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FUNCTIONAL PEARL

How to mingle streams

RICHARD S. B IRD

Department of Computer Science, Oxford University, Wolfson Building,

Parks Road, Oxford, OX1 3QD, UK

Where it shall mingle with the state of floods,

And flow henceforth in formal majesty.

Shakespeare’s Henry IV, part 2

The setting is a class on functional programming. There are four students: Anne, Jack,

Mary and Theo.

Teacher: Good morning class. Today I would like you to consider streams and in

particular the problem of designing a function mingle of type

mingle :: Stream (Stream a) -> Stream a

for mingling a stream of streams together as a single stream. For simplicity you can

think of Stream as a type synonym

type Stream a = [a]

except that by a stream we always mean an infinite list, not a finite or partial one.

Jack: Since streams are lists, cannot we just take mingle to be the standard list

function concat :: [[a]] -> [a]?

Mary: Well, that’s not really mingling. Applying concat to a stream of streams just

returns the first stream. The other streams never get a look in. Formally, if xs is an

infinite list, then concat (xs:xss) = xs.

Theo: You can concatenate a stream of finite lists though. That is,

concat :: Stream [a] -> Stream a

is a perfectly valid function for mingling all the (finite) lists in a stream. If we could

design a function with type

Stream (Stream a) -> Stream [a]

that does not ignore any element of any stream, or duplicate them, then we could

just concatenate the finite lists.
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2 Richard S. Bird

Anne: Yes, that seems a sensible idea. In particular, we could construct the diagonals

as a stream of finite lists. For example, the diagonals of

11 12 13 14 15 ...

21 22 23 24 25 ...

31 32 33 34 35 ...

41 42 43 44 45 ...

...

are the lists [11], [12,21], [13,22,31], [14,23,32,41] and so on. Concate-

nating the diagonals gives us a genuinely fair mingling: each original stream appears

as a substream of the result. So, if we can construct diags, then

mingle = concat . diags

Mary: There is another way of mingling but it does not give the same result. The

Haskell library Data.Stream contains the function interleave:

interleave :: Stream a -> Stream a -> Stream a

interleave (x:xs) ys = x:interleave ys xs

This function interleaves elements of the first stream with elements of the second.

Now we can define

mingle = foldr1 interleave

That also gives a fair mingling in that every stream appears as a substream of

the result. But it is not quite as fair as Anne’s diagonal method because half of

the elements in the mingled stream come from the first stream, a quarter from the

second stream, and so on. The nth stream does not get a look in until position 2n.

With Anne’s approach the delay is quadratic rather than exponential.

Theo: I don’t like the use of foldr1 in your definition, Mary. Better is a more

general version of fold tailored to streams:

fold :: (a -> b -> b) -> Stream a -> b

fold f (x:xs) = f x (fold f xs)

Of course, the function f had better be nonstrict in its second argument for this

definition to produce any defined result. The function interleave has this property,

so fold interleave is fine.

But Stream is really a co-datatype rather than a datatype, so the basic pattern

for computations on streams is unfolding, not folding:

unfold :: (b -> (a,b)) -> b -> Stream a

unfold f y = x:unfold f y’ where (x,y’) = f y

I imagine this might come in useful.
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Anne: Let’s get back to diagonals. One way to compute them is to divide the streams

into two: a finite prefix and an infinite suffix. The first elements of the finite prefix,

which grows by one stream at each step, give the next diagonal. We can define

diags :: Stream (Stream a) -> Stream [a]

diags (xs:xss) = crop [xs] xss

crop xss (ys:yss) = map head xss:crop (map tail xss ++ [ys]) yss

You see? At each step the heads of the finite list of streams are output, and a new

stream is included to continue the computation. Using Theo’s unfold we can write

diags (xs:xss) = unfold f ([xs],xss)

where f (xss,ys:yss) =

(map head xss, (map tail xss ++ [ys],yss))

But I don’t know if writing it this way this adds anything.

Teacher: Well done Anne. You have rediscovered a method for mingling that goes

back to the 1980s, at least. I recall that it was used to inspire functional programmers

by demonstrating that many interesting functions can be defined holistically, that is,

without recourse to indexing, using nifty applications of (++), map, head and tail.

