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Abstract

We investigate the tail behavior of the first-passage time for Sinai’s random walk in
a random environment. Our method relies on the connection between Sinai’s walk
and branching processes with immigration in a random environment, and the analy-
sis on some important quantities of these branching processes such as extinction time,
maximum population, and total population.
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1. Introduction and results

Random walks in a random environment (RWRE, for short) model the displacement of a
particle in an inhomogeneous medium. We are concerned with nearest-neighbor RWRE on Z,
in which case the space of environments may be identified with � = [0, 1]Z, endowed with the
cylindrical σ -field F . Environments ω = {ωx}x∈Z ∈ � are chosen according to a probability
measure P on (�,F). Given the value of ω, we define {Xn}n≥0 as a random walk in a random
environment, which is a Markov chain whose distribution is denoted by Pω and called the
quenched law. The transition probabilities of {Xn}n≥0 are as follows: X0 = 0 and, for n ≥ 0 and
x ∈Z, Pω(Xn+1 = x + 1 | Xn = x) = ωx = 1 − Pω(Xn+1 = x − 1 | Xn = x).

Let ZN be the space for the paths of the random walk {Xn}n≥0, and G denote the σ -field gen-
erated by the cylinder sets. Note that for each ω ∈ �, Pω is a probability measure on (ZN, G),
and for each G ∈ G, Pω(G) : (�,F) → [0, 1] is a measurable function of ω. Thus, the annealed
law for the random walk in a random environment {Xn}n≥0 is defined by

P(F × G) =
∫

F
Pω(G)P(dω), F ∈F , G ∈ G.

For ease of notation, we will use P to refer to the marginal on the space of environments or
paths, i.e. P(F) = P(F ×Z

N) for F ∈F , and P(G) = P(� × G) for G ∈ G. Expectations under
the law P will be written E.

Throughout the paper, we will make the following assumptions.
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2 W. HONG AND M. SUN

Assumption 1.1. The environment ω = {ωx}x∈Z is an independent and identically distributed
(i.i.d.) sequence of random variables and uniformly elliptic, i.e. there exists a constant 0 < β <
1
2 such that P(β ≤ ω0 ≤ 1 − β) = 1.

Assumption 1.2.

E

[
log

(
1 − ω0

ω0

)]
= 0, (1.1)

σ 2 := Var

[
log

(
1 − ω0

ω0

)]
∈ (0, ∞). (1.2)

Assumption 1.1 is a commonly adopted technical condition that implies that, P almost
surely (P-a.s.), ∣∣∣∣ log

(
1 − ω0

ω0

)∣∣∣∣≤ log

(
1 − β

β

)
=: M1. (1.3)

Condition (1.1) ensures, according to [19], that {Xn}n≥0 is recurrent, i.e. P-a.s.,

lim inf
n→∞ Xn = −∞, lim sup

n→∞
Xn = +∞. (1.4)

Finally, condition (1.2) simply excludes the case of a usual homogeneous random walk.
Recurrent RWRE is well known for its slowdown phenomenon. Indeed, under

Assumptions 1.1 and 1.2, it was proved by Sinai in [18] that Xn/( log n)2 converges in dis-
tribution to a non-degenerate limit. The rate ( log n)2 is in complete contrast with the typical
magnitude of order

√
n for a usual simple symmetric random walk. Recurrent RWRE will thus

be referred to as Sinai’s walk. A lot more is known about this model; we refer to the survey in
[21] for limit theorems, large-deviation results, and for further references.

In this paper, we are interested in the persistence probability of the random walk in a random
environment. More precisely, we define the first-passage time for {Xn}n≥0 as follows:

σx := inf{n ≥ 0: x + Xn < 0}, x ∈N,

which is a.s. finite for any x ∈N due to (1.4). It is natural to consider the asymptotic behavior
of P(σx > n) as n → ∞, which is the so-called persistence probability. The study of the first-
passage times for random walks is a classical theme in probability theory. When {Xn}n≥0 is a
homogeneous random walk, the following elegant result [10, 17] is deduced from the famous
Wiener–Hopf factorization: if limn→∞ P(Xn > 0) = ρ ∈ (0, 1), then, for every fixed x ≥ 0,

P(σx > n) ∼ V(x)nρ−1l(n) as n → ∞, (1.5)

where V(x) denotes the renewal function corresponding to the descending ladder height pro-
cess and l(n) is a slowly varying function at infinity. Recent progress has been made for random
walks with non-identically distributed increments, integrated random walks, and more gen-
eral Markov walks; see, for example, [7–9, 13]. The tail behavior of first-passage times for
these models is derived via a strong coupling method and based on the existence of harmonic
functions.

For a random walk in an i.i.d. random environment, the persistence probability for x = 0 has
also been known for a long time.

Theorem 1.1. ([3].) Under Assumptions 1.1 and 1.2, there exists a positive constant C such
that, as n → ∞, P(σ0 > n) ∼ C/log n.
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First-passage time for Sinai’s RWRE 3

This result is based on the connection between σ0 and the total population of a branching
process in a random environment (BPRE). Recently, [5] studied the tail behavior of σ0 for
a random walk in some correlated environment, and directly calculated the upper and lower
bound of P(σ0 > n) with an error term that is slowly varying at infinity.

It is known that when {Xn}n≥0 is a Markov process, the asymptotics of P(σx > n) will
not drastically depend on x [6], i.e. P(σx > n) 
 P(σ0 > n) for any x ≥ 0. However, under the
annealed law the RWRE is not a Markov process since the past history gives information about
the environment. In this paper, we are concerned with the persistence probability of an RWRE
for any fixed x ∈N, i.e. the asymptotic behavior as n → ∞ of

P(σx > n) = P

(
min
k≤n

Xk ≥ −x
)

.

The main result of this paper can be stated as follows.

