A REMARK ON THE THEOREMS OF LUSIN AND EGOROFF
Elias Zakon

(received June 20, 1963)

In this note we do not intend to establish new results but
only to suggest a very simple proof of Lusin's theorem, direct
for o -finite regular measures, a proof that bypasses the usual
procedure of first establishing this theorem for sets of finite
measure only. The proposed proof utilizes the notion of sub-
uniform convergence, a method which seems not yet to have
been used, despite its simplicity and adaptability.i) Simultan-
eously, a useful supplement to Egoroff' s theorem will be

obtained.

The note should be easily understood by first year
graduate students and senior undergradutes.

TERMINOLOGY AND NOTATION. A sequence of extended
real valued functions?) {fn} defined on a topological space S

is said to converge subuniformly on a set AC_ S to a function
f if every point pe S has a neighborhood G such that f —f
P

3) n
Notation: fn—>f (subunif. ) on A.

uniformly on A M) Gp.

A similar notation will be used for uniform (unif.) and "almost

1) A different proof was given by Schaerf in [6] and [7], for

functions with values in any space satisfying the second
axiom of countability. For the original theorem of Lusin,
cf.[3]; [4] p- 159; [5] p. 72.

2)

i.e., functions whose values are real numbers and(possibly)t «.
3) o . .
This is stronger than the usual variant of this concept as
defined, e.g., in [4], p. 44, Ex. j.
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everywhere'' (a.e.) convergence. In the sequel, m will denote
a (non-negative) completely additive measure defined on a

o -field M of subsets of S. m is said to be regular if the
measure mA of every set A€ M 1is the infimum of the
measures of all open measurable supersets of A; in this case
S is referred to as a regular measure space. S and m are

0
said to be ¢ -finite if S= () G, for some sequence of sets
k=1
er M, with mGk< o, k=1,2,.... If, in addition, the
sets Gk can be chosen to be open, we use the term c® -finite
instead (Schaerf).

THE THEOREMS. We shall first prove the supplement
to Egoroff's theorem, mentioned above. 4

I. Let the extended real valued functions f, f1, fZ, .

be defined and measurable on a ¢° -finite measure space S.
If f is a.e. finite and if f —-f (a.e.) on S, then, for any
n id-®=- 7108

real €¢> 0, there is a measurable set AC S such that

m(S-A)<e and f - { (subunif.) on A.
22 4 AsubRiat. ) O

0
Proof. By assumption, S= () G, where the G, are
—_—— k k
k=1
open measurable sets of finite measure. Define D1 = G1 and
k-1 ©
D =G - ,» k=2,3,.... = , i
Xk k U G.1 2,3 Then S @) Dk with
i=1 k=1
Dk € M and ka<00, k=1,2,.... Therefore, given ¢ >0,

Egoroff' s theorem yields, for each k, a measurable set

. k
A Cp with m(D -A_)<e€/2 and f — f (unif.) on each
k= k k n

k’
o0
A, separately. Let A = @) A- Then A€M, and
k=1
[¢ o] o o] o0 o0
m(S-A)=m| U D - UA | <m (U (D -A )< = m(D -A_)
k=1 5 k=t N7 k=1 K KTy koK

4
) For the original theorem of Egoroff, see [1]; [2] p-88; or

[4] p. 157; [5] p. 18.
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00
k
< X €/2 =¢. It remains to show that f{ —-{ (subunif.) on A.
k=1 "
For this purpose, fixany p€¢S. Then p is in some Gk, call

it Gk. By definition, all sets Dk with k> k are disjoint

from Gk. A fortiori, so are the sets Akc Dk (k> _15).

Hence G. ~ (U A =9 so that
k
- k>l<

A .
k

Ciw

(1) Ang C
=k

]

i

Now, as f —-{ (unif.) on each A , we also have f - f
n Kk k n
(unif. ) on the finite union O Ak and, by (1), alsoon A f\Gk.
k=1 -
Thus every point p¢€ S has a neighborhood Gk with £ - f
n

(unif.) on A M Gk, as required. This complé—tes the proof.

The significance of this proposition lies in that it relaxes
the finiteness restriction contained in Egoroff' s theorem
(namely the requirement that mS < ®) to that of ¢®-finiteness,
at the expense of replacing uniform convergence by its weaker
subuniform variety. This is probably the most that can be done
in this respect since, as is well known, the ordinary variant of
Egoroff' s theorem cannot be extended to ¢ -finite or ¢°-finite
measures. (Cf. [4], p.158, Ex. e-1i.) It is now easy to obtain
the ¢ -finite version of Lusin's theorem.

II. If f is an a.e. finite extended real valued function,

defined and measurable on a 0 -finite regular measure space S,
then, for every ¢> 0, there is a closed set F( S such that
m(S-F) <e and {f is continuous when restricted to F.

For the proof, we note the almost obvious fact that the
limit of every subuniformly convergent sequence of continuous
functions on a set A 1is itself a continuous function on A, and
that, for regular measures, the notions of ¢ -finiteness and
¢° -finiteness coincide. With these facts established, our
Theorem II follows from I in exactly the same way as the
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original theorem of Lusin is deduced from Egoroff's theorem.
To obtain it, it suffices, e.g., to verbally repeat the proof
given in [4], pp.159-160, with uniform convergence replaced
by subuniform convergence. Thus the o -finite version of
Lusin' s theorem can be obtained with no more effort than its
finite variant, and with practically no change in its standard
proof, once our Theorem I has been established.

FINAL REMARKS. For simplicity, we have limited
ourselves to extended real valued functions. However, a look
at the proof shows that the same method could be applied to
measurable functions with values in any space which admits
Egoroff's theorem®) and an approximation of measurable
functions by simple functions. 6) Indeed, these are the only
prerequisites of the standard proof of Lusin's theorem (quoted
above), and nothing more is required for our theorems I and II.
These requirements can certainly be satisfied in separable
pseudometric spaces and, more generally, in separable uniform
spaces whose uniformity has a countable base ) (since such
spaces are pseudo-metrizable; cf. [8], p.186). Thus this
method of proof is sufficiently general (though probably less
general than Schaerf's) and is so simple that it is easily
adaptable to any course in measure theory.

5
) i.e., in any uniform space T such that Egoroff's theorem

remains valid, with real functions replaced by functions
taking values in T.

6) . . . .
i.e., functions which take only a finite number of values
(each value on some measurable set).

7
) It is not necessary that such a space be a T1- space.
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