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Abstract

We derive some key extremal features for stationary kth-order Markov chains that can
be used to understand how the process moves between an extreme state and the body
of the process. The chains are studied given that there is an exceedance of a threshold,
as the threshold tends to the upper endpoint of the distribution. Unlike previous studies
with k> 1, we consider processes where standard limit theory describes each extreme
event as a single observation without any information about the transition to and from
the body of the distribution. Our work uses different asymptotic theory which results
in non-degenerate limit laws for such processes. We study the extremal properties of
the initial distribution and the transition probability kernel of the Markov chain under
weak assumptions for broad classes of extremal dependence structures that cover both
asymptotically dependent and asymptotically independent Markov chains. For chains
with k> 1, the transition of the chain away from the exceedance involves novel func-
tions of the k previous states, in comparison to just the single value, when k= 1. This
leads to an increase in the complexity of determining the form of this class of functions,
their properties, and the method of their derivation in applications. We find that it is
possible to derive an affine normalization, dependent on the threshold excess, such that
non-degenerate limiting behaviour of the process, in the neighbourhood of the threshold
excess, is assured for all lags. We find that these normalization functions have an attrac-
tive structure that has parallels to the Yule–Walker equations. Furthermore, the limiting
process is always linear in the innovations. We illustrate the results with the study of
kth-order stationary Markov chains with exponential margins based on widely studied
families of copula dependence structures.
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2 I. PAPASTATHOPOULOS ET AL.

1. Introduction

The extreme value theory of sequences of independent and identically distributed (i.i.d.)
random variables has often been generalized to include the situation where the variables are
no longer independent, as in the monograph of [15], where for stationary processes the focus
is on long-range dependence conditions and local clustering of extremes as measured by the
extremal index. Among the most useful stochastic processes are positive recurrent Markov
chains, with a continuous state space, which provide the backbone of a broad range of sta-
tistical models for stationary time series. Such models have attracted considerable interest in
the analysis of extremes of stochastic processes. These processes meet the required long-range
dependence conditions [19, 27], so it is the local clustering properties of their extreme values
that are of interest. By considering the behaviour of the process when it is extreme, that is,
when it exceeds a high threshold, [27] showed that, under certain circumstances, the times of
extreme events of stationary Markov chains that exceed a high threshold converge to a homo-
geneous Poisson process and that the limiting characteristics of the values within an extreme
event, including the extremal index θ with θ ∈ (0, 1] being the reciprocal of the mean extreme
event duration, can be derived as the threshold converges to the upper endpoint of the marginal
distribution. This limit result only reveals the behaviour of the process whilst it remains at the
same level of marginal extremity as the threshold, and therefore it is only informative about
the temporal structure of extreme events for a subset of processes, i.e. those with θ < 1. This
excludes all processes with θ = 1, where extreme values occur in temporal isolation, with no
apparent clustering of extreme values revealed through this limit theory. Processes with θ = 1
include all Gaussian processes, so they can exhibit strong temporal dependence. The behaviour
of extreme events of these processes is of interest, but cannot be studied through the existing
methods. So we are interested in deriving the detailed characteristics of a positive recurrent
Markov chain within an extremal event, irrespective of whether θ < 1 or θ = 1, to provide
more insights than are currently available.

We focus on real-valued stationary kth-order Markov processes {Xt : t ∈Z}, for k ∈N, with
the marginal distribution function F of Xt and with a copula [12] for the joint distributions of
(Xt−k, . . . , Xt), for all t ∈Z, which is invariant to time, so that the one-step forward transition
probability kernel π is invariant to t, as it is a function of F and this copula. Motivated by the
limitations of the established limit theory for stationary Markov chains, we seek to understand
better the behaviour of such processes within an extreme event under less restrictive condi-
tions, by using a more refined limit theory. Specifically, our analysis aims to characterize the
temporal behaviour of extreme events transitioning between an extreme state and the body of
the distribution irrespective of whether the process has θ < 1 or θ = 1.

The case where k= 1 has been well studied. Under weak conditions, [27, 31] show that
the powerful general Poisson limit gives that the extremal index is either θ < 1 or θ = 1,
respectively, depending on whether χ1 > 0 or χ1 = 0, where

χ1 = lim
u→1

Pr{F(Xt)> u | F(Xt−1)> u},

for all t ∈Z. These two limiting properties are known as asymptotic dependence and asymp-
totic independence of (Xt−1, Xt), respectively, in the literature on bivariate extremes. To derive
greater detail about the behaviour within extreme events for asymptotically dependent Markov
chains, the appropriate strategy is to study tail chains [11]. A tail chain arises as a limiting
process after witnessing an extreme state, under rescaling of the future Markov chain by the
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Extremes of stationary higher-order Markov chains 3

value of the process in the extreme state, resulting in the tail chain being driven by a random
walk. Tail chains fail to reveal the detailed structure of extreme events for any asymptoti-
cally independent process. For k= 1, [20] take a different approach, using a new limiting
theory involving hidden tail chains, defined below by the limit (2), which treat both asymp-
totically dependent and asymptotically independent chains in a unified theory. They establish
the extremal event properties that we require more generally for when k> 1. So the focus of
our paper is similar to that of [20], but with the added difficulty that the complexity of extreme
events substantially increases with k.

Markov processes with order k> 1 extend the traditional concept of first-order Markov
processes by incorporating information from the k ∈N most recent states into the transition
behaviour of the next state. The fundamental importance of these higher-order Markov pro-
cesses lies in their ability to capture and model dependencies in time-series data in real-world
scenarios, which first-order Markov processes would fail to do. Specifically, the first-order
process can account only for the current level of the process and not whether at that time the
process has just moved up or down; k= 2 is required in such a scenario, with larger k needed as
more subtle memory of the past is important to determine the future behaviour. To the best of
our knowledge, key characteristics of the extremal behaviour of higher-order Markov chains
have not been dealt with in depth, yet these are crucial for understanding the evolution of
extreme events of random processes and for providing well-founded parametric models that
can be used for inference, prediction, and assessment of risk, e.g. [36, 37].

Modelling stationary kth-order Markov processes requires the modelling of (k+ 1)-
dimensional multivariate distributions of (Xt−k, . . . , Xt) to describe the transition distribu-
tions π of Xt | (Xt−1, . . . , Xt−k), so the extremal properties of these processes cannot be
characterized as simply as by the measure χ1. In fact, it is known from multivariate extreme-
value theory that the challenge grows exponentially with k [3, 30]. [11, 26] work on tail chains
when k> 1, but restrict themselves to processes which, in addition to other conditions, require
that χj > 0 for all j= 1, . . . , k, where

χj = lim
u→1

P(F(Xt)> u | F(Xt−j)> u),

for all t ∈Z (which is termed full pairwise asymptotic dependence across all variables in the
transition), and restrict the Markov chain from moving from an extreme state to the body of
the process in a single step. Even in these restrictive cases few results exist, e.g. [11, 23, 39];
however, we provide some extensions of these. We also derive the extensive extremal properties
for full pairwise asymptotically independent processes, i.e. with χj = 0 for j= 1, . . . , k− 1.
Finally, we determine the behaviour for extreme events for a class of processes which allow
a subset of the k> 1 consecutive states to be in the body of the process while the rest are
in an extreme state. This class of process falls between previous investigations and our core
developments here.

To work with hidden tail chains, we study the effect of different dependence structures for
stationary Markov chains with marginal distributions with exponential tails, for which [20]
show that more general results can be achieved when k= 1 when using affine normalizations
than when the marginals have regularly varying tails, which is the assumption typically used in
studying tail chains. There is no loss of generality in making such a transform, as through the
probability integral transform we can transform from any marginal distribution to any other,
e.g. from regularly varying tails to being in the Gumbel max-domain of attraction.
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4 I. PAPASTATHOPOULOS ET AL.

Without loss of generality, we assume that sup{x : F(x)< 1} =∞. For k> 1, we assume
that there exist k− 1 norming functions at : R→R and bt : R→R+, for t= 1, . . . , k− 1,
such that {

Xt − at(X0)

bt(X0)
: t= 1, . . . , k− 1

} ∣∣∣∣ {X0 > u} d−→{Zt : t= 1, . . . , k− 1} (1)

as u→∞, where
d−→ denotes convergence in distribution and (Z1, . . . , Zk−1) is a random

vector that is non-degenerate in each component. Then our aim is to find conditions that guar-
antee the existence of an infinite sequence of additional functions at : R→R and bt : R→R+
for t= k, k+ 1, . . ., such that{

Xt − at(X0)

bt(X0)
: t= 1, 2, . . .

} ∣∣∣∣ {X0 > u} d−→{Zt : t= 1, 2, . . .}, (2)

where each Zt is non-degenerate, with the limit process {Zt : t= 1, 2, . . .} termed the hidden
tail chain. The hidden tail chain generalizes the tail chain studied by [11], as with our marginal
choice, the tail chains require norming functions to be at(x)= x and bt(x)= 1 for all t, and any
Zt can be degenerate at {−∞}. In cases where we find that at(x)/x→ αt < 1 as x→∞ for all
t= 1, 2, . . . , k− 1 (that is, as [9] show, the process has asymptotic pairwise independence for
all lags up to k− 1), the tail chain degenerates as {−∞,−∞, . . .} but the hidden tail chain is
non-degenerate and stochastic for all components. Furthermore, we find that if the process is
asymptotically dependent for all lags t= 1, . . . , k− 1, i.e. at(x)∼ x and bt(x)∼ 1 as x→∞
for all t= 1, 2, . . . , k− 1, then the hidden tail chain is identical to the tail chain. So the hidden
tail chain reveals important structure of the extreme events lost by the tail chain when the tail
chain becomes degenerate, but it equals the tail chain otherwise. Thus hidden tail chains have
wider use than tail chains.

Our primary targets are, under weak conditions, to find how the first k− 1 norming func-
tions at( · ) and bt( · ) in the limit (1) control those in the limit (2), where t≥ k, and to identify
the transition dynamics of the hidden tail chain along its index and across its state space.
For the former, to find the behaviour of the t≥ k norming functions requires a step-change in
approach relative to the case when k= 1, studied by [20]. In particular, the transitions involve
novel functions, a and b, of the k previous values, in comparison to just the single value when
k= 1. This instantly makes the problem more challenging, as not only do the transition func-
tions have more arguments, but there can be interaction effects from these arguments. Here
we develop results for determining the form of this class of functions and present a method of
deriving them in applications. We find some parallels between the extremal properties of the
norming functions and the Yule–Walker equations, used in standard time-series analysis [35,
38]. We also make the surprising finding that we can always express the hidden tail chain in
the form of a non-stationary scaled autoregressive process. Specifically,

Zt =ψa
t (Zt−k : t−1)+ψb

t (Zt−k : t−1) εt for all t> k, (3)

where Zt−k : t−1 = (Zt−k, . . . , Zt−1), ψa
t : Rk→R, ψb

t : Rk→R+ are continuous update func-
tions which fall in a particular class of functions, and {εt : t= 1, 2, . . .} is a sequence of
non-degenerate i.i.d. innovations.

Using the values of at, bt and the properties of Zt, as t→∞, we are able to investigate how
the Markov chain returns to a non-extreme state following the occurrence of an extreme state.
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Extremes of stationary higher-order Markov chains 5

We focus almost exclusively on forward-in-time hidden tail chains, as in the limit (1), but we
also briefly discuss back-and-forth hidden tail chains, expanding on the equivalent feature for
tail chains that [11] study. The limit theory developed in this paper is the first that considers
asymptotic independence when studying extreme values of any structured process other than a
first-order Markov processes. The extension to stationary kth-order Markov processes opens up
the possibility of developing similar theory for much broader classes of graphical models. The
study of multivariate extreme values on graphical structures has been a rich vein of research
recently, with several influential papers, such as [1, 5, 6, 29]. However, all of these papers focus
on the case in which all underlying distributions of cliques on the graph are asymptotically
dependent. We believe that the results in this paper will help to unlock these approaches to
enable the case when some, or all, cliques have asymptotic independence.

Organization of the paper. In Section 2, we state our main theoretical results for higher-order
Markov chains with affine update functions under rather broad assumptions. In particular, in
that section we relax the requirement for the Markov chain to be stationary, instead assuming
only that it is homogeneous. This allows us to show that the new developments here apply
more generally. However, from Section 3 onwards we restrict attention to stationary processes,
as they allow for the derivation of a much a more refined characterization of extreme events and
enable comparisons with past literature. Specifically, in Section 3 we study hidden tail chains of
full pairwise asymptotically dependent and full pairwise asymptotically independent station-
ary Markov chains with standardized marginal distributions. Based on the theory established in
Sections 2 and 3 we study a number of special cases and obtain either simpler or closed-form
solutions in Sections 4 and 5. Specifically, in Section 4 we characterize closed-form solutions
for the norming functions for a class of asymptotically independent Markov chains, with the
structure of these functions paralleling that of the autocovariance in Yule–Walker equations.
In Section 5, we provide examples of Markov chains constructed from widely studied classes
of joint distributions, such as Gaussian, max-stable, and inverted max-stable copulas, and pro-
vide a detailed analysis for particular parametric sub-families of these classes. All proofs are
postponed to Appendix A.

Some notation. We use the following notation linked to vector and multivariate function
operations. Vectors are typeset in bold and vector algebra is interpreted as componentwise
throughout the paper. For example, when x= (x1, . . . , xk) and x′ = (x′1, . . . , x′k) are two vec-
tors of the same size, x/x′ = (x1/x′1, . . . , xk/x′k). We also use dx0 : t as shorthand for dx0 ×
· · · × dxt. The notation x	y is reserved for the scalar product of two vectors x, y ∈Rk, that is,
x	y=∑k

i=1 xi yi. For a sequence of measurable functions {gt}t∈N and real numbers {xt}t∈N, the
notation gt−k : t−1(x) and xt−k : t−1, for t, k, t− k ∈N, is used to denote (gt−k(x), . . . , gt−1(x))
and (xt−k, . . . , xt−1), respectively. By convention, univariable functions on vectors are applied
componentwise; e.g. if f : R→R, x ∈Rk, then f (x)= (f (x1), . . . , f (xk)). The symbols 0p and
1p, where p ∈N, are used to denote the vectors (0, . . . , 0) ∈Rp and (1, . . . , 1) ∈Rp. We use
the notation ‖x‖ for the L1 norm of a k-dimensional vector x. For a Cartesian coordinate sys-
tem R

k with coordinates x1, . . . , xk, ∇ is defined by the partial derivative operators as ∇ =∑k
i=1 (∂/∂xi)ei for an orthonormal basis {e1, . . . , ek}. The gradient vector of a differentiable

function f : Rk→R at x is denoted by ∇f (x)= ((∇f )1(x), . . . , (∇f )k(x)).
We use the following notation for sets and special functions. The closure of a set A is

denoted by A. The (k− 1)-dimensional unit simplex {ω ∈ [0,∞)k : ‖ω‖= 1}, k ∈N, is denoted
by 	k−1. Given cones K⊆R

k+ and K′ ⊆R
k+, a function f : K→K′ is called homogeneous of
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6 I. PAPASTATHOPOULOS ET AL.

degree ρ ∈R if f (λx)= λρ f (x) for all x ∈K and λ> 0. Given cones K⊆R
k+ and K′ ⊆R

k+, a
map f : X →X ′ with X ⊆R

k+ and X ′ ⊆R
k+ is said to be order-preserving if y− x ∈K implies

f (y)− f (x) ∈K′. An identity map, denoted by id : X →X , takes every element in a set X and
maps it back to itself.

Notation linked to convergence is defined as follows. For a topological space E we denote
its Borel-σ -algebra by B(E) and the set of bounded continuous functions on E by Cb(E).
If fn, f are real-valued functions on E, we say that fn converges uniformly on compact sets
to f if for any compact C⊂ E the convergence limn→∞ supx∈C|fn(x)− f (x)| = 0 holds true.
Moreover, fn is said to converge uniformly on compact sets to infinity if infx∈C fn(x)→∞
for compact sets C⊂ E as n→∞. Weak convergence of measures on E is abbreviated by

w−→ . For random elements X, X1, X2, . . . defined on the same probability space, we say {Xn}
converges in distribution to X, and we write Xn

d−→ X, if the distributions Pn of the Xn converge
weakly to the distribution P of X, that is, if Pn

w−→ P.

2. Theory for hidden tail chains of homogeneous Markov chains

2.1. Overview

In this section we present results for {Xt : t ∈Z} being a homogeneous Markov chain, with
an extreme value at X0. That is, we assume that we have the distribution function F0 for
X0, for k> 1 with an initial conditional joint distribution function F1:k−1|0(x1 : k−1 | x0)=
Pr (X1 : k−1 ≤ x1 : k−1 | X0 = x0), for x1 : k−1 ∈Rk−1, and we have time-invariant forward and
backward one-step transition probability kernels π and π− given by

π (xt−k : t−1, xt) := P
(
Xt ≤ xt | Xt−k : t−1 = xt−k : t−1

)
and

π−
(
x−(t−k) :−(t−1), x−t

)
:= P

(
X−t ≤ x−t |X−(t−k) :−(t−1) = x−(t−k) :−(t−1)

)
(4)

for t≥ k and t≥ 1, respectively. So in Section 2 we do not impose structure on the marginal
distribution of Xt for t �= 0, or derive how the results relate to the joint distributions of Xt−k :t
for any t; that is considered in Section 3, where stationarity assumptions are made.