Theorem 1.2. Under Assumptions 1.1 and 1.2, for any x ∈N there exists a positive constant
C(x) such that, as n → ∞, P(σx > n) ∼ C(x)/log n.

Remark 1.1. It is well known that the constant C(x) in the persistence probability is a harmonic
function for a wide class of Markov processes; see, e.g., (1.5). However, we cannot expect the
harmonic property of C(x) in Theorem 1.2, since the RWRE is not a Markov process under P.
Nonetheless, this constant dependent on x can be explicitly formulated as follows:

C(x) = σ

√
π

2

x∑
k=0

c̃k, x ∈N,

where c̃k, k ≥ 0, are some positive constants; see (3.20). Our method is a generalization of
the arguments in [3] that relate the first-passage time σx to the total population of a branching
process with immigration in a random environment (BPIRE). In particular, C(0) equals the
constant C in Theorem 1.1 when x = 0.

The rest of the paper is organized as follows. In Section 2, we first recall the well-known
connection between Sinai’s walks and critical branching processes with immigration in a ran-
dom environment, then study some important quantities of these branching processes that
imply Theorem 1.2 as a corollary. In Section 3 we introduce a change of measure by means of
the associated random walk, which plays an important role in the study of BPIREs, and then
prove Theorem 2.1. Section 4 contains some useful conditioned limit results that may be of
independent interest, and the proof of Theorem 2.2.

2. Connection with BPIREs

We first recall the connection of random walks in a random environment with branching pro-
cesses with immigration in a random environment (see, e.g., [3, 15]), and study some important
quantities of BPIREs. For any fixed x ∈N, we consider a process defined by the upcrossing of
{Xn}n≥0,

Zx
n := #{k < σx : Xk = n − x − 1, Xk+1 = n − x}, n ≥ 0.

In other words, Zx
n is the number of steps from n − x − 1 to n − x made by the RWRE {Xn}n≥0

before reaching the site below −x.
Another description is as follows: let ξi,n be the number of steps (n − x → n − x + 1)

between the ith and the (i + 1)th steps (n − x − 1 → n − x) for n ≥ 0 and i ≥ 1. Observe that,
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given the value of ω, {ξi,n}i≥0 are i.i.d. geometric-distribution random variables with generating
function

fn(s) = 1 − ωn−x

1 − ωn−xs
, n ≥ 0,

and {Zx
n}n≥0 satisfies the following recursion:

Zx
0 = 0, Zx

n+1 =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Zx
n+1∑
i=1

ξi,n, 0 ≤ n ≤ x,

Zx
n∑

i=1

ξi,n, n > x.

Therefore, the process {Zx
n}n≥0 evolves as a branching process in a random environment with

one immigrant each unit of time before the xth generation. Note that we can reformulate the
first-passage time σx of the RWRE {Xn}n≥0 as the total population sizes of {Zx

n}n≥0, i.e.

σx = 1 + x + 2
∞∑

k=0

Zx
k+1. (2.1)

The properties of BPIREs are closely related to the so-called associated random walk
{Sn}n≥0 constituted by the logarithmic mean offspring number, which is defined as follows:

S0 = 0, Sn+1 − Sn = Eω[ξ1,n] = log

(
ωn−x

1 − ωn−x

)
, n ≥ 0.

Then, (1.1) and (1.2) in Assumption 1.2 are respectively equivalent to

E[S1] = 0, E[S2
1] = σ 2 ∈ (0, ∞). (2.2)

For a systematic study of branching processes in random environments under the conditions
in (2.2), we refer to [14].

Our goal in this section is to estimate some important quantities of {Zx
n}n≥0, such as the tail

distributions of its extinction time, of its maximum population, and of its total population; then
Theorem 1.2 can be easily inferred.

Theorem 2.1. For any x ∈N, let Tx = inf{n > x : Zx
n = 0} be the extinction time of {Zx

n}n≥0.
Then, under Assumptions 1.1 and 1.2, there exists a positive constant c(x) such that, as n → ∞,
P(Tx > n) ∼ c(x)/

√
n, where c(x) =∑x

k=0 c̃k; see (3.20) for an explicit expression for c̃k.

Theorem 2.2. Under Assumptions 1.1 and 1.2, if we write C(x) := c(x) · σ√
π/2 for any x ∈N,

then, as n → ∞, P
(

supk≥0 Zx
k > n

)∼ C(x)/log n and

P

( ∞∑
k=0

Zx
k > n

)
∼ C(x)

log n
. (2.3)
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Proof of Theorem 1.2. Combining (2.1) and (2.3), we get that, as n → ∞,

P(σx > n) = P

( ∞∑
k=0

Zx
k >

n − x − 1

2

)
∼ C(x)

log (n − x − 1) − log 2
∼ C(x)

log n
.

Thus, the proof is completed. �

3. Survival probability

3.1. Change of measure

In this section, we introduce a new measure P
+ under which the associated random

walk {Sn}n≥0 is conditioned to stay positive. The strict descending ladder epochs are defined
recursively as follows:

τ0 = 0, τn = inf{k > τn−1 : Sk < Sτn−1}, n ≥ 1. (3.1)

Let U(x) denote the renewal function associated with {−Sτn}n≥0, which is a positive function
defined by U(x) =∑

n≥0 P( − Sτn ≤ x), x ≥ 0. It is well known that U is harmonic for the sub-
Markov process obtained by killed (Sn)n≥0 when entering the negative half-line [20], i.e.

U(x) =E[U(x + S1); x + S1 ≥ 0], x ≥ 0.

