
Canad. J. Math. Vol. 68 (5), 2016 pp. 1096–1119
http://dx.doi.org/10.4153/CJM-2016-010-2
©Canadian Mathematical Society 2016

Singular G-Monopoles on S1
× Σ

Benjamin H. Smith

Abstract. _is article provides an account of the functorial correspondence between irreducible
singularG-monopoles on S1×Σ and t⃗-stablemeromorphic pairs on Σ. A theoremof B. Charbonneau
and J.Hurtubise is thus generalized here fromunitary to arbitrary compact, connected gauge groups.
_e required distinctions and similarities for unitary versus arbitrary gauge are clearly outlined, and
many parallels are drawn for easy transition. Once the correspondence theorem is complete, the
spectral decomposition is addressed.

1 Introduction

_emain goal here is to provide a proof of the bijective Kobayashi–Hitchin type cor-
respondence between the moduli space of singular G-monopoles over S1 × Σ and the
space of t⃗-polystable meromorphic pairs (P, ρ). Since complex vector bundles are
equivalent to principal GLn(C)-bundles, the results of [1] form a model for the con-
structions and results found here. In this setting, however, we will not have the luxury
of working with the Lie algebra of skew-hermitian matrices, which form an inductive
system. Careful considerations will be made about the properties of the more gen-
eral Lie algebras involved. For this reason, Gc will denote a complex reductive Lie
group (realizable as the complexiûcation of a compact, connected real reductive Lie
group G).

_e main theorem, stated in full generality, is provided as follows.

_eorem 1.1 _ere is a bijective correspondence between the moduli space

Mirr
k0 (G , S

1 × Σ, {(p i , µ i)}N
i=1)

of irreducible principal G-monopoles over S1 × Σ with singularities at p i ∈ S1 × Σ of µ i-
Dirac type, having degree k0 over {0}×Σ and themoduli spaceM t⃗ s(Σ,K, k0) of t⃗-stable
meromorphic pairs (P,ψ), where P is a holomorphic principal G-bundle of degree k0
over Σ and ψ is a meromorphic section of AutG(P) taking the form

Fi(z)µ i(z − z i)G i(z)
when expressed locally near z i with Fi ,G i holomorphic-invertible and µ i a cocharacter
of the complexiûed gauge group Gc .

In less cryptic terminology, this theorem states that one can parameterize themod-
uli space of G-monopoles over S1 × Σ having singularities of Dirac-type by the more

Received by the editors January 21, 2015; revised November 25, 2015.
Published electronically May 4, 2016.
AMS subject classiûcation: 53C07, 14D20.
Keywords: connection, curvature, instanton, monopole, stability, Bogomolny equation, Sasakian

geometry, cameral covers.
1096

https://doi.org/10.4153/CJM-2016-010-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-010-2


Singular G-Monopoles on S1 × Σ 1097

tractable complex algebraic moduli space of t⃗-stable meromorphic pairs. _ere is a
family of these moduli spaces, parameterized by the location of singularities on Σ and
indexed by the combinatorial data given by the initial degree k0, and “charge” µ i of the
bundle at the singularities. _at is to say, the real work lies in verifying that a t⃗-stable
meromorphic pair (P, ρ) is the skeletal information required to uniquely construct a
solution to the monopole equation.

_e method used to reconstruct a monopole from its singular data is an interest-
ing application of heat �ow on the space of positive hermitian metrics, which, in the
course of doing so, makes use of the celebrated Hopf-ûbration. Heuristically, one
wishes to, holomorphically, patch together a G-bundle on S1 × Σ having the cor-
rect prescribed “twisting”, so as to be in the correct topological isomorphism class.
_is is done by patching together a metric (using a partition of unity) that will be a
parametrix of the solution having the correct singular data. Once this metric is de-
ûned, the heat �ow is employed to evenly distribute the curvature induced by the
metric towards a solution to the monopole equation.

Historically, there have been several results involving classiûcations of these types,
and the general picture is known as the Kobayashi-Hitchin correspondence. _ere are
three foundational works in this area, namely, the papers of Donaldson [4, 5] and
Uhlenbeck–Yau [21, 22] in establishing the Kobayashi–Hitchin correspondence for
holomorphic vector bundles on compact Kähler manifolds [13]. _e progression of
these results is the work of many mathematicians, starting with Narasimhan and Se-
shadri [14] for Riemann surfaces, Donaldson [4–6] again for Riemann surfaces and
also algebraic surfaces, andUhlenbeck and Yau [21,22] for compact Kählermanifolds.
A careful analysis of heat �ow in these settings, and more generally in situations with
singularities, is due to Simpson [19]. A good reference for the completed Kobayashi–
Hitchin correspondence was presented by Lúbke and Teleman [13] in great detail and
generality.

In our situation, the solutions to the Bogomolny (monopole) equation are required
to have singularities. In 1988, Simpson [19] provided a short list of assumptions suõ-
cient to guarantee the required long term existence of the heat equation in these cases.
Our domains and initial conditions ût Simpson’s proûle (as ûrst employed in [1]), and
so we have the existence of our solutions with the exception of singular neighbour-
hoods that must be considered separately.

It was M. Pauly [15], following unpublished work of Kronheimer, who ûrst dealt
with Dirac-type singular monopoles on 3-balls. He displayed, via a radially extended
version of the Hopf ûbration, a correspondence between Dirac-type monopoles on
B3/{0} and smooth S1-invariant anti-self-dual connections on B4/{0}. _is was used
to solve the problem of classifying singular Hermitian–Einstein (i.e., G = U(n))
monopoles on S1 × Σ, which was recently worked out by B. Charbonneau and J. Hur-
tubise [1].

Section 2 provides backgroundon theBogomolny equation and the µ-Diracmono-
pole in the context of principal bundles. _e moduli spaces and characteristic classes
of interest are deûned and partially analyzed in Section 3. Section 4 is devoted to the
stability theory of monopoles andmeromorphic pairs. Proof of the main _eorem 5.1
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is found in Section 5. Finally, in the last section, the abelianization (or spectral decom-
position) of our monopoles is provided along with some examples of Weyl-invariant
compactiûcations of maximal tori.

2 Background and Basic Objects

_roughout this paper, denote by Gc a complex reductive Lie group of rank n, its
maximal compact subgroup G, a Riemann surface Σ with Hermitian metric, a circle
S1 of circumference τ with standard metric and impose the product metric on the
manifold S1 × Σ having coordinates t, z = x + iy.

2.1 Bogomolny Equations and Generalizations

Let P be a principal Gc-bundle on S1 × Σ,

Y ∶= S1 × Σ/{p1 , . . . , pN},

where each p i has coordinates (t i , z i) ∈ S1 × Σ and, purely for the sake of notational
convenience, the t i ’s and z i ’s are assumed to be distinct. _e restriction of P to suõ-
ciently small spheres about each p i comes with a reduction to the maximal real torus
T ⊂ G whose transition function on the 2-sphere is given by some cocharacter µ i
of T . Suppose that P admits a G-connection ∇ and a section Φ ∈ H0(Y , ad(P)) of
the adjoint bundle, called a Higgs ûeld. _e triple (P,∇, Φ) satisûes the Bogomolny
equation if

(2.1) F∇ = ∗d∇Φ.

It can be shown that this equation is equivalent to a special case of a reduction from
the anti self-dual (ASD) equations over S1 × Y .

Unfortunately, equation (2.1) imposes unnecessarily strong constraints on the ûrst
Chern classes (i.e., that they average to zero in a suitable sense), so the following,
slightly weaker, form will be considered here to allow for solutions with arbitrary de-
gree. _at is to say, the triple (P,∇, Φ) is said to satisfy the Hermitian–Einstein–
Bogomolny (HEB) equation if

(2.2) F∇ − iC ⋅ ωΣ = ∗d∇Φ,

where C is in the center, Z(g), of the Lie algebra g = Lie(G) and ωΣ ∈ Ω2(Σ) repre-
sents the Kähler form of our Riemann surface. _e diòerence here between equations
(2.1) and (2.2) is an extra term that allows for non-zero global central curvature. Note
that central elements of g are invariant under conjugation, and thus may be equiva-
lently viewed as sections of ad(P).