Under weak assumptions, in Section 2 we show how the functions at(x), bt(x) for t=
1, . . . , k− 1 and the update functions of (1) and (3), respectively, are connected to transition
functionals a and b and the hidden tail chain. From the chosen initial conditional distribution
F1:k−1|0, we can derive the norming functions at(x) and bt(x) for t= 1, . . . , k− 1. We consider
three different scenarios for their asymptotic behaviour. Specifically, in Section 2.3, we have
at(x)/bt(x)→∞ as x→∞. In Section 2.4 we cover the case where at(x)= 0 for all x> 0
and bt(x)→∞ as x→∞, but implicitly that section also covers the case at(x)=O(bt(x)) as
x→∞, where in that case the associated at(x)/bt(x) term in (2) may tend to a constant. In
Section 2.5 we consider the cases where both at(x) and bt(x) are invariant to x. Sections 2.3–
2.5 focus on forward hidden tail chains, whereas in Section 2.6 we look at the joint behaviour
of backward and forward hidden tail chains; we therefore drop the term forward in describing
π until then.

2.2. Marginal standardization

To facilitate the generality of our theoretical developments, our assumptions about the
margins of the process throughout Section 2 only concern the tail behaviour of the random
variable at which we condition the Markov process to exceed a level. This assumption is in the
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style of theoretical approaches in conditional extreme value theory [8] and is made precise by
Assumption A0.

Assumption 1. The distribution F0 has upper endpoint ∞, and there exist a non-degenerate
probability distribution H0 on [0,∞) and a measurable norming function σ (v)> 0 such that

F0(v+ σ (v)dx)

F0(v)

w−→H0(dx) as v→∞.

From [24], the limit distribution H0 can be identified by a generalized Pareto distribu-
tion with a non-negative shape parameter, i.e. H0(x)= 1− (1+ ξx)−1/ξ , for x> 0 and ξ ≥ 0.
This covers the Pareto distribution, with power-law decay, when ξ > 0, and the exponential
distribution when ξ = 0, taken as the limit as ξ→ 0.

2.3. Transitional behaviour for chains with location and scale norming

In this section we consider homogeneous Markov chains where the initial conditional dis-
tribution F1 : k−1 | 0 is such that in the limit (1) we have functions at(x)/bt(x)→∞ as x→∞
for all t= 1, . . . , k− 1 when k> 1. Specifically, Assumption A1 ensures that, given that an
extreme event {X0 = v} occurs at time t= 0, there exist normalizing functions at(x) and bt(x)
for t= 1, . . . , k− 1 such that if the arguments of F1 : k−1 | 0 are affine-transformed using these
functions, then a non-degenerate limiting initial conditional distribution G is obtained for
F1 : k−1 | 0, in the limit as v→∞. This provides the first k− 1 renormalized states of the
Markov process after X0.

Assumption 2. (Behaviour of initial states in the presence of an extreme event). If k> 1, the
initial conditional joint distribution function F1 : k−1 | 0 is such that there exist the following:

(i) for t= 1, . . . , k− 1, measurable functions at : R→R and bt : R→R+, satisfying
at(v)+ bt(v) x→∞ as v→∞, for all fixed x ∈R;

(ii) a distribution G supported on R
k−1 that has non-degenerate margins such that

P

(
X1 : k−1 − a1 : k−1(v)

b1 : k−1(v)
∈ dz1 : k−1

∣∣∣ X0 = v

)
w−→G(dz1 : k−1) as v→∞.

Note that such conditions are not required by [20] when k= 1. Assumption 2 implies that
at(v)→∞ and bt(v)= o(at(v)) as v→∞, since if bt(v) grew as fast as, or faster than, at(t),
then for a suitably selected x ∈R, with x negative, we would have that at(v)+ bt(v)x→−∞
as v→∞.

Remark 1. When saying that a distribution is supported on a subset A of R
k, we do not

allow the distribution to place mass at the boundary ∂A of A. This is an important distinc-
tion which restricts the class of possible initial conditional distribution functions F1 : k−1 | 0 that
the homogeneous Markov chain can possess. See Example 4 in Section 5.3 for a stationary
Markov chain which has limit G with mass on the boundary, and hence breaks the conditions
of Assumption 2.

After we have initialized the states X0, . . . , Xk−1, a complete characterization of the
advancing sequence of states for t≥ k is given by the one-step transition probability ker-
nel π (xt−k : t−1, xt). To motivate our next assumption about the behaviour of the transition
probability kernel of the process, consider how a complete characterization may be given for
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8 I. PAPASTATHOPOULOS ET AL.

higher-order Markov processes with k> 1 using induction on N. Fix a t≥ k> 1 and assume
that there exist sequences of norming functions ai and bi, i= 1, . . . , t− 1, such that

X1 : t−1 − a1 : t−1(X0)

b1 : t−1(X0)

∣∣∣ {X0 > u} d−→ Z1 : t−1 as u→∞,

where each Zi is a random variable with a non-degenerate distribution on R. Therefore, what
is required is to assert that, under the induction hypothesis, we can find at and bt such that for
a1 : t = (a1 : t−1, at) and b1 : t = (b1 : t−1, bt), we have that {X1 : t − a1 : t(X0)}/b1 : t(X0) | {X0 >

u} d−→ Z1 : t, as u→∞, where Zt is a random variable with a non-degenerate distribution sup-
ported on R. To motivate our assumptions that guarantee this latter convergence, it suffices to
consider marginal convergence, that is, the case where the distribution of {Xt − at(X0)}/bt(X0) |
{X0 > u} converges weakly under the induction hypothesis. Standard calculations give that

P

(
Xt − at(X0)

bt(X0)
≤ xt

∣∣∣ X0 > u

)
(5)

=
∞∫

u

∫
Rt−1

P (X0 : t−1 ∈ dx0 : t−1)

F0(u)

[ xt∫
−∞

P

(
Xt − at(X0)

bt(X0)
∈ dzt

∣∣∣ X0 : t−1 = x0 : t−1

)]

for t≥ k. This expression can be simplified by exploiting the Markov chain properties of {Xt}
and by rearranging the expression to clarify the connections with transitions from the initial
k− 1 states after an extreme event by a change of the variables being integrated. First, replace
at(X0) by at(x0) in the innermost integral, by virtue of the conditioning on the exact value of
X0 being equal to x0. Second, use the Markov property so that the conditioning on all previous
states is reduced to conditioning on the previous k states. Third, change variables to z0 = {x0 −
u}/σ (u) and zi = {xi − ai(x0)}/bi(x0), for i= 1, . . . , t− 1. This sequence of operations shows
that (5) equals

∞∫
0

F0{vu(dz0)}
F0(u)

×
[ ∫
Rt−1

P

(
X1 : t−1 − a1 : t−1(vu(z0))

b1 : t−1(vu(z0))
∈ dz1 : t−1

∣∣∣ X0 = vu(z0)

)
(6)

×
{ xt∫
−∞

P

(
Xt − at(vu(z0))

bt(vu(z0))
∈ dzt

∣∣∣ Xt−k : t−1 − at−k : t−1(vu(z0))

bt−k : t−1(vu(z0))
= zt−k : t−1

)}]

for t≥ k, where a0(x)= x, b0(x)= 1 for all x ∈R, and vu(z0)= u+ σ (u) z0. Hence, conver-
gence of the innermost integral in the curly parentheses in (6) is necessary for marginal
convergence of the probability (5) as v→∞. To further simplify this integral, for z ∈Rk−1, let

At(v, z)= at−k : t−1(v)+ bt−k : t−1(v) z. (7)
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Then, observe that for functions a : Rk→R and b : Rk→R+, which for the present are
arbitrary functions but are made precise in Proposition 1, the innermost integral can be
written as

xt∫
−∞

P

(
Xt − a

(
Xt−k : t−1

)
b
(
Xt−k : t−1

) ∈

dzt

ψb
t,u

(
Xt−k : t−1

) −ψa
t,u

(
Xt−k : t−1

) ∣∣∣ Xt−k : t−1 =At(vu(z0), zt−k : t−1)

)

=
xt∫

−∞
π

(
At(vu(z0), zt−k : t−1),

a
(
Xt−k : t−1

)+ b
(
Xt−k : t−1

)( dzt

ψb
t,u

(
Xt−k : t−1

) −ψa
t,u

(
Xt−k : t−1

)))
,

where ψa
t,u and ψb

t,u are given in the expression (8) and depend on the functions a, b and
the normings at, bt, t≥ k. Writing the integral in this way provides the connection between
the convergence of the transition probability kernel π , defined in the expression (4), and the
required marginal convergence.

These observations motivate our next assumption, which serves as an extension to higher
order (k> 1) of the conditions established by [20] in the context of first-order Markov chains.
Specifically, to establish the convergence of this rearranged integral, the oscillation of the func-
tions a and b in a neighbourhood of infinity needs to be controlled, i.e. a and b need to be
chosen so that the functions ψa

t,u and ψb
t,u converge locally uniformly to real-valued limits (ψa

t

and ψb
t , respectively), as u→∞. These conditions are made precise by Assumption 3.

Assumption 3. (Behaviour of the next state of the process as the previous states become
extreme.) Let k≥ 1, a0(x)= x, and b0(x)= 1. If k> 1, suppose that for X1 : k−1, Assumption 2
holds with norming functions a1 : k−1 and b1 : k−1. Then assume that π is such that there exist
the following:

(i) for t= k, k+ 1, . . ., measurable functions at : R→R and bt : R→R+, continuous
update functions ψa

t : Rk→R, ψb
t : Rk→R+, and measurable functions a : Rk→R,

b : Rk→R+, such that for all z ∈Rk

ψa
t,v(zv) := a(At(v, zv))− at(v)

bt(v)
→ψa

t (z) and ψb
t,v(zv) := b(At(v, zv))

bt(v)
→ψb

t (z)

(8)
whenever zv→ z as v→∞, where At(v, z) is defined by (7);

(ii) a non-degenerate distribution KA supported on R, such that for all z ∈Rk and for any
f ∈Cb(R)∫
R

f (x)π [At(v, zv), a(At(v, zv))+ b(At(v, zv)) dx]→
∫
R

f (x)KA(dx), t= k, k+ 1, . . . ,

(9)
whenever zv→ z as v→∞.
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We are now able to characterize the hidden tail chain for this type of homogeneous Markov
chain. Specifically, we combine assumptions about the marginal tail behaviour of X0 (through
H0), the conditional limiting behaviour of the initial state vector given that X0 is extreme
(described by G), and the constraints on the chain’s transitional behaviour, represented by
the functions a and b, through π . This is asserted by Theorem 1.

Theorem 1. Let {Xt : t ∈Z} be a homogeneous kth-order Markov chain satisfying Assumptions
1, 2, and 3. Then as v→∞(

X0 − v

σ (v)
,

X1 − a1(X0)

b1(X0)
, · · · , Xt − at(X0)

bt(X0)

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (10)

where

(i) E0 ∼H0 and the vector (Z1, Z2, . . . , Zt) are independent, for all t≥ 1,

(ii) Z0 = 0 almost surely (a.s.), (Z1, . . . , Zk−1)∼G, and

Zt =ψa
t (Zt−k : t−1)+ψb

t (Zt−k :t−1) εt, t= k, k+ 1, . . . , (11)

for a sequence of i.i.d. random variables εk, εk+1, . . . with non-degenerate marginal
distribution function KA, defined by the limit (9).

Theorem 1 provides a highly structured limiting hidden tail chain, with the first value
distributed as a generalized Pareto variable, with non-negative shape parameter, which is
independent of the rest of the hidden tail; an initial conditional distribution given by G; and
subsequently a kth-order autoregressive behaviour. In Theorem 1, we do not attempt to clar-
ify what properties ψa

t and ψb
t possess, or to give how the transition functionals a and b are

derived. Additional assumptions in later sections provide these details. However, under the cur-
rent assumptions, Proposition 1 makes a connection between the required at and bt functions
for t≥ k with these functions for 1≤ t≤ k− 1.

Proposition 1. Let a : Rk→R and b : Rk→R+ be measurable maps. Let t≥ k and z ∈Rk.
The following statements are equivalent:

(i) There exist measurable functions at : R→R, bt : R→R+ and continuous functions
ψa

t : Rk→R and ψb
t : Rk→R+ such that the convergence (8) holds.

(ii) There exist continuous functions λa
t : Rk→R and λb

t : Rk→R+ such that for all
z ∈Rk

a(At(v, zv))− a(At(v, 0k))

b(At(v, 0k))
→ λa

t (z) and
b(At(v, zv))

b(At(v, 0k))
→ λb

t (z)

whenever zv→ z as v→∞, where a and b are as defined in Assumption 3 and At(v, z)
is as defined by (7).

2.4. Transitional behaviour for nonnegative chains with only scale norming

Consider nonnegative homogeneous Markov chains, i.e. with Ft(0)= 0 for all t ∈Z, where
the initial conditional distribution F1 : k−1 | 0 is such that in the limit (1) we have functions such
that there is no need for norming of the location, i.e. we can take at(X0)= 0, and yet we need
a scaling as bt(x)→∞ for t= 1, . . . , k− 1, when k> 1. As in [20], we require extra care
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relative to Section 2.3 since the convergences in Assumption 3(i) will be satisfied for all x ∈
(0,∞), but not all x ∈ [0,∞). Hence, we have to control the mass of the limiting renormalized
initial conditional distribution and the limiting renormalized transition probability kernel of
the Markov process. The strategy in this case is otherwise similar to that of Section 2.3, so we
give only the statements of the key equivalent results.

Assumption 4. (Behaviour of initial states in the presence of an extreme event.) If k> 1,
the initial conditional joint distribution function F1 : k−1 | 0 is such that there exist measur-
able functions bt : R+→R+ for t= 1, . . . , k− 1 such that bt(v)→∞ as v→∞, and a
non-degenerate distribution function G on [0,∞)k, with no mass at any of the half-planes
Cj = {(z1, . . . , zk−1) ∈ [0,∞)k−1:zj = 0}, i.e. G({Cj})= 0 for j= 1, . . . , k− 1, such that

P

(
X1 : k−1

b1 : k−1(v)
∈ dz1 : k−1

∣∣∣ X0 = v

)
w−→G(dz1 : k−1) as v→∞.

Assumption 5. (Behaviour of the next state of the process as the previous states become
extreme.) Let k≥ 1 and b0(x)= x, and when k> 1, additionally suppose that for X1 : k−1,
Assumption 4 holds with norming functions b1 : k−1. Then assume that π is such that there
exist the following:

(i) for t= k, k+ 1, . . ., measurable functions bt : R+→R+, continuous update functions
ψb

t : Rk+→R+, and a measurable function b : Rk+→R+ such that for all δ1, . . . , δk >

0 and z ∈ [δ1,∞)× . . .× [δk,∞),

lim
v→∞

b(Bt(v, zv))

bt(v)
=ψb

t (z)> 0, (12)

whenever zv→ z as v→∞ and sup{‖z‖∞ : z ∈ Ac}→ 0 as c ↓ 0, where Bt(v, z) :=
bt−k : t−1(v) z and Ac =

{
z ∈ (0,∞)k :ψb

t (z)≤ c
}
, with the convention that sup (∅)= 0;

(ii) a non-degenerate distribution KB supported on [0,∞) with no mass at {0}, that is,
KB{0} = 0, such that, for any f ∈Cb(R+),∫

R+
f (x) π [Bt(v, zv), b(Bt(v, zv)) dx]→

∫
R+

f (x) KB(dx), t= k, k+ 1, . . ., (13)

whenever zv→ z as v→∞.

Theorem 2. Let {Xt : t ∈Z} be a homogeneous Markov chain satisfying Assumptions 1, 4, and
5. Then as v→∞(

X0 − v

σ (v)
,

X1

b1(X0)
, · · · , Xt

bt(X0)

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (14)

where

(i) E0 ∼H0 and the vector (Z1, Z2 . . . , Zt) are independent for any t≥ 1,

(ii) Z0 = 1 a.s., (Z1, . . . , Zk−1)∼G, and

Zt =ψb
t (Zt−k :t−1) εt, t= k, k+ 1, . . . , (15)

for a sequence of i.i.d. random variables εk, εk+1, . . . with non-degenerate marginal
distribution function KB defined by the limit (13).
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12 I. PAPASTATHOPOULOS ET AL.

Remark 2. Theorem 2 appears simply to be the kth-order extension of Theorem 3.1 in [14],
but it differs: H0 includes both Pareto and exponential tails, so it is in a more general class than
the Pareto family considered by [14].

2.5. Transitional behaviour for near extremally independent chains

In this section, we consider homogeneous Markov chains where the initial conditional dis-
tribution F1 : k−1 | 0 is such that there no norming of the location and no norming of the scale
are needed for the limit (1) to hold. This case resembles the formulation of Theorem 1, but has
at(v)= 0 and bt(v)= 1 for all t≥ 1. The next assumption ensures that after an extreme event at
time t= 0, a non-degenerate distribution, given by {X0 = v}, is obtained in the limit as v→∞
for the first k states of the Markov process, without any renormalization.

Assumption 6. (Behaviour of next states in the presence of an extreme event.) If k> 1, the
initial conditional joint distribution function F1 : k−1 | 0 is such that there exists a distribution
G supported on R

k that has non-degenerate margins such that

P (X1 : k ∈ dz1 : k | X0 = v)
w−→G(dz1 : k) as v→∞.

[9] showed that Assumption 6 holds for the Morgenstern copula, with exponential
marginals, for k≥ 1. A related assumption also appears [18] for the case k= 1 with (X0, X1)
being nonnegative random variables. Here, we note that if X0 : k has the independence copula,
then G(z1 : k)=∏k

j=1 Fj(zj), whereas cases with Gj(z)≥ Fj(z) (Gj(z)≤ Fj(z)) for all z ∈R, with
Gj being the jth marginal distribution of G, correspond to positive (negative) near extremal
independence at lag j in the hidden tail chain.