Applying this harmonic property of U, we introduce a sequence of probability measures
{P+

(n) : n ≥ 1} on the σ -field An generated by {ωi : − x ≤ i < n − x} and {Zx
i : i ≤ n} by means of

Doob’s h-transform, i.e. dP+
(n) := U(Sn)1{τ1>n}dP. This and Kolmogorov’s extension theorem

show that, on a suitable probability space, there exists a probability measure P+ on the σ -field
A= ∪n≥1An (see [4, 14] for more details) such that P+|An = P

+
(n), n ≥ 1. Under the new mea-

sure P+, the sequence {Sn}n≥0 is a Markov chain with state space [0, ∞), called a random walk
conditioned to stay positive; this terminology is justified by the following convergence result
(see [4, Lemma 2.5]).

Lemma 3.1. Assume that condition (2.2) is valid. Let Y1, Y2, . . . be a uniformly bounded
sequence of real-valued random variables adapted to the filtration A such that the limit
Y∞ := limn→∞ Yn exists P+-a.s. Then limn→∞ E[Yn | τ1 > n] =E

+[Y∞].

3.2. Proof of Theorem 2.1

Proof. Let Zi,j denote the offspring size in the ith generation that are descendants of one
immigrant joining the jth generation of the process, i ≥ j ≥ 0. Clearly, {Zi,j : i ≥ j + 1} forms
a BPRE (with Zj,j equal to 0 rather than 1). It is known (see, e.g., [14, Chapter 1]) that, for
i ≥ j + 1,

Eω

[
sZi,j

]= 1 − aj

ai(1 − s)−1 + bi − bj
,

where an = exp ( − Sn), b0 = 0, and bn =∑n−1
i=0 ai, n ≥ 1. Then we can decompose Zx

n as an
independent sum under the quenched law for n > x: Zx

n = Zn,0 + Zn,1 + · · · + Zn,x. By the
equality

1 − aj

an(1 − s)−1 + bn − bj
= an(1 − s)−1 + bn − bj+1

an(1 − s)−1 + bn − bj
,
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it follows that

gn(s) := Eω[sZx
n ] =

x∏
j=0

Eω

[
sZn,j

]=
x∏

j=0

(
1 − aj

an(1 − s)−1 + bn − bj

)

= an(1 − s)−1 + bn − bx+1

an(1 − s)−1 + bn

= 1 − bx+1

an(1 − s)−1 + bn
. (3.2)

In particular, taking s = 0 in (3.2), we get, for n > x,

Pω(Tx > n) = Pω(Zx
n > 0) = bx+1

an + bn
=
∑x

i=0 e−Si∑n
i=0 e−Si

. (3.3)

Now we are ready to prove Theorem 2.1, i.e. there exists a positive constant c(x) such that

lim
n→∞

√
n P(Tx > n) = lim

n→∞
√

n E

[∑x
i=0 e−Si∑n
i=0 e−Si

]
= c(x). (3.4)

To this end, we adapt the argument that originally came from [16] and was improved in [4] via
the measure change method.

For any 0 ≤ k ≤ x < n, note that

e−Sk∑n
i=0 e−Si

= 1∑k−1
l=0 eSk−Sl +∑n−k

i=0 e−(Sk+i−Sk)
= 1∑k−1

l=0 eSk−Sl +∑n−k
i=0 e−S̃i

,

where S̃i = Sk+i − Sk. In view of this and (3.4), it suffices to show that, for any 0 ≤ k ≤ x, there
exists a positive constant c̃k such that

lim
n→∞

√
n E

[
1∑k−1

l=0 eSk−Sl +∑n
i=0 e−S̃i

]
= c̃k; (3.5)

then Theorem 2.1 holds with c(x) =∑x
k=0 c̃k.

Since the random walk {S̃i}i≥0 is independent of {Sl}l≤k and has the same distribution as
{Si}i≥0, it follows that

E

[
1∑k−1

l=0 eSk−Sl +∑n
i=0 e−S̃i

]
=E

[
E

[
1∑k−1

l=0 eSk−Sl +∑n
i=0 e−S̃i

| S1, . . . , Sk

]]

=
∫ ∞

0
E

[
1

y +∑n
i=0 e−S̃i

]
P

(
k−1∑
l=0

eSk−Sl ∈ dy

)

=
∫ ∞

0
E

[
1

y +∑n
i=0 e−Si

]
P

(
k−1∑
l=0

eSk−Sl ∈ dy

)
. (3.6)

Recall that {τn}n≥0 are the strict descending ladder epochs of the random walk {Sn}n≥0, see
(3.1). According to [14, Theorem 4.6], there exists a constant c1 > 0 such that P(τ1 > n) ∼
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c1/
√

n as n → ∞. Since the random variables {τi+1 − τi}i≥0 are i.i.d., by the results of regular
variation under convolution [12, p. 278], for j ≥ 1 and as n → ∞,

P(τj > n) ∼
j−1∑
i=0

P(τi+1 − τi > n) = j P(τ1 > n) ∼ jc1√
n

. (3.7)

Next, we estimate the integrand in (3.6) for any fixed y ∈ (0, ∞). To this end, we split the
range of integration into r + 1 parts (the proper value of r will be determined below):

{τ0 ≤ n < τ1}, {τ1 ≤ n < τ2}, . . . , {τr−1 ≤ n < τr}, {τr ≤ n}.
Step 1. We prove first that there exists a constant A0(y) dependent on y such that

E

[
1

y +∑n
i=0 e−Si

; τ1 > n

]
∼ c1A0(y)√

n
. (3.8)

According to [14, Lemma 5.5],
∑∞

i=0 e−Si < ∞ P
+-a.s.; then, by the fact that 0 <(∑n

i=0 e−Si
)−1 ≤ 1 for n ≥ 0 and applying Lemma 3.1, we get

lim
n→∞ E

[
1

y +∑n
i=0 e−Si

| τ1 > n

]
=E

+
[

1

y +∑∞
i=0 e−Si

]
=: A0(y) > 0.

Thus, (3.8) follows from this and (3.7).