Since our domain is a product manifold, equation (2.2) can be split into compo-
nents as stated in the following lemma.
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Lemma 2.1 _eHEB-equation (2.2) can be re-expressed as the following three equa-
tions:

FΣ −∇tΦ = iC ,
[∇0,1

Σ ,∇t − iΦ] = 0(2.3)

[∇1,0
Σ ,∇t + iΦ] = 0

where FΣ is the surface component of the curvature tensor (i.e., F = FΣωΣ + ⋅ ⋅ ⋅ ) and
∇ = ∇0,1

Σ dz + ∇
1,0
Σ dz + ∇tdt. Note that the third equation is merely the dual of the

second.

Proof _is is shown by breaking equation (2.2) into components and remembering
that it is “unitary” (in the G-sense). Extracting the surface component, Σ = dx ∧ dy,
of (2.2) gives FΣ − iC = ∇tΦ, where the Hodge-star on the right-hand side of (2.2)
takes surface components to time, ⟨t⟩, components and vice-versa.
For equation (2.3), extract components ⟨x , t⟩, ⟨y, t⟩ and combine them. On the le�

hand side, the ⟨x , t⟩ component of curvature is realized as the commutator [∇x ,∇t],
which gives the equation

[∇x ,∇t] − 0 = −∇yΦ = −[∇y , Φ],
where the negative is recognized as coming from the Hodge-star applied to the or-
dered basis {x , y, t}. Similarly, the ⟨y, t⟩ component is

[∇y ,∇t] = ∇xΦ = [∇x , Φ].
Multiplying the second by i and adding these together gives

[∇x + i∇y ,∇t] = [−∇y + i∇x , Φ] = [∇x + i∇y , iΦ],
and simpliûcation of this gives precisely equation (2.3).

2.2 The µ-Dirac Monopole

_is section is based on standard knowledge of complex line bundles on S2. _rough-
out the remainder of this article, let µ ∈ X∗(T) = Hom(S1 , T) be a cocharacter of a
ûxed maximal torus T ⊂ G.

Deûnition 2.2 For any real compact torus T , a µ-Dirac monopole is a principal
T-bundle over R3/{0} of degree µ, equipped with a connection ∇ and Higgs ûeld ϕ
satisfying the Hermitian–Einstein–Bogomolny equation (2.2) provided as follows.

On R3, one has spherical coordinates related to Euclidean by

(t, x , y) = (R cos θ , R cosψ sin θ , R sinψ sin θ)
and volume form

dV = R2 sin θdRdθdψ = −r2drd(cos θdψ).
For any µ ∈ X∗(T), deûne the principalT-bundle Lµ overR3/{0} by the transition

function g± = µ(ψ) between neighbourhoodsU± = R3/{±t ≥ 0}. Any section on this
bundle may be expressed by maps σ±∶U± → T satisfying σ− = g±σ+.
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Now, consider a connection deûned locally by Lie-algebra-valued 1-forms

A± =
iµ∗
2

(±1 + cos θ)dψ,

where µ∗ ∈ Lie(T) is the diòerential of µ evaluated at 0 and the Higgs ûeld ϕ = i µ∗
2R .

It is clear that

∇ϕ = dϕ + [A, ϕ] = dϕ = − iµ∗
2R2 dR = ∗( iµ∗

2
d(cos θdψ)) = ∗F∇ ,

so that the pair (∇, ϕ) satisûes the Bogomolny equation (2.1) and, equivalently, equa-
tion (2.2) with C = 0.

IfU± represents the open cover ofR3/{0} obtained by removing the positive/nega-
tive z-axes, then the overlap U+ ∩ U− is homotopy-equivalent to a circle, and so the
transition functions deûning such a bundle can be given, up to homotopy, by a cochar-
acter µ ∈ X∗(T), and sections σ are uniquely expressed asmaps σ±∶U± → T satisfying
σ+ = µ ⋅ σ−.

_en one has the following lemma.

Lemma 2.3 _e µ-Diracmonopoles are all induced from the standard S1-Diracmono-
pole by the cocharacter µ ∈ X∗(T).

Proof First note that, as for any bundle over a sphere, the smooth isomorphism class
of any torus bundle is determined by the homotopy classes of maps [S1 , T] for which
one can choose a cocharacter µ ∈ X∗(T) as a representative. _us, this torus bundle
is isomorphic to the T-bundle induced by µ from the line bundle, L1 of charge 1 over
R3/{0}. _at is, one can consider bundles of the form

L1(µ) ∶= L1 ×S 1 T ,

where the diagonal action of S1 on L1 is as usual and via µ on T .
Having that any T-bundle on R3/{0} realized as L1(µ) for some cocharacter µ ∈

X∗(T), it is natural to choose the necessary connection andHiggs ûeld to be obtained
through µ as well. Indeed, with connection form deûned locally on the open cover
U± ∶= R3/{∓z ≥ 0} as ω± = µ∗(A±) and Higgs ûeld Φ ∶= µ∗(ϕ), where A and ϕ are
the connection and Higgs ûeld for the model Dirac monopole of charge 1, deûned in
[1]. It is then tautological to verify that (L1(χ),ω, Φ) satisûes themonopole equation.

With this identiûcation, there is no need to pursue the structure of the µ-Dirac
monopole further. Calculations for the change between holomorphic and unitary
gauges are the same as for vector bundles (cf. [1]).

3 Singular G-monopoles, Holomorphic Structures, and Meromor-
phic Pairs

_is section introduces and elaborates on the analytic and topological details involv-
ing both singular G-monopoles on S1 × Σ and their eventual algebraic equivalent,
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meromorphic pairs. _e stability of both is discussed in depth including motivation
and consistency arguments from the standard theory.
Amap,H, from singularmonopoles tomeromorphic pairs is deûned and shown to

preserve stability. _is was proved for singular Hermitian–Einstein (Un) monopoles
in [1]. However, their proof relies on an inductive argument on the rank of the group
and does not carry over to arbitrary reductive gauge (e.g., the exceptional Lie group
G2 does not admit an inductive system). Here we adapt from similar proofs found in
[11, 13] and heavily rely on the fact that, loosely stated, the curvature of holomorphic
subbundles is bounded by the total curvature. _is is the essential idea used in the
proof of the Kobayashi–Hitchin correspondence, but here the argument is adapted
for meromorphic Chern forms.

3.1 Singular G-monopoles

For a point p in a three manifold Y , let R represent the geodesic distance to p and use
a normal coordinate system (t, x , y) centred at p for which the metric in these coor-
dinates is represented by I+O(R) as R → 0. Let (θ ,ψ) represent angular coordinates,
as above, for the µ-Diracmonopole on the sphere of constant radius R = c and denote
the open ball deûned by R < c by B3.

Deûnition 3.1 A solution (P,∇, Φ) to the HEB equation (2.2) on Y/{p} has a
singularity of µ-Dirac type at p if:
● locally, on B3/{p}, P admits a reduction of structure group to T that is G-isomor-

phic (replacing unitarily isomorphic) to the µ-Dirac monopole Tµ , and
● under this isomorphism, in the two open sets, U± = R3/{±t ≥ 0}, trivializing P on
B3 induced by standard trivializations of the Tµ (so that the P-trivializations have
transition function given by µ), one has, in both trivializations, that1

Φ = µ∗
2R

+O(1) and ∇(RΦ) = O(1).

Furthermore, a solution to equation (2.2) with singularities {p j}N
j=1 of µ j-Dirac type

a is called a singular G-monopole (of Dirac-type).

Remark 3.2 Heuristically, this deûnition says that a solution with singularity of
Dirac type is locally (in a neighbourhood of a singular point) comparable to a µ-Dirac
monopole.

