γv + (3d2 − 2) · d · log
(

1 − ε/L0

1 + ε/L0

)
− ε

4
, by (5.22)

≥ γv − ε

4
− ε

4
− ε

4
= γv − 3ε

4

for sufficiently small ε > 0 and L0 large enough. Finally, upon using (5.25), we get

log ‖FC,n(1, s)‖v
deg(FC,n)

≥ d − 1
d1 + (d − 1) deg(c)

γv − ε.

In both cases, (5.29) holds. This finishes the proof.

Proof of Theorem 5.4. By a standard telescoping sum argument, as in [8, Proposition 1.2],
we see that the functions log ‖FC,n(t1, t2)‖v/deg(FC,n) converge locally uniformly to the
function GF ,C,v on C2

v \ Cv × {0}. Thus, it suffices to prove that the sequence

log ‖FC,n(1, s)‖v
deg(FC,n)

converges locally uniformly in a neighborhood of s = 0. This now follows from Proposi-
tions 5.6 and 5.8.

5.3. Bounds of the radii. Recall that we have chosen the lift of c ∈ k(t), denoted by
C(t1, t2) = (A(t1, t2), B(t1, t2)), so that the coefficients ofC(t1, t2) lie in Ok . In particular,
Res(A, B) ∈ Ok . In what follows, we let the following.
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• S ⊂ Mk be the finite set consisting of the non-archimedean places of k such that if
v ∈ S,

| Res(A, B)|v < 1 or |τ |v < 1 or | Res(z,w)(Ft ,1)|v < 1,

where τ ∈ Z[λ] ⊂ Ok is defined in Proposition 5.1.
• M′

k be the set of non-archimedean places in Mk satisfying the following. If v ∈ M′
k ,

then |τ |v = 1 and there exists nv ∈ N such that

‖FC,nv (1, 0)‖v = max{|AC,nv (1, 0)|v , |BC,nv (1, 0)|v} < 1.

• M′
k,m the set of places v ∈ M′

k for which m ∈ N is the smallest integer such that

|BC,m(1, 0)|v < 1.

Furthermore, we denote the non-archimedean places of k by M0
k and the archimedean ones

by M∞
k . Finally, note that from (5.5), we get

M′
k =

⋃
m∈N

M′
k,m.

LEMMA 5.9. Let v ∈ M0
k \ S. If t ∈ Cv has |t |v ≤ 1, then ‖FC,n(t , 1)‖v = 1 for all n ∈

N. In particular,

GF ,C,v(t , 1) = 0.

Proof. Let v ∈ M0
k \ S and consider t ∈ Cv with |t |v ≤ 1. Since the coefficients of

C(t1, t2) are v-adic integers and v /∈ S, we conclude | Res(A, B)|v = ‖(t , 1)‖v = 1. Then,
[7, Lemma 10.1] yields ‖C(t , 1)‖v = 1. Since v /∈ S and τ ∈ Ok , we have |τ |v = 1.
Now, from the definition of Ft1,t2 in (5.4), we see that all its coefficients are v-adic
integers. As furthermore | Res(z,w)(Ft ,1)|v = 1, using [7, Lemma 10.1] once more, we get
‖Fnt ,1(C(t , 1))‖v = 1 for all n ∈ N. This in turn, by Lemma 5.2, implies ‖FC,n(t , 1)‖v = 1
for all n ∈ N as claimed.

We write MC,v := {(t1, t2) ∈ C2
v \ {(0, 0)} : GF ,C,v(t1, t2) ≤ 0}.

PROPOSITION 5.10. For all places v ∈ M0
k \ (S ∪ M′

k), we have

GF ,C,v(t1, t2) = log ‖(t1, t2)‖v .

In particular, rin(MC,v) = rout(MC,v) = 1.

Proof. Let v ∈ M0
k \ (M′

k ∪ S) and (t1, t2) ∈ C2
v \ {(0, 0)}. SinceGF ,C,v scales logarith-

mically, by Lemma 5.9, we know that the claim holds when |t1|v ≤ |t2|v . It suffices to
show that for t2 ∈ Cv with |t2|v < 1, we have ‖FC,n(1, t2)‖v = 1 for all n ∈ N.