Can you think of any other way to define diags?

Jack: Yes, I think so. Consider the first few diagonals of Anne’s infinite matrix,

which I will write as a triangle:

11

12 21

13 22 31

14 23 32 41

Suppose we add a new first row 01 02 03 04 ... to the matrix. Then the new

diagonals are given by

01

02 11

03 12 21

04 13 22 31

The old diagonals are shunted one place right and down, and the new row becomes

the new first elements of the new diagonals. That suggests

diags ((x:xs):xss) = [x]:zipWith (:) xs (diags xss)

If you prefer, I can also write this in the alternative form

diags (xs:xss) = zipWith (:) xs ([]:diags xss)

We get the first from the second in one reduction step:

diags ((x:xs):xss) = zipWith (:) (x:xs) ([]:diags xss)

= (x:[]):zipWith (:) xs (diags xss)

Either of these one-liners seem more attractive than Anne’s definition.
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Teacher: Excellent. I don’t think this version was known in the 1980s, probably

because zipWith was not part of the standard toolbox at that time. But maybe I

am wrong.

In a moment I will suggest you try and prove that the two definitions of diags are

equivalent. But first, can you think of any other way to define the same function

mingle, one that does not invoke diags? Here is a hint: think of how to mingle

what is left after taking the very first element.

Mary: The first element of the mingling of Anne’s matrix is the element 11. What

is left is a matrix with a hole:

12 13 14 15 ...

21 22 23 24 25 ...

31 32 33 34 35 ...

41 42 43 44 45 ...

...

We can’t continue by mingling these streams. Ah, but we can continue by mingling

the streams

12 21 22 23 24 25 ...

13 31 32 33 34 35 ...

14 41 42 43 44 45 ...

15 51 52 53 54 55

...

This is the first matrix minus its first row, which now becomes the first column. The

diagonals of the new matrix are different than before, but concatenating them, and

putting 11 at the front, gives the same stream. In symbols,

mingle ((x:xs):xss) = x:mingle (zipWith (:) xs xss)

This one-liner for the full mingling process is really cool.

Theo: Not so cool, Mary, because your version of mingling is far less efficient than

the other two. The first two versions produce the first n elements in O(n) steps, while

yours, pretty as it is, takes O(n2) steps. It takes n cons operations to produce the nth

element.

Teacher: You have all been exceedingly clever in getting to these three algorithms,

but now comes the hard part. Can you prove that they all give the same result?

Jack: Do we really have to? Does not Anne’s matrix and the two triangles say it

all? The example seems to me to be completely general.

Teacher: No, because it just amounts to a look–and–see argument. You might be

able to convince me that three polymorphic functions on streams are identical

because they do the same thing on streams of pairs of positive integers, but even so
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that does not amount to a finite test. How many outputs do we need to see? There

are results like the zero-one principle of sorting networks, which says that a sorting

network is correct if it can sort all 2n sequences of 0s and 1s, but I know of no

similar meta-results about streams.

Also, no example can address the question: why are two things the same. If I

gave you two definitions of a function that produced, say, the digits of π, you

might convince me they were equivalent by displaying their results to a suitable

number of digits. But how much more satisfactory would be the argument that their

equivalence follows from the facts that multiplication is associative and distributes

over addition.

Anne: Enough philosophy. I want to prove that the two ways of defining diags are

the same. Here they are again:

diags1 (xs:xss) = crop [xs] xss

crop xss (ys:yss) = map head xss:crop (map tail xss ++ [ys]) yss

diags2 (xs:xss) = zipWith (:) xs ([]:diags2 xss)

That means we have to show

crop [xs] yss = zipWith (:) xs ([]:diags2 yss)

How do we do that?

Theo: I suspect you would have to generalise the claim first. That singleton [xs] as

the first argument bothers me. I would like to see a claim involving crop xss yss

for an arbitrary finite list xss of streams.