_e second part of the deûnition ensures that the Higgs ûeld respects the local
decomposition of P into Dirac monopoles, and the second constraint, via equation
(2.2), ensures that the curvature is O(R−2) and hence integrable in neighbourhoods
of singularities. Indeed,

O(1) = ∇(RΦ) = dR ∧Φ + R ⋅ d∇Φ = dR ∧Φ + R ⋅ (∗F∇ − ∗iCIn ⋅ ωΣ),

1Note here that µ∗ =
dµ
dψ ∣ψ=0 is intended to mimic the formulation in GLn , which reads

i diag(k1 , . . . , kn) =
d
dψ ∣ψ=0 diag(e ik1ψ , . . . , e iknψ).
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implying

∗F∇ = 1
R
(O(1) − dR ∧Φ) + ∗iC ⋅ ωΣ = O(1) +O(R−1)

O(R) +O(1) = O(R−2).

_e moduli space of irreducible singular G-monopoles on S1 × Σ having Dirac sin-
gularities of type µ j at p j = (t j , z j) for j = 1, . . . ,N (deûned here simply as a set) is
denoted by

Mirr
k0 (G , S

1 × Σ, {(p j , µ j)}N
j=1) .

3.2 Holomorphic Structures and Scattering

A holomorphic structure on Y will be an intermediary object, obtained by complex-
iûcation of P, when passing from monopoles to meromorphic pairs. However, such
objects can be deûned independently from those obtained through monopoles.

Deûnition 3.3 A holomorphic structure on aGc-bundle Pc over Y is deûned by two
commuting, covariant (local) diòerential operators

∇0,1
Σ ∶ Γℓ(P) Ð→ Γℓ(P) ⊗ (TΣ0,1)∗ and ∇ct ∶ Γℓ(P) Ð→ Γℓ(P)

expressed locally as
(∂z + A0,1

Σ )dz and ∂t − iφ
such that near singularities there exists a reduction to G and ∇ct has the asymptotics
of a Dirac-singularity.

_is deûnition allows for a tangible notion of a holomorphic section over an odd-
dimensional domain.

Deûnition 3.4 A (local) section σ ∈ Γℓ(Pc) is holomorphic if it is parallel with re-
spect to both∇0,1

Σ and∇ct . _at is, σ is holomorphic in the usual sense when restricted
to any complex slice Σt , and satisûes∇ct σ = 0 (i.e., respecting the commutative nature
of the operators).

One sees, via equation (2.3) in Lemma 2.1, that the complexiûcation of a mono-
pole (P,∇, Φ) admits a holomorphic structure. Concretely, we have the following
proposition.

Proposition 3.5 _ere exists a forgetful map from monopoles to holomorphic struc-
tures on Y given by

(P,∇, Φ) z→ (Pc ,∇0,1
Σ ,∇c),

where ∇0,1
Σ = ∇0,1

∣{0}×Σ and ∇
c = ∇t − iΦ.

One can apply the following scattering technique to holomorphic structures. _e
scattering operator is the second diòerential operator,∇c , of a holomorphic structure
(also, found as the second term in the commutator from equation (2.3)). _is is a
linear ûrst order diòerential operator in the S1-direction of S1 × Σ and amounts to a
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complex parallel transport2 when applied to sections. _at is, setting Pc ∶= P ×G Gc

(i.e., the complexiûcation of P), let parallel sections σ ∈ Γℓ(Pc) satisfy ∇cσ = 0.
As usual, whenever the curve [t, t′] × {z} contain no singularities, this provides a

smooth ûbre-wise isomorphism,

ρt ,t′ ∶ Pc(t ,z) Ð→ Pc(t′ ,z)
deûned more precisely as follows. For each p ∈ Pc

(t ,z), let γ be the unique solution to
∇cγ = 0 with γ(t) = p. _en ρt ,t′(g) = γ(t′).
For intervals [t, t′] containing no singularities, integration of the scattering opera-

tor deûnes an isomorphism between P{t}×Σ and P{t′}×Σ′ . When there is a singularity
at some time t i ∈ (t, t′) consider, for simplicity, the singularity at the origin of a chart
for Σ with time considerations as −1 < 0 < 1. _e result is the following proposition.

Proposition 3.6 ([1, Proposition 2.5]) In holomorphic trivializations at t± 1 the scat-
tering map ρ−1,1 is locally expressed in the form h(z)µ(z)g(z) with h, g∶U ⊂ C → G
holomorphic, and µ∶C∗ → T c is a map into a maximal torus of G. Note that the coor-
dinate z has been chosen so that the singularity is at 0.

We say that a map ρ∶U → G admitting this type of local decomposition is encoded
by µ at z.

To see the result in the principal bundle setting, note that by [1] it holds in any
representation of G.

3.3 Meromorphic Pairs

As vaguely described in the statement of_eorem 1.1, a meromorphic pair (P, ρ) is a
holomorphic principal G-bundle P over a Riemann surface Σ and ρ ∈M(Aut(P)) is
a section of Aut(P) that is meromorphic over Σ.

Deûnition 3.7 A meromorphic pair of type (µ⃗, z⃗) = {(µ1 , z1), . . . , (µN , zN)} is a
pair (P, ρ) where P is a holomorphic principal G-bundle on Σ and ρ ∈ M(Aut(P))
is a meromorphic automorphism of P whose singular data is encoded by the cochar-
acter µ j at z j ∈ Σ. So then ρ∶ P → P is an automorphism of P on the Zariski-open
neighbourhood Σ/{z1 , . . . , zN}.

An example of such objects is achieved when considering the forgetful map that
takes the holomorphic structure of a singular G-monopole (P,∇, Φ) to (Pct , ρt ,t+τ),
where Pct ∶= Pc

∣{t}×Σ is the restriction of the complexiûed bundle Pc on S1 ×Σ to some
non-singular time t ∈ S1 and ρt ,t+τ is the monodromy obtained from scattering along
S1 with ∇c = ∇t − iΦ.

_us, we have the following proposition.

Proposition 3.8 Every holomorphic structure (Pc ,∇0,1
Σ ,∇c) onY gives rise to amero-

morphic pair (P, ρ) by the restriction of Pc to any non-singular slice {t} × Σ and the
monodromy obtained by integrating the scattering operator ∇c around the circle.

2Indeed, when the Higgs ûeld is zero, this is exactly the parallel transport in the t-direction.
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_e moduli space of meromorphic pairs over Σ of degree k0 and singular type K =
{(µ j , z j)}N

j=1 will be denoted byM(Σ, k0 ,K).

3.4 From Singular Monopole to Meromorphic Pair

Deûne a forgetful map as the composition of maps from monopoles to holomorphic
structures and ûnally to meromorphic pairs

H∶Mirr
k0 (G , S

1 × Σ, {(p i , µ i)}N
i=1) Ð→M(Σ,K)

as
H(P,∇, Φ) ∶= (Pc∣{0}×Σ , ρ0,τ) ,

where Pc
∣{0}×Σ is the restriction of the complexiûcation Pc → Y to the slice {0} × Σ

(note that t = 0 is assumed to be a non-singular time) and ρ0,τ is the meromorphic
automorphism of P0 resulting from the monodromy by scattering all the way around
the circumference S1.
First note that the Pc

∣{0}×Σ component in the image ofH is a holomorphic principal
G-bundle over Σ, because the slice {0} × Σ of S1 × Σ has been chosen so as not to
contain any singular points. Also, since Pc

∣{0}×Σ is the restriction of a monopole, it is
furthermore already equipped with the holomorphic diòerential ∇0,1

Σ (as shown by
Lemma 2.3).

3.5 The Topology and Degree of a G-bundle on Y

_e topological classiûcation for principal G-bundles over a ûxed base manifold Y
is given by homotopy classes of maps [Y ;BG] where BG is the classifying space of
G. In our case, the base manifold Y is the complement of a ûnite collection of points
in a compact 3-manifold. _us, Y deformation retracts (i.e., is homotopic) to a 2-
dimensional CW-complex having (N + 1) cells in dimension 2 (namely Y ≃ Y 1 ∪ Y 2

is the skeletal decomposition where Y 2 = Σ ∪ (⋃N
i=1 S2

i ) . In fact, since there are N
punctures in Y , the integer second homology is H2(Y ;Z) ≅ ZN+1.

