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Singular G-Monopoles on S x X
Benjamin H. Smith

Abstract. This article provides an account of the functorial correspondence between irreducible
singular G-monopoles on S! xZ and #-stable meromorphic pairs on Z. A theorem of B. Charbonneau
and J. Hurtubise is thus generalized here from unitary to arbitrary compact, connected gauge groups.
The required distinctions and similarities for unitary versus arbitrary gauge are clearly outlined, and
many parallels are drawn for easy transition. Once the correspondence theorem is complete, the
spectral decomposition is addressed.

1 Introduction

The main goal here is to provide a proof of the bijective Kobayashi-Hitchin type cor-
respondence between the moduli space of singular G-monopoles over S* x ¥ and the
space of t-polystable meromorphic pairs (P, p). Since complex vector bundles are
equivalent to principal GL, (C)-bundles, the results of [1] form a model for the con-
structions and results found here. In this setting, however, we will not have the luxury
of working with the Lie algebra of skew-hermitian matrices, which form an inductive
system. Careful considerations will be made about the properties of the more gen-
eral Lie algebras involved. For this reason, G¢ will denote a complex reductive Lie
group (realizable as the complexification of a compact, connected real reductive Lie
group G).
The main theorem, stated in full generality, is provided as follows.

Theorem 1.1 There is a bijective correspondence between the moduli space

K (G, 8" %2, {(piui) }ily)
of irreducible principal G-monopoles over S' x ¥ with singularities at p; € S' x T of ;-
Dirac type, having degree ko over {0} x < and the moduli space M;,(Z, K, ko) of t-stable
meromorphic pairs (P, y), where P is a holomorphic principal G-bundle of degree kg
over X and y is a meromorphic section of Autg (P) taking the form

Fi(2)pi(z - z:)Gi(2)

when expressed locally near z; with F;, G; holomorphic-invertible and y; a cocharacter
of the complexified gauge group G°.

In less cryptic terminology, this theorem states that one can parameterize the mod-
uli space of G-monopoles over S' x T having singularities of Dirac-type by the more
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tractable complex algebraic moduli space of £-stable meromorphic pairs. There is a
family of these moduli spaces, parameterized by the location of singularities on X and
indexed by the combinatorial data given by the initial degree kg, and “charge” u; of the
bundle at the singularities. That is to say, the real work lies in verifying that a f-stable
meromorphic pair (P, p) is the skeletal information required to uniquely construct a
solution to the monopole equation.

The method used to reconstruct a monopole from its singular data is an interest-
ing application of heat flow on the space of positive hermitian metrics, which, in the
course of doing so, makes use of the celebrated Hopf-fibration. Heuristically, one
wishes to, holomorphically, patch together a G-bundle on S' x £ having the cor-
rect prescribed “twisting”, so as to be in the correct topological isomorphism class.
This is done by patching together a metric (using a partition of unity) that will be a
parametrix of the solution having the correct singular data. Once this metric is de-
fined, the heat flow is employed to evenly distribute the curvature induced by the
metric towards a solution to the monopole equation.

Historically, there have been several results involving classifications of these types,
and the general picture is known as the Kobayashi-Hitchin correspondence. There are
three foundational works in this area, namely, the papers of Donaldson [4, 5] and
Uhlenbeck-Yau [21, 22] in establishing the Kobayashi-Hitchin correspondence for
holomorphic vector bundles on compact Kéhler manifolds [13]. The progression of
these results is the work of many mathematicians, starting with Narasimhan and Se-
shadri [14] for Riemann surfaces, Donaldson [4-6] again for Riemann surfaces and
also algebraic surfaces, and Uhlenbeck and Yau [21,22] for compact Kéhler manifolds.
A careful analysis of heat flow in these settings, and more generally in situations with
singularities, is due to Simpson [19]. A good reference for the completed Kobayashi-
Hitchin correspondence was presented by Lubke and Teleman [13] in great detail and
generality.

In our situation, the solutions to the Bogomolny (monopole) equation are required
to have singularities. In 1988, Simpson [19] provided a short list of assumptions suffi-
cient to guarantee the required long term existence of the heat equation in these cases.
Our domains and initial conditions fit Simpson’s profile (as first employed in [1]), and
so we have the existence of our solutions with the exception of singular neighbour-
hoods that must be considered separately.

It was M. Pauly [15], following unpublished work of Kronheimer, who first dealt
with Dirac-type singular monopoles on 3-balls. He displayed, via a radially extended
version of the Hopf fibration, a correspondence between Dirac-type monopoles on
B*\{0} and smooth S'-invariant anti-self-dual connections on B*\{0}. This was used
to solve the problem of classifying singular Hermitian-Einstein (i.e., G = U(n))
monopoles on S! x X, which was recently worked out by B. Charbonneau and J. Hur-
tubise [1].

Section 2 provides background on the Bogomolny equation and the y-Dirac mono-
pole in the context of principal bundles. The moduli spaces and characteristic classes
of interest are defined and partially analyzed in Section 3. Section 4 is devoted to the
stability theory of monopoles and meromorphic pairs. Proof of the main Theorem 5.1
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is found in Section 5. Finally, in the last section, the abelianization (or spectral decom-
position) of our monopoles is provided along with some examples of Weyl-invariant
compactifications of maximal tori.

2 Background and Basic Objects

Throughout this paper, denote by G¢ a complex reductive Lie group of rank n, its
maximal compact subgroup G, a Riemann surface ¥ with Hermitian metric, a circle
S' of circumference 7 with standard metric and impose the product metric on the
manifold §! x ¥ having coordinates t,z = x + iy.

2.1 Bogomolny Equations and Generalizations

Let P be a principal G°-bundle on §' x %,

Yi=S8"xZ\{p1,.... pn }>

where each p; has coordinates (t;,z;) € S! x = and, purely for the sake of notational
convenience, the t;’s and z;’s are assumed to be distinct. The restriction of P to suffi-
ciently small spheres about each p; comes with a reduction to the maximal real torus
T c G whose transition function on the 2-sphere is given by some cocharacter y;
of T. Suppose that P admits a G-connection V and a section ® € H°(Y,ad(P)) of
the adjoint bundle, called a Higgs field. The triple (P, V, ®) satisfies the Bogomolny
equation if

(21) Fv = *dv(D.

It can be shown that this equation is equivalent to a special case of a reduction from
the anti self-dual (ASD) equations over S' x Y.

Unfortunately, equation (2.1) imposes unnecessarily strong constraints on the first
Chern classes (i.e., that they average to zero in a suitable sense), so the following,
slightly weaker, form will be considered here to allow for solutions with arbitrary de-
gree. That is to say, the triple (P, V, ®) is said to satisfy the Hermitian-Einstein-
Bogomolny (HEB) equation if

(22) Fv -iC- Wy = *dV(D,

where C is in the center, Z(g), of the Lie algebra g = Lie(G) and wy € Q*(X) repre-
sents the Kédhler form of our Riemann surface. The difference here between equations
(2.1) and (2.2) is an extra term that allows for non-zero global central curvature. Note
that central elements of g are invariant under conjugation, and thus may be equiva-
lently viewed as sections of ad(P).