Assume to the contrary that there exist some t2 ∈ Cv with |t2|v < 1 and n ∈ N such
that ‖FC,n(1, t2)‖v �= 1. Notice that since v /∈ S, we have |τ |v = 1, which using (5.4) and
Lemma 5.2, yields that FC,n has integral coefficients. Hence, our assumption implies

‖FC,n(1, t2)‖v = ‖(AC,n(1, 0)+ t2(. . .), BC,n(1, 0)+ t2(. . .))‖v < 1.
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As we also have |t2|v < 1, this gives

‖(AC,n(1, 0), BC,n(1, 0))‖v < 1.

Since also |τ |v = 1, we have v ∈ M′
k , which is a contradiction. This finishes our

proof.

LEMMA 5.11. Let m ∈ N and v ∈ M′
k,m \ S. For all n ≥ m+ 1, we have

|AC,n(1, 0)|v < |BC,n(1, 0)|v .

In particular, for all n ≥ m+ 1, we have

|AC,n(1, 0)|dv < |AC,n+1(1, 0)|v , |BC,n+1(1, 0)|v < |BC,n(1, 0)|dv .

Moreover, {d−n log |AC,n(1, 0)|v}n≥m+1 is increasing and {d−n log |BC,n(1, 0)|v}n≥m+1

is decreasing.

Proof. Let m ∈ N and v ∈ M′
k,m \ S. Recall that from (5.5), we have

an+1 = ad1
n b

d1
n · anbn, bn+1 = ad1

n b
d1
n (a

2
n + b2

n).

Since v ∈ M′
k,m, we have |bm|v < 1 and |bn|v = 1 for all n < m. We will prove the first

inequality in the lemma by induction. Using the ultrametric inequality, it is easy to see that
if for some n ∈ N we have |an|v < |bn|v , then |an+1|v < |bn+1|v . Thus, it remains to prove
the base case; that is, |am+1|v < |bm+1|v . To this end, we consider cases depending on the
value of m ∈ N.

If m = 1, we have |b1|v < 1 and |a0|v ≤ |b0|v = 1. To see that |a2|v = |a1b1|d1+1
v <

|b2|v = |(a1b1)
d1(a2

1 + b2
1)|v , it suffices to show |a1b1|v < |a2

1 + b2
1|v . Note that

|a1|v = |a0|d1+1
v and |b1|v = |a0|d1

v |a2
0 + b2

0|v . If |a0|v < 1, we have |a1|v < |b1|v; hence,
|a1b1|v < |a2

1 + b2
1|v . If |a0|v = 1, then |a1|v = 1 and |a1b1|v = |b1|v < |a2

1 + b2
1|v = 1

holds as well, since |b1|v < 1. The base case follows.
If however m = 0 or m ≥ 2, we will prove that |am|v = 1. Then |am+1|v = |bm|d2

v <

|bm|d1
v = |bm+1|v and the base case follows. If m = 0, so that |b0|v < 1, our assumption

that v /∈ S and hence | Res(A, B)|v = 1 yields |a0|v = 1, as claimed. If now m ≥ 2,
assume that |am|v < 1 to end in a contradiction. Since v ∈ M′

k,m, we have |bm−1|v =
|bm−2| = 1, which by (5.5) and our assumption that |am|v < 1 implies |am−1|v < 1 and
|am−2|v < 1. This in turn gives |bm−1|v < 1 contradicting the minimality of m ∈ N.
Hence, |am|v = 1 and the base case follows. This completes the proof of the first inequality
in the lemma. The rest of the lemma now follows by (5.5).

The following equalities will be handy later on. They are an immediate consequence of
the ultrametric inequality, the definition of M′

k,m, and the recursive definitions of an and
bn in (5.5).

Remark 5. Let m ∈ N≥2 and v ∈ M′
k,m. We have

|AC,m(1, 0)|v = |AC,m−1(1, 0)|v = |BC,m−1(1, 0)|v = 1. (5.32)
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In particular,

|AC,m+1(1, 0)|v = |BC,m(1, 0)|d2
v = |BC,m+1(1, 0)|d2/d1

v . (5.33)

Before stating the next proposition, recall that from Lemma 5.3, we have ĥf (c) �= 0.