Step 2. For any 1 ≤ j ≤ r − 1, we will show that there exists a constant Aj(y) dependent on y
such that

E

[
1

y +∑n
i=0 e−Si

; τj ≤ n < τj+1

]
∼ c1Aj(y)√

n
. (3.9)

Due to (3.7), we have, for any 0 < δ < 1 and as n → ∞,

P(τj ≤ δn, τj+1 > n) ≥ P(τj ≤ δn, τj+1 − τj > n)

= P(τj ≤ δn) · P(τj+1 − τj > n) ∼ c1√
n

(
1 − jc1√

δn

)
,

which implies that

P(δn < τj ≤ n, τj+1 > n) = P(τj ≤ n < τj+1) − P(τj ≤ δn, τj+1 > n) = o

(
1√
n

)
. (3.10)

In view of (3.10), we consider in place of (3.9) the expression

E

[
1

y +∑n
i=0 e−Si

; τj ≤ δn, τj+1 > n

]
, 0 < δ < 1.

Let Ŝi := Si+τj − Sτj , i ≥ 0. Then, by the strong Markov property, the random walk {Ŝi}i≥0 is
independent of {Sj}j≤τj . Since {τj ≤ δn, τj+1 > n} ⊂ {τj ≤ δn, τj+1 − τj > (1 − δ)n}, and under
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the latter condition,

n∑
i=0

e−Si =
τj−1∑
i=0

e−Si + e−Sτj

(
n∑

i=τj

e−(Si−Sτj )

)
=

τj−1∑
i=0

e−Si + e−Sτj

( n−τj∑
i=0

e−Ŝi

)

≥
τj−1∑
i=0

e−Si + e−Sτj

( (1−δ)n∑
i=0

e−Ŝi

)
,

which implies that

E

[
1

y +∑n
i=0 e−Si

; τj ≤ δn, τj+1 > n

]

≤E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑(1−δ)n
i=0 e−Ŝi

) ; τ̂1 > (1 − δ)n

]

=E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑(1−δ)n
i=0 e−Ŝi

) | τ̂1 > (1 − δ)n

]
· P(τ̂1 > (1 − δ)n). (3.11)

Hence, applying the dominated convergence theorem and Lemma 3.1, we get that

lim
n→∞ E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑(1−δ)n
i=0 e−Ŝi

) | τ̂1 > (1 − δ)n

]

=E

[
lim

n→∞ E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑(1−δ)n
i=0 e−Ŝi

) | τ̂1 > (1 − δ)n, {Sj}j≤τj

]]

=E

[
Ê

+
[

1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑∞
i=0 e−Ŝi

) | {Sj}j≤τj

]]
=: Aj(y), (3.12)

where τ̂1 is the descending ladder epoch of {Ŝi}i≥0, and Ê
+ denotes the corresponding measure

change. Then, combining (3.11), (3.12), and (3.7), we get the following upper bound:

lim sup
n→∞

√
n E

[
1

y +∑n
i=0 e−Si

; τj ≤ δn, τj+1 > n

]
≤ c1Aj(y)√

1 − δ
. (3.13)

Next, we show that the lower bound can be obtained in a similar way. It is easy to see that
{τj ≤ δn, τj+1 > n} ⊃ {τj ≤ δn, τj+1 − τj > n} and, conditioned on the latter event,

n∑
i=0

e−Si =
τj−1∑
i=0

e−Si + e−Sτj

( n−τj∑
i=0

e−Ŝi

)
≤

τj−1∑
i=0

e−Si + e−Sτj

(
n∑

i=0

e−Ŝi

)
.
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Thus, we have

E

[
1

y +∑n
i=0 e−Si

; τj ≤ δn, τj+1 > n

]

≥E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑n
i=0 e−Ŝi

) ; τj ≤ δn, τj+1 − τj > n

]

=E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑n
i=0 e−Ŝi

) ; τ̂1 > n

]

−E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑n
i=0 e−Ŝi

) ; τj > δn, τ̂1 > n

]

=E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑n
i=0 e−Ŝi

) | τ̂1 > n

]
· P(τ̂1 > n) − o

(
1√
n

)
, (3.14)

where the last equality follows from

E

[
1

y +∑τj−1
i=0 e−Si + e−Sτj

(∑n
i=0 e−Ŝi

) ; τj > δn, τ̂1 > n

]
≤ P(τj > δn) · P(τ̂1 > n)

∼ jc1√
δn

· c1√
n

= o

(
1√
n

)
.

By the dominated convergence theorem, (3.7), and (3.14), we get the following lower bound:

lim inf
n→∞

√
n E

[
1

y +∑n
i=0 e−Si

; τj ≤ δn, τj+1 > n

]
≥ c1Aj(y). (3.15)

In view of (3.10), (3.13), and (3.15), we obtain that

c1Aj(y) ≤ lim inf
n→∞

√
n E

[
1

y +∑n
i=0 e−Si

; τj ≤ n < τj+1

]

≤ lim sup
n→∞

√
n E

[
1

y +∑n
i=0 e−Si

; τj ≤ n < τj+1

]
≤ c1Aj(y)√

1 − δ
.

Then (3.9) holds true since δ ∈ (0, 1) can be arbitrarily small.

Step 3. Finally, we turn to the estimation of

E

[
1

y +∑n
i=0 e−Si

; τr ≤ n

]
, (3.16)
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and decompose the range of integration into two parts: {τr ≤ (1 − δ)n} and {(1 − δ)n < τr ≤ n}.
By (3.7), the expectation of (3.16) over the second of these intervals is not greater than

P((1 − δ)n < τr ≤ n) ∼
(

1√
1 − δ

− 1

)
c1r√

n
as n → ∞,

and over the first it is not greater than

E

[
1

y +∑τr+δn
i=τr

e−Si
; τr ≤ (1 − δ)n

]
≤E

[
eSτr∑δn

i=0 e−Ŝi

]
= (

E
[
eSτ1

])r
E

[
1∑δn

i=0 e−Ŝi

]
.