With G, a compact, connected real algebraic group, one ûnds that 0 = π0(G) =
π1(BG), which implies

π1(G) = π2(BG) ≅ H2(BG),
where the last equivalence is due to Hurewicz’s _eorem since π1(BG) = 0. _us,
classiûcation of G-bundles on Y amounts to the classiûcation of the bundles on a
bouquet of (N + 1) 2-spheres, since the 1-skeleton contracts to a point a�er mapping
to BG.
Considering the characteristic classes obtained by pullback fromH2(BG), one has

(by the Universal Coeõcient _eorem and Hurewicz’s _eorem, respectively) that

H2(BG ,R) ≅ H2(BG;R)∗ ≅ H2(BG;Z) ⊗R ≅ π1(G) ⊗R.

Following some results involving the theory of Lie groups found in [7], the exact
sequence Z(G) ↪ G ↠ Ad(G) holds for reductive G. Applying the fundamental
group functor then implies

π1(Z(G)) → π1(G) ↠ π1 Ad(G).
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Now, π1 Ad(G) is ûnite implying that, a�er removing torsion,

π1(G) ⊗R ≅ π1(Z(G)) ⊗R.

Characteristic classes for our bundles are constructed from the curvature tensor
F∇ ∈ g⊗Ω2(Y) through contraction by a character χ∶G → S1. Notice that characters
of G factor through the commutator subgroup3 (since S1 is abelian) and, as a result,
are actually well deûned on the quotient G/[G ,G]. _is quotient group is discretely
equivalent to the center, Z(G), of G in the sense that the right side of the following
exact sequence is a ûnite covering:

Z(G) ↪ G↠ G/[G ,G].

On the level of Lie algebras, however, this induces an exact sequence

Z(g) ↪ g↠ g/[g, g]

and hence an isomorphism Z(g) ≅ g/[g, g]. _us, the derivative of a character
dχ∶g → iR descends to a well-deûned map dχ∶Z(g) → iR. Also, including expo-
nential maps to the diagram, one sees

Z(G)
χ
// S1

exp−1(1) �
� // Z(g)

d χ
//

exp

OO

iR,

exp

OO

where exp−1(1) is canonically isomorphic to π1(Z(G)). In short, to measure the “de-
gree” of a G-monopole (at least, modulo torsion) is to integrate a geometrically rele-
vant diòerential form along surfaces in S1 × Σ. _is form should be analogous to the
ûrst Chern class from complex geometry.

With this in mind, given a singular G monopole (P,∇, Φ) on Y , i.e., a solution to

F∇ = iC ⋅ ωΣ + ∗d∇Φ

one seeks to develop the Chern-form of a monopole.

3.6 The Chern-form of a Monopole

_e curvature tensor F∇ is given as a section of Ω2(ad(P)) = ad(P) ⊗ ⋀2 T∗Y . In
order to obtain a ûrst Chern form (i.e., an element ofH2(Y ,C)), onemust “trace-out”
the Lie algebra portion of this curvature to obtain a gauge-invariant section in Ω2(Y).
_e degree is then measured as an integral of this form over Y . More concretely, to a
basis {e i}k

i=1 of characters forG, one obtains Chern forms {ω i} and thus degreemaps
δ i ∶H2(Y) → R that can be adjusted to take integer values as usual.

3Here, [G,G] = {aba−1b−1 ∈ G ∶ a, b ∈ G}.
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3.7 Groups, Representations, and Characters of Importance

_e characters of geometric relevance here are the following:
(a) χ ∈ X∗(G) any character ofG. _is is used to determine the degree of a mono-

pole and is analogous to complex vector bundles when χ = det (the only non-trivial
character of GLn whose derivative at the identity is the usual tr∶Mn → C).

(b) χ = ∣AduL ∣ ∈ X∗(L) the unique character of L (the Levi-subgroup of amaximal
parabolic subgroup H of G) given as the top exterior power of the adjoint represen-
tation of L on u (the corresponding unipotent sub Lie algebra of h). One important
property of this character that is worth mentioning is that the center Z(G) of G lies
in the kernel of this adjoint representation, so that the constant scalar portion of our
curvature tensor does not aòect the eventual 2-form. _is will be used to measure the
stability of a monopole.

Remark 3.9 In analogy with vector subbundles one is concerned with a maximal
parabolic subgroup H ≤ G along with a corresponding Lie algebra decomposition

g = ( l1 u
g/h l2

) ,

where h = l1 ⊕ l2 ⊕ u is according to the Levi decomposition of H L ↪ H↠ U .

Deûnition 3.10 _e Chern-form associated with a character χ ∈ X∗(G) of a G
bundle P is deûned as

c χ1 (P,∇, Φ) ∶= i
2π

trχ(F∇) ∈ Ω2(Y),

where trχ = dχ(0) (or also χ∗) is the derivative of χ at the identity.

_en, given a monopole with singularities at t⃗, we have the following deûnition.

Deûnition 3.11 For a character χ ∈ X∗(G), the (χ, t⃗)-degree, of a singular G mono-
pole (P,∇, Φ) is the integral of the Chern-form

δ χ(P,∇, Φ) ∶= 1
τ ∫Y

c χ1 (P,∇, Φ) ∧ dt.

Note Geometrically, this represents the average (along S1) of the usual χ-degrees
along each holomorphic slice P{t}×Σ . Note that the degree of a bundle can be evaluated
on any two-cycle ofY (i.e.,H2(S1×Σ/{p i}N

i=1) is large), but that a particular choice has
beenmade here (namely, a weighted sum over all 2-cells in the deformation retraction
of Y as a 2-complex).

3.8 Integration on S1 × Σ

For the purpose of integration, writeYє ∶= Y/⋃N
j=1 Dє(p j) to denote a closed subspace

of Y . _us, Y is the limit of Yє topologically as a nested family of closed subspaces, so
that integration on Y is the limit (as є tends to 0) of integration on Yє .

Stokes’ theorem will be of use as

(3.1) ∂([t − є, t + є] × Σ/Dє/2(p j)) = Σ+ − Σ− − S2
є/2(p j),
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where Σ± denotes the surface {t ± є} × Σ upon restriction to times t ± є. Also, even
more handy will be the fact that

∂(S1 × Dє(z j)/Bє/2(p j)) = S1 × ∂Dє(z j) − S2
є/2

corresponding to a cylindrical neighbourhood of radius є about z j
Given a character χ ∈ X∗(G) of G, deûne the real valued function

f χ ∶ S1/{t1 , . . . , tN} Ð→ R

as
f χ(t) = i

2π ∫{t}×Σ
c χ1 (P,∇, Φ).

It is clear (from standard theory of Chern classes) that f χ is an integer valued func-
tion. Furthermore, we have the following lemma.

Lemma 3.12 _e function f χt deûned above is an integer-valued piecewise constant
function on S1/{t i}N

i=1 satisfying that for all suõciently small є > 0 and singular time
t = t j (for some j),

f χt+є(P,∇) = f χt−є(P,∇) + (χ ○ µ j)∗ .
If no singular time occurs on the interval [t, t′], then f χt′(P,∇) = f χt (P,∇), so that

the discontinuities of f χt occur only at the singular times.

Proof _at f χ is integer-valued follows directly from the fact that the Chern-form,
upon restriction to {t} × Σ, is an integer cohomology class. Piecewise constancy fol-
lows from the fact that the scattering map ρt ,t′ for times t i < t < t′ < t i+1 between
singularities deûnes an isomorphism Pt ≅ Pt′ . _us, c χ1 (Pt ,∇, Φ) = c χ1 (Pt′ ,∇, Φ) and
certainly then f χt = f χt′ .

Now, on the level of homology in Y = (S1 × Σ)/{p1 , . . . , pN}, where for any non-
singular time t, Σt ∶= {t} × Σ ∈ H2(Y) represents the fundamental homology class
for the subcurve {t} × Σ ⊂ Y . _us, with respect to the orientations prescribed by
signature in equation (3.1) and Stokes’ theorem

f χt+є(ξ) ∶= ∫
Σ t+є

ξ = f χt−є(ξ) + ∫S2
є

ξ + ∫
Y
dξ

for any ξ ∈ H2(Y). Here, ξ = c χ1 (F∇) = trχ F∇ so, making use of the Bianchi identity
(that d∇F∇ = 0) and that [g , g] ≤ ker trχ ,

dξ = d ○ trχ F∇ = trχ ○dF∇ = trχ(d∇F∇ − [∇, F∇]) = − trχ[∇, F∇] = 0.