Assumptions 1 and 6 are sufficient to establish the weak convergence of the conditioned
Markov chain to a hidden tail chain in Theorem 3 below. The proof of this theorem follows
along the lines of the proof of Theorem 1 and is omitted for brevity.

Theorem 3. Let {Xt : t ∈Z} be a homogeneous kth-order Markov chain satisfying Assumptions
1 and 6. Then as v→∞(

X0 − v

σ (v)
, X1, . . . , Xt

) ∣∣∣ {X0 > v} d−→ (E0, Z1, . . . , Zt), (16)

where

(i) E0 ∼H0 and the vector (Z1, Z2 . . . , Zt) are independent for any t≥ 1,

(ii) (Z1, . . . , Zk)∼G and

Zt = π−1(Zt−k : t−1,Ut), t= k+ 1, k+ 2, . . . ,

where {Ut} is a sequence of i.i.d. uniform(0,1) random variables for t≥ k+ 1, π is the
one-step transition probability kernel for the original Markov chain, and π−1 : Rk ×
(0, 1)→R with π−1(z, u) := inf{x ∈R : π (z, x)> u}.

We note that if X0 : k has the independence copula, then π−1(z, u) is independent of z.

2.6. Back-and-forth hidden tail chains

In the discussion above, formally the entities we have referred to as tail chains and hidden
tail chains are in fact forward tail and hidden tail chains [cf. 14]. These describe the behaviour
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of the Markov chain only forward in time from a large observation. There is also the parallel
interest in backward tail and hidden tail chains, to give how the chain evolves into an extreme
event, and the joint behaviour of the two, known as back-and-forth tail processes.

Here we focus on an extension of the back-and-forth tail chains developed by [11]. The
properties of the backward hidden tail chain are similar in structure to those of the forward
hidden tail chain identified in Sections 2.3–2.4. To save repetition, here we outline the back-
and-forth hidden tail chains for the assumptions in Section 2.3 only. For this purpose, it suffices
to consider a straightforward extension of Assumption 3 which allows us to characterize the
backward behaviour of the chain from an extreme event by requiring a functional normalization
for the backward chain X−s |X−(s−1) :−(s−k), s ∈N. Clearly, if the chain is time-reversible, then
Assumption 3 holds backwards with the same functional normalizations a and b and the same
limit distribution KA. In general, however, there is no mathematical connection between these
forward and backward quantities; Assumption 7 below considers this more general case.

Assumption 7. (Behaviour of the backward state of the process.) Let k≥ 1, a0(x)= x, and
b0(x)= 1. If k> 1, suppose that for X1 : k−1, Assumption 2 holds with norming functions a1 : k−1
and b1 : k−1. Then assume that π− is such that there exist the following:

(i) for s= 1, 2, . . ., measurable functions a−s : R→R and b−s : R→R+, continuous update
functions ψa−−s : Rk→R, ψb−−s : Rk→R+, and measurable functions a− : Rk→R, b− : Rk→
R+ such that, for all z ∈Rk,

a−(A−s(v, zv))− a−s(v)

b−s(v)
→ψa−−s (z) and

b−(A−s(v, zv))

b−s(v)
→ψb−−s (z), (17)

whenever zv→ z as v→∞, where A−s(v, z) := a−s+1 :−s+k(v)+ b−s+1 :−s+k(v) z;

(ii) a non-degenerate distribution K−A supported on R, such that for all z ∈Rk and for any
f ∈Cb(R),∫

R

f (x)π−[A−s(v, zv), a−(A−s(v, zv))+ b−(A−s(v, zv)) dx]→
∫
R

f (x)K−A (dx), (18)

s= 1, 2, . . ., whenever zv→ z as v→∞.

The back-and-forth hidden tail chain is presented in Theorem 4. For the sake of brevity, we
do not include its proof, as this is identical to the proof of Theorem 1.

Theorem 4. Let {Xt : t ∈Z} be a homogeneous kth-order Markov chain satisfying Assumptions
1, 2, 3, and 7. Then as v→∞(

X−s :−1 − a−s :−1(X0)

b−s :−1(X0)
,

X0 − v

σ (v)
,

X1 : t − a1 : t(X0)

b1 : t(X0)

) ∣∣∣ {X0 > v}

d−→ (Z−s :−1, E0, Z1 : t), t, s ∈N,
where

(i) E0 ∼H0 is independent of the vector (Z−s :−1, Z1 : t) for each s, t≥ 1,

(ii) Z0 = 0 a.s., Z1 : k−1 ∼G,

Zt =ψa
t (Zt−k : t−1)+ψb

t (Zt−k :t−1) εt, t= k, k+ 1, . . . ,
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and
Z−s =ψa−−s (Z−s+1 :−s+k)+ψb−−s (Z−s+1 :−s+k) ε−s, s= 1, 2, . . . ,

for independent sequences of i.i.d. random variables {ε−s}∞s=1 and {εt}∞t=k, where ε−s ∼
K−A and εt ∼KA, and K−A and KA are defined by the limits (18) and (9), respectively.

In general there is a relationship between the forward and backward hidden tail chains.
When k= 1 they are independent, but when k> 1 and t+ s> k, Zt is conditionally independent
of Z−s given (Z−s+1 :−1, Z1 : t−1). Hence, given any consecutive block of terms in the back-
and forth hidden tail chain of size k, the values before and after this block are independent.
We remark that the precise dependence conditions between the forward and backward hidden
tail chains have been given for the case where only aj(x)= x and bj(x)= 1 for all j �= 0 by
[11]. Subsequently, we focus on the forward hidden tail chain and do not address the inter-
connections between the different aj(x) and bj(x) for positive and negative j.

Remark 3. When k= 1, by Proposition 1 we can choose, without loss of generality, a(v)=
a1(v) and b(v)= b1(v) so that ψa

1 (0)= {a(v)− a1(v)}/b1(v)= 0 and ψb
1 (0)= b(v)/b1(v)= 1.

Consequently, (11) implies that Z1 = ε1 and thus, the special case of k= 1 in Theorem 1 corre-
sponds to the results of [20]. The methods of identifying the functions a and b more generally
are discussed in Sections 3 and 5.

3. Dependence and recurrence equations under stationarity

3.1. Stationarity and parametric conditional extremes models

For homogeneous Markov chains, the theory presented in Section 2 generalizes to kth-order
homogeneous Markov chains (with k> 1) the results for k= 1 presented in [20]. Although
working with homogeneous chains embeds the theory in a rather broad setting, it is impossible
to explore more details of the results of Theorems 1–4 without imposing further structure,
and we do this by assuming stationarity of the Markov chains for the remainder of the
paper.

So we now have a common marginal distribution function F over t, with this distribution
satisfying Assumption A0, unlike previously, when this was assumed only for the variable X0.
Specifically, we assume that the stationary Markov chain {Xt} has unit-exponential marginal
distributions, that is, F(x) := P(Xt ≤ x)= (1− exp (−x))+, for t ∈Z, which implies that the
limit distribution H0 in Assumption 1 is also unit-exponential. This marginal choice gives
the clearest mathematical formulation for our needs [20], and if a stationary Markov chain
{X̃t} has marginal distribution F̃ �= F then transformation by the probability integral transform
Xt =− log [1− F̃(X̃t)], for t ∈Z, gives the required properties. Furthermore, from stationarity
we have a time-invariant copula for Xt−k : t, for all t ∈Z, which together with the marginals can
be used to derive the initial conditional distribution F1 : k−1|0 and the corresponding at(x) and
bt(x) for t= 1, . . . , k− 1, as well as the forms of both π and π−, and to show that they are
also time-invariant functions.

With the marginal distribution now fully defined, we look to narrow down the proper-
ties of the copula into a single class that covers all of the scenarios discussed in Section 2.
This approach is in the style of copula methods, where the assumption of identical margins
is typical when identifying the extremal dependence structure of a random vector. In partic-
ular, [9] found that for a broad range of copula models for a random vector X0 : d, d ∈N,
with exponential-tailed random variables, the conditional distribution of the renormalized
states {X1 : d − a1 : d(X0)}/b1 : d(X0), given X0 > v, weakly converges to some distribution with
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non-degenerate margins. They also identified that this convergence typically holds with the
normalization functions taking the simple form a1 : d(v)= α1 : d v and b1 : d(v)= vβ1d, where
(α1 : d = (α1, . . . , αd), β) ∈ [0, 1]d × [0, 1). The parameters αt and β have a simple interpre-
tation and control the strength of extremal association between the variables X0 and Xt, for
t= 1, . . . , d. Informally, in the presence of an extreme event X0 with X0 > v and v sufficiently
large, we may then think of Xt as Xt = αtX0 + Xβ0 Zt where Zt has a non-degenerate distri-
bution. Thus, αt and β are slope and scale parameters, respectively, with larger values of αt

indicating stronger linear dependence between Xt and the big values of X0, and, for fixed
αt, the larger values of β indicating a more diffuse distribution for Xt | X0 > v. The links to
Section 2 and full pairwise asymptotically dependent and full pairwise asymptotically inde-
pendent kth-order Markov processes can now be made much clearer. Specifically, αt ∈ (0, 1]
for all t= 1, . . . , k corresponds to a family of copulas satisfying the conditions of Section 2.3
with the special case of αt = 1 and β = 0 for all t= 1, . . . , k− 1 being a full pairwise asymp-
totically dependent Markov chain, with χt > 0 for t= 1, . . . , k− 1, so it only arises as a special
case in Section 2.3. In contrast, full pairwise asymptotically independent processes arise as a
broad class in Section 2.3 and all scenarios in Sections 2.4 and 2.5. Specifically, we have
pairwise asymptotic independence in Section 2.3 when αt ∈ [0, 1) for all t= 1, . . . , k− 1, in
Section 2.4 when αt = 0 for all t= 1, . . . , k− 1 and β ∈ (0, 1), and in Section 2.5 when αt = 0
for all t= 1, . . . , k− 1 and β = 0. Here we assume that the formulation of [9] holds for the
initial conditional distribution, i.e. giving αt for t= 1, . . . , k− 1 and β, and we focus on deriv-
ing the structure of αt and βt for all t≥ k and the stochastic recurrence properties of the hidden
tail chains for both full pairwise asymptotically dependent and full pairwise asymptotically
independent kth-order stationary Markov chains.

3.2. Full pairwise asymptotically dependent Markov chains

Corollary 1. (Full pairwise asymptotically dependent Markov chains).
Let {Xt : t ∈Z} be a kth-order stationary Markov chain with unit-exponential margins.

Suppose that Assumption 2 holds with at(x)= x and bt(x)= 1, for t= 1, . . . , k− 1. Suppose
further that Assumption 3 holds with functions a and b, defined there, such that a is non-zero
and continuous, and exp{a( log x)}, x ∈Rk+, is 1-homogeneous; that is,

a(v1k + y)− v= a(y) for all v ∈R and all y ∈Rk, (19)

with a(0k)≤ 0 and b( · )≡ 1. Then the convergence (10) holds with at(x)= x and bt(x)= 1 for
t≥ k, and

Zt = a(Zt−k : t−1)+ εt, t= k, k+ 1, . . . ,

for a sequence {εt}∞t=k of i.i.d. random variables with a distribution KA, as defined in the limit
(9), supported on R. Furthermore, E(Zt)< 0 for all t≥ 1.

So in terms of the parameters of [9], here αt = 1 and βt = 0 for all t ∈Z, and conse-
quently the process is pairwise asymptotically dependent for (X0, Xt), i.e., χt > 0, for any
t≥ k. Although this gives that at(x)= x and bt(x)= 1 for all t≥ 1, suggesting that asymptot-
ically dependent Markov chains stay extreme forever after witnessing an extreme value, they
do in fact return to the body of the distribution thanks to the negative drift of the tail chain;
that is, E(Zt)< 0 for all t≥ 1, which ensures that the Markov chain will return to the body
regardless of the behaviour of the norming functions. Corollary 1 refines our understanding of
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full pairwise asymptotically dependent Markov chains by identifying a class of update func-
tions a whose defining property is (19), also known as topical maps, which can be regarded as
nonlinear generalizations of row-stochastic matrices [17].

3.3. Full pairwise asymptotically independent Markov chains

As there are different types of dependence that lead to full pairwise asymptotic indepen-
dent behaviour, we separate our findings into Corollaries 2 and 3, which correspond to the
conditions of Sections 2.3 and 2.4, respectively.

Corollary 2. (Full pairwise asymptotically independent Markov chains with location and scale
norming.)

Let {Xt : t ∈Z} be a kth-order stationary Markov chain with unit-exponential margins.
Suppose Assumption 2 holds with at(v)= αt v, αt ∈ (0, 1) and bt(v)= vβt , βt = β ∈ [0, 1), for
t= 1, . . . , k− 1. Suppose that Assumption 3 holds with the function a being a twice con-
tinuously differentiable, order-preserving 1-homogeneous function, with a(1k)< 1, and the
function b being β-homogeneous when β ∈ (0, 1) and unity when β = 0. Then the convergence
(10) holds with, for t≥ k, at(v)= αt v and bt(v)= vβ , where

αt = a(αt−k : t−1), t= k, k+ 1, . . . , (20)

with αt ∈ (0, 1) for all t≥ k, and

Zt=∇a(αt−k : t−1)	Zt−k : t−1 + b(αt−k : t−1) εt, t= k, k+ 1, . . . , (21)

for a sequence {εt}∞t=k of i.i.d. random variables from a non-degenerate distribution KA, defined
in the limit (9), on R. Consequently, the process is pairwise asymptotically independent for
(X0, Xt), i.e. χt = 0 for any t≥ k, and αt→ 0 as t→∞.

In Section 4 we are able to explicitly solve the recurrence equation (20) for a flexible para-
metric class of the function a, and find a geometric decay to zero in αt as t increases. Even for
an arbitrary functional a satisfying the weak assumptions of Corollary 2, considerable insight
into the behaviour of the hidden tail chain is achieved from Corollary 2. It shows that the norm-
ing functions at, t= k, k+ 1, . . . , have a particularly neat structure, not least at(X0)= αt X0,
where αt is determined by the recurrence equation (20) of the k previous values αt−k : t−1
through the 1-homogeneous function a.

Since Corollary 2 gives that αt→ 0 as t→∞, this leads to there eventually being no
location-norming in the limit, which is consistent with the independence case. However, for
practical usage we need to consider the limit at t→∞whilst also allowing the level of extrem-
ity of X0 to increase, i.e. the value v→∞. We address these issues for the cases β = 0 and
β ∈ (0, 1). When β = 0, the behaviour of the forward Markov chain as t→∞ and v→∞ is
almost entirely given by Corollary 2, as Xt|{X0 = v} = αt v+ Zt + op(1). If we can suitably link
t→∞ with v→∞, the location term αt v will tend to zero and Xt will converge to the process
{Zt}, which is a non-degenerate autoregressive process. So, with such combined limiting oper-
ations, we have that Xt | {X0 = v} returns to the body of the distribution as t→∞, becoming
independent of X0. Here, if there were a constant A ∈ (0, 1) with αt ∼ At as t→∞, i.e. the
αt exhibit geometric decay, as in the parametric class for a in Section 4, then we would need
t/ log (v)→∞ as v→∞ for this result to hold. When 0<β < 1 the limiting behaviour of the
forward hidden chain Xt|{X0 = v} as t→∞ is only partially implied by Corollary 2. This is

because Zt
p−→ 0, since both the location and the scale terms of εt in (21) tend to zero, but its
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scaling vβ tends to infinity. Consequently, the limiting behaviour is determined by the relative

speed of convergence of αt v→ 0 and vβ Zt
p−→ 0 if we link the growth rate of t to that of v.

In general we can view the recurrence relation in (20) as the parallel of the Yule–Walker
equations; hence we term them the extremal Yule–Walker equations. The Yule–Walker equa-
tions provide a recurrence relation for the autocorrelation function in standard time series
that is used to determine the dependence properties of a linear Markov process. For a
kth-order linear Markov process Yt =∑k

i=1 φi Yt−k+i−1 + ηt with {ηt}∞t=−∞ a sequence of
zero-mean, common-finite-variance, and uncorrelated random variables, where the set of
regression parameters φ1, . . . , φk are real-valued constants such that the characteristic polyno-
mial 1− φk z− φk−1 z2 − · · · − φ1 zk �= 0 on {z ∈C : |z|≤ 1}, the Yule–Walker equations relate
the autocorrelation function of the process ρt = cor(Ys−t, Ys) at lag t with the regression param-
eters φ1, . . . , φk and the k lagged autocorrelations according to ρt =∑k

i=1 φi ρt−i, t ∈Z. The
sequence {αt} has a similar structure for extremes via the recurrence (20).

In Corollary 2 we exclude the case β < 0 considered by [9], which corresponds to the case
where location-only normalization gives limits that are degenerate, with all limiting mass at
{0}. For simplicity, the theory developed in this paper deals only with positive extremal asso-
ciation in Markov chains, and hence, in Corollary 2, the case where X0 and Xt exhibit negative
extremal association is also ruled out. We note, however, that this latter case potentially can be
accommodated by suitable transformations of the marginal distributions, e.g. by standardizing
margins to standard Laplace distributions and then allowing αt < 0; see for example [13] and
[20 Theorem 3]. However, some modifications in the conditions will be required to address the
complications that some arguments will tend to −∞ whilst the conditioning variable will still
go to∞.