(3.17)
Note that 0 <E

[
eSτ1

]
< 1. According to [16, Theorem 1], the second factor on the right-

hand side of (3.17) is asymptotically no greater than c2/
√

δn. Bringing together the estimates
obtained, we find that, for sufficiently large n,

E

[
1

y +∑n
i=0 e−Si

; τr ≤ n

]
≤
[

c1r

(
1√

1 − δ
− 1

)
+ c2

(
E
[
eSτ1

])r

√
δ

]
1√
n

. (3.18)

Choosing δ = 1/r2, for sufficiently large r, we can make the factor in square brackets on the
right-hand side of (3.18) smaller than any pre-assigned ε > 0. Combining this and (3.8), (3.9),
and (3.18), we get that, for sufficiently large r and all large enough n (depending on r and ε),∣∣∣∣∣√n E

[
1

y +∑n
i=0 e−Si

]
− c1

r−1∑
j=0

Aj(y)

∣∣∣∣∣< 2ε.

This means that the sequence {
√

n E

[
1

y +∑n
i=0 e−Si

]}
n≥0

is bounded. But then for any fixed y the sequence
{∑r

j=0 Aj(y)
}

r≥0 is also bounded, and hence

the series
∑∞

j=0 Aj(y) converges. Thus we have, for any fixed y,

lim
n→∞

√
n E

[
1

y +∑n
i=0 e−Si

]
= c1

∞∑
j=0

Aj(y) ∈ (0, ∞). (3.19)

Writing Ln := min (Sk : 0 ≤ k ≤ n), by [16, Theorem A] we have, for y ≥ 0,

∞∑
j=0

Aj(y) ≤ lim
n→∞

√
n E

[
1∑n

i=0 e−Si

]
≤ lim

n→∞
√

n E[eLn] = Û(1)e−c−
√

π
,

where Û(1) = ∫∞
0 e−x dU(x). From this, (3.19), and applying the dominated convergence

theorem, we get that
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lim
n→∞

√
n E

[
1∑k−1

l=0 eSk−Sl +∑n
i=0 e−S̃i

]

= lim
n→∞

√
n
∫ ∞

0
E

[
1

y +∑n
i=0 e−Si

]
P

(
k−1∑
l=0

eSk−Sl ∈ dy

)

= c1

∫ ∞

0

∞∑
j=0

Aj(y) P

(
k−1∑
l=0

eSk−Sl ∈ dy

)
=: c̃k ∈ (0, ∞). (3.20)

Hence, (3.5) is valid and Theorem 2.1 holds with c(x) =∑x
k=0 c̃k. �

4. Maximal population and total population

4.1. Preliminary results

In this section, we give some useful lemmas that will be used for the proof of conditioned
limit results in the next section.

Lemma 4.1. Assume that condition (2.2) is valid. Let Y1, Y2, . . . be a uniformly bounded
sequence of non-negative random variables adapted to the filtration A such that for any fixed
j ≥ 0 the limit

lim
n→∞ E[Yn · 1{Tx>n} | τj ≤ n < τj+1] = aj (4.1)

exists. Then the limit limn→∞ E[Yn | Tx > n] = (c1/c(x))
∑∞

j=0 aj exists.

Proof. Note that

E[Yn | Tx > n] =
∞∑

j=0

E[Yn · 1{τj≤n<τj+1} | Tx > n]

=
∞∑

j=0

P(τj ≤ n < τj+1)

P(Tx > n)
E[Yn · 1{Tx>n} | τj ≤ n < τj+1]

=: Fm(n) + Rm(n), (4.2)

where Fm(n) is the sum of the first m terms of the last but one series, and Rm(n) is the
corresponding remainder term. By (3.7), (4.1), and Theorem 2.1, we get

lim
n→∞ Fm(n) = c1

c(x)

m−1∑
j=0

aj.

We assume that the sequence {Yn}n≥1 is uniformly bounded by some positive constant M2.
Then we have Fm(n) ≤E[Yn | Tx > n] ≤ M2 for any m, n ≥ 1, hence the limit

lim
m→∞ lim

n→∞ Fm(n) = c1

c(x)

∞∑
j=0

aj (4.3)

exists and is finite. On the other hand, observe that

Rm(n) ≤ M2 ·
∞∑

j=m

P(Tx > n, τj ≤ n < τj+1)

P(Tx > n)
= M2 · P(Tx > n, τm ≤ n)

P(Tx > n)
. (4.4)
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By the uniformly elliptic condition (1.3), it follows that, for any 0 ≤ i ≤ x,

e−jM1 ≤ e−Si ≤ ejM1 , P-a.s. (4.5)

Combining this with choosing δ = 1/r2 in (3.18), we obtain that

lim
m→∞ lim sup

n→∞
√

n P(Tx > n, τm ≤ n)

= lim
m→∞ lim sup

n→∞
√

n E

[∑x
i=0 e−Si∑n
i=0 e−Si

; τm ≤ n

]

≤ ejM1 (x + 1) lim
m→∞ lim sup

n→∞
√

n E

[
1∑n

i=0 e−Si
; τm ≤ n

]

≤ ejM1 (x + 1) lim
m→∞

(
c1

m(1 − 1/m2)
+ c2m

(
E
[
eSτ1

])m
)

= 0. (4.6)

In view of (4.4), (4.6), and Theorem 2.1, we get that

lim
m→∞ lim sup

n→∞
Rm(n) = 0. (4.7)

Thus, we conclude the proof of Lemma 4.1 by combining (4.2), (4.3), and (4.7). �

We will use the following result [1, Lemma 3] concerning the behavior of the processes
{an}n≥0 and {bn}n≥0 conditioned on the event {τj ≤ n < τj+1} for any j ≥ 0.