Since our domain is a product manifold, equation (2.2) can be split into compo-
nents as stated in the following lemma.
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Lemma 2.1 The HEB-equation (2.2) can be re-expressed as the following three equa-
tions:
FZ - vtq) = iC)
(2.3) (VYL V- i®]=0
[V, vV, +i®] =0
where Fs, is the surface component of the curvature tensor (i.e, F = Frxwy + -+ ) and

V = vo'dz + vy'dz + V.dt. Note that the third equation is merely the dual of the
second.

Proof This is shown by breaking equation (2.2) into components and remembering
that it is “unitary” (in the G-sense). Extracting the surface component, ¥ = dx A dy,
of (2.2) gives Fy — iC = VO, where the Hodge-star on the right-hand side of (2.2)
takes surface components to time, (), components and vice-versa.

For equation (2.3), extract components (x, t), (¥, t) and combine them. On the left
hand side, the (x, t) component of curvature is realized as the commutator [V, V],
which gives the equation

[V, Vi]-0=-V,0=-[V,,D],

where the negative is recognized as coming from the Hodge-star applied to the or-
dered basis {x, y, t}. Similarly, the (y, t) component is

[Vy, Vi] = Vi@ = [V, D).
Multiplying the second by i and adding these together gives
(Vi +iV,, V] = [-Vy +iV,, @] = [Vy +iV,,id],

and simplification of this gives precisely equation (2.3). ]
2.2 The y-Dirac Monopole

This section is based on standard knowledge of complex line bundles on S?. Through-
out the remainder of this article, let y € X, (T) = Hom(S!, T) be a cocharacter of a
fixed maximal torus T c G.

Definition 2.2  For any real compact torus T, a y-Dirac monopole is a principal

T-bundle over R*\{0} of degree y, equipped with a connection V and Higgs field ¢

satisfying the Hermitian-Einstein-Bogomolny equation (2.2) provided as follows.
On IR?, one has spherical coordinates related to Euclidean by

(t,x,y) = (Rcos@,Rcosysin 6, Rsinysin 0)
and volume form
dV = R*sin 0dRdOdy = —r*drd(cos 0dy).

Forany y € X, (T), define the principal T-bundle L, over R*\{0} by the transition
function g, = u(y) between neighbourhoods U, = R*\{+¢ > 0}. Any section on this
bundle may be expressed by maps o.: U, — T satisfying o_ = g, 0,.
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Now, consider a connection defined locally by Lie-algebra-valued 1-forms

A, = l‘%(il +cos 0)dy,

where y, € Lie(T) is the differential of y evaluated at 0 and the Higgs field ¢ = iz*;‘ .
It is clear that

2R?

so that the pair (V, ¢) satisfies the Bogomolny equation (2.1) and, equivalently, equa-
tion (2.2) with C = 0.

Vo=dp+[A¢]=dp=- e g - *( %d(cos Gdl//)) = *Fy,

If U, represents the open cover of R*\{0} obtained by removing the positive/nega-
tive z-axes, then the overlap U, n U_ is homotopy-equivalent to a circle, and so the
transition functions defining such a bundle can be given, up to homotopy, by a cochar-
acter y € X, (T), and sections o are uniquely expressed as maps 0..: U, — T satisfying
oL =p-o_.

Then one has the following lemma.

Lemma 2.3  The y-Dirac monopoles are all induced from the standard S'-Dirac mono-
pole by the cocharacter € X,.(T).

Proof First note that, as for any bundle over a sphere, the smooth isomorphism class
of any torus bundle is determined by the homotopy classes of maps [S*, T] for which
one can choose a cocharacter y € X, (T) as a representative. Thus, this torus bundle
is isomorphic to the T-bundle induced by y from the line bundle, L; of charge 1 over
R*\{0}. That is, one can consider bundles of the form

Li(p) =Lixa T,

where the diagonal action of S on L, is as usual and via 4 on T.

Having that any T-bundle on R*\{0} realized as L,() for some cocharacter y €
X, (T),itis natural to choose the necessary connection and Higgs field to be obtained
through u as well. Indeed, with connection form defined locally on the open cover
U, = R*\{Fz > 0} as w, = p«(A.) and Higgs field ® := . (¢), where A and ¢ are
the connection and Higgs field for the model Dirac monopole of charge 1, defined in
[1]. It is then tautological to verify that (L;(x), w, @) satisfies the monopole equation.

|

With this identification, there is no need to pursue the structure of the y-Dirac
monopole further. Calculations for the change between holomorphic and unitary
gauges are the same as for vector bundles (cf. [1]).

3 Singular G-monopoles, Holomorphic Structures, and Meromor-
phic Pairs

This section introduces and elaborates on the analytic and topological details involv-
ing both singular G-monopoles on S! x £ and their eventual algebraic equivalent,
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meromorphic pairs. The stability of both is discussed in depth including motivation
and consistency arguments from the standard theory.

A map, J{, from singular monopoles to meromorphic pairs is defined and shown to
preserve stability. This was proved for singular Hermitian-Einstein (U,) monopoles
in [1]. However, their proof relies on an inductive argument on the rank of the group
and does not carry over to arbitrary reductive gauge (e.g., the exceptional Lie group
G, does not admit an inductive system). Here we adapt from similar proofs found in
[11,13] and heavily rely on the fact that, loosely stated, the curvature of holomorphic
subbundles is bounded by the total curvature. This is the essential idea used in the
proof of the Kobayashi-Hitchin correspondence, but here the argument is adapted
for meromorphic Chern forms.

3.1 Singular G-monopoles

For a point p in a three manifold Y, let R represent the geodesic distance to p and use
a normal coordinate system (¢, x, y) centred at p for which the metric in these coor-
dinates is represented by I+ O(R) as R — 0. Let (0, y) represent angular coordinates,
as above, for the y-Dirac monopole on the sphere of constant radius R = ¢ and denote
the open ball defined by R < ¢ by B>

Definition 3.1 A solution (P,V,®) to the HEB equation (2.2) on Y\{p} has a

singularity of u-Dirac type at p if:

e locally, on B*\{p}, P admits a reduction of structure group to T that is G-isomor-
phic (replacing unitarily isomorphic) to the y-Dirac monopole T, and

* under this isomorphism, in the two open sets, U, = R*\{xt > 0}, trivializing P on
B? induced by standard trivializations of the T}, (so that the P-trivializations have
transition function given by p), one has, in both trivializations, that'

®:%+O(l) and V(RO) = O(1).

