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We derive a Noether current for the Eulerian variational principle of ideal non-barotropic
magnetohydrodynamics (MHD). It was shown previously that ideal non-barotropic MHD
is mathematically equivalent to a five function field theory with an induced geometrical
structure in the case that field lines cover surfaces and this theory can be described using
a variational principle. Here we use various symmetries of the flow to derive topological
constants of motion through the derived Noether current and discuss their implication for
non-barotropic MHD.

Key words: topological fluid dynamics, variational methods

1. Introduction

Variational principles for magnetohydrodynamics (MHD) were introduced by previous
authors both in Lagrangian and Eulerian form. Vladimirov & Moffatt (1995) in a series
of papers have discussed an Eulerian variational principle for incompressible MHD.
However, their variational principle contained three more functions in addition to the seven
variables which appear in the standard equations of incompressible MHD, which are the
magnetic field B, the velocity field v and the pressure P. Yahalom & Lynden-Bell (2008)
obtained an Eulerian Lagrangian principle for barotropic MHD which depends on only
six functions. The variational derivative of this Lagrangian produced all the equations
needed to describe barotropic MHD without any additional constraints. Yahalom (2010)
has shown that for the barotropic case four functions will suffice. Moreover, it was shown
that the cuts of some of those functions (Yahalom 2013a) are topological local conserved
quantities.

Previous work was concerned only with barotropic MHD. Variational principles of
non-barotropic MHD can be found in the work of Bekenstein & Oron (2000) in terms
of 15 functions, and Kats (2003) in terms of 20 functions. Holm & Kupershmidt (1983a,b)
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developed the non-canonical Poisson bracket for MHD by using the magnetic vector
potential in which the gauge was chosen, so that it is comoving. The Hamiltonian they
used was derived from a Lagrangian depending on 16 functions. Later Holm, Marsden
& Ratiu (1998) developed an Eulerian action principle for many different physical
systems, including MHD, using the so-called Euler–Poincaré action principle, in which
the transformation between Lagrangian fluid labels and the Eulerian particle position
and time is thought of as an infinite-dimensional Lie group or Lie pseudo-group. The
Euler–Lagrange equations for the action result in the Eulerian MHD momentum equation.
However, in this approach the variations are constrained by the group and are not free.
Thus they are denoted as Euler–Poincaré equations. Morrison (1982) has suggested a
Hamiltonian approach but this also depends on eight canonical variables (see table 2,
Morrison (1982)).

It was shown that this number can be somewhat reduced. In Yahalom (2016a,b) it was
demonstrated that only five functions will suffice to describe non-barotropic MHD, and
that the reduced Lagrangian has a distinct geometrical structure including an induced
metric.

The theorem of Noether dictates that for every continuous symmetry group of an action,
the system must possess a conservation law. For example time translation symmetry
results in the conservation of energy, while spatial translation symmetry results in the
conservation of linear momentum and rotation symmetry in the conservation of angular
momentum, to list some well known examples. But sometimes the conservation law is
discovered without reference to Noether’s theorem by using the equations of the system.
In that case one is tempted to inquire what the hidden symmetry associated with this
conservation law is, and what is the simplest way to represent it.

The concept of metage as a label for fluid elements along a vortex line in ideal fluids was
first introduced by Lynden-Bell & Katz (1981). A translation group of this label was found
to be connected to the conservation of Moffat’s (Vladimirov & Moffatt 1995) helicity by
Yahalom (1995) using a Lagrangian variational principle. The concept of metage was later
generalized by Yahalom & Lynden-Bell (2008) for barotropic MHD, but now as a label
for fluid elements along magnetic field lines which are comoving with the flow in the
case of ideal MHD. Yahalom & Lynden-Bell (2008) have also shown that the translation
group of the magnetic metage is connected to Woltjer conservation of cross-helicity for
barotropic MHD (Woltjer 1958a,b). Recently the concept of metage was generalized also
for non-barotropic MHD in which magnetic field lines lie on entropy surfaces (Yahalom
2017a). This was later generalized by dropping the entropy condition on magnetic field
lines (Yahalom 2017d). In those papers the metage translation symmetry group was used
to generate a non-barotropic cross-helicity generalization using a Lagrangian variational
principle.

Cross-helicity was first described by Woltjer (1958a,b) and is given by

HC ≡
∫

B · v d3x, (1.1)

in which the integral is taken over the entire flow domain. Here HC is conserved for
barotropic or incompressible MHD and is given a topological interpretation in terms of
the knottiness of magnetic and flow field lines.

Both conservation laws for the helicity in the fluid dynamics case and the barotropic
MHD case were shown to originate from a relabeling symmetry through Noether’s
theorem (Yahalom 1995; Padhye & Morrison 1996a,b; Yahalom & Lynden-Bell 2008).
Webb et al. (2014b) have generalized the idea of relabeling symmetry to non-barotropic
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Noether currents for Eulerian variational principles 908 A4-3

MHD and derived their generalized cross-helicity conservation law by using Noether’s
theorem, but without using the simple representation which is connected with the
metage variable. The conservation law deduction involves a divergence symmetry of the
action. These conservation laws were written as Eulerian conservation laws of the form
Dt + ∇ · F = 0 where D is the conserved density and F is the conserved flux. Webb,
McKenzie & Zank (2015) discuss the cross-helicity conservation law for non-barotropic
MHD in a multisymplectic formulation of MHD. Webb et al. (2014a,b) emphasize that
the generalized cross-helicity conservation law in MHD, and the generalized helicity
conservation law in non-barotropic fluids, are non-local in the sense that they depend
on the auxiliary non-local variable σ , which depends on the Lagrangian time integral
of the temperature T(x, t). Note that a potential vorticity conservation equation for
non-barotropic MHD was derived by Webb & Mace (2015) by using Noether’s second
theorem.

Recently the non-barotropic cross-helicity was generalized using additional label
translation symmetry groups (χ and η translations) (Yahalom 2019b), this led to additional
topological conservation laws, the χ and η cross-helicities.

Previous analysis depended on Lagrangian variational principles and their Noether
currents. Here we introduce a novel approach based on an Eulerian variational principle.
We derive the Noether current of the Eulerian variational principle and show how this can
be used to derive topological conservation laws using label symmetries.

The plan of this paper is as follows. First we introduce the standard notation and
equations of non-barotropic MHD. Next we introduce the Eulerian variational principle
suitable for the non-barotropic case. This is followed by a derivation of the Noether
current, and finally we use the Noether current to obtain the generalized non-barotropic
cross-helicities. Implications for non-barotropic MHD dynamics of the topological
conservation laws are discussed.

2. Standard formulation of ideal non-barotropic MHD

The standard set of equations solved for non-barotropic MHD are

∂B
∂t

= ∇ × (v × B), (2.1)

∇ · B = 0, (2.2)

∂ρ

∂t
+ ∇ · (ρv) = 0, (2.3)

ρ
dv

dt
= ρ

(
∂v

∂t
+ (v · ∇)v

)
= −∇p(ρ, s)+ (∇ × B)× B

4π
, (2.4)

ds
dt

= 0, (2.5)

where ∂/∂t is the temporal derivative, d/dt is the temporal material derivative and ∇ has
its standard meaning in vector calculus. Here ρ is the fluid density, s is the specific entropy
and p(ρ, s) is the pressure which depends on the density and entropy (the non-barotropic
case). The justification for those equations and the conditions under which they apply can
be found in standard books on MHD (see for example Sturrock (1994)). The number of
independent variables for which one needs to solve is eight (v,B, ρ, s) and the number of
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908 A4-4 A. Yahalom and H. Qin

(2.1), (2.3), (2.4), (2.5) is also eight. Note that (2.2) is a condition on the initial B field and
is satisfied automatically for any other time due to (2.1). We will find it useful to introduce
the following thermodynamic equations for later use:

dε = T ds − pd
1
ρ

= T ds + p
ρ2

dρ

∂ε

∂s ρ
= T,

∂ε

∂ρ s
= p
ρ2

w = ε + p
ρ

= ε + ∂ε

∂ρ
ρ = ∂(ρε)

∂ρ

dw = dε + d
(

p
ρ

)
= T ds + 1

ρ
dp

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.6)

where ε is the specific internal energy, T is the temperature and w is the specific enthalpy.
A special case of equation of state is the polytropic equation of state (Binney & Tremaine
1987),

p = Kργ , (2.7)

where K and γ may depend on the specific entropy s. Hence

∂ε

∂ρ
= Kργ−2 ⇒ ε = K

γ − 1
ργ−1 = p

ρ(γ − 1)
⇒ ρε = p

γ − 1
, (2.8)

where the last identity is up to a function dependent on s.

3. Variational principle of non-barotropic MHD

In the following section we will generalize the approach of Yahalom & Lynden-Bell
(2008) for the non-barotropic case (Yahalom 2016a,b). Consider the action

A ≡
∫

Ld3x dt,

L ≡ L1 + L2,

L1 ≡ ρ

(
1
2
v2 − ε(ρ, s)

)
+ B2

8π
,

L2 ≡ ν

[
∂ρ

∂t
+ ∇ · (ρv)

]
− ρα

dχ
dt

− ρβ
dη
dt

− ρσ
ds
dt

− B
4π

· ∇χ × ∇η.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.1)

In the specific case of a polytropic equation of state we have, according to (2.8), that

L1 = 1
2
ρv2 − p

γ − 1
+ B2

8π
. (3.2)

Obviously ν, α, β, σ are Lagrange multipliers which were inserted in such a way that the
variational principle will yield the following equations:

∂ρ

∂t
+ ∇ · (ρv) = 0,

ρ
dχ
dt

= 0, ρ
dη
dt

= 0, ρ
ds
dt

= 0.