Lemma 4.2. Assume that condition (2.2) is valid. Let
f.d.d.−→ denote convergence in the sense of

finite-dimensional distributions. Then, for any fixed j ≥ 0, as n → ∞,

{a[nt] : t ∈ (0, 1] | τj ≤ n < τj+1} f.d.d.−→ 0,

{b[nt] : t ∈ (0, 1] | τj ≤ n < τj+1} f.d.d.−→ vj,

where vj is a process with constant positive trajectories on (0,1] for any j ≥ 0. Moreover, the
processes {a[nt] : t ∈ (0, 1]}, {b[nt] : t ∈ (0, 1]}, and {S[nt]/σ

√
n : t ∈ [0, ∞)} are asymptotically

independent as n → ∞ conditioned on the event {τj ≤ n < τj+1}.
The next result describes the trajectories of the associated random walk allowing survival.

Lemma 4.3. Assume that condition (2.2) is valid. Let Yn(t) := S[nt]/σ
√

n, t ∈ [0, ∞), n ≥ 0.

Then, for any x ∈N, as n → ∞, {Yn(t) : t ∈ [0, ∞) | Tx > n} d−→ {W+(t) : t ∈ [0, ∞)}, where
{W+(t) : 0 ≤ t ≤ 1} is the Brownian meander and {W+(t) : t > 1} represents the standard

Brownian motion starting from W+(1). The symbol
d−→ denotes convergence in distribution

in the space D[0, ∞).

Proof.
Step 1: The convergence of finite-dimensional distributions. We fix m ∈N and 0 < t1 <

· · · < tm < ∞, xi ∈R, 1 ≤ i ≤ m. Recall that an = exp ( − Sn), b0 = 0, and bn =∑n−1
i=0 ai, n ≥ 1.
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By (3.3), we can write

P(Yn(ti) ≤ xi, 1 ≤ i ≤ m, Tx > n | τj ≤ n < τj+1)

=E[Pω(Tx > n) · 1{Yn(ti)≤xi, 1≤i≤m} | τj ≤ n < τj+1]

=E

[
bx+1

an + bn
· 1{Yn(ti)≤xi, 1≤i≤m} | τj ≤ n < τj+1

]
. (4.8)

Then, applying Lemma 4.2 and [2, Lemma 1], we obtain

lim
n→∞ E

[
bx+1

an + bn
· 1{Yn(ti)≤xi, 1≤i≤m} | τj ≤ n < τj+1

]

= lim
n→∞ E

[
bx+1

an + bn
| τj ≤ n < τj+1

]
· lim

n→∞ P(Yn(ti) ≤ xi, 1 ≤ i ≤ m | τj ≤ n < τj+1)

=E

[
bx+1

vj

]
· P(W+(ti) ≤ xi, 1 ≤ i ≤ m). (4.9)

Combining (4.8), (4.9), and Lemma 4.1, we get that

lim
n→∞ P(Yn(ti) ≤ xi, 1 ≤ i ≤ m | Tx > n)

= c1

c(x)

∞∑
j=0

E

[
bx+1

vj

]
· P(W+(ti) ≤ xi, 1 ≤ i ≤ m). (4.10)

These arguments are valid in the case xi = ∞, 1 ≤ i ≤ m, as well, and therefore

c1

c(x)

∞∑
j=0

E

[
bx+1

vj

]
= 1.

It follows from this and (4.10) that

lim
n→∞ P(Yn(ti) ≤ xi, 1 ≤ i ≤ m | Tx > n) = P(W+(ti) ≤ xi, 1 ≤ i ≤ m). (4.11)

Step 2: Tightness. For a function f ∈ D[u, v], 0 ≤ u < v < ∞, we consider the modulus of
continuity ωf (δ, u, v) = sup |f (s) − f (t)|, where the supremum is taken over all s, t such that
s, t ∈ [u, v], |t − s| < δ, δ ∈ (0, ∞). For any fixed ν, ε ∈ (0, ∞), by [2, Lemma 1] we have, for
any fixed j ≥ 0,

lim
δ↓0

lim sup
n→∞

P(ωYn (δ, 0, ν) ≥ ε, Tx > n | τj ≤ n < τj+1)

≤ lim
δ↓0

lim sup
n→∞

P(ωYn (δ, 0, ν) ≥ ε | τj ≤ n < τj+1) = 0.

Then, applying Lemma 4.1 we get that limδ↓0 lim supn→∞ P(ωYn (δ, 0, ν) ≥ ε | Tx > n) = 0.
We conclude the proof of Lemma 4.3 by combining this with (4.11). �

Lemma 4.4. Assume that condition (2.2) is valid. Then, for any m > k > x,

Eω

[(
Zx

m

eSm
− Zx

k

eSk

)2]
≤ (x + 1) · bx+1(2(bm − bk) + am − ak).
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Proof. Recall that, for n > x, Zx
n = Zn,0 + Zn,1 + · · · + Zn,x, which implies that

Eω

[(
Zx

m

eSm
− Zx

k

eSk

)2]
= Eω

[(∑x
i=0 Zm,i

eSm
−
∑x

i=0 Zk,i

eSk

)2]

≤ (x + 1) ·
x∑

i=0

Eω

[(
Zm,i

eSm
− Zk,i

eSk

)2]
. (4.12)

For each 0 ≤ i ≤ x, since {Zl,i : l ≥ i + 1} is a BPRE, it follows from [3, Lemma 4] that

Eω

[(
Zm,i

eSm
− Zk,i

eSk

)2]
= e−2Si · Eω

[(
Zm,i

eSm−Sj
− Zk,i

eSk−Sj

)2]

= e−2Si ·
(

2
m−1∑
l=k

eSi−Sl + eSi−Sm − eSi−Sk

)

= e−Si · (2(bm − bk) + am − ak). (4.13)

Thus, we conclude the proof of Lemma 4.4 by combining (4.12) and (4.13). �

4.2. Conditioned limit results

In this section, we derive some Yaglom-type results for the BPIRE introduced in Section 2,
which show that {Zx

n}n≥0 exhibits ‘supercritical’ behavior conditioned on the event {Tx > n} as
n → ∞. The proofs are adapted from the arguments in [2, 3] which are devoted to the analogue
results for BPRE.