Furthermore, a solution to equation (2.2) with singularities {p ]}j\’: , of u;j-Dirac type
a is called a singular G-monopole (of Dirac-type).

Remark 3.2 Heuristically, this definition says that a solution with singularity of
Dirac type is locally (in a neighbourhood of a singular point) comparable to a y-Dirac
monopole.

The second part of the definition ensures that the Higgs field respects the local
decomposition of P into Dirac monopoles, and the second constraint, via equation
(2.2), ensures that the curvature is O(R™?) and hence integrable in neighbourhoods
of singularities. Indeed,

0(1)=V(R®)=dRAD®+R-dy®=dRA®+R-(+Fy - »iCl, - ws),

INote here that Us = %\WZO is intended to mimic the formulation in GL,, which reads
idiag(ki,..., kn) = dlw“V:O diag(e'h1v, ..., e'kn¥),
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implying
O(1) + O(R™)

o) +0(1) = O(R™).

*Fy = —(0(1) —dRA D) + *iC - ws =

1
R

The moduli space of irreducible singular G-monopoles on S' x ¥ having Dirac sin-
gularities of type y; at p; = (tj,z;) for j = 1,..., N (defined here simply as a set) is
denoted by

(G S' %2, {(pjr i) i) -
3.2 Holomorphic Structures and Scattering

A holomorphic structure on Y will be an intermediary object, obtained by complex-
ification of P, when passing from monopoles to meromorphic pairs. However, such
objects can be defined independently from those obtained through monopoles.

Definition 3.3 A holomorphic structure on a G°-bundle P° over Y is defined by two
commuting, covariant (local) differential operators

VLT, (P) — To(P) ® (TE®")* and  V{:T,(P) — Te(P)
expressed locally as
(9. +A%")dz and 9, -ig

such that near singularities there exists a reduction to G and V{ has the asymptotics
of a Dirac-singularity.

This definition allows for a tangible notion of a holomorphic section over an odd-
dimensional domain.

Definition 3.4 A (local) section ¢ € Tp(P°) is holomorphic if it is parallel with re-
spect to both V' and V¢. That s, o is holomorphic in the usual sense when restricted
to any complex slice X, and satisfies V{0 = 0 (i.e., respecting the commutative nature
of the operators).

One sees, via equation (2.3) in Lemma 2.1, that the complexification of a mono-
pole (P, V,®) admits a holomorphic structure. Concretely, we have the following
proposition.

Proposition 3.5  There exists a forgetful map from monopoles to holomorphic struc-
tures on Y given by
(P,V,®) — (P, V%', V°),
where VOZ’I = V‘O{’(l)}xz and V¢ =V;—id.
One can apply the following scattering technique to holomorphic structures. The
scattering operator is the second differential operator, V¢, of a holomorphic structure

(also, found as the second term in the commutator from equation (2.3)). This is a
linear first order differential operator in the S'-direction of S' x ¥ and amounts to a
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complex parallel transport” when applied to sections. That is, setting P° := P xg G*
(i.e., the complexification of P), let parallel sections o € Ip(P¢) satisfy Vo = 0.

As usual, whenever the curve [#,t'] x {z} contain no singularities, this provides a
smooth fibre-wise isomorphism,

puiri Py oy — Py

defined more precisely as follows. For each p € P(, ), let y be the unique solution to
vy = 0with y(t) = p. Then p;,»(g) = y(t').

For intervals [ ¢, t'] containing no singularities, integration of the scattering opera-
tor defines an isomorphism between Py, 5 and Py;y.z/. When there is a singularity
at some time #; € (t,t") consider, for simplicity, the singularity at the origin of a chart
for £ with time considerations as —1 < 0 < 1. The result is the following proposition.

Proposition 3.6 ([1, Proposition 2.5])  In holomorphic trivializations at t +1 the scat-
tering map p_1, is locally expressed in the form h(z)u(z)g(z) withh,g:U c C - G
holomorphic, and y: C* — T¢ is a map into a maximal torus of G. Note that the coor-
dinate z has been chosen so that the singularity is at 0.

We say that a map p: U — G admitting this type of local decomposition is encoded
by u at z.

To see the result in the principal bundle setting, note that by [1] it holds in any
representation of G.

3.3 Meromorphic Pairs

As vaguely described in the statement of Theorem 1.1, a meromorphic pair (P, p) is a
holomorphic principal G-bundle P over a Riemann surface ¥ and p € M(Aut(P)) is
a section of Aut(P) that is meromorphic over X.

Definition 3.7 A meromorphic pair of type (4,Z) = {(p1,21)>..., (Un-2n)} isa
pair (P, p) where P is a holomorphic principal G-bundle on X and p € M(Aut(P))
is a meromorphic automorphism of P whose singular data is encoded by the cochar-
acter yj at z; € 2. So then p: P — P is an automorphism of P on the Zariski-open
neighbourhood Z\{z, ..., zn}.

An example of such objects is achieved when considering the forgetful map that
takes the holomorphic structure of a singular G-monopole (P, V, @) to (P, pt,t+1)
where Pf := P, is the restriction of the complexified bundle P¢ on §' x X to some
non-singular time ¢ € S! and p; ;, , is the monodromy obtained from scattering along
S! with V¢ = v, — i®.

Thus, we have the following proposition.

Proposition 3.8  Every holomorphic structure (P€, Vg’l, V¢) onY givesrise to a mero-
morphic pair (P, p) by the restriction of P¢ to any non-singular slice {t} x X and the
monodromy obtained by integrating the scattering operator V¢ around the circle.

%Indeed, when the Higgs field is zero, this is exactly the parallel transport in the ¢-direction.
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The moduli space of meromorphic pairs over T of degree ko and singular type K =
{(uj» z]-)};\]:1 will be denoted by M(Z, kg, K).

3.4 From Singular Monopole to Meromorphic Pair

Define a forgetful map as the composition of maps from monopoles to holomorphic
structures and finally to meromorphic pairs
HM, (G, 8 x 2, {(pi i) bidy) — M(2,K)
as
H(P,V, D) := (P\C{o}xz’PO,r) >

where P, 5 is the restriction of the complexification P° — Y to the slice {0} x
(note that t = 0 is assumed to be a non-singular time) and py,, is the meromorphic
automorphism of Py resulting from the monodromy by scattering all the way around
the circumference S'.

First note that the Pl gyxy component in the image of I is a holomorphic principal
G-bundle over ¥, because the slice {0} x = of S' x T has been chosen so as not to
contain any singular points. Also, since P|‘ o1« is the restriction of a monopole, it is
furthermore already equipped with the holomorphic differential V%' (as shown by
Lemma 2.3).