_us far, this demonstrates that,

f χt+є(P,∇) = f χt−є(P,∇) + ∫
S2
є/2

trχ(F∇).

It remains to evaluate 1
2π ∫S2

є
trχ(F∇), which is immediately seen to be (χ ○ µ)∗,

since χ deûnes an associated line bundle for the T-bundle given by µ so the compu-
tation follows from the asymptotic form of the curvature tensor about p.

Lemma 3.12 breaks down the χ-degree of a monopole δ χ(P,∇, Φ) into the integral
of this piecewise constant function f χt in the following corollary.
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Corollary 3.13 _e χ-degree of (P,∇, Φ) reduces to discrete inputs and evaluates as

δ χ(P,∇, ϕ) = χ∗ ○ C ⋅VolΣ +
1
τ

N
∑
j=1

(τ − t j)(χ ○ µ j)∗ .

Proof Recall that δ χ(P,∇, Φ) = ∫Y c
χ
1 (P,∇, Φ) ∧ dt = ∫S 1/{t i}Ni=1

f χt dt which can
now be manipulated as follows:

∫
S 1/{t i}Ni=1

f χt dt =
N
∑
i=0

(t i+1 − t i) f χt∗i =
N
∑
i=0

(t i+1 − t i)( f χ0 +
i
∑
j=1

trχ(µ j))

= χ∗ ○ C ⋅ τ ⋅VolΣ +
N
∑
i=0

(t i+1 − t i)
i
∑
j=1

trχ(µ j)

= χ∗ ○ C ⋅ τ ⋅VolΣ +
N
∑
j=0

(τ − t j) trχ(µ j),

where t∗i ∈ (t i , t i+1) is any point inside the i-th singular interval.

4 Stability Theory of Monopoles and Pairs

_e following deûnition is inspired by and consistent with Ramanathan’s deûnition
[16] for stability of a holomorphic principal Gc-bundle over a Riemann surface.

Deûnition 4.1 Aholomorphic structure (Pc ,∇0,1 ,∇c) is stable, if for everyH-inva-
riant holomorphic reduction PH ≤ Pc , where H ≤ Gc is a maximal parabolic sub-
group, one has δ χ(PH) < 0, where χ = det ○AduL is the unique character of L (from
the Levi-decomposition H = L ⋉U) whose derivative is the sum of the roots of U .

Before proceeding with any stability results for the objects of interest here, it will
be necessary to revisit a result of [13, Proposition 2.3.1]. _e following Lemma has
been adapted and re-expressed in the language of principal bundles.

Lemma 4.2 Hermitian–Einstein G-bundles over Σ are polystable.

Proof Suppose that a Hermitian–Einstein G-bundle (P,∇) admits a holomorphic
reduction PH ⊂ P to a maximal parabolic subgroup H ≤ G. _e decomposition of g
induced by h = l1⊕ l2⊕u allows us to decompose the connection form ω (in a unitary
gauge) of ∇ into

ω = ω1 + ω2 + F∗ + F ∈ g⊗Ω1(Σ),
where g = l1 ⊕ l2 ⊕ u⊕ g/h. _en

F = F(∇,H) ∶= ∇∣TPH −∇H ∈ A1,0(g/h)

is referred to as the second fundamental form of ∇ and visualized matrically as

F = (0 0
f 0) .
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Having this expression for the connection form, the curvature is then decomposed
similarly according to g = l1 ⊕ l2 ⊕ u⊕ g/h as

ΩP = dωP + ωP ∧ ωP = ΩL1 +ΩL2 + F ∧ F∗

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∈(l1⊕l2)⊗Ω2(Σ)

+☀,

where☀ denotes all terms in u⊕g/hwill be neglected, since characters are evaluated
on maximal tori. _us, upon projection to l = l1 ⊕ l2, this is simply expressed

πL ○ΩP = ΩL + F ∧ F∗ ,

which reads globally as
FπL(∇) = πL ○ F∇ − F ∧ F∗ .

_e Hermitian–Einstein condition on F∇ allows us to write F∇ = iC ⋅ ωΣ and
evaluation of the character χ = AduH on H and will be denoted accordingly as

trχ ∶= dχ∶ tÐ→ C.

_e Chern-form, c χ1 (FπL(∇)), associated with χ is deûned by the map

c χ1 ∶ l⊗Ω2(Σ) Ð→ C⊗Ω2(Σ)
FπL(∇) z→ i

2π trχ(FπL(∇)),

and so
i

2π trχ(FπL(∇)) = i
2π trχ(F∇ − F ∧ F∗) = i

2π trχ(iC)ωΣ − i
2π trχ(F ∧ F∗)

= − rk(G)∥F∥2
χ ⋅ ωΣ .

Note that trχ(iC) = 0, since the centre of the Lie algebra is contained in the kernel of
the adjoint representation. So then

δ(PL(χ)) ∶= ∫
Σ
c χ1 (FL) = − rk(G)∥F∥2

χ ∫
Σ
ωΣ = − rk(G)∥F∥2

χ ⋅VolΣ ≤ 0

with equality if and only if F = 0, which, furthermore, implies the existence of a
reduction to the Levi subgroup of H.

Proposition 4.3 _e holomorphic structure obtained from a singular G-monopole is
stable. In particular, one ûnds that

δ∣Ad
u
L ∣(PH ,∇, ϕ) = −∫

Y
∥F∥2

χ ⋅ ωΣ ∧ dt

for any holomorphic reduction PH to a maximal parabolic subgroup H.

Proof Let (P,∇, Φ) be a singular G monopole, and let H ≤ Gc be a maximal para-
bolic subgroup of Gc such that Pc = P ×G Gc admits a holomorphic reduction to PH .
_en, viaU ↪ H π↠L, PH projects to an L-bundle PL = πL ○PH . On the level of adjoint
bundles, with Levi-subalgebra l ≤ h as in the proof in Lemma 4.2, its curvature sat-
isûes the following relation between the total curvature and its second fundamental
form F

FπL(∇) = πL ○ F∇ − F ∧ F∗ .
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So, for the character χ = ∣AduL ∣ of L, by deûnition

δ χ(PL) = lim
є→0∫Yє

c χ1 (FπL(∇)) ∧ dt.

Upon substituting the HEB equation (2.2) for F∇, this evaluates as

lim
є→0

i
2π ∫Yє/2

trχ(iC ⋅ ωΣ + ∗d∇Φ − F ∧ F∗) ∧ dt

= −∫
Y
∥F∥2

χ ⋅ ωΣ ∧ dt + lim
є→0

i
2π ∫Yє

∂tΦχdt ∧ ωΣ

< lim
є→0

i
2π ∫Yє

∂tΦχdt ∧ ωΣ ,

since Z(gC) ⊂ ker dχ (implying that trχ(C) = 0) and, although non-constant, ∥F∥2
χ

is strictly positive (when our monopole is irreducible). Notice immediately that the
remaining term reduces to

lim
є→0

1
2π

N
∑
j=1
∫

S 1×Dє(z j)/Bє/2(p j)
∂t iΦχ ⋅ ωΣ ∧ dt,

because away from any nonsingular circle (S1 × {z j}) this amounts to

∫
S 1

∂t iΦχdt = 0

being the integral of the derivative over a closed interval.
Now, writing ∂t iΦχωΣ ∧dt = d(iΦχωΣ) as an exact form and by Stokes’ theorem,

each

∫
S 1×Dє(z j)/Bє/2(p j)

∂t iΦχ ⋅ ωΣ ∧ dt = ∫
S 1×S 1

є

iΦχ ⋅ ωΣ − ∫
S2
є/2

iΦχ ⋅ ωΣ .