⎫⎪⎪⎬
⎪⎪⎭ (3.3)
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Noether currents for Eulerian variational principles 908 A4-5

It is not assumed that ν, α, β, σ are single valued. Provided ρ is not null those are just the
continuity equation (2.3), entropy conservation and the conditions that Sakurai’s functions
are comoving. Taking the variational derivative with respect to B we see that

B = B̂ ≡ ∇χ × ∇η. (3.4)

Hence B is in Sakurai’s form (Sakurai 1979) and satisfies (2.2). It can be easily shown
that provided that B is in the form given in (3.4) and (3.3) are satisfied, then also (2.1)
is satisfied. We notice that the specific form of the magnetic field given in (3.4) appears
under different names in the literature. The functions χ and η are sometimes denoted
‘Euler potentials’, ‘Clebsch variables’ and also ‘flux representation functions’ (Hazeltine
& Meiss 2003). Equation (3.4) implies that the magnetic field lines lie on surfaces, the
lines may be surface filling but not volume filling.

For the time being we have showed that all the equations of non-barotropic MHD can
be obtained from the above variational principle except Euler’s equations. We will now
show that Euler’s equations can be derived from the above variational principle as well.
Let us take an arbitrary variational derivative of the above action with respect to v, this
will result in

δvA =
∫

dt
{∫

d3x dtρδv · [v − ∇ν − α∇χ − β∇η − σ∇s]

+
∮

dS · δvρν +
∫

dΣ · δvρ[ν]
}
. (3.5)

The integral
∮

dS · δvρν vanishes in many physical scenarios. In the case of astrophysical
flows this integral will vanish since ρ = 0 on the flow boundary, in the case of a fluid
contained in a vessel no-flux boundary conditions δv · n̂ = 0 are induced (n̂ is a unit
vector normal to the boundary). The surface integral

∫
dΣ on the cut of ν vanishes in

the case that ν is single valued and [ν] = 0. In the case that ν is not single valued only
a Kutta-type velocity perturbation (Yahalom, Pinhasi & Kopylenko 2005) in which the
velocity perturbation is parallel to the cut will cause the cut integral to vanish.

Provided that the surface integrals do vanish, and that δvA = 0 for an arbitrary velocity
perturbation, we see that v must have the following form:

v = v̂ ≡ ∇ν + α∇χ + β∇η + σ∇s. (3.6)

The above equation is reminiscent of Clebsch representation in non-magnetic fluids.
A similar expression was obtained by Morrison (Morrison 1982) using a Hamiltonian
formalism, but in which the s terms is replaced byψ which is conjugate to s. Vladimirov &
Moffatt (1995) have connected this type of representation and the Weber transformations
in their § 3; in fact their (3.16) resembles (3.6).

Let us now take the variational derivative with respect to the density ρ, we obtain

δρA =
∫

d3x dtδρ
[

1
2
v2 − w − ∂ν

∂t
− v · ∇ν

]

+
∫

dt
∮

dS · vδρν +
∫

dt
∫

dΣ · vδρ[ν] +
∫

d3xνδρ|t1t0, (3.7)

in which w = ∂(ερ)/∂ρ is the specific enthalpy. Hence, provided that
∮

dS · vδρν vanishes
on the boundary of the domain and

∫
dΣ · vδρ[ν] vanishes on the cut of ν in the case that
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908 A4-6 A. Yahalom and H. Qin

ν is not single valued (which entails either a Kutta type condition for the velocity or a
vanishing density perturbation on the cut), in initial and final times the following equation
must be satisfied:

dν
dt

= 1
2
v2 − w. (3.8)

Finally we have to calculate the variation with respect to both χ and η, this will lead us to
the following results:

δχA =
∫

d3x dtδχ
[
∂(ρα)

∂t
+ ∇ · (ραv)− ∇η · J

]

+
∫

dt
∮

dS ·
[

B
4π

× ∇η − vρα

]
δχ

+
∫

dt
∫

dΣ ·
[

B
4π

× ∇η − vρα

]
[δχ ]

−
∫

d3xραδχ |t1t0, (3.9)

δηA =
∫

d3x dtδη
[
∂(ρβ)

∂t
+ ∇ · (ρβv)+ ∇χ · J

]

+
∫

dt
∮

dS ·
[
∇χ × B

4π
− vρβ

]
δη

+
∫

dt
∫

dΣ ·
[
∇χ × B

4π
− vρβ

]
[δη]

−
∫

d3xρβδη|t1t0 . (3.10)

Provided that the correct temporal and boundary conditions are met with respect to the
variations δχ and δη on the domain boundary and on the cuts in the case that some (or all)
of the relevant functions are non-single-valued, we obtain the following set of equations:

dα
dt

= ∇η · J
ρ

,
dβ
dt

= −∇χ · J
ρ

, (3.11a,b)

in which the continuity equation (2.3) was taken into account. By correct temporal
conditions we mean that both δη and δχ vanish at initial and final times. As for boundary
conditions which are sufficient to make the boundary term vanish one can consider the
case that the boundary is at infinity and both B and ρ vanish. Another possibility is that the
boundary is impermeable and perfectly conducting. A sufficient condition for the integral
over the ‘cuts’ to vanish is to use variations δη and δχ which are single valued. It can
be shown that χ can always be taken to be single valued, hence taking δχ to be single
valued is no restriction at all. In some topologies η is not single valued and in those cases
a single-valued restriction on δη is sufficient to make the cut term null.
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Noether currents for Eulerian variational principles 908 A4-7

Finally we take a variational derivative with respect to the entropy s,

δsA =
∫

d3x dtδs
[
∂(ρσ)

∂t
+ ∇ · (ρσv)− ρT

]

+
∫

dt
∮

dS · ρσvδs −
∫

d3xρσδs|t1t0, (3.12)

in which the temperature is T = ∂ε/∂s. We notice that according to (3.6), σ is single
valued and hence no cuts are needed. Taking into account the continuity equation (2.3) we
obtain for locations in which the density ρ is not null the result that

dσ
dt

= T, (3.13)

provided that δsA vanished for an arbitrary δs.

3.1. Euler’s equations
We shall now show that a velocity field given by (3.6), such that the equations for
α, β, χ, η, ν, σ, s satisfy the corresponding equations (3.3), (3.8), (3.11a,b), (3.13) must
satisfy Euler’s equations. Let us calculate the material derivative of v as follows:

dv

dt
= d∇ν

dt
+ dα

dt
∇χ + α

d∇χ
dt

+ dβ
dt

∇η + β
d∇η

dt
+ dσ

dt
∇s + σ

d∇s
dt
. (3.14)

It can be easily shown that

d∇ν
dt

= ∇dν
dt

− ∇vk
∂ν

∂xk
= ∇

(
1
2
v2 − w

)
− ∇vk

∂ν

∂xk
,

d∇η
dt

= ∇dη
dt

− ∇vk
∂η

∂xk
= −∇vk

∂η

∂xk
,

d∇χ
dt

= ∇dχ
dt

− ∇vk
∂χ

∂xk
= −∇vk

∂χ

∂xk
,

d∇s
dt

= ∇ds
dt

− ∇vk
∂s
∂xk

= −∇vk
∂s
∂xk

.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.15)

In which xk is a Cartesian coordinate and a summation convention is assumed. Inserting
the results from (3.15) and (3.3) into (3.14) yields

dv

dt
= −∇vk

(
∂ν

∂xk
+ α

∂χ

∂xk
+ β

∂η

∂xk
+ σ

∂s
∂xk

)
+ ∇

(
1
2
v2 − w

)
+ T∇s

+ 1
ρ
((∇η · J )∇χ − (∇χ · J )∇η)

= −∇vkvk + ∇
(

1
2
v2 − w

)
+ T∇s + 1

ρ
J × (∇χ × ∇η)

= −∇p
ρ

+ 1
ρ

J × B. (3.16)
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908 A4-8 A. Yahalom and H. Qin

In which we have used both (3.6) and (3.4) in the above derivation. This of course proves
that the non-barotropic Euler equations can be derived from the action given in (3.1), and
hence all the equations of non-barotropic MHD can be derived from the above action
without restricting the variations in any way except on the relevant boundaries and cuts.

3.2. Local non-barotropic cross-helicity
The function ν, whose material derivative is given in (3.8), can be multiple valued because
only its gradient appears in the velocity (3.6). However, the discontinuity, [ν], of ν is
conserved,

d[ν]
dt

= 0, (3.17)

since the terms on the right-hand side of (3.8) describe physical quantities and hence are
single valued. A similar equation also holds for barotropic fluid dynamics and barotropic
MHD (Yahalom & Lynden-Bell 2008; Yahalom 2010, 2013a).