3.5 The Topology and Degree of a G-bundle on Y

The topological classification for principal G-bundles over a fixed base manifold Y
is given by homotopy classes of maps [Y; BG] where BG is the classifying space of
G. In our case, the base manifold Y is the complement of a finite collection of points
in a compact 3-manifold. Thus, Y deformation retracts (i.e., is homotopic) to a 2-
dimensional CW-complex having (N + 1) cells in dimension 2 (namely Y ~ Y! U Y?
is the skeletal decomposition where Y2 = 2 U (UY, S?) . In fact, since there are N
punctures in Y, the integer second homology is H,(Y;Z) = ZN*1,

With G, a compact, connected real algebraic group, one finds that 0 = 7(G) =
m1(BG), which implies

m(G) = m(BG) = H2(BG),

where the last equivalence is due to Hurewicz’s Theorem since 7;(BG) = 0. Thus,
classification of G-bundles on Y amounts to the classification of the bundles on a
bouquet of (N + 1) 2-spheres, since the 1-skeleton contracts to a point after mapping
to BG.

Considering the characteristic classes obtained by pullback from H?(BG), one has
(by the Universal Coeflicient Theorem and Hurewicz’s Theorem, respectively) that

H?*(BG,R) = H,(BG;R)* =~ H,(BG;Z) ® R = m,(G) ® R.

Following some results involving the theory of Lie groups found in [7], the exact
sequence Z(G) = G - Ad(G) holds for reductive G. Applying the fundamental
group functor then implies

m(Z(G)) - m(G) » m Ad(G).
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Now, 71; Ad(G) is finite implying that, after removing torsion,
m(G)® Rz m(Z(G)) o R.

Characteristic classes for our bundles are constructed from the curvature tensor
Fy € g® Q*(Y) through contraction by a character y: G — S'. Notice that characters
of G factor through the commutator subgroup® (since S' is abelian) and, as a result,
are actually well defined on the quotient G/[G, G]. This quotient group is discretely
equivalent to the center, Z(G), of G in the sense that the right side of the following
exact sequence is a finite covering:

2(G) = G > G/[G, G].
On the level of Lie algebras, however, this induces an exact sequence

2(g) = g g/[9,9]

and hence an isomorphism Z(g) 2 g/[g,g]- Thus, the derivative of a character
dx:g — iR descends to a well-defined map dy:Z(g) — iR. Also, including expo-
nential maps to the diagram, one sees

X
2(G) ——= §!
SXPT expT
dy
exp™ (1) 2(g) — iR,

where exp~*(1) is canonically isomorphic to 7;(Z(G)). In short, to measure the “de-
gree” of a G-monopole (at least, modulo torsion) is to integrate a geometrically rele-
vant differential form along surfaces in S' x . This form should be analogous to the
first Chern class from complex geometry.

With this in mind, given a singular G monopole (P, V,®) on Y, i.e., a solution to

Fv =iC- wy + *dvq)
one seeks to develop the Chern-form of a monopole.
3.6 The Chern-form of a Monopole

The curvature tensor Fy is given as a section of Q%(ad(P)) = ad(P) ® A*T*Y. In
order to obtain a first Chern form (i.e., an element of H*(Y, C)), one must “trace-out”
the Lie algebra portion of this curvature to obtain a gauge-invariant section in Q(Y).
The degree is then measured as an integral of this form over Y. More concretely, to a
basis {e; }¥_, of characters for G, one obtains Chern forms {w; } and thus degree maps
8;:H,(Y) — R that can be adjusted to take integer values as usual.

3Here, [G,G] = {aba b1 € G: a,b ¢ G}.
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3.7 Groups, Representations, and Characters of Importance

The characters of geometric relevance here are the following:

(@) y € X*(G) any character of G. This is used to determine the degree of a mono-
pole and is analogous to complex vector bundles when y = det (the only non-trivial
character of GL, whose derivative at the identity is the usual tr: M,, — C).

(b) x=]|Ad}|e X*(L) the unique character of L (the Levi-subgroup of a maximal
parabolic subgroup H of G) given as the top exterior power of the adjoint represen-
tation of L on u (the corresponding unipotent sub Lie algebra of h). One important
property of this character that is worth mentioning is that the center Z(G) of G lies
in the kernel of this adjoint representation, so that the constant scalar portion of our
curvature tensor does not affect the eventual 2-form. This will be used to measure the
stability of a monopole.

Remark 3.9 In analogy with vector subbundles one is concerned with a maximal
parabolic subgroup H < G along with a corresponding Lie algebra decomposition

_ [1 u
o n)
where ) = [; & [; ® u is according to the Levi decomposition of H L - H - U.

Definition 3.10 'The Chern-form associated with a character y € X*(G) ofa G
bundle P is defined as

i
21
where tr¥ = dx(0) (or also y.) is the derivative of y at the identity.

(P, V,®) = — tr¥(Fy) € Q*(Y),

Then, given a monopole with singularities at 7, we have the following definition.

Definition 3.11  For a character y € X, (G), the (y, f)-degree, of a singular G mono-
pole (P, V, ®) is the integral of the Chern-form

1
(P, Vv, D) ::;fycf((P,V,d))/\dt.

Note Geometrically, this represents the average (along S') of the usual y-degrees
along each holomorphicsslice Py} 5. Note that the degree of a bundle can be evaluated
onany two-cycle of Y (i.e., Hy(S'xZ\{p; } IV, ) islarge), but that a particular choice has
been made here (namely, a weighted sum over all 2-cells in the deformation retraction
of Y as a 2-complex).

3.8 Integration on S' x ¥

For the purpose of integration, write Y := Y\ U;‘i 1 De(p;) to denote a closed subspace
of Y. Thus, Y is the limit of Y, topologically as a nested family of closed subspaces, so
that integration on Y is the limit (as € tends to 0) of integration on Y.

Stokes’ theorem will be of use as

(3.1) I([t—et+e]x E\Depa(py)) =2 =2 = SZ,(p))s
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where 2, denotes the surface {t + €} x T upon restriction to times ¢ + €. Also, even
more handy will be the fact that

9( 8" x De(2))\Beja(pj)) = S' x 9D(z)) = S2)5

corresponding to a cylindrical neighbourhood of radius € about z;
Given a character y € X*(G) of G, define the real valued function

frs\{t,....ty} — R
as

i
Xt:—f X(P,v,D).
PO =5 ] S BT9)

It is clear (from standard theory of Chern classes) that f* is an integer valued func-
tion. Furthermore, we have the following lemma.

Lemma 3.12  The function f defined above is an integer-valued piecewise constant
function on S'\{t;} N, satisfying that for all sufficiently small € > 0 and singular time
t = tj (for some j),
free(P,V) = (P, V) + (X0 1))
If no singular time occurs on the interval [t,t'], then f¥(P,V) = f}(P, V), so that
the discontinuities of f* occur only at the singular times.

Proof That f* is integer-valued follows directly from the fact that the Chern-form,
upon restriction to {¢} x %, is an integer cohomology class. Piecewise constancy fol-
lows from the fact that the scattering map p;, for times ¢; < t < ¢’ < t;;1 between
singularities defines an isomorphism Py % Py. Thus, cf( (P, V,®) = c{‘ (Py,V,®) and
certainly then f{¥ = f.