Proposition 4.1. Assume that condition (2.2) is valid. Then, for any x ∈N, as n → ∞,{
Zx

[nt]

eS[nt]
: t ∈ (0, 1] | Tx > n

}
d−→ {ηx(t) : 0 < t ≤ 1}, (4.14)

where {ηx(t) : 0 < t ≤ 1} is a stochastic process with a.s. constant paths, i.e. there exists a
random variable ηx, dependent on x, such that P(ηx(t) = ηx, 0 < t ≤ 1) = 1 and P(0 < ηx <

∞) = 1. Convergence in (4.14) means convergence in distribution in the space D[u,1] with
Skorokhod topology for any fixed u ∈ (0, 1).

Proof. Let Xn(t) := Zx
[nt]e

−S[nt] , t ∈ (0, 1]. By (3.2), for any λ ≥ 0,

Eω[e−λXn(1); Tx > n] = gn(e−λan ) − gn(0) = bx+1

an + bn
− bx+1

an(1 − e−λan )−1 + bn
.

Applying Lemma 4.2 gives, for any j ≥ 0,

lim
n→∞ E[e−λXn(1) · 1{Tx>n} | τj ≤ n < τj+1] = lim

n→∞ E[Eω[e−λXn(1); Tx > n] | τj ≤ n < τj+1]

=E

[
bx+1

vj(1 + λvj)

]
.

Then, using Lemma 4.1, we obtain that, for any x ∈N,

lim
n→∞ E[e−λXn(1) | Tx > n] = c1

c(x)

∞∑
j=0

E

[
bx+1

vj(1 + λvj)

]
=: ϕ(λ, x). (4.15)
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The above arguments are valid in the case λ = 0 as well. Therefore,

ϕ(λ, x) ≤ c1

c(x)

∞∑
j=0

E

[
bx+1

vj

]
= 1

for all λ > 0. Then the function series in (4.15) converges uniformly. Combining this and the
dominated convergence theorem gives

lim
λ→0

∞∑
j=0

E

[
bx+1

vj(1 + λvj)

]
=

∞∑
j=0

lim
λ→0

E

[
bx+1

vj(1 + λvj)

]
=

∞∑
j=0

E

[
lim
λ→0

bx+1

vj(1 + λvj)

]

=
∞∑

j=0

E

[
bx+1

vj

]
.

Hence the Laplace transform λ → ϕ(λ, x) is continuous at 0. By the continuity theorem, for
any x ∈N there exists a random variable ηx such that

{Xn(1) | Tx > n} d−→ ηx. (4.16)

Consider the process {ηx(t) : 0 < t ≤ 1} which puts this random variable ηx in correspondence
with each t ∈ (0, 1], i.e. P(ηx(t) = ηx, 0 < t ≤ 1) = 1. We will show that, for any u ∈ (0, 1), as
n → ∞,

{Xn(t) : t ∈ [u, 1] | Tx > n} f.d.d.−→ {ηx(t) : u ≤ t ≤ 1}. (4.17)

By (4.16), it follows that to prove (4.17) it suffices to show that, for any ε > 0,

lim
n→∞ P( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε | Tx > n) = 0. (4.18)

It is easy to see that the process {Zx
ke−Sk}k≥0 is a submartingale under the quenched law Pω;

then, applying Doob’s inequality and Lemma 4.4, we get that

P( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε | τj ≤ un/2, n < τj+1)

=E[Pω( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε) | τj ≤ un/2, n < τj+1]

≤ 1

ε2
·E[Eω[(Xn(t) − Xn(u))2] | τj ≤ un/2, n < τj+1]

≤ x + 1

ε2
·E[bx+1(2(bn − bnu) + an − anu) | τj ≤ un/2, n < τj+1].

By (4.5), bx+1 is bounded from above; then applying [2, Lemma 3] implies that

lim
n→∞ P( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε | τj ≤ un/2, n < τj+1) = 0.

Hence, it follows from (3.10) that limn→∞ P( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε | τj ≤ n < τj+1) =
0. Thus, (4.18) holds true in view of Lemma 4.1. On the other hand, observe that, for any
u ∈ (0, 1) and ε ∈ (0, ∞), ωXn(δ, u, 1) ≤ 2 supt∈[u,1] |Xn(t) − Xn(u)|, which implies that

lim
δ↓0

lim sup
n→∞

P(ωXn (δ, u, 1) ≥ ε | Tx > n)

≤ lim
n→∞ P( supt∈[u,1] |Xn(t) − Xn(u)| ≥ ε/2 | Tx > n) = 0.

Thus, we conclude the proof of Proposition 4.1 by combining this with (4.17). �
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Proposition 4.1 gives no explicit formulas for the limiting distribution of the process
Zx

[nt]e
−S[nt] . Next, we show some conditioned limit results for the process {log Zx

[nt], 0 ≤ t ≤ 1},
which allow for the explicit expression of the limiting distribution.

Proposition 4.2. Assume that condition (2.2) is valid. Then, for any x ∈N, as n → ∞,{
log

(
Zx

[nt] + 1
)

σ
√

n
: t ∈ [0, ∞) | Tx > n

}
d−→ {W+(t ∧ τ ) : t ∈ [0, ∞)},

{
log

(
Zx

[nTx] + 1
)

σ
√

n
: t ∈ [0, 1] | Tx > n

}
d−→

{
W+

0 (t)

α
: t ∈ [0, 1]

}
,

where τ = inf{t > 0: W+(t) = 0}, α is a random variable uniformly distributed on (0,1), and
{W+

0 (t) : t ∈ [0, 1]} is a Brownian excursion independent of α.