We now substitute the expressions for B and v given by (3.4) and (3.6), respectively,
into the formula HC ≡ ∫

B · v d3x for the cross-helicity (see (1.1)) to obtain

HC =
∫

dΦ[ν] +
∫

dΦ
∮
σ ds, (3.18)

where the closed line integral is taken along a magnetic field line. Furthermore, dΦ =
B · dS = (∇χ × ∇η) · dS = dχ dη is a magnetic flux element which is comoving as
governed by (2.1) and dS is an infinitesimal area element. Although the cross-helicity
is not conserved for non-barotropic flows, inspection of the right-hand side of (3.18)
reveals that it is made of a sum of two terms. One term is conserved, as both dΦ and
[ν] are comoving, and the other is not. This suggests the following definition for the
non-barotropic cross-helicity:

HCNB ≡
∫

dΦ[ν] = HC −
∫

dΦ
∮
σ ds. (3.19)

It can be written in the more conventional form,

HCNB =
∫

B · vt d3x, (3.20)

in which the topological velocity field is defined as

vt = v − σ∇s. (3.21)

It should be noted that HCNB is conserved even for an MHD not satisfying the Sakurai
topological constraint given in (3.4), provided that we have a field σ satisfying the equation
dσ/dt = T . This can be verified by direct derivation using only the equation of motion and
the sigma equation. Thus the non-barotropic cross-helicity conservation law,

dHCNB

dt
= 0, (3.22)

is more general than the variational principle described by (3.50) as follows from a
direct computation using (2.1) and (2.3)–(2.5). Also note that, for a constant specific
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Noether currents for Eulerian variational principles 908 A4-9

entropy s, we obtain HCNB = HC and the non-barotropic cross-helicity reduces to the
standard barotropic cross-helicity. The local form of (3.22) describing the evolution of
HCNB per unit volume was described by (Webb et al. 2014a,b). To conclude, we introduce
also a local topological conservation law in the spirit of Yahalom (Yahalom 2013a) which
is the non-barotropic cross-helicity per unit of magnetic flux. This quantity which is equal
to the discontinuity, [ν], of ν is conserved and can be written as a sum of the barotropic
cross-helicity per unit flux and the closed line integral of sdσ along a magnetic field line,
namely

[ν] = dHCNB

dΦ
= dHC

dΦ
+

∮
s dσ. (3.23)

3.3. Simplified action
The reader of this paper might argue here that the paper is misleading. The authors
have declared that they are going to present a simplified action for non-barotropic MHD,
instead they added six more functions α, β, χ, η, ν, σ to the standard set B, v, ρ, s! In
the following we show that this is not so and the action given in equation (3.1) in a form
suitable for a pedagogic presentation that can indeed be simplified. It is easy to show that
the Lagrangian density appearing in (3.1) can be written in the form

L = −ρ
[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε(ρ, s)
]

+ 1
2
ρ[(v − v̂)2 − (v̂)2]

+ 1
8π

[(B − B̂)2 − (B̂)2] + ∂(νρ)

∂t
+ ∇ · (νρv), (3.24)

in which v̂ is a shorthand notation for ∇ν + α∇χ + β∇η + σ∇s (see (3.6)) and B̂ is a
shorthand notation for ∇χ × ∇η (see (3.4)). Thus L has four contributions as follows:

L = L̂ + Lv + LB + Lboundary,

L̂ ≡ −ρ
[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε(ρ, s)

+1
2
(∇ν + α∇χ + β∇η + σ∇s)2

]

− 1
8π
(∇χ × ∇η)2,

Lv ≡ 1
2
ρ(v − v̂)2,

LB ≡ 1
8π
(B − B̂)2,

Lboundary ≡ ∂(νρ)

∂t
+ ∇ · (νρv).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.25)
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908 A4-10 A. Yahalom and H. Qin

The only term containing v is Lv (Lboundary also depends on v but being a boundary
term in space and time it does not contribute to the derived equations), it can easily
be seen that this term will lead, after we nullify the variational derivative with respect
to v, to (3.6) but will otherwise have no contribution to other variational derivatives.
Similarly the only term containing B is LB and it can easily be seen that this term will
lead, after we nullify the variational derivative, to (3.4), but will have no contribution to
other variational derivatives. Also notice that the term Lboundary contains only complete
partial derivatives and thus can not contribute to the equations, although it can change the
boundary conditions. Hence we see that (3.3), (3.8), (3.11a,b) and (3.13) can be derived
using the Lagrangian density,

L̂[α, β, χ, η, ν, ρ, σ, s] = −ρ
[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t

+σ ∂s
∂t

+ ε(ρ, s)+ 1
2
(∇ν + α∇χ + β∇η + σ∇s)2

]

− 1
8π
(∇χ × ∇η)2 (3.26)

in which v̂ replaces v and B̂ replaces B in the relevant equations. Furthermore, after
integrating the eight equations (3.3), (3.8), (3.11a,b), (3.13) we can insert the potentials
α, β, χ, η, ν, σ, s into (3.6) and (3.4) to obtain the physical quantities v and B. Hence, the
general non-barotropic magnetohydrodynamic problem is reduced from eight equations
(2.1), (2.3), (2.4), (2.5) and the additional constraint (2.2), to a problem of eight first-order
(in the temporal derivative) unconstrained equations. Moreover, the entire set of equations
can be derived from the Lagrangian density L̂.

3.4. Further simplification

3.4.1. Elimination of variables
Let us now look at the last three equations of (3.3) (Yahalom 2016a,b). Those describe

three comoving quantities which can be written in terms of the generalized Clebsch form
given in (3.6) as follows:

∂χ

∂t
+ (∇ν + α∇χ + β∇η + σ∇s) · ∇χ = 0

∂η

∂t
+ (∇ν + α∇χ + β∇η + σ∇s) · ∇η = 0

∂s
∂t

+ (∇ν + α∇χ + β∇η + σ∇s) · ∇s = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭
. (3.27)

Those are algebraic equations for α, β, σ which can be solved such that α, β, σ can be
written as functionals of χ, η, ν, s resulting eventually in the description of non-barotropic
MHD in terms of five functions, ν, ρ, χ, η, s. Let us introduce the notation

αi ≡ (α, β, σ ), χi ≡ (χ, η, s), ki ≡ −∂χi

∂t
− ∇ν · ∇χi, (3.28)

i ∈ (1, 2, 3). In terms of the above notation (3.27) takes the form

ki = αj∇χi · ∇χj, j ∈ (1, 2, 3) (3.29)
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Noether currents for Eulerian variational principles 908 A4-11

in which the Einstein summation convention is assumed. Let us define the matrix

Aij ≡ ∇χi · ∇χj, (3.30)

where obviously this matrix is symmetric since Aij = Aji. Hence (3.29) takes the form

ki = Aijαj, j ∈ (1, 2, 3). (3.31)

Provided that the matrix Aij is not singular it has an inverse A−1
ij which can be written as

A−1
ij = |A|−1

⎛
⎝ A22A33 − A2

23 A13A23 − A12A33 A12A23 − A13A22

A13A23 − A12A33 A11A33 − A2
13 A12A13 − A11A23

A12A23 − A13A22 A12A13 − A11A23 A11A22 − A2
12

⎞
⎠ , (3.32)

in which the determinant |A| is given by the following equation:

|A| = A11A22A33 − A11A2
23 − A22A2

13 − A33A2
12 + 2A12A13A23. (3.33)

In terms of the above equations the αi can be calculated as functionals of χi, ν as follows:

αi[χi, ν] = A−1
ij kj. (3.34)

The velocity equation (3.6) can now be written as

v = ∇ν + αi∇χi = ∇ν + A−1
ij kj∇χi

= ∇ν − A−1
ij ∇χi

(
∂χj

∂t
+ ∇ν · ∇χj

)
. (3.35)

Provided that the χi is a coordinate basis in three dimensions, we may write

∇ν = ∇χn
∂ν

∂χn
, n ∈ (1, 2, 3). (3.36)

Inserting (3.36) into (3.35) we obtain

v = −A−1
ij ∇χi

∂χj

∂t
(3.37)

where in the above δin is a Kronecker delta. Thus the velocity v[χi] is a functional of χi
only and is independent of ν.
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908 A4-12 A. Yahalom and H. Qin

3.5. Lagrangian density and variational analysis

Let us now rewrite the Lagrangian density L̂[χi, ν, ρ] given in (3.26) in terms of the new
variables as

L̂[χi, ν, ρ] = −ρ
[
∂ν

∂t
+ αk[χi, ν]

∂χk

∂t
+ ε(ρ, χ3)+ 1

2
v[χi]2

]

− 1
8π
(∇χ1 × ∇χ2)

2. (3.38)

Let us calculate the variational derivative of L̂[χi, ν, ρ] with respect to χi, this will result
in

δχiL̂ = −ρ
[
δχiαk

∂χk

∂t
+ αi

∂δχi

∂t
+ δχiε(ρ, χ3)+ δχiv · v

]

− B
4π

· δχi(∇χ1 × ∇χ2) (3.39)

in which the summation convention is not applied if the index is underlined. However, due
to (3.35) we may write

δχiv = δχiαk∇χk + αi∇δχi. (3.40)