_e ûrst term here vanishes in the limit as є → 0, and the second term is rein-
terpreted in a diòerent coordinate system. Currently, there are two local coordinate
systems under consideration. Namely, the connection and Higgs ûeld have been ex-
pressed in terms of the spherical coordinates {dR, dθ , dψ}, whereas the form of in-
tegration is in terms of “holomorphic-Euclidean” coordinates {dz, dz, dt}. A happy
medium for choice of coordinates here will be to choose a cylinder inscribed in the
є/2-ball whose dimensions are chosen to be radius є/2

√
2 and height є/

√
2 (these are

homotopy equivalent in Y and hence have the same values upon integration). Rec-
ognizing the change in domain of integration to a cylinder, the second term is then
seen to be bounded above by supCє

(iΦχ) ⋅ 2 ⋅VolDє , which is O(є2) according to the
volume of the caps on the cylinder and thus limits to zero. _at is,

lim
є→0

1
2π

N
∑
j=1
∫

S 1×Dє(z j)/Bє/2(p j)
∂t iΦχ ⋅ ωΣ ∧ dt = 0.

https://doi.org/10.4153/CJM-2016-010-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2016-010-2


Singular G-Monopoles on S1 × Σ 1111

4.1 t⃗-degree and Stability of a Meromorphic Pair

A sensible approach (as taken in [1]) to deûne the proper notion of stability for the
algebraic data contained in a bundle pair (P, ρ) examines the average (in S1) degree of
a monopole (P,∇, Φ) deûned over Y and manipulates this until it can be computed
using only the information contained in the image (P, ρ) = H(P,∇, Φ). Results
of Corollary 3.12 and Proposition 4.3 do exactly this, which allows for the following
deûnitions without justiûcation.

Deûnition 4.4 Let (P, ρ) be a meromorphic pair.
(i) _e (χ, t⃗)-degree of (P, ρ) is deûned as

δ χt⃗ (P, ρ) =
N
∑
i=0

(t i+1 − t i)(δ χ(P) +
i
∑
j=1

(χ ○ µ j)∗(0)) ,

where δ χ(P) is the degree of the complex line bundle P(χ) ∶= P ×χ∗ C
(ii) (P, ρ) is t⃗-stable if for every ρ-invariant holomorphic reduction to PH ⊂ P,

whereH ≤ Gc is amaximal parabolic subgroup ofGc one has δ∣Ad
u
L ∣(PH , ρ) < 0.

Note that ∣AduL ∣ (as a character of H) is the determinant of the adjoint repre-
sentation of L on u, whereH = L⋉U is its Levi-decomposition and u = Lie(U).

Adopting notation from the space of meromorphic pairs, themoduli space of t⃗-sta-
blemeromorphic bundle pairs over Σ of singular typeK = {(µ j , z j)}N

j=1 will be denoted
byM t⃗ s(Σ,K).

_us, a holomorphic structure is t⃗-stable if its associated meromorphic pair is. It
has been shown (through discretizing the integration in Lemma 3.12) that the holo-
morphic structure associated with an irreducible singular monopole is t⃗-stable. In
more appropriate terminology, we have the following proposition.

Proposition 4.5 If (P,∇, Φ) ∈Mirr
k0 (G , S

1 × Σ, {(p i , µ i)}N
i=1), then its image under

H is t⃗-stable.

Proof Everything for this proof has already been set up and only requires a small ar-
gument. Suppose (P, ρ) =H(P,∇, Φ) and let H be a maximal parabolic subgroup of
Gc corresponding to a holomorphic, ρ-invariant reductionPH ofP. _at δ∣Ad

u
L ∣

t⃗ (PL)
is negative has already been veriûed and is the result of Proposition 4.3.

5 The Correspondence

Now that the objects of interest are well deûned and the stability theory has been taken
care of, this section is focused solely on the proof of the bijective correspondence
theorem stated below. _e surjectivity ofH (deûned in the previous chapter) is quite
analytic and relies heavily on the proof found in [1]. _e injectivity ofH also follows
their recipe but depends more on the theory of induced connections on associated
principal bundles (fully developed for this application in the author’s thesis [20]).
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5.1 Equivalence Between Meromorphic Pairs and Singular Monopoles

_eorem 5.1 If {p i}N
i=1 is a ûnite subset of S1 ×Σ that projects to N distinct points on

Σ, then the map

H∶Mirr
k0 (G , S

1 × Σ, {p i , µ i}N
i=1) Ð→M t⃗ s(Σ, k0 ,K)

(P,∇, Φ) z→ (P0 , ρ0,τ)

is a bijection.4

_e proof is demonstrated throughout the following two propositions (5.2 for sur-
jectivity and 5.6 for injectivity). Notice that _eorem 5.1 is a condensed version of
the main _eorem 1.1 stated in the introduction, as the reader is now assumed to be
familiar with the objects at hand.

Proposition 5.2 For any t⃗-stable pair (P, ρ) on Σ of type

K = ((µ1 , z1), . . . , (µN , zN))
with singular time data 0 < t1 ≤ t2 ≤ ⋅ ⋅ ⋅ ≤ tn < τ, there is a singular G-monopole on
S1 × Σ with Dirac singularities of weight µ j at p j = (t j , z j) for which H(P,∇, ϕ) =
(P, ρ).

Proof Wewill choose a faithful unitary representation and embed the question into
the GLn case where this result has been proved in [1]. Since stability is tautologically
preserved through the representation, it suõces to state the steps involved in the lan-
guage of principle bundles and point out the places where additional arguments are
needed.

_e four main steps of this proof are as follows:

Step 1 ρ is used to extend P to a bundle P on Y ∶= (S1 × Σ)/{p1 , . . . , pN} having the
correct twisting around spheres about the p j ’s and a holomorphic structure. _us, it
will be holomorphic on all Σt and will li� to a holomorphic bundle P on the (open)
complexmanifold X = S1×Y (a subset of X = S1×S1×Σ). Furthermore, P is invariant
under the action of S1 on the le�-most factor.

More concretely, all of these ideas ût into the following diagram

P ∶= π∗2 (P)

��

// P

��

π∗(P)
q̃oo //

��

P

��
X π2 // Y Ỹ

qoo π // Σ,

where
Ỹ = ((−τ, τ) × Σ)/ ∪ j ((−τ, t j − τ) ∪ (t j , τ)) × {z j}

with π∶ Ỹ → Σ as the natural projection and q∶ Ỹ → Y is generically a double cover
deûned by the identiûcation (t, z) ∼ (t + τ, z). Next, P ∶= q̃(π∗(P)) is given by
the equivalence relation (t, z, v) ∼ (t + τ, z, ρ(z)v) with t ∈ (−τ, 0), z ∈ Σ and v ∈

4_e statement when irreducibility is removed is between poly-stable pairs.
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Pz . Finally, P is trivially li�ed to an S1-invariant, holomorphic P ∶= π∗2 (P) via the
canonical projection π2∶X → Y with X = S1 × Y .

Step 2 Since P has a holomorphic structure, for any Hermitian metric (i.e., any re-
duction of P to G, i.e., any section of P(Gc/G)), there is a unique metric connection5

that is compatible with the holomorphic structure. Such a Hermitian metric on P is
chosen so that the induced connection around the j-th singularity is that of a µ j-Dirac
monopole.

_e appropriate Hermitian metric is constructed (via a partition of unity) on the
open cover of Y :

U0 = ((−2є, tN + 2є) × Σ)/(∪ j(t j − є, tN + 2є) × C j) ,
UN+1 = (tN + є, τ − є) × Σ,

U j− = ((t j − 2є, t j + 2є) × D j)/((t j , t j + 2є) × {z j}) ,
U j+ = ((t j − 2є, t j + 2є) × D j)/((t j + 2є, t j) × {z j}) ,

where D i for i = 0, 1, . . . ,N are suõciently small, disjoint open disks about each p i =
(t i , z i) save for D0, which is where the twisted curvature for the initial degree k0 is
concentrated. _enC i for i = 1, . . . ,N are another family of disks about each z i which
are properly contained in the D i ’s, and є > 0 is chosen so that

4є < min(t1 , t2 − t1 , . . . , tN − tN−1 , τ − tN).
On this cover, the transition functions are speciûed as

φ0, j− = g j , φ j−, j+ = µ j , φ0, j+ = g j ⋅ µ j , φ j+,N+1 = h j

and

φ0,N+1 =
⎧⎪⎪⎨⎪⎪⎩

ρ−1 , t ∈ (tN + є, tN + 2є),
1, t ∈ (τ − 2є, τ − є).