Mary: Yes, and I can see what the generalisation is. I claim that crop xss yss

concatenates the columns of xss with the diagonals of yss prefixed with an empty

diagonal. In symbols,

crop xss yss = zipWith (++) (cols xss) ([]:diags2 yss)

The function cols transposes a matrix, more precisely a m × ∞ matrix. Here is the

definition:

cols :: [Stream a] -> Stream [a]

cols xss = map head xss:cols (map tail xss)

In particular, since cols [xs] = [[x] | x <- xs] we have

zipWith (++) (cols [xs]) xss = zipWith (:) xs xss

and so we get our desired result, namely

crop [xs] xss = zipWith (:) xs ([]:diags2 xss)

as a special case. I knew matrix transposition would come in somewhere!
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Theo: Your definition of cols is not the standard definition of matrix transposition

because it is specific to m×∞ matrices. But there are nice consequences. In particular,

cols (xss ++ yss) = cols xss <++> cols yss

where I have taken the liberty of writing zipWith (++) as an infix operator <++>.

And the reason I did that is because <++> is an associative operation, and we have

been taught that such operations should usually be described using infix operators.

That is a small but not unimportant consequence of thinking about the algebraic

properties of functions we define.

Anne: Let me summarise. Given

crop xss (ys:yss) = map head xss:crop (map tail xss ++ [ys]) yss

diags (xs:xss) = zipWith (:) xs ([]:diags xss)

cols xss = map head xss:cols (map tail xss)

we have to show that

crop xss yss = cols xss <++> ([]:diags yss)

Can we do this by induction, proving it true for ys:yss assuming it’s true for yss?

Theo: No, not without a base case for the induction. Consider the assertion that the

length of yss is finite. The induction step obviously goes through, but the conclusion

is false: no stream has finite length. The missing case is when yss is the undefined

list. If that can be established, and it cannot for the finiteness assertion, then you

can conclude that the assertion holds for all partial lists. And because our assertion

takes the form of an equation, you can conclude that it holds for all infinite lists

too.

Anne: I don’t think the base case causes any problems. Take yss = undefined in

crop xss yss = cols xss <++> ([]:diags yss)

and use the fact that diags undefined = undefined. The right-hand side gives

cols xss <++> ([]:undefined)

= (map head xss:cols (map tail xss)) <++> ([]:undefined)

= map head xss ++ []:(cols (map tail xss) <++> undefined)

= map head xss:(cols (map tail xss) <++> undefined)

= map head xss:undefined

The last step follows because zipWith uses pattern matching on its last two

arguments, so is strict in its third argument.

The left-hand side gives the same result. Oh, no, it does not! The function crop

is defined by pattern matching on its second argument, so

crop xss undefined = undefined

Worse, I cannot redefine crop to use an irrefutable pattern, as in
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crop xss ~(ys:yss) =

map head xss:crop (map tail xss ++ [ys]) yss

because under this definition

crop xss undefined =

map head xss: map (head . tail) xss ++ undefined

That is not the same as the value for the right-hand side. Maybe Mary is wrong

and her claim is false.

Theo: No, it is only that the claim is not true for partial lists. The problem is that

you are trying to prove too much. Induction on yss is not the right way to prove

the claim. Instead you have to use coinduction.

Jack: Drat. I have never really understood coinduction. It seems to involve some-

thing called bisimularity and a lot of algebraic machinery.

Theo: It is not as bad as you think, Jack, at least when the task is to prove equations

on streams. It comes down to this: in order to prove f x1 ... xn = g x1 ... xn

it is sufficient to prove

f x1 ... xn = e:f a1 ... an

g x1 ... xn = e:g a1 ... an

where e, a1 ... an are values that depend on x1 ... xn. In other words, we

have to show that both f and g satisfy an equation of the form

h x1 ... xn = e:h a1 ... an

This proof technique is nicely explained in (Turner, 2004).