Corollary 3. (Full pairwise asymptotically independent Markov chains with only scale norm-
ing) Let {Xt : t ∈Z} be a kth-order stationary Markov chain with unit-exponential margins.
Suppose that Assumption 4 holds with bt(x)= xβ , β ∈ (0, 1), for t= 1, . . . , k− 1. Suppose
further that Assumption 5 holds with the function b being continuous and β-homogeneous.
Then the convergence (14) holds with bt(x)= xβt , βt ∈ (0, 1), t≥ k, where βt satisfies the recur-
rence relation log βt = log β + log ( maxi=1,...,k βt−i), with β1 = . . .= βk−1 = β. This gives the
solution

log βt=(�1+ (t− 1)/k�) log β, t≥ k,

where �x� denotes the integer part of x. It follows that βt ∈ (0, 1) for all t≥ k and that βt→ 0
as t→∞. Also, for t≥ k we have

Zt =

⎧⎪⎨⎪⎩
b(Zt−k, 0k−1) εt when modk(t)= 0,

b(Zt−k, . . . , Zt−1) εt when modk(t)= 1,

b(Zt−k, . . . , Zt−j, 0j−1) εt when modk(t)= j ∈ {2, . . . , k− 1},
for a sequence {εt}∞t=k of i.i.d. random variables with distribution KB, defined by the limit (13),
supported on R+ and Z0 = 1 a.s. As a consequence, the process is pairwise asymptotically
independent for (X0, Xt), i.e. χt = 0, for any t≥ k.

In contrast to Corollary 2, where the location parameter αt changed with t, here it is the
power parameter βt of the scale function that is decaying. As with Corollary 2 we find a form of
geometric decay in the dependence parameters βt as t increases, leading eventually to extremal
independence (αt = 0 and βt→ 0) in the limit as t→∞, so that Xt returns to the body of
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the distribution as it becomes independent of X0. In particular, βt decays geometrically to 0
stepwise, with steps at every k lags. At time t the resulting hidden tail chain depends only on
the last j values, with j=modk(t).

4. A class of recurrence relations for dependence parameters in asymptotically
independent Markov chains with closed-form solutions

The results of Section 3 provide insight into the form of the norming and updating functions
of Theorems 1 and 2, not least for asymptotically independent Markov chains where (αt, βt) �=
(1, 0) for all t> 0. A precise formulation of the location and scale parameters αt and βt for
t≥ k, however, depends on the forms of functionals a( · ) and b( · ) which are opaque even
when these are assumed to be homogeneous functionals. Motivated by examples considered
in Section 5.3, here we give an explicit characterization of the solution to the extremal Yule–
Walker equations (20) in Corollary 2 for a parsimonious parametric subclass of functionals
aM, of a, which embeds many of the examples of Section 5.

For x= (x1, . . . , xk) ∈Rk+, 0< c< 1, δ ∈R, and (γ1, . . . , γk) ∈	k−1 with
minj=1,...,k (γj)> 0, consider the function aM:Rk+→R+ defined by

aM(x;δ)= c

{
γ1 (γ1 x1)δ + · · · + γk (γk xk)δ

γ 1+δ
1 + · · · + γ 1+δ

k

}1/δ

. (22)

Here aM satisfies the conditions of Corollary 2, as it is order-preserving and 1-homogeneous,
and the bound on c ensures that a(1k)< 1. The functional aM is continuous in δ ∈R, though
its values at δ=−∞, 0,∞ need careful treatment as they are not immediately apparent from
(22). Specifically,

aM(x, 0)= lim
δ→0

aM(x, δ)= c xγ1
1 xγ2

2 · · · xγk
k , (23)

and

aM(x,∞)= c
maxj=1,...,k (γjxj)

maxj=1,...,k γj
, aM(x,−∞)= c

minj=1,...,k (γjxj)

minj=1,...,k (γj)
. (24)

Proposition 2. Consider the function aM defined by (22). Suppose that the s ∈N distinct
(possibly complex) roots of the characteristic polynomial

xk − cδ
(

γ 1+δ
k

γ 1+δ
1 + · · · + γ 1+δ

k

)
xk−1 − · · · − cδ

(
γ 1+δ

1

γ 1+δ
1 + · · · + γ 1+δ

k

)
= 0

are r1, . . . , rs with multiplicities m1, . . . ,ms,
∑

i mi = k. Then the solution of the recur-
rence relation (20) with a(x)= aM(x) for all x ∈Rk+, subject to the initial condition
(α1, . . . , αk−1) ∈ (0, 1)k−1, is

αt =
( s∑

i=1

(
Ci0 +Ci1 t+ · · · +Ci,mi−1tmi−1) rt

i

)1/δ

for t= k, k+ 1, . . .,

where the constants Ci0, . . . ,Ci,mi−1, i= 1, . . . , s, are uniquely determined by the initial
condition via the system of equations α0 = 1 and

αt =
( s∑

i=1

(
Ci0 +Ci1 t+ · · · +Ci,mi−1tmi−1) rt

i

)1/δ

for t= 0, . . . , k− 1.
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From Corollary 2, it follows that the sequence {αt} in Proposition 2 satisfies αt→ 0 as
t→∞. Let Ir = {I ∈ {1, . . . , s} : |rI | =maxi=1,...,s |ri|}. Under the assumption that |Ir| = 1, we
have that αt satisfies αt ∼CI,mI−1 t(mI−1)/δrt/δ

I → 0, I ∈ Ir, δ ∈R\{0}, as t→∞.

Remark 4. Although aM in (22) is defined for any δ ∈R, it is not evident from Proposition 2
what form the solution takes when δ= 0 or when δ =±∞. These cases are considered
separately below.

Case δ→ 0: A logarithmic transformation in the limit (23) results in the linear non-
homogeneous recurrence relation

log αt − γ1 log αt−1 − · · · − γk log αt−k = log c.

Suppose that the s ∈N distinct (possibly complex) roots of the characteristic polynomial

xk − γk xk−1 − · · · − γ1 = 0 (25)

are r1, . . . , rs with multiplicities m1, . . . ,ms,
∑

mi = k. Then the solution of the recurrence
(20) is

αt = exp

{
s∑

i=1

(
Ci0 +Ci1 t+ · · · +Ci,mi−1tmi−1) rt

i +
c

γ1 + 2γ2 + · · · + kγk
t

}
,

for t= k, k+ 1, . . ., where the constants Ci0, . . . ,Ci,mi−1, i= 1, . . . , s, are uniquely deter-
mined by the system of equations

αt = exp

{
s∑

i=1

(
Ci0 +Ci1 t+ · · · +Ci,mi−1tmi−1) rt

i +
c

γ1 + 2γ2 + · · · + kγk
t

}
,

for t= 0, . . . , k− 1, with α0 = 1 and αt ∈ (0, 1) for t= 1, . . . , k− 1.
Case |δ|→±∞: Using forward substitution, we have that for δ→∞ the solution of (20)

is

αt = ct max
i=1,...,k

(dt−i αi−1), dt−i =max
k∏

n=1

γ
jn
k+1−n, t≥ k, (26)

where the maximum for dt−i in (26) is taken over 0≤ j1 ≤ . . .≤ jk ≤ t− i such that∑t−i
m=1 m jm = t− i. The case δ→−∞ is obtained by replacing the maximum operator in (26)

by the minimum operator.

5. Results for kernels based on important copula classes

5.1. Strategy for finding norming functionals

Our results in Section 3 provide powerful results for stationary kth-order Markov processes
which derive the behaviour of hidden tail chains over all lags, given the appropriate norming
functions at, bt, for lags t= 1, . . . , k− 1, and the norming functionals a and b after an extreme
event at time t= 0. However, these results do not explain how to derive these quantities.
Here we discuss general strategies for how to find these norming functions, with Section 5.3
providing a step-by-step illustration of how these strategies are implemented.
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The methods for finding at, bt for t= 1, . . . , k− 1 are well established; specifically, these
can be obtained from Theorem 1 of [9]. So the novelty here is in the derivation of a and b,
which was not required in [20]. Here we explain the general strategy for the case a �= 0 and
note that the case a= 0 and b �= 1 is handled in a similar manner. Assuming that the conditional
distribution of Xk |X0 : k−1 admits a Lebesgue density almost everywhere, a similar argument
as in the proof of Theorem 1 in [9] guarantees that the functionals a and b can be identified, up
to type, by finding the functional forms of a and b, which satisfy the following two asymptotic
properties: for all z ∈Rk,

lim
v→∞ P (Xk < a(X0 : k−1) |X0 : k−1 =At(v, z))= p for some p ∈ (0, 1), (27)

and

b(At(v, z))∼ P (Xk > a(X0 : k−1) |X0 : k−1 =At(v, z))

[d P (Xk ≤ y |X0 : k−1 =At(v, z))/dy]|y=a(At(v,z))
as v→∞, (28)

where At(v, z) is defined by (7) with at−k : t−1 and bt−k : t−1 as in Assumption 3. The expres-
sion (28) can be cumbersome to use in practice, so we resort to asymptotic inversion in order
to identify b. In particular, to find a representative form for b, we make an informed choice
based on the leading-order terms in an asymptotic expansion, as v→∞, of the conditional
distribution in (27) to obtain

P (Xk < a(X0 : k−1)+ b(X0 : k−1) y |X0 : k−1 =At(v, z))
w−→KA(y), (29)

for all y ∈R and z ∈Rk, where KA is a non-degenerate distribution on R.

5.2. Examples of copula families and transition probability kernels

To illustrate the results in Theorems 1 and 2, we study the extremal behaviour of kth-order
stationary Markov chains with unit-exponential margins, with transition probability kernels
derived from the copula of k+ 1 consecutive values given in Section 5.3. Here we define the
classes of copula families, and the associated transition probability kernels, that we use in
Section 5.3 to derive the hidden tail chain behaviour. We have selected these copula families
so we have families which give full pairwise asymptotic dependence, full pairwise asymptotic
independence, and cases in between these; see Section 1 for the definition of these extremal
process types. We can achieve all of these different properties from studying Gaussian, max-
stable, and inverted max-stable copula families. The theory which motivates these copulas does
not matter here; we simply view them as a range of interesting and well-known copula families
whose extremes we study in a Markov setting.

First we present the link between a general (k+ 1)-dimensional copula C and its asso-
ciated transition probability kernel π when working with a kth-order stationary Markov
process with exponential margins. Let F denote the joint distribution function of a random
vector X= (X0, . . . , Xk), assumed to be absolutely continuous with respect to Lebesgue mea-
sure with unit-exponential margins, that is, Fi(x)= FE(x)= (1− exp (−x))+, i= 0, . . . , k.
Writing C : [0, 1]k+1→ [0, 1] for the copula of X, that is, C(u)= F

(
F←E (u0), . . . , F←E (uk)

)
,

where u= (u0, . . . , uk) ∈ [0, 1]k+1, we define the Markov kernel πE : B(Rk)→ [0, 1] of the
stationary process by

πE(x0 : k−1, xk)=
[

∂k

∂u0 · · · ∂uk−1
C(u0 : k−1, uk)

/ ∂k

∂u0 · · · ∂uk−1
C(u0 : k−1, 1)

]
,
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with u0 : k = {1− exp (−x0 : k)}+. Assuming the copula function satisfies appropriate condi-
tions that ensure stationarity [12], the initial distribution F(x0 : k−1,∞) is the k-dimensional
invariant distribution of a Markov process with unit-exponential margins and kernel πE.

Gaussian copula: Consider a stationary Gaussian autoregressive process with positive depen-
dence transformed componentwise to have exponential marginal distributions. Let � ∈
R

(k+1)×(k+1) be a (k+ 1)-dimensional Toeplitz correlation matrix, that is, � = (ρ|i−j|)1≤i,j≤k+1
with ρ0 = 1, ρi > 0, for i= 1, . . . , k, which is assumed to be positive definite, and let
Q=�−1 = (qi−1,j−1)1≤i,j≤k+1. The distribution function of the standard (k+ 1)-dimensional
Gaussian with mean 0k+1 and positive definite variance–covariance matrix �, in exponential
margins, is

F(x0 : k)=
�←{1−exp (−xk)}∫

−∞
· · ·

�←{1−exp (−x0)}∫
−∞

{det(Q)}1/2
(2π )(k+1)/2

e−s	Qs/2 ds,

for x0 : k ∈Rk+1+ and s= (s0, . . . , sk)	, where�← : [0, 1]→R denotes the quantile function of
the standard normal distribution function�( · ). This choice of correlation function ensures sta-
tionarity of the resulting Markov chain, and the joint distribution gives the transition probability
kernel

πE (x0 : k−1, xk)=πG {�←{1− exp (−x0 : k−1)}, �←{1− exp (−1/xk)}},
for (x0 : k−1, xk) ∈Rk ×R, where the kernel πG is the full conditional distribution function of
the multivariate normal, given by

πG(x0 : k−1, xk)=�
[

q1/2
kk

{
xk −

k−1∑
t=0

(
− qtk

qkk

)
xt

}]
,

where � is the standard normal distribution function. The condition ρi > 0, for i= 1, . . . , k,
appears restrictive but is made to simplify the presentation. If we worked with standard Laplace
marginals, instead of exponential marginals, as say in [13], the presentation would be equally
simple for any values |ρi|> 0, i= 1, . . . , k, of the correlation matrix �.

Max-stable copula: A class of transition probability kernels for asymptotically dependent
Markov processes is obtained from the class of multivariate extreme-value distributions [25].
The (k+ 1)-dimensional distribution function of the multivariate extreme- value distribution
with exponential margins is given by

F(x0 : k)= exp (−V(y0 : k)), where y0 : k = T(x0 : k) := −1/ log (1− exp (−x0 : k)), (30)

for x0 : k ∈Rk+1+ , with V : Rk+1+ →R+ a −1-homogeneous function, known as the exponent
function, given by

V(y0 : k)=
∫
	k

max
i=0,...,k

(ωi/yi) H(dω), (31)

where H is termed the spectral measure on 	k that has total mass k+ 1 and satis-
fies the moment constraints

∫
	k ωiH(dω)= 1, for i= 0, . . . , k. Throughout this section,

we assume that V has continuous mixed partial derivatives of all orders, which ensures
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that a density for F exists [4]. For any J ⊆ [k], we write VJ to denote the higher-
order partial derivative ∂ |J|V(x0 : k)/

∏
j∈J ∂xj and �m for the set of partitions of [m] :=

{0, 1, . . . ,m}, where m= 0, . . . , k. Furthermore, for a vector z= (x0 : m, xm+1 : k), we
write V(z)= V(x0 : m, xm+1 : k). For m= 0, . . . , k− 1 we define V(x0 : m, ∞· 1k−m) :=
limxm+1 :k→∞·1k−m V(x0 : m, xm+1 : k), and for J ⊆ [m], we define VJ(x0 : m,∞· 1k−m) :=
∂ |J| V(x0 : m,∞ · 1k−m)/

∏
j∈J ∂xj. Stationarity is achieved by requiring that for any set A⊂Z,

the distributions of {Xi : i ∈ A} and {Xi : i ∈ B} are identical when the set B is a translation of the
set A, i.e., when there exists a unique ω ∈Z such that B= {x+ω : x ∈ A}. Given the Markov
property, stationarity is ensured if V satisfies the property that

lim
x[k]\A→∞

V(x)
∣∣∣
xA=y
= lim

x[k]\B→∞
V(x)

∣∣∣
xB=y

, y ∈R|A|+ , (32)

for any set A⊆ [k], where B is a translation of the set A, with B⊆ [k]. The transition probability
kernel induced by the multivariate extreme value copula, in exponential margins, is

πE(x0 : k−1, xk)=
[∑

p∈�k−1
(−1)|p|

∏
J∈p VJ(y0 : k)

][∑
p∈�k−1

(−1)|p|
∏

J∈p VJ(y0 : k−1,∞)
]

× exp{V(y0 : k−1,∞)− V(y0 : k)}, (33)

where (x0 : k−1, xk) ∈Rk ×R and with y0 : k as defined in (30).

Inverted max-stable: The final class of transition kernels is based on the class of inverted max-
stable distributions [16, 21]. The specification of this distribution is most elegantly expressed
in terms of its (k+ 1)-dimensional survivor function. In exponential margins, this is expressed
as

F(x0 : k)= exp (−V(1/x0 : k)), (34)

where V denotes an exponent function as defined by (31). To ensure stationarity, V is assumed
to satisfy the conditions (32). This distribution gives the transition probability kernel

π inv(x0 : k−1, xk)= 1− πE[− log{1− exp (−1/x0 : k−1)},− log{1− exp (−1/xk)}], (35)

where (x0 : k−1, xk) ∈Rk ×R and πE is as given by (33).

5.3. Examples of norming function and hidden tail chains

For a range of examples of kth-order Markov processes, we illustrate how the theory we
have developed is applicable, and we derive the forms of the required norming functions and
identify the properties of the hidden tail chains. The examples include the full pairwise asymp-
totically dependent max-stable distribution family, and specifically two subclasses known
as the logistic [2] and Hüsler–Reiss [7, 10] dependence structures. They also include two
classes of full pairwise asymptotically independent distributions, the Gaussian copula and the
inverted max-stable distribution with logistic dependence structure. We also illustrate the sub-
asymptotic behaviour of these hidden tail chains in Figure 1, through simulation of the Markov
process after a large event. Our proofs that the required the weak convergence of each transition
probability kernel satisfies the assumptions of Section 2 are presented in Appendices A.5–A.9,
where we implement step by step the strategy we outlined in Section 5.1 to find the required
norming functions.
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FIGURE 1. Properties for each hidden tail chain for Examples 1–3 with k= 5. Presented for each chain are
pointwise 2.5% and 97.5% quantiles of the sampling distribution (shaded region), mean of the sampling
distribution (dashed line), and one realization from the (hidden) tail chain (solid line). The copula of
X0 : k used to derive the (hidden) tail chain comes from (a) the standard multivariate Gaussian copula with
Toeplitz positive definite covariance matrix � generated by the vector (1, 0.70, 0.57, 0.47, 0.39, 0.33),
and (b) the inverted logistic with α = log (1	k+1 �

−1 1k+1)/ log k= 0.27 (here the value of the function
modk(t) is also highlighted on the mean function of the time series with numbers ranging from 0 to 4 for
all t), (c) the logistic copula with α= 0.32, and (d) the Hüsler–Reiss copula with Toeplitz positive definite
covariance matrix generated by the vector (1, 0.9, 0.7, 0.5, 0.3, 0.1). The parameters for all copulas are
chosen so that the coefficient of residual tail dependence η [16] and the extremal coefficient θ [2] are
equal for the copulas in panels (a) and (b), and for those in panels (c) and (d), respectively.