Now, on the level of homology in Y = (S* x 2)\{py,..., px}, where for any non-
singular time ¢, 2, := {t} x £ € H,(Y) represents the fundamental homology class
for the subcurve {t} x £ c Y. Thus, with respect to the orientations prescribed by
signature in equation (3.1) and Stokes’” theorem

ORI RO RS R

for any & € H*(Y). Here, & = ¢f'(Fy) = tr¥ Fy so, making use of the Bianchi identity
(that dy Fy = 0) and that [ g, g] < ker tr%,
df = d o U'X Fv = tI‘X OdFV = tI‘X(dvFv — [V,Fv]) = —tr"[v, Fv] =0.
Thus far, this demonstrates that,
) = FE(PT) + [ et (Fy).
€/2
It remains to evaluate ﬁ /. 52 trX(Fy ), which is immediately seen to be (y o ).,

since x defines an associated line bundle for the T-bundle given by u so the compu-
tation follows from the asymptotic form of the curvature tensor about p. ]

Lemma 3.12 breaks down the y-degree of a monopole §%(P, V, @) into the integral
of this piecewise constant function f in the following corollary.
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Corollary 3.13  The y-degree of (P, V, @) reduces to discrete inputs and evaluates as
1 N
0%(P,V,¢) = x« o C-Voly + D(r=1))(xo Uj)s
=1

Proof Recall that 8*(P,V,®) = [, ¢f (P,V,®) Adt = [q(,yn fl'dt which can
now be manipulated as follows: .

N N i
Lo fR= 3t = 0 fE = S - )+ X ()
SN\{t:i }L, i=0 iz j=1

N i
=x«0C-7-Voly + Z(tiﬂ —t) Ztrx(.”j)

i=0 j=1
N

= x+0C-1-Volg + Y (7 - t;) tr¥(y;),
j=0

where t¥ € (;,t;+1) is any point inside the i-th singular interval. [ |

4 Stability Theory of Monopoles and Pairs

The following definition is inspired by and consistent with Ramanathan’s definition
[16] for stability of a holomorphic principal G°-bundle over a Riemann surface.

Definition 4.1 A holomorphic structure (P¢, V%!, V) is stable, if for every H-inva-
riant holomorphic reduction Py < P¢, where H < G° is a maximal parabolic sub-
group, one has 8%(Py) < 0, where y = deto Ad] is the unique character of L (from
the Levi-decomposition H = L x U) whose derivative is the sum of the roots of U.

Before proceeding with any stability results for the objects of interest here, it will
be necessary to revisit a result of [13, Proposition 2.3.1]. The following Lemma has
been adapted and re-expressed in the language of principal bundles.

Lemma 4.2  Hermitian-Einstein G-bundles over Z are polystable.

Proof Suppose that a Hermitian-Einstein G-bundle (P, V) admits a holomorphic
reduction Py c P to a maximal parabolic subgroup H < G. The decomposition of g
induced by b = [; ® [, ® u allows us to decompose the connection form w (in a unitary
gauge) of V into

w=w+w,+ T +Tege (D),

whereg=0 &, ®u® g/h. Then

F=F(V,H) = V|rp, - Vi € A*°(g/h)

is referred to as the second fundamental form of V and visualized matrically as

(1)
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Having this expression for the connection form, the curvature is then decomposed
similarly accordingtog=hL @&, du® g/h as

Qp=dwp+wp/\wp=QL1+QL2+5"/\3“*+*,

e(1dL)®0% ()

where % denotes all terms in u @ g/h will be neglected, since characters are evaluated
on maximal tori. Thus, upon projection to [ = [; & [,, this is simply expressed

ﬂLOQPZQLﬁ-?/\.{}H*,
which reads globally as
FﬂL(V) ZHLOFV—?/\?*.

The Hermitian-Einstein condition on Fy allows us to write Fy = iC - wy and
evaluation of the character y = Ad}; on H and will be denoted accordingly as

trX = dy:t — C.
The Chern-form, ¢{ (Fy, (v)) associated with y is defined by the map
10 Q*(2) — C® Q*(2)
Fry(9) 7 57 7 (Ery(9))>
and so
s trX(Fry (vy) = 55 tr¥(Fy —FATF") = 5- X (iC)wy — 5= trX (F A F™)
= —1k(G)|F} - ws.

Note that tr*(iC) = 0, since the centre of the Lie algebra is contained in the kernel of
the adjoint representation. So then

8(PL(0) = [ () == k(G)IF [ ws = ~1K(G)T3- Vols <0

with equality if and only if F = 0, which, furthermore, implies the existence of a
reduction to the Levi subgroup of H. ]

Proposition 4.3  The holomorphic structure obtained from a singular G-monopole is
stable. In particular, one finds that

514 (P, 7, ¢) = _[Y ]2 - ws A dt
for any holomorphic reduction Py to a maximal parabolic subgroup H.

Proof Let (P,V,®) be a singular G monopole, and let H < G° be a maximal para-
bolic subgroup of G such that P° = P x5 G admits a holomorphic reduction to Py.
Then, via U = H>L, Py projects to an L-bundle Pj, = 71 o Py. On the level of adjoint
bundles, with Levi-subalgebra [ < b as in the proof in Lemma 4.2, its curvature sat-
isfies the following relation between the total curvature and its second fundamental
form F

FHL(V)ZTL'LOFv—St/\Sr*.
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So, for the character y = | Ad} | of L, by definition

8%(Py) = lim fy f (Fay(v)) Adt.

Upon substituting the HEB equation (2.2) for Fy, this evaluates as

lim / (X (iC- ws + +dy® — FATF*) A dt
=0 27T Ye/z

= [ oz ndi+lim L [ a0t nwy
Y x e—=0 27 Jv.