PROPOSITION 5.12. Let m ∈ N≥2 and v ∈ M′
k,m \ S. We have

D̄2(0, 1) ⊂ MC,v ⊂ D̄2(0, e−1/ĥf (c)((3d2·log |am+1|v/dm)−(log 4d−1/dm))).

In particular,

0 ≤ log rin(MC,v) ≤ log rout(MC,v) ≤ − 1

ĥf (c)
·
(

3d2 · log |am+1|v
dm

− log 4d−1

dm

)
.

Proof. Let m ≥ 2 and v ∈ M′
k,m \ S. Since the coefficients of FC,n are v-adic integers for

all n ∈ N, we have ‖FC,n(t1, t2)‖v ≤ ‖(t1, t2)‖deg(FC,n)
v . Therefore, D̄2(0, 1) ⊂ MC,v and

the first inclusion follows. By Lemma 5.9, we get that if |t |v ≤ 1, then GF ,C,v(t , 1) = 0.
Therefore, to show the reverse inclusion, it suffices to prove that if 0 < |s|v < 1, then

GF ,C,v(1, s) ≥ 1

ĥf (c)
·
(

3d2 · log |am+1|v
dm

− log 4d−1

dm

)
. (5.34)

To this end, let s ∈ Cv be such that 0 < |s|v < 1. From Lemma 5.11, we know that
{|bn|v}n≥m+1 is a strictly decreasing sequence which converges to zero. Assume first that
0 < |s|v < |bm+1|v . Then there is some j ≥ m+ 1 such that |bj+1|v ≤ |s|v < |bj |v . As
the coefficients of FC,j (1, s) = (aj + s(. . .), bj + s(. . .)) are v-adic integers and since
from Lemma 5.11 we have |aj |v < |bj |v for all j ≥ m+ 1, we get ‖FC,j (1, s)‖v = |bj |v .
Therefore, upon using Lemma 5.7 (recall that |τ |v = 1), we get

log ‖FC,n(1, s)‖v
dn

≥ log ‖FC,j (1, s)‖v
dj

+ log(|s|3d2−2
v )

dj
− log(|τ |v4d−1)

dj

≥ log |bj |v
dj

+ d(3d2 − 2)
log |bj+1|v
dj+1 − log 4d−1

dj

for all n > j . This in turn, using Lemma 5.11, implies

log ‖FC,n(1, s)‖v
dn

≥ (d(3d2 − 2)+ 1)
log |bj+1|v
dj+1 − log 4d−1

dj

≥ (d(3d2 − 2)+ 1)
log |aj+1|v
dj+1 − log 4d−1

dj

≥ (d(3d2 − 2)+ 1)
log |am+1|v
dm+1 − log 4d−1

dm+1

≥ 3d2
log |am+1|v

dm
− log 4d−1

dm
. (5.35)
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Finally, assume that |bm+1|v ≤ |s|v < 1. From (5.32), we have |bm|v < |am|v = 1; thus,
‖FC,m(1, s)‖v = 1. Invoking now Lemmata 5.7 and 5.11, we get

log ‖FC,n(1, s)‖v
dn

≥ log(|s|3d2−2
v )

dm
− log 4d−1

dm
≥ log(|bm+1|3d2−2

v )

dm
− log 4d−1

dm

≥ log(|am+1|3d2−2
v )

dm
− log 4d−1

dm
≥ 3d2

log |am+1|v
dm

− log 4d−1

dm

(5.36)

for all n > m. Letting n → ∞ in (5.35) and (5.36), (5.34) follows. This finishes our
proof.

LEMMA 5.13. There exist constants L1, L2 > 0 such that
∑
v∈M′

k,m\S Nv ≤ L1 · 2m and∏
v∈M′

k,m
|AC,m+1(1, 0)|−Nvv < L2m

2 for all m ≥ 2.