We also consider an example of a Markov process not covered by the theory we have devel-
oped, but for which we can directly derive the norming functions and the hidden tail chain
behaviour. This is a second-order stationary Markov chain with a transition probability kernel
using a max-stable distribution which permits the possibility of sudden switches from extreme
to non-extreme states and vice versa. In this setting, a novel form of normalization of the
transition probability kernel is required, which, together with the associated hidden tail chain,
carries information about the mechanism that governs the sudden transitions. In Figure 2 we
illustrate that the sub-asymptotic properties of this process are captured by our asymptotic
results. Although the development of general theory for this type of process is beyond the
scope of this paper, this example serves to motivate future extensions of our theory.

Example 1. (Stationary Gaussian autoregressive process—positive dependence.) For this cop-
ula, under the notation and conditions described in Section 5.2, [9, Section 8.6] showed that
Assumption 2 holds with norming functions ai(v)= ρ2

i v, bi(v)= v1/2, that is, αi = ρ2
i and

βi = 1/2, for i= 1, . . . , k− 1 and initial limiting distribution G(z1 : k−1)=�k(z1 : k−1;�0),
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FIGURE 2. (a) Time series plot showing a single realization from the second-order Markov chain
with asymmetric logistic dependence (46) initialized from the distribution of X0 | X0 > 9. For this
realization, there are three change-points TX

1 , TX
2 , and TX

3 , which are highlighted with crosses. (b)
Scatter-plot of states {(Xt−1, Xt) : Xt−1 > 9} drawn from 103 realizations of the Markov chain initialized
from the distribution of X0 | X0 > 9. Points for which Xt−2 < 9 and Xt−2 ≥ 9 are highlighted with grey
crosses and black circles, respectively. (c) Scatter-plot of consecutive states (Xt−2, Xt). Points for which
Xt−1 < 9 and Xt−1 ≥ 9 are highlighted with grey crosses and black circles, respectively. (d) Scatter-plot
of states {( max (Xt−2, Xt−1), Xt) : max (Xt−2, Xt−1)> 9} and line Xt = c max (Xt−2, Xt−1) with c= 1

2
superposed. (e) Histogram of termination time TB obtained from 104 realizations from the hidden tail
chain. The Monte Carlo estimate of the mean of the distribution is 8.42 and shown with a dashed vertical
line. (f) Pointwise 2.5% and 97.5% quantiles of the sampling distribution (shaded region), mean of the
sampling distribution (dashed line), and one realization from the hidden tail chain (solid line), condi-
tioned on TB = 8. The value of the latent Bernoulli process Bt is highlighted with a cross when Bt = 0
and with a circle when Bt = 1. For all plots presented, θ0 = θ1 = θ2 = θ01 = θ02 = 0.3, θ012 = 0.1, and
ν01 = ν02 = ν012 = 0.5.

where z1 : k−1 ∈Rk−1 and �k( · ;�0) denotes the cumulative distribution function of the k-
dimensional multivariate normal distribution with a zero mean vector and covariance matrix
�0 = (2ρi ρj(ρ|j−i| − ρi ρj))1≤i,j≤k−1. Appendix A.5 shows that Assumption 3 holds with
norming functionals

a(u)=
(

k∑
i=1

φi u1/2
i

)2

, b(u)= a(u)1/2, u= (u1, . . . , uk) ∈Rk+, (36)
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where φi =−qk−i,k/qkk, i= 1, . . . , k, denote the first k partial autocorrelation coefficients of
the stationary Gaussian process (on Gaussian margins), and the transition probability kernel of
the renormalized Markov chain converges weakly to the distribution

KA(x)=�(
(qkk/2)1/2 x

)
, x ∈R. (37)

Corollary 2 asserts that a suitable location normalization after t≥ k steps has αt =
a(αt−k : t−1)= ρ2

t and βt = 1/2. This equivalence arises from the a function in (36) and
the Yule–Walker equations for stationary Gaussian autoregressive processes, that is, ρt =∑k

i=1 φi ρt−i, for t≥ k. As all stationary Gaussian finite-order Markov chains have that ρt→ 0
geometrically as t→∞, it follows that αt does likewise.

Now consider the hidden tail chain. The gradient vector of a is

∇a(u)=
{

(φjuj)
−1/2

k∑
i=1

φiu
1/2
i : j= 1, . . . , k

}
.

Thus, based on the Yule–Walker equations, we have

∇a(αt−k : t−1)	 = ρt(φ1/ρt−1, . . . , φk/ρt−k).

Also, b(αt−k : t−1)= a(αt−k : t−1)1/2 = ρt. This leads to the scaled autoregressive hidden tail
chain

Zt = ρt

k∑
i=1

φi

ρt−i
Zt−i + ρt εt, t≥ k, (38)

and {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA given by (37). The
hidden tail chain is a non-stationary kth-order autoregressive Gaussian process with zero mean
and autocovariance function cov(Zt−s, Zt)= (2ρt−s ρt(ρs − ρt−s ρt)) when t �= s. The variance
of the process satisfies var(Zt)=O(ρ2

t ) as t→∞; hence the hidden tail chain degenerates to
0 in the limit as t→∞. This long-term degenerative behaviour is illustrated in panel (a) of
Figure 1.

Remark 5. The location functional a in (36) can be written in the form (22) with c=∑k
i=1 φi

and γi = φ2/3
i /

∑
j φ

2/3
j for i= 1, . . . , k.

Example 2. (Inverted max-stable copula with logistic dependence.) Consider a stationary kth-
order Markov chain with a (k+ 1)-dimensional survivor function (34) and exponent function
of logistic type given by

V(y0 : k)=‖y−1/α
0 : k ‖α, y0 : k ∈Rd+, (39)

where α ∈ (0, 1), which gives a stationary process as V is an exchangeable function. [9, Section
8.5] showed that Assumption 4 holds with bi(v)= v1−α , that is, βi = 1− α for i= 1 . . . , k− 1,
and limiting initial conditional distribution G(z)=∏k−1

i=1

{
1− exp

(−αz1/α
i

)}
, z ∈ (0,∞)k−1.

Appendix A.6 shows that Assumption 5 holds with normalizing functionals

a(u)= 0, b(u)= ‖u1/α‖α (1−α), u= (u1, . . . , uk) ∈Rk+, (40)

and the transition probability kernel of the renormalized Markov chain converges weakly to
the distribution

KB(x)= 1− exp
(−α x1/α), x ∈R+,
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as u→∞. Corollary 3 asserts that a suitable normalization after t≥ k steps is at(v)= 0,
log bt(v)= ((1− α)1+�(t−1)/k�) log v, which leads to the scaled random walk hidden tail
chain

Zt =

⎧⎪⎪⎨⎪⎪⎩
‖(Zt−k, 0k−1)1/α‖α(1−α) εt when modk(t)= 0,

‖Z1/α
t−k : t−1‖α(1−α) εt when modk(t)= 1,∥∥(Z1/α

t−k : t−j, 0j−1
)∥∥α(1−α)

εt when modk(t)= j ∈ {2, . . . , k− 1},
where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KB.

This hidden tail chain is a non-stationary process; specifically, after a logarithmic transfor-
mation, it is a non-stationary nonlinear kth-order autoregressive process. The first element
of the process is Z0 = 1 a.s., and the next k− 1 elements of the process Z1 : k−1 are i.i.d.
positive random variables with distribution function KB(x), x> 0. Subsequent elements Zt,
for t≥ k, have distributions that vary in both mean and variance. For b given by (40) and
any x1:k ∈Rk+, we see that b(x1:k)> b(x2:k, 0)> · · ·> b(xk, 0k−1). This leads to an oscillating
behaviour which is illustrated in panel (b) of Figure 1. In particular, both the mean and vari-
ance of the hidden tail chain can be seen to decrease in a segment of k consecutive time points
(s, s+ 1, . . . , s+ k− 1) for any s> k such that modk(s)= 1.

Example 3. (Multivariate extreme value copula—all mass on interior of simplex.) [9, Section
8.4] showed that if the spectral measure H in (31) places no mass on the boundary of 	k, then
Assumption 2 holds for the distribution (30) with norming functions ai(v)= v, bi(v)= 1, i.e.
αi = 1, βi = 0, for i= 1, . . . , k− 1, and limiting distribution

G(z1 : k−1)=−V0[ exp{(0, z1 : k−1)},∞], z1 : k−1 ∈Rk−1. (41)

In this set-up we trivially have that the functional b≡ 1. For determining the functional a,
Appendix A.7 shows that for any choice of a satisfying the condition (19), the limit integral (9)
is

∫
R

f (x)K(dx;z1 : k−1), with z1 : k−1 ∈Rk−1, which is not in the form required by Assumption
A2, as the K term is not independent of z1 : k−1 as is KA in the statement of the assumption.
Specifically, we find that K has the following form:

K(x;z1 : k−1)=V0 : k−1[ exp (z0 : k−1), exp (a(z0 : k−1)+ x)]

V0 : k−1[ exp (z0 : k−1),∞]
, x ∈R. (42)

Without additional assumptions on the max-stable copula, i.e. of the exponent measure V, it
seems impossible to find the form of the location functional a to make K, in (42), independent
of z1 : k−1, or to know whether such a functional even exists. Without Assumption A2 we cannot
use Corollary 1 to find the norming functions for t≥ k. To get around this problem, here we can
make an additional assumption about V, which ensures that K is independent of z1 : k−1 and thus
that Assumption A2 holds. The new assumption exploits the property that both V0 : k−1(·,∞)
and V0 : k−1( · ) are −(k+ 1)-homogeneous functions, so the map

R
k+1+ � y0 : k �→ V0 : k−1(y0 : k−1, yk)/V0 : k−1(y0 : k−1,∞) ∈R+ (43)

is 0-homogeneous, and this latter property restricts the possible forms the function V0 : k−1
can take. One such simple form is given by Property K1, which holds for a wide variety of
parametric models for the exponent measure, including the logistic dependence and Hüsler–
Reiss dependence structures discussed below.
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Assumption 8. There exist a continuous function aP : Rk+→R+ which is 1-homogeneous, and
a non-degenerate distribution function KP on R+, such that the following hold:

(i) K←P (p�)= 1 for some p� ∈ (0, 1), where K←P (p)= inf{x ∈R+ : KP(x)> p};
(ii) V0 : k−1(y0 : k−1, yk)= V0 : k−1(y0 : k−1,∞) KP{yk/aP(y0 : k−1)}, for all y0 : k ∈Rk+.

When Assumption 8 holds, additional information about the location functional a and the
limit distribution KA of Corollary 1 can be given. This is established in Proposition 3 below.

Proposition 3. Suppose that for a max-stable distribution with exponent function V,
Assumption 8 holds. Let a(x0 : k−1)= log [aP{exp (x0 : k−1)}], x0 : k−1 ∈Rk, and assume
that there exists a right-inverse R×R

k+ � (q, y0 : k−1) �→ V←0 : k−1(q;y0 : k−1) ∈R+ such that
V0 : k−1

{
y0 : k−1, V←0 : k−1(q;y0 : k−1)

}= q for all q and y0 : k−1 in the domain of V←0 : k−1. Then
the following hold:

(i) The location functional a satisfies the property (19), and for all x0 : k−1 ∈Rk,

a(x0 : k−1)= log V←0 : k−1

{
p� V0 : k−1

(
ex0 : k−1 ,∞)

;ex0 : k−1
}
. (44)

(ii) Assumption 3 holds with normalizing functionals a as given by (44) and b≡ 1, and KA(x)=
KP(ex), x ∈R.
(iii) For all x ∈R,

KP(ex)= V0 : k−1
{

exp
(
z�0 : k−1

)
, exp (x)

}
V0 : k−1

{
exp

(
z�0 : k−1

)
,∞} ,

where z�0 : k−1 satisfies aP
(
z�0 : k−1

)= 1.

So, for a Markov chain with max-stable copula under the assumptions of Proposition 3, we
now have new general results from Corollary 1 on the hidden tail chain, which here is identical
to the tail chain, and a and KA have been derived. To help interpret these results, given the
generality of the terms for a and KA in Proposition 3, we now investigate two well-established
multivariate extreme-value distribution dependence models which satisfy the assumptions of
Section 2 and Proposition 3.

Logistic dependence: The exponent function of the (k+ 1)-dimensional max-stable distri-
bution with logistic dependence is given in (39), where α ∈ (0, 1) controls the strength of
dependence, with stronger dependence as α decreases. The case α= 1 is excluded as that
corresponds to independence. [9] show that the initial limiting distribution (41) is

G(z1 : k−1)= {1+ ‖exp (−z1 : k−1/α)‖}α−1, z1 : k−1 ∈Rk−1,

in addition to having ai(v)= v, bi(v)= 1 for i= 1, . . . , k− 1. Appendix A.8 shows that
Assumption 3 holds with normalizing functionals

a(u)=−α log (‖exp (−u/α)‖), b(u)= 1, u= (u1, . . . , uk) ∈Rk+,

and the transition probability kernel of the renormalized Markov chain converges weakly to
the distribution

KA(x)= {1+ exp (−x/α)}α−k, x ∈R.
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Corollary 1 then asserts that the suitable normalization is at(v)= v, bt(v)= 1 for t≥ k, which
leads to the hidden tail chain

Zt =−α log ‖exp (−Zt−k : t−1/α)‖ + εt, t= k, k+ 1, . . . , (45)

where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA. Note that the hidden
tail chain can also be expressed as

Zt = Zt−k − α log ‖exp{−(0, Zt−k1k−1 − Zt−k+1 : t−1)/α}‖ + εt, t= k, k+ 1, . . . .

Here the hidden tail chain is identical to the tail chain, as at(x)= x and bt(x)= 1 for all t=
1, 2, . . .. When k= 1, the tail chain can be seen to reduce to the random-walk results of [22,
32], but when k> 1, the tail chain behaves like a random walk with an extra additive factor
which depends in a nonlinear way on the ‘profile’ Zt−k1k−1 − Zt−k+1 : t−1 of the previous k− 1
values.

Hüsler–Reiss dependence: The exponent function of the (k+ 1)-dimensional max-stable
distribution with Hüsler–Reiss dependence is

V(y0 : k)=
k∑

i=0

1

yi
�k

[{
log (yj/yi)+ σ 2 − σij

}
j �=i; �

(i)], y0 : k ∈Rk+1+ ,

where �k( · ; �(i)) denotes the multivariate normal distribution function with mean zero
and covariance matrix �(i) = Ti � T	i , for � = (σij)k

i,j=0 a positive definite Toeplitz covari-

ance matrix with common diagonal elements σii = σ 2, and Ti is a k× (k+ 1) matrix with
the (i+ 1)th column having −1 for each entry and the other columns being the k standard
orthonormal basis vectors of Rk, that is,

Ti =

⎛⎜⎜⎜⎝
1 0 · · · 0 −1 0 · · · 0
0 1 · · · 0 −1 0 · · · 0
...

...
...

...
...

...

0 0 · · · 0 −1 0 · · · 1

⎞⎟⎟⎟⎠ , i= 0, . . . , k.

The matrix � controls the strength of dependence, with larger values for σij indicating
stronger dependence between the associated elements of the random vector. The initial limiting
distribution (41) is G(x)=�k−1[x− {−diag(�(0))/2};�(0)], x ∈Rk−1, in addition to having
ai(v)= v, bi(v)= 1 for i= 1, . . . , k− 1 [7]. Appendix A.9 shows that Assumption 3 holds
with normalizing functionals

a(u)=−τK	01CK10 · u, b(u)= 1, u= (u1, . . . , uk) ∈Rk+,

where the quantities τ , q, C, K10, and K01 are constants with respect to u but depend on the
parameters of �; they are defined in Appendix A.9. The transition probability kernel of the
renormalized Markov chain converges weakly to the distribution

KA(x)=�{
(x/τ )+ (

K	01�
−11	k+1

)
/
(
1	k+1q

)}
, x ∈R.

Corollary 1 asserts that a suitable normalization is at(v)= v, bt(v)= 1 for t≥ k, which leads to
the hidden tail chain (identical to the tail chain)

Zt=−τK	01CK10 · Zt−k : t−1 + εt, t= k, k+ 1, . . . ,
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where {εt}∞t=k is a sequence of i.i.d. random variables with distribution KA. Note that the tail
chain can also be expressed as

Zt = Zt−k + τK	01CK10 · (0, Zt−k1k−1 − Zt−k+1 : t−1)+ εt, t= k, k+ 1, . . . ,

which shows, similarly to the case of the logistic copula, that the tail chain behaves like a ran-
dom walk with an extra factor which depends linearly on the ‘profile’ Zt−k1k−1 − Zt−k+1 : t−1
of the previous k− 1 values; in this respect it differs from the previous example.