Proof. This proposition was proved when x = 0 [3, Theorems 3 and 5]. Note that the
proofs from [3] still work if we replace the lemmas therein with Lemmas 4.1 and 4.3, and
Proposition 4.1. Thus we omit them for the sake of simplicity.

4.3. Proof of Theorem 2.2

Proof. We first prove that, for any x ∈N, there exists a positive constant C(x) such that

lim
n→∞ log n · P( supk≥0 Zx

k > n) = C(x). (4.19)

Note that supk≥0 Zx
k = supt∈[0,1] Zx

[tTx], and therefore it suffices to demonstrate that, as n → ∞,

J(n, x) := P
(

supt∈[0,1] log
(
Zx

[tTx] + 1
)
> n

)∼ C(x)

n
. (4.20)

For any fixed ε > 0, we write

J(n, x) = J1(n, x, ε) + J2(n, x, ε), (4.21)

where

J1(n, x, ε) := P
(

supt∈[0,1] log
(
Zx

[tTx] + 1
)
> n, Tx > εn2),

J2(n, x, ε) := P
(

supt∈[0,1] log
(
Zx

[tTx] + 1
)
> n, Tx ≤ εn2).

It is clear that

J1(n, x, ε) = P
(

supt∈[0,1] log
(
Zx

[tTx] + 1
)
> n | Tx > εn2) · P(Tx > εn2)

= P

(
supt∈[0,1]

log
(
Zx

[tTx] + 1
)

σ
√

n2ε
>

1

σ
√

ε
| Tx > εn2

)
· P(Tx > εn2);

then, applying Proposition 4.2 and Theorem 2.1 gives

lim
n→∞ nJ1(n, x, ε) = c(x)√

ε
· P
(

supt∈[0,1]
W+

0 (t)

α
>

1

σ
√

ε

)
. (4.22)
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Since α is uniformly distributed on (0,1) and independent of W+
0 , we have

lim
ε↓0

1√
ε
P

(
supt∈[0,1]

W+
0 (t)

α
>

1

σ
√

ε

)
= lim

ε↓0

1√
ε

∫ 1

0
P

(
supt∈[0,1] W+

0 (t) >
u

σ
√

ε

)
du

= lim
ε↓0

σ

∫ 1/σ
√

ε

0
P( supt∈[0,1] W+

0 (t) > y) dy

= σE
[

supt∈[0,1] W+
0 (t)

]= σ
√

π/2,

where the last equality follows from [11, Corollary 3.2]. Thus, we conclude that

lim
ε↓0

lim
n→∞ nJ1(n, x, ε) = c(x) · σ√π/2 =: C(x) ∈ (0, ∞). (4.23)

Now we turn to the estimate of J2(n, x, ε). We write a = en − 1, γa = inf{k ≥ 0: Zx
k > a},

and let θ be the left shift operator on environments so that (θkω)y = ωk+y for any k ∈N and
y ∈Z. Note that

Pω( supk≥0 Zx
k > a, Tx ≤ εn2) =

εn2∑
m=0

∑
l>a

Pω(γa = m, Zx
m = l) · (Pθmω(T0 ≤ εn2 − m))l,

which implies that

J2(n, x, ε) =
εn2∑

m=0

∑
l>a

P(γa = m, Zx
m = l) ·E[(Pθmω(T0 ≤ εn2 − m))l]

≤
εn2∑

m=0

∑
l>a

P(γa = m, Zx
m = l) ·E[(Pω(T0 ≤ εn2 − m))a]

= P( supk≥0 Zx
k > a) ·E

[(
1 − 1

aεn2 + bεn2

)en−1]

=: J(n, x) · α(n, ε). (4.24)

Since α(n, ε) < 1, in view of (4.21) and (4.24) we get that

J1(n, x, ε) ≤ J(n, x) ≤ J1(n, x, ε)

1 − α(n, ε)
.

Combining this and (4.23), we obtain that

C(x) = lim
ε↓0

lim
n→∞ nJ1(n, x, ε) ≤ lim inf

n→∞ nJ(n, x) ≤ lim sup
n→∞

nJ(n, x)

≤ lim
ε↓0

lim
n→∞ nJ1(n, x, ε)

1

1 − limε↓0 lim supn→∞ α(n, ε)
= C(x),

where the last equality follows from the fact that limε↓0 lim supn→∞ α(n, ε) = 0 [3, Lemma
4]. Thus, (4.20) holds true and the first part of Theorem 2.2 is proved.
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Now let us prove the second assertion of Theorem 2.2. For any ε ∈ (0, 1), we have

P(Tx · supk≥0 Zx
k > n) ≤ P(Tx > nε) + P( supk≥0 Zx

k > n1−ε);

then, by Theorem 2.1 and (4.19), we get that

lim sup
n→∞

log n · P(Tx · supk≥0 Zx
k > n) ≤ C(x)

1 − ε
. (4.25)

Observe that supk≥0 Zx
k ≤∑∞

k=0 Zx
k ≤ Tx · supk≥0 Zx

k ; combining this and (4.25), we obtain that

C(x) = lim
n→∞ log n · P( supk≥0 Zx

k > n) ≤ lim inf
n→∞ log n · P

( ∞∑
k=0

Zx
k > n

)

≤ lim sup
n→∞

log n · P
( ∞∑

k=0

Zx
k > n

)

≤ lim sup
n→∞

log n · P(Tx · supk≥0 Zx
k > n) ≤ C(x)

1 − ε
,

which proves (2.3) since ε ∈ (0, 1) can be chosen arbitrarily small. Thus, the proof of
Theorem 2.2 is completed. �
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