Now, the bundle and its transition functions re�ect those of µ-Dirac monopoles
on U j±. Choose the hermitian metrics µ j(R− t) on U j− and µ j(R+ t) on U j+. _ese
are compatible with each other under change of basis and are patched together, along
with the metric li�ed from P on U0 ,UN+1 by partition of unity.

_is metric k is then li�ed to a metric k on P subject to the following properties.

Lemma 5.3 _e pair (P, k) above satisûes the following.
(i) P is invariant under the S1 action on the le� factor of X.
(ii) k is S1 invariant.
(iii) In neighbourhoods of inverse image of the p j ’s the pair (P, k) corresponds to an

S1-invariant instanton of charge speciûed by µ j .
(iv) (P, k) satisûes a bound ∣ΛFk ∣ ≤ c < ∞.

Step 3 _is metric serves as an initial metric for the heat �ow of Simpson’s paper
[19]. Taking the limit as time tends to inûnity produces a principal-HE connection
on P that is invariant under the S1 action and so descends to a bundle over Y . _is

5_is is the Chern connection in the case of a Un ⊂ GLn(C) gauge.
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will be our singular G-monopole, however one further analytic technicality remains.
Note, in this situation we are considering a representation of a lie group embedded in
GLn(C), and the only diòerence between this and the proof found in [1] is that here
we must demonstrate that the heat �ow remains within the desired subspace.

Using k in Gc/G from above as the starting point for Simpson’s heat �ow

(5.1) H−1 dH
du

= −iΛF⊥H H0 = k

_is equation remains valid in Gc/G as the le� and right-hand sides both take
values in i ⋅ g.

_e asymptotic behaviour of (5.1) is governed by the following theorem.

_eorem 5.4 (Simpson [19], _eorem 1) Let (X ,ω) satisfy conditions in Lemma 5.5
and suppose E is an S1-invariant bundle on X with S1-invariant metric K satisfying
that sup ∣ΛFK ∣ < c. If E is stable in the sense that it arises from a stable pair on Σ, then
there is an S1-invariant metric H with det(H) = det(K), H and K mutually bounded
∂(K−1H) ∈ L2, and such that ΛF⊥H = 0. Additionally, [1], if R is the geodesic distance to
one of the singularities, R ⋅ d(K−1H) is bounded by a constant.

Observe that our notion of stability generalizes the notion provided in [1] that co-
incides with Simpson’s.

Lemma 5.5 Our manifold X = S1 × ((S1 × Σ)/{p1 , . . . , pN}) satisûes the three
necessary conditions for Simpson’s _eorem:
(i) X is Kähler and of ûnite volume.
(ii) _ere exists a ≥ 0 exhaustion function with bounded Laplacian on X.
(iii) _ere is an increasing a∶ [0,∞) → [0,∞) such that a(0) = 0 and a(x) = x for

all x > 1 so that if f is a bounded positive function on X with ∆( f ) ≤ B, then

sup
X

∣ f ∣ ≤ C(B)a(∫
X
∣ f ∣) ,

and furthermore, if ∆( f ) ≤ 0, then ∆( f ) = 0.

Proof See [1, 15].

Step 4 Simpson’s theorem does not immediately provide the necessary regularity at
the singular points. To see they are indeed of Dirac type (in the limit), the proof is
ûnished by li�ing locally on 3-balls using the Hopf map6 π∶B4 → B3.

To avoid a very lengthy rehashing of the proof provided in both [1, 20], an il-
lustrative description of this step is provided here, and the reader is referred to ei-
ther reference for all technicalities. Heuristically, to ensure regularity of H∞ from
the previous step, restrict our initial metric, H0, to a neighbourhood of p (diòeo-
morphic to B3/{p} and desingularize by extending the pullback of our Hopf map

6Our Hopf map here is a restriction, to B4⊆C2 , of the well known

π∶C2
→ R3 ; (z,w) ↦ (zw +wz, i(zw −wz), ∣z∣2 − ∣w∣

2))
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π∗∶Ω(B3 × S1) → Ω(B4). _is process of desingularization was brought to light by
Kronheimer [12] and studied in more depth by Pauly [15]. A�er all diòerential forms
of interest are pulled back and appropriately scaled, apply Simpson’s heat �ow (with
Dirichlet boundary conditions) to the HEB equation (2.2), which is known to corre-
spond to an S1-invariant instanton equation. A new Hermitian metric is achieved in
the heat-�ow limit and then pushed back down to a metric describing a Dirac mono-
pole at p, which, due to the imposed Dirichlet boundary condition, glues right back
into the global picture. Finally, due to uniqueness of the solutions to Simpson’s heat
�ow, this “alternate” solution is found to coincide with the previous and thus the pre-
vious metric satisûes the required regularity at the singularities.

Note the change in notation for τ below as it is no longer needed to denote circum-
ference.

Proposition 5.6 If two singular G-monopoles (P,∇, Φ) and (P′ ,∇′ , Φ′) yield iso-
morphic holomorphic data, then they are isomorphic (i.e.,H is injective).

Proof Having the proof for vector bundles in mind (cf. [1]), note that HomG(P, P′)
is realized as the associated G-ûbre bundle (P ×B P′) ×φ G, where φ is the action of
G ×G on G deûned as

(g , h) ⋅ x ∶= g−1xh = Lg−1 ○ Rh(x).

If (P,∇, ϕ) and (P′ ,∇′ , ϕ′) are singular G monopoles such that

H(P,∇, ϕ) = (P, ρ) ≅ (P′ , ρ′) =H(P′ ,∇′ , ϕ′),

thenP ≅ P′ are isomorphic as holomorphic principal bundles via someG-equivariant
bundle map τ∶P → P′, which furthermore satisûes τ ○ ρ = ρ′ ○ τ. _is holds more
generally for each Pt and P′t (as a result of scattering and intertwining with mero-
morphic data) meaning that τ aligns the invariant ûbres of ρ and ρ′ and so extends
to an isomorphism τ̂ between P and P′ over S1 × Σ. _is isomorphism τ̂ is viewed
as a section of the G-ûbre bundle HomG(P, P′) which is equipped with the induced
connection ∇̂ = (∇ × ∇′) ×φ 1, a Higgs ûeld ϕ̂ = ϕ′ ⊗ I − I ⊗ ϕ, and, furthermore,
τ̂∗ ∈ ker(∇̂0,1

Σ ) ∩ ker(∇̂t − iϕ̂). Using the identities

∇̂1,0
Σ ∇̂0,1

Σ = (∆Σ + iF̂Σ)ω,
(∇̂t + iϕ̂)(∇̂t − iϕ̂) = ∇̂2

t + ϕ̂2 − i∇̂t ϕ̂

(performing integration by parts in a representation of G), one ûnds

0 = −∫
S 1×Σ

⟨ τ̂∗ , (∇̂t + iϕ̂)(∇̂t − iϕ̂)τ̂ + ω−1∇̂1,0
Σ ∇̂0,1

Σ τ̂∗⟩dν

= ∫
S 1×Σ

⟨ τ̂∗ , (−ϕ̂2 − ∇̂2
t − ∆̂Σ)τ̂∗⟩dν = ∫

S 1×Σ
∣ϕ̂τ̂∗∣2 + ∣∇̂t τ̂∗∣2 + ∣∇̂Σ τ̂∗∣2dν.