Panels (c) and (d) in Figure 1 show almost linear behaviour for two special cases of the tail
chains presented. Although the copulas used to derive both (hidden) tail chains have the same
extremal coefficient see [28], ensuring that the core level of extremal dependence is common
to both, the decay rates of the two processes are markedly different. This shows that the type
of drift function and distribution for the innovation term εt affect the characteristics of the
transition from an extreme state to the main body of the process.

Example 4. (Multivariate extreme value copula with asymmetric logistic structure [33].) This
is a second-order Markov process for which Assumptions 2 and 3 fail to hold, and it has a
more complicated structure than we have covered so far in studying weak convergence on R

k.
In this example, the weak convergences in Assumptions 2 and 3 no longer hold on R

k−1 and R

(cf. Remark 1), but on R
k−1

and R, respectively. The example is a special case of a stationary
Markov chain with transition probability kernel (33) and exponent function given by

V(x0, x1, x2)= θ0 x−1
0 + θ1 x−1

1 + θ2 x−1
2

+ θ01

{(
x−1/ν01

0 + x−1/ν01
1

)ν01 +
(

x−1/ν01
1 + x−1/ν01

2

)ν01
}

+ θ01

(
x−1/ν02

0 + x−1/ν02
2

)ν02

+ θ012

(
x−1/ν012

0 ++x−1/ν012
1 + x−1/ν012

2

)1/ν012
, (46)

where νA ∈ (0, 1) for any A ∈ 2{0,1,2}\∅, and

θ0 + θ01 + θ02 + θ012 = 1, θ1 + 2θ01 + θ012 = 1, θ2 + θ01 + θ02 + θ012 = 1

with θ0, θ1, θ2, θ01, θ02, θ012 > 0.

Although this distribution does not satisfy the assumptions of Section 2, the strategy that
is implemented to find the normalizing functions and hidden tail chain is similar to the
strategy presented in Section 5.1. In particular, the initial distribution of the Markov pro-
cess is F01(x0, x1)= F012(x0, x1,∞)= exp{−V(y0, y1,∞)}, with (y0, y1) defined in (30). It
can be seen that the transition probability kernel π (x0, x1)=−y2

0 V0(y0, y1,∞) exp (y−1
0 −

V(y0, y1,∞)) associated with the conditional distribution of X1 | X0 converges with two dis-
tinct normalizations, that is, π (v, dx)

w−→K0(dx) and π (v, v+ dx)
w−→K1(dx) as v→∞, to

the distributions K0 = (θ0 + θ02) FE + (θ01 + θ012) δ+∞ and K1 = (θ0 + θ02) δ−∞ + θ01 G01 +
θ012 G012, respectively, where FE(x)= (1− exp (−x))+, GA(x)= (1+ exp (−x/νA))νA−1, and
δx is a point mass at x ∈ [−∞,∞] [cf. Example 5 in 20]. The distributions K0 and K1 have
their entire mass on (0,∞] and [−∞,∞), respectively. In the first and second normaliza-
tions, a mass of size (1− θ01 − θ012) escapes to +∞ and a mass of size (θ0 + θ02) escapes
to −∞, respectively. As explained by [20], the reason for this behaviour is that the separate
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normalizations are related to two different modes of the conditional distribution of X1 | X0.
This phenomenon also manifests in the conditional distribution of X2 | {X0, X1}, which is
given by

π (x0:1, x2)= (V0V1 − V01)(y0:2)

(V0V1 − V01)(y0:1,∞)
exp (V(y0:1,∞)− V(y0:2)),

where g(f1, f2, f3)(x) := g(f1(x), f2(x), f3(x)) for maps g and fi, i= 1, 2, 3. Here the problem is
more complex, with this transition probability kernel converging with 2 (2k − 1)= 6 distinct
normalizations. Letting

a11,1(v1, v2)=−ν012 log{exp (−v1/ν012)+ exp (−v2/ν012)},
a10,1(v1, v2)= v1, a01,1(v1, v2)= v2, (47)

a11,0(v1, v2)= a01,0(v1, v2)= a10,0(v1, v2)= 0,

one can show that for (x0, x1) ∈R2 and as v→∞,

π ((v+ x0, v+ x1), a11,1(v+ x0, v+ x1)+ dy)
w−→K{1,1},{1}(dy;x0, x1) on [−∞,∞),

π ((v+ x0, v+ x1), a11,0(v+ x0, v+ x1)+ dy)
w−→K{1,1},{0}(dy;x0, x1) on (0,∞],

π ((v+ x0, x1), a10,1(v+ x0, x1)+ dy)
w−→K{1,0},{1}(dy;x0, x1) on [−∞,∞),

π ((v+ x0, x1), a10,0(v+ x0, x1)+ dy)
w−→K{1,0},{0}(dy;x0, x1) on (0,∞],

π ((x0, v+ x1), a01,1(x0, v+ x1)+ dy)
w−→K{0,0},{1}(dy;x0, x1) on [−∞,∞),

π ((x0, v+ x1), a01,0(x0, v+ x1)+ dy)
w−→K{0,1},{0}(dy;x0, x1) on (0,∞],

where the limiting measures are given by

KA,{1} =mA δ−∞ + (1−mA) GA,{1} and KA,{0} =mA GA,{0} + (1−mA) δ∞,

for A ∈ {0, 1}2\{0, 0}, with

mA(x0, x1)=

⎧⎪⎪⎨⎪⎪⎩
{

1+ (
κ012
κ01

)
eλ(x0+x1) Wν01−1(ex0 , ex1 ; ν01)/Wν012−1(ex0 , ex1 ; ν012)

}−1
,

θ0/(θ0 + θ02),

θ1/(θ1 + θ01),

for A= {1, 1}, A= {1, 0}, and A= {0, 1}, respectively, and

G{1,1},{1}(y ; x0, x1)=W2{1, exp (y) ; ν012},
G{1,1},{0}(y ; x0, x1)= FE(y),

G{1,0},{1}(y ; x0, x1)=W1{1, exp (y) ; ν02},
G{1,0},{0}(y ; x0, x1)= [θ1 + θ01{1+W1(1, T(y)/T(x1);ν01)}

+ θ012W1(1, T(y)/T(x1) ; ν012)]g10(x, y),

G{0,1},{1}(y ; x0, x1)=W1{1, exp (y) ; ν01},
G{0,1},{0}(y ; x0, x1)= [θ0 + θ01 + θ02W1(1, T(y)/T(x0) ; ν02)

+ θ012W1(1, T(y)/T(x0) ; ν012)]g01(x, y).
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Here, the function T is defined in (30), κA = θA (νA − 1)/νA, Wp(x, y ; ν)= (x−1/ν + y−1/ν)ν−p,
with x, y> 0, p ∈R, ν ∈ (0, 1),

log g10(x, y)= V(∞, T(x),∞)− V(∞, T(x), T(y)), and

log g01(x, y)= V(T(x),∞,∞)− V(T(x),∞, T(y)).

To help explain the necessity for requiring the normalizing functionals (47) to describe the evo-
lution of an extreme episode after witnessing an extreme event in this second-order Markov
process, it is useful to consider the behaviour of the spectral measure H, defined in Equation
(31), for the initial distribution F012 of this process. Here, the spectral measure H places a
mass of size |A| θA on each subface A ∈P([2]) of 	2 [4], which implies that different subsets
of the variables (Xt−2, Xt−1, Xt) can take their largest values simultaneously; see for example
[30]. Hence, if the Markov process is in an extreme episode at time t− 1, t≥ 3, then it follows
that there are four possibilities for the states (Xt−2, Xt−1); that is, either the variables Xt−2 and
Xt−1 are simultaneously extreme or just one of them is. Consequently, there are two possi-
bilities for the state of the process at time t; that is, the variable Xt can be either extreme or
not, and this is demonstrated by bimodality in the transition probability kernel under all four
distinct possibilities for the states Xt−2 and Xt−1. In total, this gives rise to six distinct pos-
sibilities which necessitate an ‘event-specific’ normalizing functional to guarantee the weak
convergence of the transition probability kernel. This justifies the labelling of the function-
als in (47), where the label (A,b) appearing in the subscript, with A ∈ {0, 1}2 and b ∈ {0, 1},
indicates transitioning from one of four possible configurations (A) at times t− 2 and t− 1
into two possible configurations (b) at time t—with 1 indicating that the state is extreme and
0 otherwise. The case where the Markov process is in an extreme episode at time t− 1, for
t= 2, is handled similarly. There we note that X0 is already extreme, by virtue of the condi-
tioning, and hence there are two possibilities for X0 and X1; that is, either X1 is extreme or it
is not.

Although complex, these modes can be identified by any line determined by the loci of
points ( max (xt−2, xt−1), ζ max (xt−2, xt−1)), where xt−2, xt−1 ∈R, for some ζ ∈ (0, 1), in the
distribution of Xt |max{Xt−2, Xt−1}> v; see panels (b), (c), and (d) of Figure 2, where v is
taken equal to 9. This facilitates accounting for the identification of the normalizing functionals
by introducing the stopping times, TX

0 = 0 a.s., and

TX
j =inf

{
t ∈ (

TX
j−1, TX]

: Xt ≤ ζ max (Xt−2, Xt−1)
}
, j≥ 1,

where

TX=inf{t≥ 2 : Xt−1 ≤ ζ max (Xt−3, Xt−2), Xt ≤ ζ max (Xt−2, Xt−1)},

subject to the convention X−s = 0 for s ∈N\{0}; that is, TX
j , with j≥ 1, is the jth time that ζ

multiplied by the maximum of the previous two states is not exceeded after time 0, and the
termination time TX is the first time after time 0 where two consecutive states did not exceed
ζ times the maximum of their respective two previous states. Define

a1(v)=
{

v, TX
1 > 1,

0, TX
1 = 1,

and bt(v)= 1 for all t≥ 1.
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Then, for t ∈ (
TX

j−1, TX
j

]
, letting

at(v1, v2)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11,1(v1, v2) if t �= TX
j , t− 1 �= TX

j−1, t− 2 �= TX
j−1,

a11,0(v1, v2) if t= TX
j , t− 1 �= TX

j−1, t− 2 �= TX
j−1,

a10,1(v1, v2) if t �= TX
j , t− 1= TX

j−1, t− 2 �= TX
j−1,

a10,0(v1, v2) if t= TX
j , t− 1= TX

j−1, t− 2 �= TX
j−1,

a01,1(v1, v2) if t �= TX
j , t− 1 �= TX

j−1, t− 2= TX
j−1,

a01,0(v1, v2) if t= TX
j , t− 1 �= TX

j−1, t− 2= TX
j−1

yields the hidden tail chain of this process. Specifically, let {Bt : t= 0, 1, . . .} be a sequence
of latent Bernoulli random variables. Define the hitting times TB

j = inf{TB
j−1 < t≤ TB : Bt = 0}

with TB
0 = 0 a.s. and TB = inf{t≥ 2 : Bt−1 = 0, Bt = 0}. Then the hidden tail chain process {Zt}

together with the latent Bernoulli process {Bt} forms a second-order Markov process with
initial distribution (B0, Z0)= (1, 0) a.s., B1 ∼Bern(θ01 + θ02), and

P(Z1 ≤ y | Z0,B0:1)=
{
θ01 G01(y)+ θ012 G012(y), B1 = 1,

FE(y), B1 = 0.

The transition mechanism is given by

Bt |
(
Bt−2 : t−1, Zt−2 : t−1,

{
t≤ TB})∼Bern(m{Bt−2 : t−1}(Zt−2 : t−1)),

and

P
(
Zt ≤ z |Bt−2 : t, Zt−2 : t−1,

{
t≤ TB})=G{Bt−2 : t−1},{Bt}

(
z− aBt−2 : t−1,Bt (Zt−2 : t−1)

)
.

Panel (a) in Figure 2 illustrates a realization from a special case of this second-order Markov
process. This realized path shows that after witnessing an extreme event at time t= 0 the pro-
cess transitions to the body of the process at time t= 1 and then has two extreme states at
t= 2 and t= 3 and two non-extreme states at t= 4 and t= 5. After two non-extreme values
the process has permanently transitioned to its equilibrium, that is, for t= 6, . . . in this real-
ization. The sampling distribution of the average termination time TB of the hidden tail chain
is presented in panel (e), whereas the behaviour of the hidden tail chain conditioned on its
terminating after eight steps, that is, TB = 8, is shown in panel (f ). This shows that whilst at an
extreme state, the average value of Zt is stable through time.

Appendix A. Proofs

A.1. Preparatory results for Theorems 1 and 2

The proofs of Theorems 1 and 2 are based on Lemmas 1 and 2 below, whose proofs are
similar to those of Lemmas 1 and 2 in [20] and are therefore omitted for brevity.

Lemma 1. Let {Xt : t= 0, 1, . . .} be a homogeneous k th-order Markov chain satisfying
Assumption 3. Then, for any g ∈Cb(R) and for each time step t= k, k+ 1, . . . , as v→∞∫

R

g(x)π (At(v, z), at(v)+ bt(v) dx)→
∫
R

g(ψa
t (z)+ψb

t (z) x) K(dx),

and the convergence holds uniformly on compact sets in the variable z ∈Rk.
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Lemma 2. Let {Xt : t= 0, 1, . . .} be a homogeneous k th-order Markov chain satisfying
Assumption 5. Then, for any g ∈Cb([0,∞)) and for each time step t= k, k+ 1, . . ., as
v→∞ ∫

[0,∞)
g(y)π (Bt(v, x), bt+1(v) dy)→

∫
[0,∞)

g(ψb
t (x) y) K(dy),

and the convergence holds uniformly on compact sets in the variable x ∈ [δ1,∞)× · · · ×
[δk,∞) for any (δ1, . . . , δk) ∈ (0,∞)k.

Lemma 3. (Slight variant of [14].) Let (E,d) be a complete locally compact separable metric
space and μn a sequence of probability measures which converges weakly to a probability
measure μ on E as n→∞.

(i) Let ϕn be a uniformly bounded sequence of measurable functions which converges uni-
formly on compact sets of E to a continuous function ϕ. Then ϕ is bounded on E and
limn→∞ μn(ϕn)→μ(ϕ).

(ii) Let F be a topological space. If ϕ ∈Cb(F× E), then the sequence of functions F �
x �→ ∫

E ϕ(x, y)μn(dy) ∈R converges uniformly on compact sets of F to the (necessarily
continuous) function F � x �→ ∫

E ϕ(x, y)μ(dy) ∈R.

A.2. Proofs of Theorems 1 and 2

Preliminaries. Let a0(v)≡ v and b0(v)≡ 1, and define

vu(z0)= u+ σ (u)z0, At(v, x)= at(v)+ bt(v)x, and

At−k : t−1(v, xt−k : t−1)= (At−k(v, xt−k), . . . , At−1(v, xt−1)). (48)

We note that in our notation, when k= 1, the initial conditional distribution of the rescaled
Markov chain is

F0(vu(dz0))

F0(u)
= P

(
X0 − u

σ (u)
∈ dz0 | X0 > u

)
, (49)

whereas when k> 1 it equals the product of the right-hand side of Equation (49) with

π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1)) := P

(
k−1⋂
j=1

{
Xj − aj(X0)

bj(X0)
∈ dzj

} ∣∣∣∣ X0 − u

σ (u)
= z0

)
.

For j ∈ {k, . . . , t} with t≥ k≥ 1 the transition kernels of the rescaled Markov chain can be
written as

π (Aj−k : j−1(vu(z0), zj−1,k), Aj(vu(z0), dzj))

= P

(
Xj − aj(X0)

bj(X0)
∈ dzj

∣∣∣∣ {Xj−i − aj−i(X0)

bj−i(X0)
= zj−i

}
i=1,...,k

)
.

Proof of Theorem 1. Consider, for t≥ k≥ 1, the measures

μ
(u)
t (dz0, . . . , dzt)=

t∏
j=k

π (Aj−k : j−1(vu(z0), zj−k : j−1), Aj(vu(z0), dzj))

×[π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1))]1(k>1) F0(vu(dz0))

F0(u)

https://doi.org/10.1017/apr.2024.47 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.47


34 I. PAPASTATHOPOULOS ET AL.

and

μt(dz0, . . . , dzt)=
t∏

j=k

K

(dzj −ψa
j (zj−k : j−1)

ψb
j (zj−k : j−1)

)
[G(dz1 × · · · × dzk−1)]1(k>1) H0(dz0)

on [0,∞)×R
t, where 1(k> 1) denotes the indicator function of {k> 1}. For f ∈Cb([0,∞)×

R
t), we may write

E

[
f

(
X0 − u

σ (u)
,

X1 − a1(X0)

b1(X0)
, . . . ,

Xt − at(X0)

bt(X0)

) ∣∣∣∣ X0 > u

]
=

=
∫

[0,∞)×Rt
f (z0 : t)μ

(u)
t (dz0, . . . , dzt)

and

E[f (E0, Z1, · · · , Zt) ]=
∫

[0,∞)×Rt
f (z0 : t)μt(dz0, . . . , dzt).

We need to show that μ(u)
t converges weakly to μt. Let g0 ∈Cb([0,∞)) and g ∈Cb(Rk). The

proof is by induction on t. For t= k it suffices to show that∫
[0,∞)×Rk

g0(z0)g(z1, . . . , zk)μ(u)
k (dz0, dz1, . . . , dzk)

=
∫

[0,∞)
g0(z0)

[ ∫
Rk

g(z1 : k)π ((vu(z0),A1 : k−1(vu(z0), z1 : k−1)), Ak(vu(z0), dzk))

π0(vu(z0),A1 : k−1(vu(z0), dz1 : k−1))1(k>1)
]

F0(vu(dz0))

F0(u)
(50)

converges to E(g0(E0)) E(g(Z1, . . . , Zk)).
By Assumptions 2 and 3, the integrand in the term in square brackets in (50) converges

pointwise to a limit and is dominated by

sup
{
g(z) : z ∈Rk}× π ((vu(z0),A1 : k−1(vu(z0), z1 : k−1)), Ak(vu(z0), dzk)).