Proof. We write Tm := ∑
v∈M′

k,m\S Nv . First we will show that for some L1 > 0, we have

Tm < L1 · 2m. To this end, we define Pm := {v ∈ M0
k \ S : |b∗

m|v < 1}. We claim that
M′

k,m\S ⊂ Pm; hence, it suffices to prove that for some L1 > 0, we have
∑
v∈Pm Nv <

L1 · 2m. To prove that our claim holds, let m ≥ 2 and v ∈ M′
k,m\S. We recall from (5.32)

that |am|v = 1. Moreover, from (5.6) and (5.7), we have that am and a∗
m are v-adic integers

and |am|v = |a∗
m|v|αm|v = 1. Hence, |a∗

m|v = |αm|v = 1 and

|bm|v = |αm|v · |b∗
m|v = |b∗

m|v . (5.37)

Our claim follows. Now notice that the recursive definition of {b∗
n} in (5.6) allows us to

conclude that there is a constant L0 > 1 such that∏
v∈Mk : |b∗

m|v>1

|b∗
m|Nvv ≤ L2m

0 . (5.38)

Let r := sup
v∈M0

k
{|α|v : |α|v < 1 and α ∈ k} ∈ (0, 1). Then, for each v ∈ Pm, we have

|b∗
m|Nvv ≤ rNv . (5.39)

Combining (5.38) and (5.39) and upon using the product formula, we have∏
v∈Pm

rNv ≥
∏
v∈Pm

|b∗
m|Nvv ≥

∏
v∈Mk :|b∗

m|v<1

|b∗
m|Nvv =

∏
v∈Mk :|b∗

m|v>1

|b∗
m|−Nvv ≥ L−2m

0 .

(5.40)

Thus if L1 = log1/r L0, we get Tm ≤ L1 · 2m and the first part of the lemma follows. For
the second part of the lemma, first note that (5.33) combined with (5.37) implies

|am+1|v = |bm|d2
v = |b∗

m|d2
v . (5.41)

Using this and the fact that M′
k,m\S ⊂ Pm, (5.40) yields∏

v∈M′
k,m\S

|am+1|−Nvv =
∏

v∈M′
k,m\S

|b∗
m|−d2·Nv
v ≤

∏
v∈Pm

|b∗
m|−d2·Nv
v ≤ L

d2·2m
0 .

Setting L2 = L
d2
0 , the lemma follows.

https://doi.org/10.1017/etds.2022.49 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.49


2774 N. M. Mavraki and H. Ye

We can now control the products of the inner and outer radii as in the following
proposition.

PROPOSITION 5.14. The products∏
v∈Mk

rout(MC,v)
Nv ,

∏
v∈Mk

rin(MC,v)
Nv , and

∏
v∈Mk

Cap(MC,v)
Nv

converge strongly.

Proof. We first note that the set M∞
k ∪ S ∪ M′

k,0 ∪ M′
k,1 is finite. The continuity of the

potentials, proved in Theorem 5.4, yields that the products∏
v∈M∞

k ∪S∪M′
k,0∪M′

k,1

rout(MC,v)
Nv and

∏
v∈M∞

k ∪S∪M′
k,0∪M′

k,1

rin(MC,v)
Nv

are finite. Hence, invoking Theorem 2.2, and Propositions 5.10 and 5.12, it suffices to prove
that the following sum converges:

∞∑
m=2

∑
v∈M′

k,m

Nv ·
(

− 3d2 · log |am+1|v
dm

+ log 4d−1

dm

)
.

This in turn follows from Lemma 5.13.

5.4. Proof of Theorem 1.4. Let k be a number field and c ∈ k(t) be such that 0, ∞ /∈
Of∞(c(∞)). As f = g�λ, it suffices to prove the conclusions of our theorem for the pair
(f , c) in place of (gλ, c); see Remark 4. First, we are going to see that the measure μf ,c is
quasi-adelic. Since for each v ∈ Mk we have μf ,c,v = μMC,v , by Theorem 2.2, it suffices
to prove that the set {MC,v}v∈Mk

is quasi-adelic. The continuity of the potentials of MC,v

is established in Theorem 5.4. Moreover, in view of Proposition 5.14, we know that the
products ∏

v∈Mk

rout(MC,v)
Nv and

∏
v∈Mk

rin(MC,v)
Nv

converge strongly. Thus, the measure μf ,c is quasi-adelic. Assume further that c(∞) is not
a preperiodic point for f∞. Then our assumption on c implies that for ∞ ∈ Sing(f ), the
dynamical pair (f , c) is ∞-generic. Note also that f is not isotrivial. By Theorem 4.5, we
conclude that (f , c) is not adelic.