Anne: OK, let me try it. Our coinduction hypothesis is

crop xss yss = cols xss <++> ([]:diags yss)

By definition of crop the left-hand side is equal to

map head xss:crop (map tail xss ++ [head ys]) (tail yss)

By definition of cols the right-hand side is equal to

(map head xss:cols (map tail xss)) <++> ([]:diags yss)

By definition of <++> this simplifies to

map head xss:cols (map tail xss)) <++> diags yss

So we are left with showing

crop (map tail xss ++ [head yss]) (tail yss)

= cols (map tail xss)) <++> diags yss

Using zipWith (:) xs xss = cols [xs] <++> xss we have
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diags yss = zipWith (:) (head yss) ([]:diags (tail yss))

= cols [head yss] <++> ([]:diags (tail yss))

So we have to prove

crop (map tail xss ++ [head yss]) (tail yss)

= cols (map tail xss) <++>

cols [head yss] <++> ([]:diags (tail yss))

We are there! By Theo’s identity we have

cols (map tail xss) <++> cols [ys] = cols (map tail xss ++ [ys])

And the result follows by the coinduction hypothesis. It all comes down really to

the associativity of <++> and Theo’s identity about the distributivity of cols over

concatenation.

Teacher: Well done. It is not uncommon that equational proofs involve the associa-

tivity of one operation and the fact that it distributes over another.

You still have to prove that mingle = concat . diags, where

mingle ((x:xs):xss) = x:mingle (zipWith (:) xs xss)

Jack: Let me try that one. It is sufficient to show that

(concat . diags) ((x:xs):xss)

= x:(concat . diags) (zipWith (:) xs xss)

We work on the left-hand side:

(concat . diags) ((x:xs):xss)

= {definition of diags}

concat (zipWith (:) (x:xs) ([]:diags xss))

= {definition of zipWith}

concat ([x]:zipWith (:) xs (diags xss))

= {definition of concat}

x:concat (zipWith (:) xs (diags xss))

Thus we have to show

concat (zipWith (:) xs (diags xss))

= concat (diags (zipWith (:) xs xss))

I can sort of see how to rewrite the left-hand side, which is to use

concat (zipWith (:) xs yss) = concat (zipWith snoc xs ([]:yss))

where snoc x xs = xs ++ [x]. And my proof of that identity is

([x1] ++ ys1) ++ ([x2] ++ ys2) ++ ([x3] ++ ys3) ++ ... =

[x1] ++ (ys1 ++ [x2]) ++ (ys2 ++ [x3]) ++ ...

Of course, now I have written that I appreciate that

concat ((xs:xss) <++> yss) = xs ++ concat (yss <++> xss)

is a more general fact. You see, I have learnt how to generalise.

https://doi.org/10.1017/S0956796815000064 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796815000064


Functional pearls 9

Theo: Go the extra step, Jack, and generalise even more. Your claim is an instance

of

fold (*) (x:xs <*> ys) = x * fold (*) (ys <*> xs)

for any associative operator (*), where <*> = zipWith (*). Here, xs and ys have

to be streams.

Jack: Whatever. I am still going to leave it as a look–and–see argument. My second

claim is that

diags (zipwith (:) xs xss) = zipwith snoc xs ([]:diags xss)

And my proof of this is another look–and–see argument:

01 11 21 31 41 51 01

02 12 22 32 42 52 11 02

03 13 23 33 43 53 21 12 03

04 14 24 34 44 54 31 22 13 04

05 15 25 35 45 55 41 32 23 14 05

Now I am done because, putting my claims together, we have

concat (zipWith (:) xs (diags xss))

= {first claim}

concat (zipWith snoc xs ([]:diags xss))

= {second claim}

= concat (diags (zipWith (:) xs xss))

I have split the claims into two because the first depends on concat but not diags,

while the second depends on diags but not on concat. I suppose, dear teacher, that

you want formal proofs of my claims.

Teacher: Ideally, yes, but we have gone on for long enough and I do not want you

all to drown in the streams. So let us leave them for another time.

Afterword

The real story behind this pearl was that Jeremy Gibbons knew about Anne’s

original definition of diags and had recently heard about the one-liner for mingle

from Shin-Cheng Mu on a trip to Taiwan. He tried without success to prove them

equivalent on the plane home (but then he was flying over the Ukraine at the time).

He therefore posed it as a problem during a meeting of the Algebra of Programming

problem solving club one Friday morning. We did not make as much progress as

Anne, Jack, Mary and Theo did, but then they are very clever students.

Finally, thanks to a referee who pointed out David Turner’s paper.
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