Lebesgue’s dominated convergence theorem yields that the term in square brackets in (50) is
bounded and converges to E[g(Z1 : k)] for u→∞, since vu(z0)→∞ as u→∞. The conver-
gence holds uniformly in the variable z0 ∈ [0,∞) since σ (u)> 0. Therefore Lemma 3 applies,
which guarantees convergence of the entire term (50) to E(E0) E(g(Z1 : k)) by Assumption 1.

Next, assume that the statement is true for some t> k. It suffices to show that for any
g0 ∈Cb([0,∞)×R

t, g ∈Cb(R),∫
[0,∞)×Rt+1

g0(z0 : t)g(zt+1)μ(u)
t+1(dz0, dz1, . . . , dzt+1)

=
∫

[0,∞)×Rt
g0(z0 : t)

[ ∫
R

g(zt+1)π (At−k+1 : t(vu(z0), zt−k+1 : t), At(vu(z0), dzt+1))

]
μ

(u)
t (dz0, dz1, . . . , dzt) (51)
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converges to∫
[0,∞)×Rt+1

g0(z0 : t)g(zt+1)μt+1(dz0, dz1, . . . , dzt+1)

=
∫

[0,∞)×Rt
g0(z0 : t)

[ ∫
R

g(zt+1)K

(
dzt+1 −ψa

t (zt−k+1 : t)

ψb
t (zt−k+1 : t)

)]
μt(dz0, dz1, . . . , dzt).

(52)

The term in square brackets in (51) is bounded, and by Lemma 1 and Assumptions 2 and 3,
it converges uniformly on compact sets in both variables (z0, zt−k+1 : t) ∈ [0,∞)×R

k jointly,
since σ (u)> 0. Hence the induction hypothesis and Lemma 3 imply the desired result.

Proof of Theorem 2. Define

bt−k : t−1(v, xt−k : t−1)= (bt−k(v) xt−k, . . . , bt−1(v) xt−1).

Consider the measures

μ
(u)
t (dz0, . . . , dzt)=

[ t∏
j=k

π (bj−k : j−1(vu(z0), zj−k : j−1), bj(vu(z0)) dzj)

]

× [π0(vu(z0), b1 : k−1(vu(z0), dz1 : k−1))]1(k>1) F0(vu(dz0))

F0(u)
(53)

and

μt(dz0, . . . , dzt)=
[ t∏

j=k

K

(
dzj

ψb
j (zj−k : j−1)

)]
[G(dz1, . . . , dzk−1)]1(k>1)H0(dz0) (54)

on [0,∞)× [0,∞)t. We may write

E

[
f

(
X0 − u

σ (u)
,

X1

b1(X0)
, . . . ,

Xt

bt(X0)

) ∣∣∣∣ X0 > u

]
=

∫
[0,∞)×[0,∞)t

f (z0 : t)μ
(u)
t (dz0, . . . , dzt)

and

E[f (E0, Z1, . . . , Zt)]=
∫

[0,∞)×[0,∞)t
f (z0 : t)μt(dz0, . . . , dzt)

for f ∈Cb([0,∞)× [0,∞)t). Note that bj(0), j= 1, . . . , t, need not be defined in (53), since
vu(z0)≥ u> 0 for z0 ≥ 0 and sufficiently large u, whereas (54) is well-defined, since the mea-
sures G and K put no mass at any half-plane Cj = {(z1 : k−1) ∈ [0,∞)k−1:zj = 0} ∈ [0,∞)k−1

and at 0 ∈ [0,∞), respectively. Formally, we may set ψb
j (0k)= 1, j= 1, . . . , t, in order to

emphasize that we consider measures on [0,∞)t+1 instead of [0,∞)× (0,∞)t. To prove the
theorem, we need to show that μ(u)

t (dz0, . . . , dzt) converges weakly to μt(dz0, . . . , dzt). The
proof is by induction on t. We show two statements by induction on t:

(I) μ(u)
t (dz0, . . . , dzt) converges weakly to μt(dz0, . . . , dzt) as u ↑∞;

(II) for all ε > 0 there exists δt > 0 such that μt([0,∞)× [0,∞)t−1 × [0, δt])< ε.

We start by proving the case t= k.
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(I) for t= k: It suffices to show that for any g0 ∈Cb([0,∞)) and g ∈Cb([0,∞)k−1),∫
[0,∞)×[0,∞)k−1×[0,∞)

g0(z0)g(z1 : k)μ(u)
1 (dz0, . . . , dzk)

=
∫

[0,∞)
g0(z0)

×
[ ∫

[0,∞)k−1

∫
[0,∞)

g(z1, . . . , zk)π ((vu(z0), b0 : k−1(vu(z0), z0 : k−1)), bk(vu(z0))dzk)

]
× π0(vu(z0), b1 : k−1(vu(z0), dz1 : k−1))

F0(vu(dz0))

F0(u)
(55)

converges to∫
[0,∞)×[0,∞)k

g0(z0)g(z1 : k)μ1(dz0, . . . , dzk)=E(g0(E0))E(g(Z1, . . . , Zk)).

By Assumptions 1 and 5, the integrand in the term in square brackets converges pointwise to a
limit and is dominated by

sup{g(z) : z ∈Rk+} × π ((vu(z0), b1 : k−1(vu(z0), z1 : k−1)), bk(vu(z0)) dzk).

Lebesgue’s dominated convergence theorem yields that the term in square brackets in (55)
is bounded and converges to E(g(Z1 : k)) for u ↑∞, since vu(z0)→∞ for u ↑∞. The con-
vergence is uniform in the variable z0, since σ (u)> 0. Therefore, Lemma 3(i) applies, which
guarantees convergence of the entire term (55) to E(g0(E0))E[g(Z1 : k)] by Assumption 1.
(II) for t= k: Since K({0})= 0, there exists δ > 0 such that K([0, δ])< ε, which immediately
implies μk([0,∞)k × [0, δ])=H0([0,∞)) [G([0,∞)k−1)]1(k>1) K([0, δ])< ε.

Now, let us assume that both statements ((I) and (II)) are proved for some t ∈N.
(I) for t+ 1: It suffices to show that for any g0 ∈Cb([0,∞)× [0,∞)t), g ∈Cb([0,∞)),∫

[0,∞)×[0,∞)t+1
g0(z0 : t)× g(zt+1)μ(u)

t+1(dz0, dz1, . . . , dzt, dzt+1)

=
∫

[0,∞)×[0,∞)t
g0(z0 : t)

×
[ ∫

[0,∞)
g(zt+1)π (bt−k+1 : t(vu(z0), zt−k+1 : t), bt+1(vu(z0)) dzt+1)

]
×μ(u)

t (dz0, dz1, . . . , dzt) (56)

converges to ∫
[0,∞)×[0,∞)t+1 g0(z0 : t)g(zt+1)μt+1(dz0, dz1, . . . , dzt, dzt+1)

= ∫
[0,∞)×[0,∞)t g0(z0 : t)

[ ∫
[0,∞) g(zt+1)K

(
dzt+1/ψ

b
t

(
zt−k+1 : t

))]
×μt(dz0, dz1, . . . , dzt). (57)
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From Lemma 2 and Assumptions 4 and 5 we know that, for any δ > 0, the (bounded) term
in square brackets in (56) converges uniformly on compact sets in the variable zt−k+1 : t ∈∏k

i=1 [δi,∞) to the continuous function∫
[0,∞)

g(ψb
t (zt−k+1 : t)zt+1)K(dzt+1)

(the term in square brackets in (57)). This convergence holds even uniformly on compact
sets in both variables (z0, zt−k+1 : t) ∈ [0,∞)×∏k

i=1 [δi,∞) jointly, since σ (u)> 0. Hence,
the induction hypothesis (I) and Lemma 3(i) imply that for any δ > 0 the integral in (56) con-
verges to the integral in (57) if the integrals with respect to μt and μ(u)

t were restricted to Aδ :=
[0,∞)× [0,∞)t−1 × [δ,∞) (instead of being taken over [0,∞)× [0,∞)t−1 × [0,∞)).

Since g0 and g are bounded, it suffices to control the mass of μt and μ(u)
t on the complement

Ac
δ = [0,∞)× [0,∞)t−1 × [0, δ). For some prescribed ε > 0 it is possible to find some suffi-

ciently small δ > 0 and sufficiently large u so that μt(Ac
δ)< ε and μ(u)

t (Ac
δ)< 2ε. Because of

the induction hypothesis (II), we indeed have μt(Aδt )< ε for some δt > 0. Choose δ = δt/2 and
note that the sets of the form Aδ are nested. Let Cδ be a continuity set of μt with Ac

δ ⊂Cδ ⊂ Ac
2δ .

Then the value of μt on all three sets Ac
δ,Cδ, Ac

2δ is smaller than ε, and by the induction hypoth-

esis (I), the valueμ(u)
t (Cδ) converges toμt(Cδ)< ε. Hence, for sufficiently large u, we also have

μ
(u)
t (Ac

δ)<μ
(u)
t (Cδ)<μt(Cδ)+ ε < 2ε, as desired.

(II) for t+ 1: We have for any δ > 0 and any c> 0

μt+1
(
[0,∞)× [0,∞)t × [0, δ]

)= ∫
[0,∞)×[0,∞)t

K
([

0, δ/ψb
t (zt−k+1 : t)

])
μt(dz0, . . . , dzt).

Splitting the integral according to
{
ψb

t (zt−k+1 : t)> c
}

or
{
ψb

t (zt−k+1 : t)≤ c
}

yields

μt+1([0,∞)× [0,∞)t × [0, δ])≤K([0, δ/c])+μt
(
[0,∞)× [0,∞)t−1 × (

ψb
t

)−1([0, c])
})

.

By Assumption 5(i) and the induction hypothesis (II), we may choose c> 0 sufficiently small
so that the second summand μt([0,∞)× [0,∞)t−1 × (ψb

t )−1([0, c])}) is smaller than ε/2.
Next, since K({0})= 0, it is possible to choose δt+1 = δ > 0 accordingly small so that the first
summand K

([
0, δc

])
is smaller than ε/2, which shows (II) for t+ 1.

A.3. Proofs of Propositions

Proof of Proposition 1. We start by proving that (i) implies (ii). Let 0 := 0k and suppose
there exist at, bt, ψa

t , and ψb
t such that (i) holds. Then, for t= k, k+ 1 . . .,

a(At(v, zv))− a(At(v, 0))

b(At(v, 0))

= a(At(v, zv))− at(v)

bt(v)

bt(v)

b(At(v, 0))
− a(At(v, 0))− at(v)

bt(v)

bt(v)

b(At(v, 0))

→ ψa
t (z)

ψb
t (0)
− ψ

a
t (0)

ψb
t (0)
= ψ

a
t (z)−ψa

t (0)

ψb
t (0)

whenever zv→ z as v→∞,
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and

b(At(v, zv))

b(At(v, 0))
=b(At(v, zv))

bt(v)

bt(v)

b(At(v, 0))
→ ψb

t (z)

ψb
t (0)

whenever zv→ z as v→∞.

Next we prove (ii) implies (i). Let at(v)= a(At(v, 0))− c b(At(v, 0)) and bt(v)= d b(At(v, 0))
for arbitrary constants c ∈R, d ∈R+. Then, for t= k, k+ 1 . . .,

a(At(v, zv))− at(v)

bt(v)
= b(At(v, 0))

bt(v)

[
a(At(v, zv))− a(At(v, 0))

b(At(v, 0))
+ c

]
→λb

t (z)

d
[λa

t (z)+ c] whenever zv→ z ∈Rk as v→∞.

Define ψa
t (z)= (λa

t (z)+ c)/d and ψb
t (z)= λb

t (z)/d. By assumption, λa
t (0)= 0 and λb

t (0)= 1.
Hence, λa

t (z)= [ψa
t (z)−ψa

t (0)]/ψb
t (0) and λb

t (z)=ψb
t (z)/ψb

t (0), which completes the proof.

Proof of Proposition 2. The recurrence relation

αt = c

[ k∑
i=1

γi(γi αt−k+i−1)δ/
(
γ 1+δ

1 + · · · + γ 1+δ
k

)]1/δ

can be converted to the homogeneous linear recurrence relation yt =∑k
i=1 ci yt−k+i−1, where

{yt} =
{
αδt

}
and ci = cδγ 1+δ

i /
(
γ 1+δ

1 + · · · + γ 1+δ
k

)
. Solving the recurrence relation and trans-

forming the solution to the original sequence {αt} leads to the claim.

Proof of Proposition 3. (i) Because aP is 1-homogeneous, a satisfies the property (19). By
the definition of the right-inverse V←0 : k−1 and Assumption 8, we have that, for all (y0 : k−1, q)
in the domain of V←0 : k−1,

V0 : k−1
{
y0 : k−1, V←0 : k−1(q;y0 : k−1)

}
= V0 : k−1(y0 : k−1,∞) KP

{
V←0 : k−1(q;y0 : k−1)/aP(y0 : k−1)

}= q.

Hence V←0 : k−1(q;y0 : k−1)= aP(y0 : k−1) K←P
{
q/V0 : k−1(y0 : k−1,∞)

}
. Taking logarithms, set-

ting y0 : k−1 = ex0 : k−1 , and letting q= p� V0 : k−1(y0 : k−1,∞) where p� satisfies K←P (p�)= 1
gives

a(x0 : k−1)=log V←0 : k−1(p� V0 : k−1(ex0 : k−1 ,∞);ex0 : k−1 )− log K←P (p�).

(ii) Since a satisfies the property (19), Appendix A.7 shows that Assumption 3 holds with limit
distribution K(x;z0 : k−1) given by (42). Using Assumption 8, we further have that under the
normalizing functionals a and b, (42) simplifies to K(x;z0 : k−1)=KP(ex) for all z0 : k−1 ∈Rk.

(iii) The limit distribution K(x;z0 : k−1) in (42) does not depend on z0 : k−1. Because aP is
positive, 1-homogeneous, and continuous, 1 is in the image of aP and thus 0 is in the image
of a. Hence there exists z�0 : k−1 ∈Rk such that a(z�0 : k−1)= 0 and KP(ex)=K(x;z�0 : k−1), which
proves the claim.

A.4. Proof of Corollaries

Proof of Corollary 1. Since a is continuous, we have that a(v1k + zv)− v= a(zv)→ a(z)
whenever zv→ z ∈Rk. Hence the convergence (8) holds true with ψa

t (z)= a(z) and ψb
t (z)= 1.
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For any s ∈N, [1] show that under the assumptions of Corollary 1, the random vector XP =
exp (X0 : s) is multivariate regularly varying; that is, for any A⊂	s,

P

(
XP

‖XP‖ ∈ A, ‖XP‖> v r
∣∣∣ ‖XP‖> v

)
→H(A) r−1, r≥ 1,

where H is a Radon measure on 	s satisfying H(	s)= s+ 1 and
∫
	s wjdH(w0 : s)= 1 for

j= 0, . . . , s. Theorem 1 and Proposition 4 of [8] imply that Zt ∼Gt where

Gt(z)=
∫ q(z)

0
(1−w)Ht(dw) with q(z)= ez/(1+ ez), z ∈R.

Here Ht denotes the lag-t bivariate spectral measure associated with H; that is, for every t≥ 1,
Ht is a Radon measure on 	1 that satisfies Ht(	1)= 2 and

∫
	1 wdHt(w)= 1. Thus, we have

that the expected value of Zt satisfies

E(Zt)=
∫
R

z dGt(z)=
∫
R

z∫
0

du dGt(z)=−
0∫

−∞
Gt(z) dz+

∞∫
0

[1−Gt(z)] dz

=−
1/2∫
0

u∫
0

(1−w) dHt(w) d log
( u

1− u

)
+

1∫
1/2

1∫
u

(1−w) dHt(w) d log
( u

1− u

)

=−
1/2∫
0

1/2∫
w

[
d log

( u

1− u

)]
(1−w) dHt(w)+

1∫
1/2

w∫
1/2

[
d log

( u

1− u

)]
(1−w) dHt(w)

=
∫
	1

log{w/(1−w)} (1−w) dHt(w)< log
( ∫

	1
w dHt(w)

)
= 0.

The strict inequality follows from Jensen’s inequality, the strict concavity of the log function,
and Assumption 2 (ii), which requires Gt to be a non-degenerate distribution. The latter ensures
that Ht �= 2 δ1/2, where δx denotes the Dirac measure at {x}.

Proof of Corollary 2. First we prove the statement that αi < 1 for all i≥ k if the recur-
rence relation (20) holds. Let α�t−k : t−1 := max αt−k : t−1; then when t= k we have α�0 : k−1 = 1
by the conditions of Corollary 2, as α0 = 1. From the relation (20) with t= k we have
that αk = a(α0:k−1)≤ a

(
α�0 : k−11k

)= α�0:k−1a(1k)< 1× 1= 1. Here, the first inequality comes
from the order-preserving property of a, and the second-to-last equality comes from a being
1-homogeneous. The result αt < 1 for all t≥ k follows from induction over t≥ k, noting that
all α�t−k:t−1 < 1 for t≥ k+ 1.