Inserting (3.40) into (3.39) and rearranging the terms we obtain

δχiL̂ = −ρ
[
δχiαk

(
∂χk

∂t
+ v · ∇χk

)
+ αi

(
∂δχi

∂t
+ v · ∇δχi

)
+ δχiε(ρ, χ3)

]

− B
4π

· δχi(∇χ1 × ∇χ2). (3.41)

Now by construction v satisfies (3.27) and hence ∂χk/∂t + v · ∇χk = 0, this leads to

δχiL̂ = −ρ
[
αi

dδχi

dt
+ δχiε(ρ, χ3)

]
− B

4π
· δχi(∇χ1 × ∇χ2). (3.42)

From now on the derivation proceeds as in (3.9), (3.10), (3.12) resulting in (3.11a,b),
(3.13) and will not be repeated. The difference is that now α, β and σ are not independent
quantities, rather they depend through (3.34) on the derivatives of χi, ν. Thus, (3.9), (3.10),
(3.12) are not first-order equations in time but are second-order equations. Now let us
calculate the variational derivative with respect to ν, this will result in the expression

δνL̂ = −ρ
[
∂δν

∂t
+ δναn

∂χn

∂t

]
. (3.43)

However, δναk can be calculated from (3.34) as follows:

δναn = A−1
nj δνkj = −A−1

nj ∇δν · ∇χj. (3.44)
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Inserting the above equation into (3.43) gives

δνL̂ = −ρ
[
∂δν

∂t
− A−1

nj ∇χj
∂χn

∂t
· ∇δν

]

= −ρ
[
∂δν

∂t
+ v · ∇δν

]
= −ρ dδν

dt
. (3.45)

The above equation can be put to the form,

δνL̂ = δν

[
∂ρ

∂t
+ ∇ · (ρv)

]
− ∂(ρδν)

∂t
− ∇ · (ρvδν). (3.46)

This obviously leads to the continuity equation (2.3) and some boundary terms in space
and time. The variational derivative with respect to ρ is trivial and the analysis is identical
to the one in (3.7), leading to (3.8). To conclude this subsection let us summarize the
equations of non-barotropic MHD as follows:

dν
dt

= 1
2
v2 − w,

∂ρ

∂t
+ ∇ · (ρv) = 0,

dσ
dt

= T,
dα
dt

= ∇η · J
ρ

,
dβ
dt

= −∇χ · J
ρ

⎫⎪⎪⎬
⎪⎪⎭ (3.47)

in which α, β, σ, v are functionals of χ, η, s, ν as described above. It is easy to show as in
(3.16) that those variational equations are equivalent to the physical equations.

3.6. Lagrangian density in explicit form
Let us put the Lagrangian density of (3.38) in a slightly more explicit form. First us look
at the term v2,

v2 = A−1
ij ∇χi

∂χj

∂t
A−1

mn∇χm
∂χn

∂t

= A−1
ij A−1

mnAim
∂χj

∂t
∂χn

∂t
= A−1

jn
∂χj

∂t
∂χn

∂t
, (3.48)

where in the above we use (3.37) and (3.30). Next let us look at the expression

αk[χi, ν]
∂χk

∂t
= A−1

kj kj
∂χk

∂t
= −

(
∂χj

∂t
+ ∇ν · ∇χj

)
A−1

kj
∂χk

∂t

= −A−1
jk
∂χj

∂t
∂χk

∂t
− ∂ν

∂χm

∂χm

∂t
. (3.49)

Inserting (3.48) and (3.49) into (3.38) leads to a Lagrangian density of a more standard
quadratic form,

L̂[χi, ν, ρ] = ρ

[
1
2

A−1
jn
∂χj

∂t
∂χn

∂t
+ ∂ν

∂χm

∂χm

∂t
− ∂ν

∂t
− ε(ρ, χ3)

]

− 1
8π
(∇χ1 × ∇χ2)

2. (3.50)
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908 A4-14 A. Yahalom and H. Qin

We now define the metric gjn = A−1
jn and obtain the geometrical Lagrangian,

L̂[χi, ν, ρ] = ρ

[
1
2

gjn
∂χj

∂t
∂χn

∂t
+ ∂ν

∂χm

∂χm

∂t
− ∂ν

∂t
− ε(ρ, χ3)

]

− 1
8π
(∇χ1 × ∇χ2)

2. (3.51)

The Lagrangian is thus composed of a geometric kinetic term which is quadratic in the
temporal derivatives, a ‘gyroscopic’ term which is linear in the temporal derivative and a
potential term which is independent of the temporal derivative.

4. Noether current

Let us assume that all the equations of motion and boundary conditions of
non-barotropic MHD are satisfied. In this case we have, according to (3.26),

δA =
∫ t2

t1

dt
∫

d3xδL̂ = −
∫

d3xρ [δν + αδχ + βδη + σδs]
∣∣∣∣
t2

t1

. (4.1)

For the current purpose it does not matter if α, β and σ are independent variational
variables or depend on other variational variables through (3.34). Now suppose that
the variations δν, δχ, δη, δs are symmetry variations such that δA = 0. In that case one
obtains a conserved Noether current,

δJ = −
∫

d3xρ [δν + αδχ + βδη + σδs] . (4.2)

As the variations in the specific entropy s will generally vary the specific internal energy
term in the Lagrangian, we do not expect non-trivial entropy symmetry transformation,
and the action will only be invariant for δs = 0, hence

δJ = −
∫

d3xρ [δν + αδχ + βδη] . (4.3)

4.1. Lagrangian and Eulerian variations
The value of a function f can be modified by evaluating it at a different point in space, the
difference between the new and old values would be

f (x + ξ)− f (x) = ξ · ∇f , (4.4)

in which x is a coordinate vector and ξ is a displacement vector, the equality is correct to
first order in ξ . Alternatively we can modify the value of a function by changing it to a
different function f ′, in this case the difference between the new and old values would be

δf = f ′(x)− f (x). (4.5)

For a small δf this just the standard variation of variational analysis or an Eulerian
variation. Finally we can do both, in the last case the difference between the new and
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old values would be

Δf = f ′(x + ξ)− f (x), (4.6)

hence

Δf = f ′(x + ξ)− f (x + ξ)+ f (x + ξ)− f (x). (4.7)

Keeping only first-order terms we obtain

Δf = δf + ξ · ∇f ⇒ δf = Δf − ξ · ∇f , (4.8)

in which Δ is a Lagrangian variation.
Now suppose that a specific function is connected to a fluid element in such a way that

its value in space is determined only by fluid element location. And suppose that the fluid
element is displaced as dictated by the flow. Such a function would be denoted a label of
the flow and its material derivative would vanish. Moreover, for a label

f ′(x + ξ) = f (x) ⇒ Δf = 0, (4.9)

in order to change the value of a label in a certain point in space the fluid element must
be displaced and another (with a different label value) must take its place. If follows from
(4.8) that for a label

δf = −ξ · ∇f . (4.10)

Now suppose we have a set of three labels χ̃i such that

δχ̃i = −ξ · ∇χ̃i = −ξk
∂χ̃i

∂xk
, (4.11)

in which we use the Einstein summation convention and xk are Cartesian coordinates. The
inverse of the matrix ∂χ̃i/∂xk is ∂xk/∂χ̃i as

∂χ̃i

∂xk

∂xj

∂χ̃i
= δ

j
k, (4.12)

where δ j
k is a Kronecker delta. It thus follows that one can calculate the displacement vector

ξ as follows:

ξk = −∂xk

∂χ̃i
δχ̃i ⇒ ξ = − ∂r

∂χ̃i
δχ̃i. (4.13)

4.2. Noether current for label symmetries
We now study the form of the Noether current equation (4.3) for the case of label symmetry
transformations. It is clear from (3.3) that χ, η can be taken to be labels. Hence we can
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write the conserved Noether current defined in (4.3) as

δJ = −
∫

d3xρ
[
Δν − ξ · ∇ν − αξ · ∇χ − βξ · ∇η] , (4.14)

or using (3.6) as

δJ =
∫

d3xρ
[
ξ · (v − σ∇s)− Δν

]
. (4.15)

We use the topological velocity defined in (3.21) to get

vt = ∇ν + α∇χ + β∇η, (4.16)

and write

δJ =
∫

d3xρ
[
ξ · vt − Δν

]
. (4.17)

Suppose now that we are considering label symmetry transformations with the
infinitesimal form χ̃i + δχ̃i, this type of transformation will induce a transformation on
other functions (ν as an example) which could be thought of as functions of labels, a
transformation of the form

δν = ν(χ̃i + δχ̃i)− ν(χ̃i) = δχ̃i∂χ̃iν = −ξ · ∇χ̃i∂χ̃iν = −ξ · ∇ν. (4.18)

Hence by (4.8) we have

Δν = 0. (4.19)

It follows that for an induced infinitesimal label transformation any function will transform
as a label. From (4.19) it follows that the Noether current will take the following form for
a symmetry label transformation:

δJ =
∫

d3xρξ · vt. (4.20)

This Noether current form is identical to (47) of Yahalom (2017d) and (14) of Yahalom
(2019b), which were derived from a Lagrangian variational principle. We note, however,
that this form is limited to the case of label transformations and the general form given
in (4.2) allows us to exploit larger symmetry groups. Next we will study some symmetry
transformations of the action A, in order to do this we shall first introduce the load and
metage quantities.