<lim —— f 2,0Xdt A ws,
Ye

e—0 271
since Z(gc) c ker dy (implying that tr¥(C) = 0) and, although non-constant, | F|?3
is strictly positive (wWhen our monopole is irreducible). Notice immediately that the
remaining term reduces to
1 N

lim f - 9,idX - ws A dt,
e~0 271 ]; S'xDe(2j)\Bes2(pj) '

because away from any nonsingular circle (S' x {z;}) this amounts to

f 2,i0Xdt = 0
Sl

being the integral of the derivative over a closed interval.
Now, writing d;i®¥wy Adt = d(iDPXwy ) as an exact form and by Stokes’ theorem,
each

2, - wy A df = f

idDX'wz—f i(DX-wg.
SixS! 2

/S‘l xm\Be/z(l’j) Ser

The first term here vanishes in the limit as ¢ — 0, and the second term is rein-
terpreted in a different coordinate system. Currently, there are two local coordinate
systems under consideration. Namely, the connection and Higgs field have been ex-
pressed in terms of the spherical coordinates {dR, d0, dy}, whereas the form of in-
tegration is in terms of “holomorphic-Euclidean” coordinates {dz, dz,dt}. A happy
medium for choice of coordinates here will be to choose a cylinder inscribed in the
¢/2-ball whose dimensions are chosen to be radius €/21/2 and height e//2 (these are
homotopy equivalent in Y and hence have the same values upon integration). Rec-
ognizing the change in domain of integration to a cylinder, the second term is then
seen to be bounded above by sup . (i®X) -2 Volp,, which is O(e?) according to the
volume of the caps on the cylinder and thus limits to zero. That is,

N

1
lim — f 9,i® - wy A dt = 0. n
€0 27 577 J$1xDe(2)\Bes2(p))
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4.1 t-degree and Stability of a Meromorphic Pair

A sensible approach (as taken in [1]) to define the proper notion of stability for the
algebraic data contained in a bundle pair (P, p) examines the average (in S') degree of
a monopole (P, V, ®) defined over Y and manipulates this until it can be computed
using only the information contained in the image (P,p) = H(P,V,®). Results
of Corollary 3.12 and Proposition 4.3 do exactly this, which allows for the following
definitions without justification.

Definition 4.4 Let (P, p) be a meromorphic pair.
(i) The (y, f)-degree of (P, p) is defined as

8X(P,p) = Yo (tin — t)(9P) + Yo 1)+ (0)).
i=0 j=1

where §%(P) is the degree of the complex line bundle P(x) := P x,, C
(ii) (P, p) is t-stable if for every p-invariant holomorphic reduction to Py c P,
where H < G€ is a maximal parabolic subgroup of G¢ one has 8 4% I(Py, p) < 0.
Note that | Ad; | (as a character of H) is the determinant of the adjoint repre-
sentation of L on u, where H = L x U is its Levi-decomposition and u = Lie(U).

Adopting notation from the space of meromorphic pairs, the moduli space of t-sta-
ble meromorphic bundle pairs over X of singular type K = { (4, ;) }j\’:  will be denoted
by M;(Z,K). B

Thus, a holomorphic structure is t-stable if its associated meromorphic pair is. It
has been shown (through discretizing the integration in Lemma 3.12) that the holo-
morphic structure associated with an irreducible singular monopole is f-stable. In
more appropriate terminology, we have the following proposition.

Proposition 4.5 If (P,V,®) € M"(G, 8" x Z, {(pi, pi) } i), then its image under
H is t-stable.

Proof Everything for this proof has already been set up and only requires a small ar-
gument. Suppose (P, p) = H(P, V, @) and let H be a maximal parabolic subztégoup of
G* corresponding to a holomorphic, p-invariant reduction Py of P. That 8|;A L ‘(T L)
is negative has already been verified and is the result of Proposition 4.3. ]

5 The Correspondence

Now that the objects of interest are well defined and the stability theory has been taken
care of, this section is focused solely on the proof of the bijective correspondence
theorem stated below. The surjectivity of H (defined in the previous chapter) is quite
analytic and relies heavily on the proof found in [1]. The injectivity of I also follows
their recipe but depends more on the theory of induced connections on associated
principal bundles (fully developed for this application in the author’s thesis [20]).
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5.1 Equivalence Between Meromorphic Pairs and Singular Monopoles

Theorem 5.1 If {p;}, is a finite subset of S' x T that projects to N distinct points on
3, then the map

H: M (G, St % 2, {pis pi}ily) — M (2, ko, K)
(P, vV, CD) > (POrPO,T)

is a bijection.*

The proof is demonstrated throughout the following two propositions (5.2 for sur-
jectivity and 5.6 for injectivity). Notice that Theorem 5.1 is a condensed version of
the main Theorem 1.1 stated in the introduction, as the reader is now assumed to be
familiar with the objects at hand.

Proposition 5.2 For any t-stable pair (P, p) on T of type
K= ( (yl,zl), ey (ﬂN, ZN))

with singular time data 0 < t; < t, < --- < t, < 7, there is a singular G-monopole on
S' x X with Dirac singularities of weight u; at p; = (t;,z;) for which H(P,V, ¢) =
(P, p).

Proof We will choose a faithful unitary representation and embed the question into
the GL,, case where this result has been proved in [1]. Since stability is tautologically
preserved through the representation, it suffices to state the steps involved in the lan-
guage of principle bundles and point out the places where additional arguments are
needed.

The four main steps of this proof are as follows:

Step I pisused to extend P to abundle P on Y := (S' x Z)\{p1, ..., pn} having the
correct twisting around spheres about the p;’s and a holomorphic structure. Thus, it
will be holomorphic on all 3; and will lift to a holomorphic bundle P on the (open)
complex manifold X = $'x Y (a subset of X = S' x S x 2). Furthermore, P is invariant
under the action of S' on the left-most factor.

More concretely, all of these ideas fit into the following diagram

Pi=m3(P) I Lo (@) I
X—" syt . 5

where

Y = ((—T, T) X Z)\uj ((—T, ti-T)U (tj,r)) x{z;}
with 71: Y — ¥ as the natural projection and g: Y — Y is generically a double cover
defined by the identification (t,z) ~ (t + 7,z). Next, P := g(n*(P)) is given by
the equivalence relation (t,z,v) ~ (t + 7,2, p(z)v) with t € (-7,0),z € Zand v €

4The statement when irreducibility is removed is between poly-stable pairs.
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.. Finally, P is trivially lifted to an S'-invariant, holomorphic P := 7} (P) via the
canonical projection 7,: X — Y with X = ' x Y.

Step 2 Since P has a holomorphic structure, for any Hermitian metric (i.e., any re-
duction of P to G, i.e., any section of P(G®/G)), there is a unique metric connection®
that is compatible with the holomorphic structure. Such a Hermitian metric on P is
chosen so that the induced connection around the j-th singularity is that of a ¢4 ;-Dirac
monopole.

The appropriate Hermitian metric is constructed (via a partition of unity) on the
open cover of Y:

Up = (26, tn +2¢) x 2)\(Uj(tj — €, tn +2€) x Cj),
Uni=(IN+6T—-€)xZ,
Uj- = ((t - 26,15+ 2) x Dy)\( (1), 1 + 2€) x {z;}),
Upe = ((t =26, 15+ 2) x Dy)\((t; + 26, 1;) x {z;}),
where D; for i = 0,1,..., N are sufficiently small, disjoint open disks about each p; =
(ti,z;) save for Dy, which is where the twisted curvature for the initial degree kg is

concentrated. Then C; fori =1,..., N are another family of disks about each z; which
are properly contained in the D;’s, and € > 0 is chosen so that

4e < min(tl, Iy =t IN—IN-1, T — tN).