For the remainder of the proof it suffices to show that for at(x)= αt x and bt(x)= xβ , with
αt given by (20), the convergence (8) holds true with ψa

t (z)=∇a(αt−k : t−1) · z and ψb
t (z)=

b(αt−k : t−1), and that αt→ 0 as t→∞. Since a is twice continuously differentiable, we
have

v−β [a(αt−k : t−1 v+ vβ zv)− a(αt−k : t−1 v)]=
=∇a(αt−k : t−1 v) · zv + vβz	v ∇∇	a(αt−k : t−1v)zv +O

(
v2(β−1))

=∇a(αt−k : t−1) · zv + vβ−1z	v ∇∇	a(αt−k : t−1)zv + o
(
vβ−1) as v→∞,
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where the last equality follows because a is 1-homogeneous, which gives that

∇a(αt−k : t−1v)=∇a(αt−k : t−1) and ∇∇	a(αt−k : t−1v)= v−1∇∇	a(αt−k : t−1).

Similarly, because b is continuous and β-homogeneous with β ∈ [0, 1), this gives
v−βb

(
αt−k : t−1 v+ vβ zv

)= b
(
αt−k : t−1 + vβ−1 zv

)→ b(αt−k : t−1), as v→∞. Hence the con-
vergence (8) holds true with ψa

t (z)=∇a(αt−k : t−1) · z and ψb
t (z)= b(αt−k : t−1).

Lastly, we show that αt→ 0 as t→∞. Let f :Rk+→R
k+ with f (x0 : k−1)=

(x1 : k−1, a(x0 : k−1)) for all x0 : k−1 ∈Rk+. Let rt = f kt := f ◦ f ◦ · · · ◦ f , f 0 := id, t= 0, 1, . . .,
denote the (k t)-fold composition of f with itself. Since a is assumed order-preserving and
1-homogeneous, with a(1k)< 1, it follows that the function r is also an order-preserving
1-homogeneous function, mapping R

k+ into R
k+, with r(1k)< 1k componentwise. Since

α0 : k−1 ∈ [0, 1]k and r is order-preserving, we have r(α0 : k−1)< 1k componentwise too. The
latter inequality implies that there exists ν ∈ (0, 1) such that r(α0 : k−1)≤ ν1k. Similarly,
the 2-fold composition of r gives r2(α0 : k−1)= r(r(α0 : k−1))≤ r(ν1k)= ν21k, where the
latter equality follows from the homogeneity of the map r. Likewise, iterating forward yields
rt(α0 : k−1)≤ νt1k→ 0k as t→∞. The claim is proved upon noting that the function r satisfies
{rt(α0 : k−1) : t= 0, 1, . . .} = {αt : t= 0, 1 . . .}.

Proof of Corollary 3. Let log βt = log β + log ( maxi=1,...,k βt−i), and consider the conver-
gence (12). For t= k we have

v−βb
(
vz0, vβz1, . . . , vβzk−1

)= b
(
z0, vβ−1z1, . . . , vβ−1zk−1

)→ b(z0, 0k−1) as v→∞.

For t= k+ 1 we have

v−β2
b
(
vβz0, vβz1, . . . , vβzk−1

)= b(z0, z1, . . . , zk−1),

and for t= k+ j with j ∈ {2, . . . , k− 1} we have

v−β2
b
(
vβz0, . . . v

βzk−j, vβ
2
zk−j+1 . . . , vβ

2
zk−1

)
= b

(
z0, . . . zk−j, vβ(β−1)zk−j+1, . . . , vβ(β−1)zk−1

)→ b(z0, . . . , zk−j, 0j−1) as v→∞.

Iterating forward for t= 2k, 2k+ 1, . . ., we see that the convergence (12) holds with

ψb
t (z)=

⎧⎪⎨⎪⎩
b(z0, 0k−1) when modk(t)= 0,

b(z0, . . . , zk−1) when modk(t)= 1,

b(z0, . . . , zk−j, 0j−1) when modk(t)= j ∈ {2, . . . , k− 1},
which completes the proof.

A.5. Convergence of multivariate normal full conditional distribution

Let XN = (XN,0, . . . , XN,k)∼N (0k+1,�), where � ∈R(k+1)×(k+1) is a positive definite
correlation matrix with (i+ 1, j+ 1) element ρij, i, j= 0, . . . , k. Let Q=�−1 and write qij

for its (i+ 1, j+ 1) element, i, j= 0, . . . , k. For k≥ 1 and z0 : k−1 ∈Rk, the conditional distri-
bution of XN,k given XN,0 : k−1 = z0 : k−1 is normal with mean −q−1

kk

∑k−1
i=0 qik zi and variance

q−1
kk . Let X= (X0, . . . , Xk) with Xi =− log{1−�(XN,i)}, so that Xi ∼ Exp(1) for i= 0, . . . , k.
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Following the strategy outlined in Section 5.1, we have that for any t≥ k≥ 1,

P(Xk < a(X0 : k−1) |X0 : k−1 =At(v, z0 : k−1))

=�
[

q1/2
kk

{
�−1

t,v −
k−1∑
i=0

(
− qik

qkk

)
�−1

t−k+i,v

}]
, (58)

where

�−1
i,v := �←[1− exp{−Ai(v, zi)}], for i= t− 1, . . . , t− k,

and

�−1
t,v := �←{1− exp (−[a{At(v, z0 : k−1)}])}.

Now, let t= k. First, we seek a function a such that the conditional probability in Equation
(58) converges to a number p ∈ (0, 1). Suppose that this function satisfies a(at − k : t− 1(v))→
∞ as v→∞. Using standard asymptotic series for the cumulative distribution function of the
standard normal distribution, we have

�−1
i,v={2 Ai(v, zi)}1/2 − log Ai(v, zi)+ log 4π

2{2 Ai(v, zi)}1/2 + o(Ai(v, zi)
−1/2), i= t− k, . . . , t− 1,

�−1
t,v={2 a(At(v, z0 : k−1))}1/2 − log a(At(v, z0 : k−1))+ log 4π

2{2 a(At(z0 : k−1))}1/2
+o(a(At(v, z0 : k−1))−1/2),

as v→∞. Therefore,

�−1
t,v −

k−1∑
i=0

(
− qik

qkk

)
�−1

t−k+i,v

= (2[a{At(v, z0 : k−1)}])1/2 −
k−1∑
i=0

(
− qik

qkk

)
{2 At−k+i,v(zi)}1/2 + o(1), (59)

as v→∞. Substituting in (58), we observe that for the choice of a being a(y0 : k−1)={∑k−1
i=0 (−qik/qkk) |yi|1/2

}2, for y0 : k−1 ∈Rk, the conditions set out in Section 5.1 are met.
In particular, since (59) converges to zero and � is continuous, we have the conditional
probability (58) converging to p= 1/2; that is,

lim
v→∞�

[
q1/2

kk

{
�−1

t,v −
k−1∑
i=0

(
− qik

qkk

)
�−1

t−k+i,v

}]
= 1/2.

Using similar asymptotic series, we have that for b(y0 : k−1)= a(y0 : k−1)1/2 and any xk ∈R,

lim
v→∞ P (Xk < a(X0 : k−1)+ b(X0 : k−1) xk

∣∣∣ X0 : k−1 =At(v, z0 : k−1))

=�{(qkk/2)1/2 xk}. (60)
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The convergence in (60) holds uniformly on compact sets in the variable z0 : k−1 by contin-
uous convergence (see Section 0.1 in [25]). That is, (60) holds true if we replace z0 : k−1 by
z0 : k−1(v) satisfying z0 : k−1(v)→ z0 : k−1 as v→∞, and since the limit function is continu-
ous in z0 : k−1 (constant function), the argument follows. Additionally, we have that for any
αt−k : t−1 ∈ (0, 1]k,

lim
v→∞ v−1/2 [

a
(
αt−k : t−1 v+ v1/2z0 : k−1

)− a(αt−k : t−1 v)
]=∇a(αt−k : t−1) · z0 : k−1,

lim
v→∞ v−1/2 b

(
αt−k : t−1 v+ v1/2z0 : k−1

)= b(αt−k : t−1),

where both convergences hold uniformly on compact sets in the variable z0 : k−1, since mono-
tone increasing functions (in every argument) converge pointwise to a continuous limit. Thus,
Assumption 3 holds true for the special case t= k with

at(v)=
{

k−1∑
i=0

(
− qik

qkk

)
ρ

1/2
t−k+i

}2

v and bt(v)= v1/2.

Finally, observe that the entire argument after (58) remains unchanged if we change t= k to
t= k+ 1. The claim is proved through iteration.

A.6. Convergence of multivariate inverted logistic full conditional distribution

The transition probability kernel of this process is given by (35) with V(x)= ‖x−1/α‖α ,
x ∈Rk+1+ . For t≥ k≥ 1 and z0 : k−1 ∈Rk+, we have that P(Xk/b(X0 : k−1)< 1 |X0 : k−1 =
Bt(v, z0 : k−1)) is equal to

L(v, z0 : k−1) exp
{∥∥Bt(v, x0 : k−1)1/α

∥∥α − ∥∥(Bt(v, z0 : k−1), b{Bt(v, z0 : k−1)})1/α
∥∥α}, (61)

where Bt(v, z0 : k−1)= (Bt−k(v, z0), . . . , Bt−1(v, zk−1)) and L(v, z0 : k−1)= 1+ o(1) for all
z0 : k−1 ∈Rk+ as v→∞.

Now let t= k and set z0 = 1. First, we seek a function b such that the conditional proba-
bility in Equation (61) converges to a number p ∈ (0, 1). Suppose that this function satisfies
b(b0 : k−1(v))→∞ as v→∞ with b(b0 : k−1(v))= o(v). Under this assumption, we have that
as v→∞,

log π inv[Bt(v, z0 : k−1), b{B(v, z0 : k−1)}]
=‖{Bt(v, z0 : k−1)}1/α‖α−‖[{Bt(v, z0 : k−1)}1/α, {b(Bt(v, z0 : k−1))}1/α]‖α+o(1)

=
(

t−1∑
i=t−k

Bi(v, zi)
1/α + [b{Bt(v, z0 : k−1)}]1/α

)α
−

(
t−1∑

i=t−k

Bi(v, zi)
1/α

)α
+ o(1)

=
(

t−1∑
i=t−k

Bi(v, zi)
1/α

)α(
1+ [b{Bt(v, z0 : k−1)}]1/α∑t−1

i=t−k Bi(v, zi)1/α

)α
−

(
t−1∑

i=t−k

Bi(v, zi)
1/α

)α
+ o(1)

=α
(

t−1∑
i=t−k

Bi(v, zi)
1/α

)−(1−α)

[b{Bt(v, z0 : k−1)}]1/α + o(1).

This expression converges to a positive constant provided

b(B(v, z0 : k−1))=O
[{

k−1∑
i=0

Bt(v, zi)
1/α

}α(1−α)]
as v→∞.

https://doi.org/10.1017/apr.2024.47 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2024.47


Extremes of stationary higher-order Markov chains 43

Hence, choosing b equal to b(y)= ‖y1/α‖α(1−α), y ∈Rk+, gives the conditional probability (61)
converging to p= 1− exp (−α), that is,

π inv[Bt(v, z0 : k−1), b{B(v, z0 : k−1)}]→ 1− exp (−α), α ∈ (0, 1),

and generally, we also have that for any xk ∈R+,

lim
v→∞ π

inv(B(v, z0 : k−1), b(B(v, z0 : k−1)) zk)= 1− exp
(−αx1/α

k

)
. (62)

Lastly, we note that the convergence in (62) holds uniformly on compact sets in the vari-
able x0 : k−1 ∈ [δ1,∞)× · · · × [δk,∞) by continuous convergence (see Section 0.1 in [25]).
That is, (62) holds true if we replace z0 : k−1 by z0 : k−1(v) satisfying z0 : k−1(v)→ z0 : k−1 ∈
[δ1,∞)× · · · × [δk,∞) as v→∞, and since the limit function is continuous in z0 : k−1
(constant function), the argument follows.

Let βt satisfy the recurrence relation log βt = log (1− α)+ log ( maxi=1,...,k βt−i) sub-
ject to βi = 1− α for i= 1, . . . , k− 1. For all δ1, . . . , δk > 0 and z0 : k−1 ∈ [δ1,∞)× . . .×
[δk,∞),

v−βt b(Bt(v, zv))→ψb
t (z) whenever zv→ z as v→∞,

where ψb
t > 0 is continuous and has the same form as in Corollary 3. Thus, Assumption 5

holds for the special case t= k with bt(v)= vβt .
Finally, observe that the entire argument after (61) remains unchanged if we change t= k

to t= k+ 1. The claim is proved through iteration.

A.7. Convergence of max-stable full conditional distribution—no mass on boundary

Suppose that a(v1k)→∞ as v→∞. Let �k−1 denote the set of partitions of [k− 1]=
{0, . . . , k− 1}. Then, for z0 : k−1 ∈Rk and with some rearrangement, P(Xk < a(X0 : k−1) |
X0 : k−1 =At(v, z0 : k−1)) is equal to

1+∑
p∈�k−1\[k−1] (−1)|p|{∏J∈p VJ(y0 : k)}/V0 : k−1(y0 : k)

1+∑
p∈�k−1\[k−1] (−1)|p|{∏J∈p VJ(y0 : k−1,∞)}/V0 : k−1(y0 : k−1,∞)

× V0 : k−1(y0 : k)

V0 : k−1(y0 : k−1,∞)
× exp{V(y0 : k−1,∞)− V(y0 : k)}, (63)

where

y0 : k−1=−1/ log [1− exp{−At(v, z0 : k−1)}] and

yk=−1/ log [1− exp{−a(At(v, z0 : k−1))}].
Since VJ is a −(|J| + 1)-homogeneous function [4], it follows that∏

J∈p VJ(y0 : k)

V[k−1](y0 : k)
=O( exp{(1− |p|) v}),

∏
J∈p VJ(y0 : k−1,∞)

V[k−1](y0 : k−1,∞)
=O( exp{(1− |p|) v}), (64)

as v→∞. Because |p| ≥ 2 for any p ∈�k−1\[k− 1], it follows that the first fraction in (63)
converges to unity as v→∞, whereas the homogeneity property of the exponent function V
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also guarantees that the last term in (63) converges to unity since V(y0 : k−1,∞)=O{exp (−v)}
and V(y0 : k)=O{exp (−v)}. This leads to

P(Xk < a(X0 : k−1) |X0 : k−1 =At(v, z0 : k−1))= V[0 : k−1](y0 : k−1, yk)

V[0 : k−1](y0 : k−1,∞)
(1+ o(1)), (65)

as v→∞. Therefore, for any functional a satisfying the property (19), we have

lim
v→∞

V0 : k−1(y0 : k−1, yk)

V0 : k−1(y0 : k−1,∞)
=V0 : k−1[ exp (z0 : k−1), exp{a(z0 : k−1)}]

V0 : k−1[ exp{z0 : k−1,∞}] . (66)

Similarly, for xk ∈R, P(Xk < a(X0 : k−1)+ xk |X0 : k−1 =At(v, z0 : k−1)) converges to K given
by (42). The convergence in (66) holds uniformly on compact sets in the variable z0 : k−1
by continuous convergence (see Section 0.1 in [25]). That is, (66) holds true if we replace
z0 : k−1 by z0 : k−1(v) satisfying z0 : k−1(v)→ z0 : k−1 as v→∞, and since the limit function is
continuous in z0 : k−1, the argument follows.

A.8. Convergence of logistic full conditional distribution

Under Assumption 3, (65) implies that for all z0 : k−1 ∈Rk,

P (Xk < a(X0 : k−1) |X0 : k−1=At(v, z0 : k−1))=
[

1+ exp{−a(y0 : k−1)/α}∥∥ exp (−y0 : k−1/α)
∥∥
]α−k

×(1+ o(1))

as v→∞, where y0 : k−1 =−1/ log [1− exp{−At(v, z0 : k−1)}]. Choosing a to be a(z0 : k−1)=
−α log {‖exp (−z0 : k−1/α)‖}, we see that

lim
v→∞ P(Xk < a(X0 : k−1) |X0 : k−1 =Av(z0 : k−1))= 2α−k ∈ (0, 1),

and more generally, for any xk ∈R,

lim
v→∞ P(Xk < a(X0 : k−1)+ xk |X0 : k−1 =At(v, z0 : k−1))= {1+ exp (−xk/α)}α−k.

The limit distribution does not depend on z0 : k−1 since a satisfies the property (19).

A.9. Convergence of Hüsler–Reiss full conditional distribution

Equation (15) of [34] and (65) imply that for all z0 : k−1 ∈Rk,

P(Xk < a(X0 : k−1) |X0 : k−1 =Av(z0 : k−1))

=�[τ−1{a(Av(z0 : k−1))−μ(Av(z0 : k−1))}](1+ o(1))

as v→∞. Here� denotes the cumulative distribution function of the standard normal distribu-
tion, and μ(y0 : k−1)=−τ(K	01CK10 · y0 : k−1 +K	01�

−11	k+1/1
	
k+1q

)
, where τ−1 =K	01CK01,

C= (
�−1 − qq	/1	k+1q

)
is a (k+ 1)× (k+ 1) matrix of rank k, q=�−1 1k+1, and

K10 =
(

Ik

01,k

)
, K01 =

(
0k,1

1

)
.
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Choosing a to be a(z0 : k−1)=−τK	01CK10 · z0 : k−1, we see that for any xk ∈R,

lim
v→∞ P(Xk < a(X0 : k−1)+ xk |X0 : k−1)

=At(v, z0 : k−1))=�[{
xk + τ

(
K	01�

−11	k+1/1
	
k+1q

)}
/τ

]
.

The limit distribution does not depend on z0 : k−1, since a satisfies the property (19). The
latter follows from the properties K10 · 1k = 1k+1 −K01 and C · 1k+1 = 0k+1,1, which give
−τ K	01CK10 · 1k = 1.
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