5. Load and metage

The following section follows closely similar sections in Yahalom & Lynden-Bell
(2008), Yahalom (2017a), Yahalom (2017d) and Yahalom (2019a). Consider a thin tube
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surrounding a magnetic field line, the magnetic flux contained within the tube is

ΔΦ =
∫

B · dS, (5.1)

and the mass contained with the tube is

ΔM =
∫
ρ dl · dS, (5.2)

in which dl is a length element along the tube. Since the magnetic field lines move with
the flow by virtue of (2.1) and (2.3), both the quantities ΔΦ and ΔM are conserved, and
since the tube is thin we may define the conserved magnetic load as

λ = ΔM
ΔΦ

=
∮
ρ

B
dl, (5.3)

in which the above integral is performed along the field line. Obviously the parts of the
line which go out of the flow to regions in which ρ = 0 have a null contribution to the
integral. Notice that λ is a single-valued function that can be measured in principle. Since
λ is conserved it satisfies the equation

dλ
dt

= 0. (5.4)

This can be viewed as a manifestation of the frozen-in law of B/ρ. By construction,
surfaces of constant magnetic load move with the flow and contain magnetic field lines.
Hence the gradient to such surfaces must be orthogonal to the field line,

∇λ · B = 0. (5.5)

Now consider an arbitrary comoving point on the magnetic field line and denote it by i,
and consider an additional comoving point on the magnetic field line and denote it by r.
The integral,

μ(r) =
∫ r

i

ρ

B
dl + μ(i), (5.6)

is also a conserved quantity which we may denote following Lynden-Bell & Katz (1981)
as the magnetic metage. Here μ(i) is an arbitrary number which can be chosen differently
for each magnetic line. By construction we have

dμ
dt

= 0. (5.7)

This can be viewed as another manifestation of the frozen-in law of B/ρ. Also it is easy to
see that by differentiating along the magnetic field line we obtain

∇μ · B = ρ. (5.8)

Notice that μ will be generally a non-single-valued function; we will show later in this
paper that symmetry to translations in μ will generate through Noether’s theorem the
conservation of the magnetic cross-helicity.
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At this point we have two comoving coordinates of flow, namely λ, μ obviously in a
three-dimensional flow we also have a third coordinate. However, before defining the third
coordinate we will find it useful to work not directly with λ but with a function of λ. Now
consider the magnetic flux within a surface of constant load Φ(λ). The magnetic flux is
a conserved quantity and depends only on the load λ of the surrounding surface. Now we
define the quantity

χ = Φ(λ)

2π
. (5.9)

Obviously χ satisfies the equations

dχ
dt

= 0, B · ∇χ = 0. (5.10a,b)

Let us now define an additional comoving coordinate η∗, since ∇μ is not orthogonal to
the B lines we can choose ∇η∗ to be orthogonal to the B lines and not in the direction of
the ∇χ lines – that is we choose η∗ not to depend only on χ . Since both ∇η∗ and ∇χ are
orthogonal to B, B must take the form

B = A∇χ × ∇η∗. (5.11)

However, using (2.2) we have

∇ · B = ∇A · (∇χ × ∇η∗) = 0, (5.12)

which implies that A is a function of χ, η∗. Now we can define a new comoving function
η such that

η =
∫ η∗

0
A(χ, η

′∗) dη
′∗,

dη
dt

= 0. (5.13a,b)

In terms of this function we obtain the Sakurai (Euler potentials) presentation,

B = ∇χ × ∇η. (5.14)

The density is now given by the Jacobian as follows:

ρ = ∇μ · (∇χ × ∇η) = ∂(χ, η, μ)

∂(x, y, z)
. (5.15)

It can easily be shown using the fact that the labels are comoving, that the above forms of
B and ρ satisfy (2.1), (2.2) and (2.3) automatically.

We can now write a Lagrangian density in terms of the labels, in which ρ is no longer
an independent variational variable but rather a quantity dependent on μ through (5.15).
The Lagrangian density of (3.26) takes the form,

L̂[α, β, χ, η, μ, ν, σ, s] = −∂(χ, η, μ)
∂(x, y, z)

[
∂ν

∂t
+ α

∂χ

∂t
+ β

∂η

∂t
+ σ

∂s
∂t

+ ε

(
∂(χ, η, μ)

∂(x, y, z)
, s

)
+ 1

2
(∇ν + α∇χ + β∇η + σ∇s)2

]
− 1

8π
(∇χ × ∇η)2. (5.16)

Notice, however, that η is defined in a non-unique way since one can redefine η, for
example by performing the following transformation: η → η + f (χ), in which f (χ) is an
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arbitrary function. The comoving coordinates χ, η serve as labels of the magnetic field
lines. Moreover, the magnetic flux can be calculated as

Φ =
∫

B · dS =
∫

dχ dη. (5.17)

In the case that the surface integral is performed inside a load contour we obtain

Φ(λ) =
∫
λ

dχ dη = χ

∫
λ

dη =
{

χ [η],
χ(ηmax − ηmin).

(5.18)

There are two cases involved. In one case the load surfaces are topological cylinders; in this
case η is not single valued and hence we obtain the upper value for Φ(λ). In a second case
the load surfaces are topological spheres; in this case η is single valued and has minimal
ηmin and maximal ηmax values. Hence the lower value of Φ(λ) is obtained. For example in
some cases η is identical to twice the latitude angle θ . In those cases ηmin = 0 (the value
at the ‘north pole’) and ηmax = 2π (the value at the ‘south pole’).

Comparing the above equation with (5.9), we derive that η can be either single valued
or not single valued, and that its discontinuity across its cut in the non-single-valued case
is [η] = 2π.

The triplet χ, η, μ will suffice to label any fluid element in three dimensions. But for
a non-barotropic flow there is also another possible label s which is comoving according
to (2.5). The question then arises of the relation of this label to the previous three. As
one needs to make a choice regarding the preferred set of labels it seems that the physical
ones are χ, η, s, in which we use the surfaces on which the magnetic fields lie and the
entropy, each label has an obvious physical interpretation. In this case we must look at μ
as a function of χ, η, s. If the magnetic field lines lie on the entropy surface then μ regains
its status as an independent label. The density can now be written as

ρ = ∂μ

∂s
∂(χ, η, s)
∂(x, y, z)

. (5.19)

Now as μ can be defined for each magnetic field line separately according to (5.6), it is
obvious that such a choice exists in which μ is a function of s only. One may also think
of the entropy s as a function of χ, η, μ. However, if one changes μ in this case, this
generally entails a change in s and the symmetry described in (5.6) is lost in the action.
In what follows we shall ignore the status of s as a label and consider it as a variational
variable which only attains a status of a label at the variational extremum.

6. The labelling symmetry group and its subgroups

It is obvious that the choice of fluid labels is quite arbitrary. However, when enforcing
the χ, η, μ coordinate system satisfying (5.15) the choice is restricted to χ̃ , η̃, μ̃ such that

∂(χ̃, η̃, μ̃)

∂(χ, η, μ)
= 1. (6.1)

Moreover, the Euler potential magnetic field representation,

B = ∇χ × ∇η, (6.2)

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.856


908 A4-20 A. Yahalom and H. Qin

reduces the choice further to

∂(χ̃, η̃)

∂(χ, η)
= 1. (6.3)

We further notice that in the Eulerian variation principle approach the label symmetry
cannot be realized unless it is coupled to the transformation of other variational variables,
that is the label transformation induces transformation on α and β as follows:

α̃ = α∂χ̃χ + β∂χ̃η

β̃ = α∂η̃χ + β∂η̃η

}
. (6.4)

From (5.16) it follows that:

L̂[α, β, χ, η, μ, ν, σ, s] − L̂[α̃, β̃, χ̃ , η̃, μ̃, ν, σ, s] = 0, (6.5)

hence the label transformation is a symmetry transformation. Now suppose that we
consider ν as a function of the labels

ν(x, y, z, t) = ν̄(χ, η, μ, t), (6.6)

in that case replacing (χ, η, μ) → (χ̃ , η̃, μ̃) in the above equation will yield a different
function ν̃ of the coordinates such that

ν̄(χ̃ , η̃, μ̃, t) = ν̃(x, y, z, t). (6.7)

From this point of view, which we adopt in the current paper, symmetry can be only
achieved if

∫
d3x

[
L̂[α, β, χ, η, μ, ν̄(χ, η, μ, t), σ, s] − L̂[α̃, β̃, χ̃ , η̃, μ̃, ν̄(χ̃ , η̃, μ̃, t), σ, s]

]
= 0.