6. Variation of canonical heights and equidistribution on P1

Our aim in this section is to prove Theorem 1.6. Let (f , c) ∈ k(t)(z)× k(t) be a dynamical
pair and chose F and C = (A, B) lifts of f and c respectively. Enlarging the number field k
if necessary, we may assume that F and C are defined over k and Sing(f ) ⊂ k. We follow
the notation from §4. So we have

GF ,C,v(t1, t2) = lim
n→∞

log ‖FC,n(t1, t2)‖v
deg FC,n

.

We also write MF ,C,v = {(t1, t2) ∈ C2
v : GF ,C,v(t1, t2) ≤ 0}.
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In the following proposition, we show that the height associated with a measure μf ,c for
a quasi-adelic pair (f , c) is proportional with the Call–Silverman canonical height; hence
both heights have the same small points. The first author of this article is indebted to Laura
DeMarco for many ideas in this proof.

PROPOSITION 6.1. Let k be a number field and let f ∈ k(t)(z) and c ∈ k(t) be such that
the dynamical pair (f , c) is quasi-adelic. For any t ∈ k \ Sing(f ), we have

ĥμf ,c (t) = [k : Q]

ĥf (c)
· ĥft (c(t)).

Proof. We write d := degz f . Let t ∈ k \ Sing(f ) and write S := Gal(k/k) · t . The
definition of our height in (2.9) gives

ĥμf ,c (t) = 1
|S| ·

∑
x∈S

∑
v∈Mk

(
Nv ·GF ,C,v(x, 1)+ 1

2 log Cap(MF ,C,v)
Nv

)
.

First we will see that
1

|S| ·
∑
x∈S

∑
v∈Mk

Nv ·GF ,C,v(x, 1) = [k : Q]

ĥf (c)
· ĥft (c(t)). (6.1)

To this end, notice that from the definition of the Call–Silverman canonical height, we
have

ĥft (c(t)) = 1
[k(t) : Q]

lim
n→∞

∑
x∈S

∑
v∈Mk

Nv
log ‖FC,n(x, 1)‖v

dn
. (6.2)

Arguing as in Lemma 5.9, we see that for all but finitely many places v ∈ Mk , we have
‖FC,n(x, 1)‖v = 1 for all n ∈ N. More specifically, for fixed x ∈ S, this conclusion holds
for all places v ∈ M0

k such that the coefficients of F and C are v-adic integers and |x|v =
| Res(A, B)|v = | Res(z,w)(Ft ,1)|v = |uβ(x, 1)|v = 1 for all β ∈ Sing(f ). Therefore, we
can interchange the limit with the summation in (6.2) to get

ĥft (c(t)) = 1
[k(t) : Q]

∑
x∈S

∑
v∈Mk

Nv lim
n→∞

log ‖FC,n(x, 1)‖v
dn

= ĥf (c)

[k(t) : Q]

∑
x∈S

∑
v∈Mk

Nv ·GF ,C,v(x, 1)

= ĥf (c)

[k : Q]
· 1
|S| ·

∑
x∈S

∑
v∈Mk

Nv ·GF ,C,v(x, 1).

Thus, we have established (6.1). We now have

ĥμf ,c (t) = [k : Q]

ĥf (c)
· ĥft (c(t))+ 1

2
log

∏
v∈Mk

Cap(MF ,C,v)
Nv . (6.3)

Since Cap(MF ,C,v)
Nv ≥ 1 for all but finitely many v ∈ Mk , we see that

∏
v∈Mk

Cap(MF ,C,v)
Nv converges strongly. It remains to show that the global logarithmic capacity
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is equal to zero, that is,

log
∏
v∈Mk

Cap(MF ,C,v)
Nv = 0. (6.4)

The authors in [22, 23] put a lot of effort into computing the explicit resultant formula
for each FC,n to show that the global logarithmic capacity is zero. It is much harder to
compute the resultants of FC,n here. Instead, we take a different approach, making use of
Proposition 3.2. Laura DeMarco has independently communicated a similar idea with the
first author of this article.