On this cover, the transition functions are specified as

$0,j- = &j» Pj-,j+ = Hj> Po,j+ = & Hj> Pj+,N+1 = hj
and
pTh te(in+e by +2€),
PoNe = L te(r-2¢1-¢€).

Now, the bundle and its transition functions reflect those of y-Dirac monopoles
on Uj.. Choose the hermitian metrics yj(R - t) on Uj_ and yj(R + t) on Uj,. These
are compatible with each other under change of basis and are patched together, along
with the metric lifted from P on Uy, Uy by partition of unity.

This metric k is then lifted to a metric k on P subject to the following properties.

Lemma 5.3  The pair (P, k) above satisfies the following,.

(i) P isinvariant under the S* action on the left factor of X.

(ii) kis S' invariant.

(iii) In neighbourhoods of inverse image of the p;’s the pair (P, k) corresponds to an
S'-invariant instanton of charge specified by y; .

(iv) (P, k) satisfies a bound | AF¢| < ¢ < oo.

Step 3 This metric serves as an initial metric for the heat flow of Simpson’s paper
[19]. Taking the limit as time tends to infinity produces a principal-HE connection
on P that is invariant under the S' action and so descends to a bundle over Y. This

SThis is the Chern connection in the case of a U, ¢ GL, (C) gauge.
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will be our singular G-monopole, however one further analytic technicality remains.
Note, in this situation we are considering a representation of a lie group embedded in
GL,(C), and the only difference between this and the proof found in [1] is that here
we must demonstrate that the heat flow remains within the desired subspace.
Using k in G°/G from above as the starting point for Simpson’s heat flow
1dH -

(5.1) H- i —-iAFf; Hp=k

This equation remains valid in G°/G as the left and right-hand sides both take
valuesin i - g.
The asymptotic behaviour of (5.1) is governed by the following theorem.

Theorem 5.4 (Simpson [19], Theorem 1) Let (X, w) satisfy conditions in Lemma 5.5
and suppose E is an S'-invariant bundle on X with S'-invariant metric K satisfying
that sup |AFk| < c. If E is stable in the sense that it arises from a stable pair on %, then
there is an S'-invariant metric H with det(H) = det(K), H and K mutually bounded
9(K™'H) € L?, and such that AF}; = 0. Additionally, (1], if R is the geodesic distance to
one of the singularities, R - d(K™'H) is bounded by a constant.

Observe that our notion of stability generalizes the notion provided in [1] that co-
incides with Simpsonss.

Lemma 5.5 Our manifold X = S' x ((S* x 2)\{p1,...,pn}) satisfies the three
necessary conditions for Simpson’s Theorem:

(i) X is Kdhler and of finite volume.

(ii) There exists a > 0 exhaustion function with bounded Laplacian on X.

(iii) There is an increasing a: [0, 00) — [0, 00) such that a(0) = 0 and a(x) = x for
all x > 1 so that if f is a bounded positive function on X with A(f) < B, then

suplf| < C(B)a( [ I11).
and furthermore, if A(f) <0, then A(f) = 0.

Proof See [1,15]. [ |

Step 4 Simpson’s theorem does not immediately provide the necessary regularity at
the singular points. To see they are indeed of Dirac type (in the limit), the proof is
finished by lifting locally on 3-balls using the Hopf map® 7: B* — B.

To avoid a very lengthy rehashing of the proof provided in both [1, 20], an il-
lustrative description of this step is provided here, and the reader is referred to ei-
ther reference for all technicalities. Heuristically, to ensure regularity of Ho, from
the previous step, restrict our initial metric, Hy, to a neighbourhood of p (diffeo-
morphic to B*\{p} and desingularize by extending the pullback of our Hopf map

50ur Hopf map here is a restriction, to B4<C?, of the well known

mC* - R (z,w) (2w + wz, i(zw — wz), |z|* - |w|2))
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n*:Q(B? x §') — Q(B*). This process of desingularization was brought to light by
Kronheimer [12] and studied in more depth by Pauly [15]. After all differential forms
of interest are pulled back and appropriately scaled, apply Simpson’s heat flow (with
Dirichlet boundary conditions) to the HEB equation (2.2), which is known to corre-
spond to an S'-invariant instanton equation. A new Hermitian metric is achieved in
the heat-flow limit and then pushed back down to a metric describing a Dirac mono-
pole at p, which, due to the imposed Dirichlet boundary condition, glues right back
into the global picture. Finally, due to uniqueness of the solutions to Simpson’s heat
flow, this “alternate” solution is found to coincide with the previous and thus the pre-
vious metric satisfies the required regularity at the singularities. u

Note the change in notation for 7 below as it is no longer needed to denote circum-
ference.

Proposition 5.6  If two singular G-monopoles (P,V,®) and (P', V', ®") yield iso-
morphic holomorphic data, then they are isomorphic (i.e., I is injective).

Proof Having the proof for vector bundles in mind (cf. [1]), note that Homg (P, P’)
is realized as the associated G-fibre bundle (P xp P") x, G, where ¢ is the action of
G x G on G defined as

(g:h) - x:= g 'xh = Ly o Ry(x).
If (P,V,¢) and (P’, V', ¢") are singular G monopoles such that
TPV, ) = (Pp) = (7)) = H(P, V', ),

then P = P’ are isomorphic as holomorphic principal bundles via some G-equivariant
bundle map 7: P — P’, which furthermore satisfies 7 o p = p’ o 7. This holds more
generally for each P; and P} (as a result of scattering and intertwining with mero-
morphic data) meaning that 7 aligns the invariant fibres of p and p’ and so extends
to an isomorphism 7 between P and P’ over S! x X. This isomorphism T is viewed
as a section of the G-fibre bundle Homg (P, P") which is equipped with the induced
connection V = (V x V) x, 1, a Higgs field ¢ = ¢’ ® I - I ® ¢, and, furthermore,
7, e ker(V2") nker(V, - i¢). Using the identities

TLOTY - (85 + 1Ty )
(Ve+ig)(Vi-i)=V;+ ¢ - iV,§
(performing integration by parts in a representation of G), one finds
0=- fwz(a, (Ve+id) (Vi - i) T+ ' VRV ) dv
= [ (R (BT -Bor)dv= [ G TR+ FaT

Hence, T is covariantly constant and as a map E — E’, it intertwines the two Higgs
fields (i.e., ¢ o T = 0 is equivalent to ¢’ o T—To ¢ = 0). Therefore, the two monopoles
are isomorphic. ]
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6 Abelianization of Meromorphic Pairs

For vector bundles, our meromorphic pair (&, p) can be transformed into an n-shee-
ted ramified cover S, of X recording the spectrum of the automorphism p and a sheaf
£ which is (generically) a line bundle on the spectral cover S,, corresponding to the
eigenvectors of p. More generally, for reductive G°-fibrations, a similar process will
yield pairs (S,, Q), where S, — Xisa |W(G*, T¢)|-sheeted ramified cover of X (called
a cameral cover) and Q is a T°-bundle over S,,.