(6.8)

6.1. Metage translations
In what follows we consider the transformation (see also (5.6))

χ̃ = χ, η̃ = η, μ̃ = μ+ a(χ, η). (6.9)

Hence a is a label displacement which may be different for each magnetic field line, as the
field line is closed one need not worry about edge difficulties. This transformation satisfies
trivially the conditions (6.1), (6.3). If we take the infinitesimal symmetry transformation
δμ = a, δχ = δη = 0 we can calculate the associated fluid element displacement with
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this relabeling using (4.13) and (5.8), giving

ξ = − ∂r
∂μ
δμ = −δμB

ρ
. (6.10)

Inserting (6.10) into (4.20) we obtain the conservation law,

δJ =
∫

d3xρvt · ξ = −
∫

d3xδμvt · B. (6.11)

In the simplest case we may take δμ to be a small constant, hence

δJ = −δμ
∫

d3xvt · B = −δμHCNB, (6.12)

where HCNB is the non-barotropic global cross-helicity (Webb et al. 2014a; Yahalom
2017b,c) defined as

HCNB ≡
∫

d3xvt · B. (6.13)

We thus obtain the conservation of non-barotropic cross-helicity using Noether’s theorem
and the symmetry group of metage translations. Of course one can perform a different
translation on each magnetic field line, in this case one obtains

δJ = −
∫

d3xδμvt · B = −
∫

dχ dηδμ
∮
χ,η

dμρ−1vt · B. (6.14)

Now since δμ is an arbitrary (small) function of χ, η it follows that

I =
∮
χ,η

dμρ−1vt · B (6.15)

is a conserved quantity for each magnetic field line. Along a magnetic field line the
following equations hold:

dμ = ∇μ · dr = ∇μ · B̂ dr = ρ

B
dr. (6.16)

In the above, B̂ is a unit vector in the magnetic field direction and (5.8) is used. Inserting
(6.16) into (6.15) we obtain

I =
∮
χ,η

drvt · B̂ =
∮
χ,η

dr · vt, (6.17)

which is just the circulation of the topological velocity along the magnetic field lines. This
quantity can be written in terms of the generalized Clebsch representation of the velocity
equation (3.6) as

I =
∮
χ,η

dr · vt =
∮
χ,η

dr · ∇ν = [ν], (6.18)

where [ν] is the discontinuity of ν. This was shown to be equal to the amount of
non-barotropic cross-helicity per unit of magnetic flux in (3.23) (Yahalom 2017b,c),

I = [ν] = dHCNB

dΦ
. (6.19)
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6.2. Transformations of magnetic surfaces
Consider the following transformations:

η̃ = η + δη(χ, η), χ̃ = χ + δχ(χ, η), μ̃ = μ, (6.20a–c)

in which δη, δχ are considered small in some sense. Inserting the above quantities into
(6.3) and keeping only first-order terms we arrive at

∂ηδη + ∂χδχ = 0. (6.21)

This equation can be solved as follows:

δη = ∂χδf , δχ = −∂ηδf , (6.22a,b)

in which δf = δf (χ, η) is an arbitrary small function. In this case we obtain a particle
displacement of the form,

ξ = − ∂r
∂χ
δχ − ∂r

∂η
δη = − 1

ρ
(∇η × ∇μδχ + ∇μ× ∇χδη)

= ∇μ
ρ

× (∇ηδχ − ∇χδη). (6.23)

A special case that satisfies (6.21) is the case of a constant δχ and δη, those two
independent displacements lead to the following two new topological conservation laws,

δJχ = δχ

∫
d3xvt · ∇μ× ∇η = δχHCNBχ ,

δJη = δη

∫
d3xvt · ∇χ × ∇μ = δηHCNBη,

⎫⎪⎪⎬
⎪⎪⎭ (6.24)

where the new non-barotropic global cross-helicities are defined as

HCNBχ ≡
∫

d3xvt · ∇μ× ∇η, HCNBη ≡
∫

d3xvt · ∇χ × ∇μ. (6.25a,b)

We will find it useful to introduce the abstract ‘magnetic fields’ as follows:

Bχ ≡ ∇μ× ∇η, Bη ≡ ∇χ × ∇μ, (6.26a,b)

in terms of which we obtain the new helicities in a more conventional form, i.e.

HCNBχ =
∫

d3xvt · Bχ , HCNBη =
∫

d3xvt · Bη. (6.27a,b)

It is more plausible that those symmetries and conservation laws hold for magnetic
field lines which lie on topological tori. In this case η is non-single-valued (Yahalom
& Lynden-Bell 2008) and thus the translation in this direction resembles moving fluid
elements along closed loops. Both those helicities suffer a topological interpretation in
terms of the knottiness of the abstract magnetic field lines and the flow lines. Finally we
remark that for barotropic MHD vt can be replaced with v.
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7. Direct derivation

Before continuing to discuss the possible applications of the topological constants of
motion, we shall demonstrate that the generalized cross-helicities are indeed constant
without relying on Noether’s theorem.

7.1. Direct derivation of the constancy of non-barotropic cross-helicity
Taking the temporal derivative of the non-barotropic cross-helicity given in (6.13) we
obtain,

dHCNB

dt
=

∫
d3x [∂tvt · B + vt · ∂tB] , (7.1)

where d/dt is an ordinary temporal derivative, and we use the notation, ∂t ≡ ∂/∂t. Using
(2.1) it follows that:

vt · ∂tB = vt · ∇ × (v × B) = ∇ · ((v × B)× vt)+ (v × B) · ωt, (7.2)

in which we have used a standard identity of vector analysis and the definition,

ωt = ∇ × vt = ω − ∇σ × ∇s, (7.3)

where vt is defined in (3.21). Next we calculate

∂tvt · B = B · ∂t (v − σ∇s) = B · (∂tv − ∂tσ∇s − σ∇∂ts) . (7.4)

Taking into account Euler’s equations (2.4) and the standard thermodynamic identities of
(2.6) we have,

∂tv = −(v · ∇)v − 1
ρ

∇p(ρ, s)+ (∇ × B)× B
4πρ

= v × ω − ∇
(

1
2
v2

)
− ∇w + T∇s + (∇ × B)× B

4πρ
. (7.5)

Hence we have

B · ∂tv = B · (
v × ω − ∇ (

1
2v

2 + w
) + T∇s

)
. (7.6)

Taking into account (3.13) it follows that:

− ∂tσ∇s = (v · ∇σ − T)∇s. (7.7)

And taking into account (2.5) it follows that:

− σ∇∂ts = σ∇(v · ∇s). (7.8)

Inserting (7.6), (7.7) and (7.8) into (7.4) it follows that:

∂tvt · B = B · (
v × ω − ∇ (

1
2v

2 + w
) + (v · ∇σ)∇s + σ∇(v · ∇s)

)
, (7.9)
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hence

∂tvt · B = B · (
v × ω + ∇ (

σ(v · ∇s)− 1
2v

2 − w
) + (v · ∇σ)∇s − (v · ∇s)∇σ )

= B · (
v × ω + ∇ (

σ(v · ∇s)− 1
2v

2 − w
) + (∇σ × ∇s)× v

)
= B · (

v × ωt + ∇ (
σ(v · ∇s)− 1

2v
2 − w

))
. (7.10)

Combining (7.2) with (7.10) we arrive at the result,

∂tvt · B + vt · ∂tB = ∇ · ((v × B)× vt)+ B · ∇ (
σ(v · ∇s)− 1

2v
2 − w

)
= ∇ · [

(v × B)× vt + B
(
σ(v · ∇s)− 1

2v
2 − w

)]
, (7.11)

in which we take into account (2.2). Inserting (7.11) into (7.1) and using Gauss’ theorem
we obtain a surface integral,

dHCNB

dt
=

∮
dS ·

[
(v × B)× vt + B

(
σ(v · ∇s)− 1

2
v2 − w

)]
. (7.12)

The surface integral encapsulates the volume for which the non-barotropic cross-helicity
is calculated. If the surface is taken at infinity the magnetic fields vanish and thus

dHCNB

dt
= 0, (7.13)

which means that HCNB is a constant of motion. We notice the complexity of the direct
derivation with respect to the elegance and simplicity of the Noether theorem approach.
However, obtaining the same result using different methods strengthens our confidence
that no mathematical error was accidentally introduced.

7.2. Direct derivation of the constancy of non-barotropic χ cross-helicity
Taking the temporal derivative of the non-barotropic χ cross-helicity given in (6.27a,b)
we obtain

dHCNBχ

dt
=

∫
d3x

[
∂tvt · Bχ + vt · ∂tBχ

]
. (7.14)

Let us calculate ∂tBχ where Bχ is defined in (6.26a,b):

Bχ = ∇μ× ∇η. (7.15)

It follows that
∂tBχ = ∇∂tμ× ∇η + ∇μ× ∇∂tη. (7.16)

Using (3.3) and (5.7) we obtain

∂tBχ = ∇(−v · ∇μ)× ∇η + ∇μ× ∇(−v · ∇η)
= ∇ × (∇μ(v · ∇η)− ∇η(v · ∇μ))
= ∇ × (v × (∇μ× ∇η)) = ∇ × (

v × Bχ

)
, (7.17)
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in which we used standard vector analysis identities. It thus follows that

vt · ∂tBχ = vt · ∇ × (v × Bχ) = ∇ · (
(v × Bχ)× vt

) + (v × Bχ) · ωt. (7.18)

Next we calculate

∂tvt · Bχ = Bχ · ∂t (v − σ∇s) = Bχ · (∂tv − ∂tσ∇s − σ∇∂ts) . (7.19)

Taking into account (7.5),

Bχ · ∂tv = Bχ ·
(

v × ω − ∇
(

1
2
v2 + w

)
+ T∇s

)
+ Bχ · 1

ρ
J × B, (7.20)

in which the current density is given by

J = ∇ × B
4π

⇒ ∇ · J = 0. (7.21)