Toward the proof of (6.4), we first note that there are infinitely many t ∈ k such that
ĥft (c(t)) = 0; see [17, Theorem 1.6]. Hence from (6.3), we get that for infinitely many
t ∈ k, we have

ĥμf ,c (t) = 1
2

log
∏
v∈Mk

Cap(MC,v)
Nv .

This in turn combined with Proposition 3.2 yields

log
∏
v∈Mk

Cap(MF ,C,v)
Nv ≥ 0.

We have reduced our claim to proving

log
∏
v∈Mk

Cap(MF ,C,v)
Nv ≤ 0. (6.5)

From Proposition 4.2, we have

Cap(MF ,C,v) ≤ lim inf
n→∞ | Res FC,n|−1/ deg(FC,n)

2

v .

Note now that there exist a finite subset S0 ⊂ Mk containing all archimedean places of k
such that the coefficients of Ft1,t2 and C(t1, t2) are S0-integers and the elements of Sing(f )
are S0-units. Then we have

Nv · log | Res(FC,n)|v
deg(FC,n)2

≤ 0 (6.6)

for all n ∈ N and v ∈ Mk\S0. Moreover,

log
∏
v∈Mk

Cap(MF ,C,v)
Nv

=
∑

v∈Mk\S0

log Cap(MF ,C,v)
Nv +

∑
v∈S0

log Cap(MF ,C,v)
Nv

≤
∑

v∈Mk\S0

log Cap(MF ,C,v)
Nv + lim inf

n→∞
∑
v∈S0

−Nv · log | Res(FC,n)|v
deg(FC,n)2

=
∑

v∈Mk\S0

log Cap(MF ,C,v)
Nv + lim inf

n→∞
∑

v∈Mk\S0

Nv · log | Res(FC,n)|v
deg(FC,n)2

, (6.7)
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where in the last equality, we used the product formula. Thus, for any finite subset M ⊂
Mk\S0, we have

lim inf
n→∞

∑
v∈Mk\S0

Nv · log | Res(FC,n)|v
deg(FC,n)2

≤ lim inf
n→∞

∑
v∈M

Nv · log | Res(FC,n)|v
deg(FC,n)2

≤ −
∑
v∈M

log Cap(MF ,C,v)
Nv . (6.8)

Here, for the last inequality, we use the fact 1 ≤ Cap(MF ,C,v) ≤ lim infn→∞
| Res FC,n|−1/ deg(FC,n)

2

v . Combining (6.7) and (6.8), we get that for any finite set
M ⊂ Mk\S0,

log
∏
v∈Mk

Cap(MF ,C,v)
Nv ≤

∑
v∈Mk\S0

log Cap(MF ,C,v)
Nv −

∑
v∈M

log Cap(MF ,C,v)
Nv .

We may take an increasing sequence of finite sets Mn ⊂ Mk\S0 such that
⋃
n≥1 Mn =

Mk\S0, and apply the previous formula for Mn in the place of M. Since the global
capacity converges strongly and letting n tend to ∞, (6.5) follows. This finishes the proof
of this proposition.

Proof of Theorem 1.6. We combine Propositions 2.3 and 6.1 to get

ĥf (c)

[k : Q]
· log

∏
v∈Mk

rin(μv)
Nv ≤ ĥf (c) · h(t)− ĥft (c(t)) ≤ ĥf (c)

[k : Q]
· log

∏
v∈Mk

rout(μv)
Nv

for all t ∈ k \ Sing(f ). Since the set Sing(f ) is finite, we have that as t ∈ k varies,

ĥft (c(t)) = ĥf (c)h(t)+O(1),

and the first part of our theorem follows. The equidistribution statement in part 2 now
follows directly by combining Theorem 1.1 and Proposition 6.1.
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