An inverse for these constructions are provided in several places throughout the
literature [2,3,8-10,17,18] with varying levels of abstraction and difficulty.

6.1 Spectral Data Associated with a Bundle Pair

Consider the bundle pair (&, p), where € is a holomorphic vector bundle over a Rie-
mann surface ¥ and p is a meromorphic automorphism of €. To elaborate a bit further,
one can express this as an automorphism away from {z;,2,,...,z,} with near z;; p
can be expressed locally as

p(z) = g(2) diag( (z- zj)k‘, v (z- zj)k") h(z)
(i.e., it is meromorphic in the sense that it has poles and zeros at some points).
Analogously, a principal bundle pair (P, p) will be a principal G-bundle over X and
p € M(Adp) a meromorphic section of Adp = P®¢ G (where G acts by conjugation).
The procedure developed here is referred to as the abelianization of the bundle pair.

6.2 The Spectral Information (Cameral Cover)

From [9, Section 6.2], given the data (P, p), the meromorphic endomorphism p €
M(Aut(P)) has a notion of spectrum given by examining its orbits under conjugation
by G as follows.

Fix a maximal torus T° (analogous to diagonal matrices) and to each z € %, as-
sociate with p|p_, the Weyl group orbit in T° of the closure of the G®-orbit (under
conjugation) of the second coordinate in the equivalence class p(p.) = [pz, v(2)] =

{(g-pzrgu(z)g™") : g€ G°}. That is,

Sp={(z,0) eZx T :ae0c(y(2)) N T},

where Oge(y(z)) = {gw(z)g™' : g € G} is the conjugacy class of y(z) in G.

Now, at first glance, since our torus here will be T¢ = (C*)" with n as the rank
of G¢, a first natural assumption might be that a compactification should be simply
given by including the points {0, co } for each copy of C*. However, in most cases, this
naive approach will not yield the desired Weyl-invariant compactification. Assuming
(to be discussed below) for a second that such an invariant compactification was at our

fingertips, then S, := ) defines a (generically) [W(G*, T¢)|-fold branched cover of
the Riemann surface, denoted by g: S, — X (a projective subvariety of £ x T ).

6.3 A Maximal Torus Bundle on the Cameral Cover

Next, with the spectral information in hand, pullback P via q to a bundle on S,,.
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Fixing some Borel subgroup B < G° containing T¢ , it is known (by the Lie-
Kolchin Theorem) that any group element can be conjugated into B. However, previ-
ously, there was no canonical choice for doing so. Having now separated the different
possible semi-simple components in the G®-orbit of p, this lifted bundle g* P should
now admit a canonical reduction to B.

Indeed, writing B as the semi-direct product T¢ x U, define

Pp={p(za)€q°P:q"p(p) = [p>a-u], forsomeu e U} c g*P.

That is to say, Pg is the family of frames for which P is of the form «-u. Then, appealing
to the fact that Borel subgroups are self-normalizing (i.e., Ng(B) = B), one finds that
the condition

(pra-u)~(h-pha-uh™)=(h-p,a-u)

for some u’ € U holds if and only if h € B. Hence, Pj is a reduction of the pullback
q*P over S, to B. Furthermore, the lifted map g”p is naturally found as a section of
the associated reduction Aut(Pg) = Adp,.

Now, through the isomorphism B = T¢ x U, which gives the exact sequence U —
BT, the reduced B-bundle Py as an element of the non-abelian sheaf cohomology
group H'(S,; B) naturally also defines an element ro Py € H'(S,; T) which is denoted
by Q. This Q is the desired T-bundle over S, alluded to above for which we would like
to consider the pair (S,, Q) as the abelianization of (P, p).

Note that, furthermore the unipotent information Uy is realized as the pre-image
n7'(Q) € H'(S,, Ug) where, say, at (z, ) € S,,

Uy =7 (a) ={beB:JuecU,b=a- u}.

Remark 6.1 A reversal of this procedure, at least in the generic setting, is outlined
in [8, Section 2]. By generic, one means that the logarithm of the cameral cover (so
to take values in t rather than T¢) crosses walls of the Weyl-chamber transversally
and never more than one at a time. This implies that the stabilizers at branch points
are isomorphic to Z/2 and there exists a choice of gauge for which p’s orbit contains
an element appearing, in matrix form, as ( § }) @ diag(Ay,...,1,-2) with distinct
/\1, ey An—2~

In the spirit of providing a displayed result, this shows the following proposition.

Proposition 6.2  There is a map from the moduli space of t-stable meromorphic
G-bundle pairs (P — X, p) with some suitably defined moduli space of pairs (S,,T)
where

* S, — X (acameral cover of a Riemann surface) is the Weyl-invariant compactification
of the spectral curve obtained from (P, p) through the Lie group analogue of Jordan
canonical form of matrices and

* T (a maximal torus bundle on S,) is obtained as a projection to the maximal torus of
the Borel reduction achieved upon pulling back P to the cameral cover S,.
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6.4 Weyl-invariant Compactifications of Maximal Tori

Now, as mentioned, in the standard case, when U}, = GL,,, one simply compactifies its
maximal torus (C*)" to (CP')" by the natural extension of the two point ({0, oo })
compactification of C*. Any point here is invariant under permutation (i.e., the Weyl-
group of GL,). Notice that SL, has the same Weyl-group as GL,, but the maximal
torus is only (# — 1)-dimensional. Of course then, since algebraic groups faithfully
embed into GLy (for some N), one can expect to realize the compactification of their
tori as compact subvarieties of (C*)N. In fact, given a complex reductive Lie group
G° of rank k, a general procedure is stated as follows. Consider maximal T c G°
(isomorphic to (C*)*) along with the embedding 1: G¢ > GLy. Compactify the torus
to T¢ = (CP')* and find its image under ¢ as a k-dimensional subvariety in Tgr, =
(CPYHN.

Example 6.3 One can provide a sketch of some low-dimensional cases.

(i) G°=SL;3(C) has rank 2. A natural choice of maximal torus is already embed-
ded in Tgr, as {(x, y,z) € (C*)? : xyz = 1} (may require desingularization at co).
Notice immediately that certain combinations of zeros and infinities in (CP')? are not
compatible with the constraint xyz = 1. It suffices to check the image of (CP')? in
(CP")? under the map (x, y) = (x, y, (xy)™"). Upon doing so, one finds a complex
hexagon as the image of T, inside of Tgy, = (CP')3.

(i) G° = Sp,(C) has rank 2. A natural choice of maximal torus is embedded in
Tor, as {(x, y,z,w) : xz = 1, yw = 1}, and verifying the image of zeros and infini-
ties through the map (x, y) = (x,y,x7%, y™!) reveals a complex quadrilateral as a
codimension 2 subvariety in (CP")*.
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