Now,

Bχ · 1
ρ

J × B = 1
ρ

J · B × Bχ , (7.22)

however,

B × Bχ = B × (∇μ× ∇η) = ∇μ(B · ∇η)− ∇η(B · ∇μ) = −ρ∇η. (7.23)

It thus follows that

Bχ · 1
ρ

J × B = −J · ∇η = −∇ · (Jη), (7.24)

in which we used (3.4) and (5.8). Inserting (7.24) into (7.20) will yield

Bχ · ∂tv = Bχ · (
v × ω − ∇ (

1
2v

2 + w
) + T∇s

) − ∇ · (Jη). (7.25)

Inserting (7.25), (7.7) and (7.8) into (7.19) it follows that

∂tvt · Bχ = Bχ · (
v × ω − ∇ (

1
2v

2 + w
) + (v · ∇σ)∇s + σ∇(v · ∇s)

) − ∇ · (Jη)
(7.26)

hence

∂tvt · Bχ = Bχ · (
v × ωt + ∇ (

σ(v · ∇s)− 1
2v

2 − w
)) − ∇ · (Jη). (7.27)

Combining (7.18) with (7.27) we arrive at the result

∂tvt · Bχ + vt · ∂tBχ

= ∇ · (
(v × Bχ)× vt − Jη

) + Bχ · ∇ (
σ(v · ∇s)− 1

2v
2 − w

)
= ∇ · [

(v × Bχ)× vt + Bχ

(
σ(v · ∇s)− 1

2v
2 − w

) − Jη
]
, (7.28)
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in which we take into account (7.15). Inserting (7.28) into (7.14) and using Gauss’ theorem
we obtain a surface integral,

dHCNBχ

dt
=

∮
dS ·

[
(v × Bχ)× vt + Bχ

(
σ(v · ∇s)− 1

2
v2 − w

)
− Jη

]

−
∫

dΣ · J [η]. (7.29)

The surface integral encapsulates the volume for which the χ non-barotropic cross-helicity
is calculated and an additional surface integral is performed along the cut of η, in case that
η is not single valued (see (5.18)). If the surface is taken at infinity the magnetic fields and
current densities vanish and thus

dHCNBχ

dt
= −

∫
dΣ · J [η]; (7.30)

hence for spherical topologies of magnetic field lines or for a current density J parallel to
the cut we obtain

dHCNBχ

dt
= 0, (7.31)

which means that HCNBχ is a constant of motion. We notice the complexity of the direct
derivation with respect to the elegance and simplicity of the Noether theorem approach.
However, obtaining the same result using different methods strengthens our confidence
that no mathematical error was accidentally introduced.

7.3. Direct derivation of the constancy of non-barotropic η cross-helicity
Taking the temporal derivative of the non-barotropic η cross-helicity given in (6.27a,b) we
obtain

dHCNBη

dt
=

∫
d3x

[
∂tvt · Bη + vt · ∂tBη

]
. (7.32)

Let us calculate ∂tBη where Bη is defined in (6.26a,b):

Bη = ∇χ × ∇μ; (7.33)

it follows that
∂tBη = ∇∂tχ × ∇μ+ ∇χ × ∇∂tμ. (7.34)

Using (3.3) and (5.7) we obtain

∂tBη = ∇(−v · ∇χ)× ∇μ+ ∇χ × ∇(−v · ∇μ)
= ∇ × (∇χ(v · ∇μ)− ∇μ(v · ∇χ))
= ∇ × (v × (∇χ × ∇μ)) = ∇ × (

v × Bη

)
, (7.35)

in which we used standard vector analysis identities. It thus follows that

vt · ∂tBη = vt · ∇ × (v × Bη) = ∇ · (
(v × Bη)× vt

) + (v × Bη) · ωt. (7.36)
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Next we calculate

∂tvt · Bη = Bη · ∂t (v − σ∇s) = Bη · (∂tv − ∂tσ∇s − σ∇∂ts) . (7.37)

Taking into account (7.5) we have

Bη · ∂tv = Bη ·
(

v × ω − ∇
(

1
2
v2 + w

)
+ T∇s

)
+ Bη · 1

ρ
J × B. (7.38)

Now,

Bη · 1
ρ

J × B = 1
ρ

J · B × Bη, (7.39)

however,

B × Bη = B × (∇χ × ∇μ) = ∇χ(B · ∇μ)− ∇μ(B · ∇χ) = ρ∇χ; (7.40)

it thus follows that

Bη · 1
ρ

J × B = J · ∇χ = ∇ · (Jχ), (7.41)

in which we used (3.4) and (5.8). Inserting (7.41) into (7.38) will yield

Bη · ∂tv = Bη · (
v × ω − ∇ (

1
2v

2 + w
) + T∇s

) + ∇ · (Jχ). (7.42)

Inserting (7.42), (7.7) and (7.8) into (7.37) it follows that:

∂tvt · Bη = Bη · (
v × ω − ∇ (

1
2v

2 + w
) + (v · ∇σ)∇s + σ∇(v · ∇s)

) + ∇ · (Jχ),
(7.43)

hence

∂tvt · Bη = Bη · (
v × ωt + ∇ (

σ(v · ∇s)− 1
2v

2 − w
)) + ∇ · (Jχ). (7.44)

Combining (7.36) with (7.44) we arrive at the result,

∂tvt · Bη + vt · ∂tBη

= ∇ · (
(v × Bη)× vt + Jχ

) + Bη · ∇ (
σ(v · ∇s)− 1

2v
2 − w

)
= ∇ · [

(v × Bη)× vt + Bη

(
σ(v · ∇s)− 1

2v
2 − w

) + Jχ
]
, (7.45)

in which we take into account (7.33). Inserting (7.45) into (7.32) and using Gauss’ theorem
we obtain a surface integral,

dHCNBη

dt
=

∮
dS · [

(v × Bη)× vt + Bη

(
σ(v · ∇s)− 1

2v
2 − w

) + Jχ
]
. (7.46)

The surface integral encapsulates the volume for which the η non-barotropic cross-helicity
is calculated. If the surface is taken at infinity the magnetic fields and current densities
vanish and thus

dHCNBη

dt
= 0, (7.47)

which means that HCNBη is a constant of motion. We notice the complexity of the direct
derivation with respect to the elegance and simplicity of the Noether theorem approach.
However, obtaining the same result using different methods strengthens our confidence
that no mathematical error was accidentally introduced.
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8. Possible application

8.1. Bounds and constraints
In his important review paper ‘Physics of magnetically confined plasmas’, Boozer (2004)
states the following. ‘A spiky current profile causes a rapid dissipation of energy relative
to magnetic helicity. If the evolution of a magnetic field is rapid, then it must be at constant
helicity.’ Usually topological conservation laws are used in order to deduce lower bounds
on the ‘energy’ of the flow. Those bounds are only approximate in non-ideal flows but due
to their topological nature simulations show that they are approximately conserved even
when the ‘energy’ is not. For example, it is easy to show that the ‘energy’ is bounded from
below by the non-barotropic cross-helicity as follows (see Yahalom 2019a):

|HCNB| =
∣∣∣∣
∫

B · vt d3x

∣∣∣∣ ≤ 1
2

∫ (
B2 + v2

t

)
d3x, (8.1)

|HCNB| =
∣∣∣∣
∫

B · vt d3x

∣∣∣∣ ≤
√∫

v2
t d3x

√∫
B2 d3x, (8.2)

where the second equation is a result of the Cauchy–Schwartz inequality. In this sense
a configuration with a highly complicated topology is more stable since its energy is
bounded from below. It is a simple thing to show that similar bounds occur also for the χ
and η helicities,

∣∣HCNBχ

∣∣ =
∣∣∣∣
∫

Bχ · vt d3x

∣∣∣∣ ≤ 1
2

∫ (
B2
χ + v2

t

)
d3x, (8.3)

∣∣HCNBχ

∣∣ =
∣∣∣∣
∫

Bχ · vt d3x

∣∣∣∣ ≤
√∫

v2
t d3x

√∫
B2
χ d3x, (8.4)

∣∣HCNBη

∣∣ =
∣∣∣∣
∫

Bη · vt d3x

∣∣∣∣ ≤ 1
2

∫ (
B2
η + v2

t

)
d3x, (8.5)

∣∣HCNBη

∣∣ =
∣∣∣∣
∫

Bη · vt d3x

∣∣∣∣ ≤
√∫

v2
t d3x

√∫
B2
η d3x . (8.6)

Hence the kinetic energy is bounded by three different bounds and so it the ‘total’ energy.
The importance of each of those bounds is dependent on the flow.

8.2. A helical stratified magnetic field

8.2.1. The magnetic field and related labels
Consider a magnetohydrodynamic flow of uniform density ρ. Furthermore, assume that

the flow contains a helical stratified magnetic field,

B =
⎧⎨
⎩2B⊥

(
1 − R

a

)
φ̂ + Bz0ẑ R < a,

0 R > a,
(8.7)

in which R, φ, z are the standard cylindrical coordinates, R̂, φ̂, ẑ are the corresponding unit
vectors and Bz0,B⊥ are constants. The magnetic field is contained in a cylinder of radius

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
0.

85
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2020.856


Noether currents for Eulerian variational principles 908 A4-29

a and is independent of z. Furthermore, we assume that the planes z = 0 and z = L can
be identified such that a topological torus is created. In such a scenario the only field lines
that will be closed will satisfy the relation,

n

m
= B⊥

πRBz0

(
1 − R

a

)
L, n,m integers, (8.8)

while lines not satisfying this relation will be surface filling. Nevertheless the magnetic
field lines lie on cylindrical surfaces, thus one can calculate the total flux through a circular
surface lying on the plane z and bounded by the radius R. The magnetic flux in this case
will simply be

Φ =
∫

B · dS = πR2Bz0. (8.9)

The χ function can now be calculated according to (5.9) to yield the value

χ = 1
2 Bz0R2. (8.10)

Solving (5.14) for η we obtain the following non-unique solution:

η = φ − 2B⊥
Bz0

(
1 − R

a

)
z
R
. (8.11)

Finally we solve (5.8) forμ, here we suggest the following simple and non-unique solution:

μ = ρ

Bz0
z. (8.12)

Thus, μ surfaces are just z planes. Notice that since we have identified the planes
z = 0 and z = L, μ is non-single-valued. The same can be said of η which is doubly
non-single-valued in both the z and φ directions.

8.2.2. The velocity field
A stationary velocity field v must satisfy the stationary versions of (2.1) and (2.3),

∇ × (v × B) = 0, (8.13)

∇ · (ρv) = 0. (8.14)

Such a velocity field can be constructed using the labels μ and χ (see (6.19) of Yahalom
& Lynden-Bell (2008)),

v = k
∇μ× ∇χ

ρ
, (8.15)

where k is a dimensional constant that we will choose such that k = v0/a. Plugging in μ
from (8.12) and χ from (8.10) we arrive at the simple expression,

v = v0
R
a
φ̂. (8.16)
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This expression can be shown to solve (2.1) and (2.3) by direct substitution. The stationary
version of (2.4) is given by

ρ(v · ∇)v = −∇p + (∇ × B)× B
4π

. (8.17)

This can be solved by the pressure function,

p(R) = ρ

[
B2

⊥
π

(
3

R
a

− R2

a2
− ln

(
R
a

)
− 2

)
+ 1

2
v2

0

(
R2

a2
− 1

)]
, p(a) = 0. (8.18a,b)

8.2.3. Cross-helicities
We now can calculate the cross-helicity using (6.13), in which we assume uniform

specific entropy such that vt = v. Inserting (8.16) and (8.7) into (6.13) we arrive at the
expression

|HCNB| = π

3
v0B⊥La2. (8.19)

The ‘generalized’ magnetic fields are calculated using the label scalars as follows:

Bχ = ∇μ× ∇η = ρ

Bz0

[
2zB⊥
Bz0R2

φ̂ − 1
R

R̂
]
, Bη ≡ ∇χ × ∇μ = −ρRφ̂, (8.20a,b)

in which we have used μ given in (8.12), χ given in (8.10) and η given in (8.11). This can
be plugged into the generalized cross-helicities defined in (6.27a,b) to yield the results

∣∣HCNBχ

∣∣ = 2πρv0
B⊥
B2

z0
L2,

∣∣HCNBη

∣∣ = π

2
ρv0La3. (8.21a,b)

Now consider the case that the plasma is initially stationary with the above described
density, velocity and magnetic field. Then the plasma is heated such that the density
and entropy are not uniform anymore, the pressure thus changes and does not satisfy
(8.18a,b). The plasma is moved from stationary equilibrium and dynamical processes
occur (instabilities) in which the velocity and magnetic field are not stationary anymore.
Nevertheless, if the evolution satisfies the ideal MHD equation of motion, the values for the
cross-helicities given in (8.19) and (8.21a,b) are unmodified and all developing processes
and instabilities must satisfy the constraints described in § 8.1.

9. Conclusion

We have derived a Noether current from an Eulerian variational principle on
non-barotropic MHD, this was shown to lead to the conservation of non-barotropic
cross-helicity. The connection of the translation symmetry groups of labels to both
the global non-barotropic cross-helicity conservation law and the conservation law of
circulations of topological velocity along magnetic field lines was elucidated. The latter
were shown to be equivalent to the amount of non-barotropic cross-helicity per unit of
magnetic flux (Yahalom 2017b,c, 2019a).

Webb & Anco (2017) suggested a 19 independent variable variational principle for
non-barotropic MHD. They also determined the Lie symmetry responsible for the
magnetic helicity conservation law and the magnetic cross-helicity conservation law.
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This symmetry was not a fluid relabeling symmetry, but arose from a complex gauge
symmetry of the auxiliary functions they used. In this paper we do not deal with
the magnetic helicity conservation law. However, the current paper’s simple symmetry
leading to the conservation of cross-helicity reflects on the simplicity and elegance of the
current variational approach. The reader is invited to compare the complex transformation
described in (4.12) of Webb & Anco (2017) with the simple transformation of the induced
label translation given in (6.9). Nevertheless, the approach of Webb & Anco (2017) allows
a derivation of the symmetry behind the magnetic helicity conservation law and it is still
an open question if the current simplified formalism is suited for this task.

Much the same can be said of a much older work of Calkin (1963). Calkin suggested
an 11 independent variable variational principle for barotropic MHD. He also determined
the Lie symmetry responsible for the magnetic helicity conservation law and the magnetic
cross-helicity conservation law with respect to his variables. This symmetry was not a
fluid relabeling symmetry, but arose from a complex gauge symmetry of the auxiliary
functions he used. Again we notice that the simple symmetry of the current approach,
leading to the conservation of cross-helicity, reflects on the simplicity and elegance of the
current variational principle. The reader is invited to compare the complex transformation
described in (88)–(91) of Calkin (1963) with the simple transformation of the induced
metage translation given in (6.9).

Furthermore, we have shown that two additional cross-helicity conservation laws exist
the χ and η cross-helicities. Those are the easiest ones to obtain as they involve mere
label translations. However, it is known from the work of Tur & Yanovsky (1993) and
Sagdeev et al. (1986) on comoving invariants in MHD and in ideal fluids, that many more
such constants of topological significance exist. In fact they derived infinite hierarchies of
conservation laws associated with fluid relabeling symmetries. We should mention also
that for non-magnetic flows Anco & Webb (2020) also derived hierarchies of conservation
laws for the ideal, inviscid, compressible and incompressible fluid equations using Lie
dragging techniques.

The new conservation laws lead to new bounds on MHD flows in addition to the
bounds of the standard non-barotropic cross-helicity discussed in Yahalom (2017c) for
ideal non-barotropic MHD. The importance of constants of motion for stability analysis is
also discussed in Katz, Inagaki & Yahalom (1993). The significance of those constraints
for non-ideal MHD and for plasma physics in general remains to be studied in future works.

It is shown that non-barotropic MHD can be derived from a variational principle of
five functions. The formalism is given in a Lagrangian presentation with a geometrical
structure.

Possible applications include stability analysis of stationary MHD configurations and
its possible utilization for developing efficient numerical schemes for integrating the
MHD equations. It may be more efficient to incorporate the developed formalism in
the framework of an existing code instead of developing a new code from scratch.
Possible existing codes are described in Mignone et al. (2010), Igumenshchev, Narayan
& Abramowicz (2003) and Hoyos, Reisenegger & Valdivia (2007). Applications of this
study may be useful to both linear and nonlinear stability analysis of known barotropic
MHD configurations (Bernstein et al. 1958; Almaguer et al. 1988; Katz et al. 1993;
Yahalom, Katz & Inagaki 1994; Vladimirov, Moffatt & Ilin 1996, 1997, 1999; Yahalom
2011). The theory can also be used to study the evolution of waves with respect to a
given MHD configuration, such approach was used by Webb et al. (2005) by introducing
a Lagrangian variational principle in which the waves are described by displacements
from the background MHD configuration. As for designing efficient numerical schemes
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for integrating the equations of fluid dynamics and MHD, one may follow the approach
described in Zhou et al. (2014), Yahalom (2003), Yahalom & Pinhasi (2003), Yahalom
et al. (2005) and Ophir et al. (2012).

Another possible application of the variational method is in deducing new analytic
solutions for the MHD equations. Although the equations are notoriously difficult to solve
being both partial differential equations and nonlinear, possible solutions can be found in
terms of variational variables. An example for this approach is the self-gravitating torus
described in Yahalom (2013b), and also in this work in § 8.2.

One can use continuous symmetries which appear in the variational Lagrangian to
derive new conservation laws through Noether’s theorem. An example for such derivation
which still lacks physical interpretation can be found in Yahalom (2013c). It may be that
the Lagrangian derived in Yahalom (2010) has a larger symmetry group; and of course one
anticipates a different symmetry structure for the non-barotropic case.

Topological invariants have always been informative, and there are such invariants in
MHD flows. For example the two helicities have long been useful in research into the
problem of hydrogen fusion, and in various astrophysical scenarios. In previous works
(Yahalom 1995, 2013a; Yahalom & Lynden-Bell 2008) connections between helicities
with symmetries of the barotropic fluid equations were made. The Noether current here
derived may help us to identify and characterize as yet unknown topological invariants in
MHD.
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