Hence, τ̂ is covariantly constant and as a map E → E′, it intertwines the two Higgs
ûelds (i.e., ϕ̂ ○ τ̂ = 0 is equivalent to ϕ′ ○ τ̂ − τ̂ ○ ϕ = 0). _erefore, the two monopoles
are isomorphic.
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6 Abelianization of Meromorphic Pairs

For vector bundles, our meromorphic pair (E, ρ) can be transformed into an n-shee-
ted ramiûed cover Sρ of Σ recording the spectrum of the automorphism ρ and a sheaf
L which is (generically) a line bundle on the spectral cover Sρ , corresponding to the
eigenvectors of ρ. More generally, for reductive Gc-ûbrations, a similar process will
yield pairs (Sρ ,Q), where Sρ → Σ is a ∣W(Gc , T c)∣-sheeted ramiûed cover of Σ (called
a cameral cover) and Q is a T c-bundle over Sρ .
An inverse for these constructions are provided in several places throughout the

literature [2, 3, 8–10, 17, 18] with varying levels of abstraction and diõculty.

6.1 Spectral Data Associated with a Bundle Pair

Consider the bundle pair (E, ρ), where E is a holomorphic vector bundle over a Rie-
mann surface Σ and ρ is ameromorphic automorphismofE. To elaborate a bit further,
one can express this as an automorphism away from {z1 , z2 , . . . , zn} with near z j ; ρ
can be expressed locally as

ρ(z) = g(z)diag((z − z j)k1 , . . . , (z − z j)kn)h(z)
(i.e., it is meromorphic in the sense that it has poles and zeros at some points).
Analogously, a principal bundle pair (P, ρ)will be a principalG-bundle over Σ and

ρ ∈M(AdP) a meromorphic section of AdP = P⊗G G (whereG acts by conjugation).
_e procedure developed here is referred to as the abelianization of the bundle pair.

6.2 The Spectral Information (Cameral Cover)

From [9, Section 6.2], given the data (P, ρ), the meromorphic endomorphism ρ ∈
M(Aut(P)) has a notion of spectrum given by examining its orbits under conjugation
by G as follows.
Fix a maximal torus T c (analogous to diagonal matrices) and to each z ∈ Σ, as-

sociate with ρ∣Pz , the Weyl group orbit in T c of the closure of the Gc-orbit (under
conjugation) of the second coordinate in the equivalence class ρ(pz) = [pz ,ψ(z)] =
{(g ⋅ pz , gψ(z)g−1) ∶ g ∈ Gc}. _at is,

S0ρ ∶= {(z, α) ∈ Σ × T c ∶ α ∈ OG c(ψ(z)) ∩ T} ,
where OG c(ψ(z)) = {gψ(z)g−1 ∶ g ∈ Gc} is the conjugacy class of ψ(z) in Gc .

Now, at ûrst glance, since our torus here will be T c ≅ (C∗)n with n as the rank
of Gc , a ûrst natural assumption might be that a compactiûcation should be simply
given by including the points {0,∞} for each copy ofC∗. However, inmost cases, this
naive approach will not yield the desiredWeyl-invariant compactiûcation. Assuming
(to be discussed below) for a second that such an invariant compactiûcationwas at our
ûngertips, then Sρ ∶= S0ρ

W
deûnes a (generically) ∣W(Gc , T c)∣-fold branched cover of

the Riemann surface, denoted by q∶ Sρ → Σ (a projective subvariety of Σ × T c
W
).

6.3 A Maximal Torus Bundle on the Cameral Cover

Next, with the spectral information in hand, pullback P via q to a bundle on Sρ .
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Fixing some Borel subgroup B ≤ Gc containing T c , it is known (by the Lie–
Kolchin _eorem) that any group element can be conjugated into B. However, previ-
ously, there was no canonical choice for doing so. Having now separated the diòerent
possible semi-simple components in the Gc-orbit of ρ, this li�ed bundle q∗P should
now admit a canonical reduction to B.

Indeed, writing B as the semi-direct product T c ⋉U , deûne

PB = { p(z ,α) ∈ q∗P ∶ q∗ρ(p) = [p, α ⋅ u], for some u ∈ U} ⊂ q∗P.

_at is to say, PB is the family of frames for which P is of the form α ⋅u. _en, appealing
to the fact that Borel subgroups are self-normalizing (i.e., NG(B) = B), one ûnds that
the condition

(p, α ⋅ u) ∼ (h ⋅ p, hα ⋅ uh−1) = (h ⋅ p, α ⋅ u′)

for some u′ ∈ U holds if and only if h ∈ B. Hence, PB is a reduction of the pullback
q∗P over Sρ to B. Furthermore, the li�ed map q∗ρ is naturally found as a section of
the associated reduction Aut(PB) = AdPB .

Now, through the isomorphism B ≅ T c ⋉U , which gives the exact sequence U ↪
B π↠T , the reduced B-bundle PB as an element of the non-abelian sheaf cohomology
groupH1(Sρ ;B)naturally also deûnes an element π○PB ∈ H1(Sρ ;T)which is denoted
byQ. _isQ is the desired T-bundle over Sρ alluded to above for which we would like
to consider the pair (Sρ ,Q) as the abelianization of (P, ρ).

Note that, furthermore the unipotent information UQ is realized as the pre-image
π−1(Q) ∈ H1(Sρ ,UQ) where, say, at (z, α) ∈ Sρ ,

U(z ,α) = π−1(α) = {b ∈ B ∶ ∃u ∈ U , b = α ⋅ u}.

Remark 6.1 A reversal of this procedure, at least in the generic setting, is outlined
in [8, Section 2]. By generic, one means that the logarithm of the cameral cover (so
to take values in t rather than T c) crosses walls of the Weyl-chamber transversally
and never more than one at a time. _is implies that the stabilizers at branch points
are isomorphic to Z/2 and there exists a choice of gauge for which ρ’s orbit contains
an element appearing, in matrix form, as ( a 1

0 a ) ⊕ diag(λ1 , . . . , λn−2) with distinct
λ1 , . . . , λn−2.

In the spirit of providing a displayed result, this shows the following proposition.

Proposition 6.2 _ere is a map from the moduli space of t⃗-stable meromorphic
G-bundle pairs (P → Σ, ρ) with some suitably deûned moduli space of pairs (Sρ ,T)
where
● Sρ → Σ (a cameral cover of a Riemann surface) is theWeyl-invariant compactiûcation

of the spectral curve obtained from (P, ρ) through the Lie group analogue of Jordan
canonical form of matrices and

● T (a maximal torus bundle on Sρ) is obtained as a projection to the maximal torus of
the Borel reduction achieved upon pulling back P to the cameral cover Sρ .
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6.4 Weyl-invariant Compactifications of Maximal Tori

Now, asmentioned, in the standard case, whenUc
n = GLn , one simply compactiûes its

maximal torus (C∗)n to (CP1)n by the natural extension of the two point ({0,∞})
compactiûcation ofC∗. Any point here is invariant under permutation (i.e., theWeyl-
group of GLn). Notice that SLn has the same Weyl-group as GLn , but the maximal
torus is only (n − 1)-dimensional. Of course then, since algebraic groups faithfully
embed into GLN (for some N), one can expect to realize the compactiûcation of their
tori as compact subvarieties of (C∗)N . In fact, given a complex reductive Lie group
Gc of rank k, a general procedure is stated as follows. Consider maximal T c ⊂ Gc

(isomorphic to (C∗)k) along with the embedding ι∶Gc ↪ GLN . Compactify the torus
to T c ≅ (CP1)k and ûnd its image under ι as a k-dimensional subvariety in TGLN ≅
(CP1)N .

Example 6.3 One can provide a sketch of some low-dimensional cases.
(i) Gc = SL3(C) has rank 2. A natural choice of maximal torus is already embed-

ded in TGL3 as {(x , y, z) ∈ (C∗)3 ∶ xyz = 1} (may require desingularization at ∞).
Notice immediately that certain combinations of zeros and inûnities in (CP1)3 are not
compatible with the constraint xyz = 1. It suõces to check the image of (CP1)2 in
(CP1)3 under the map (x , y) ↦ (x , y, (xy)−1). Upon doing so, one ûnds a complex
hexagon as the image of TSL3 inside of TGL3 ≅ (CP1)3.

(ii) Gc = Sp2(C) has rank 2. A natural choice of maximal torus is embedded in
TGL4 as {(x , y, z,w) ∶ xz = 1, yw = 1}, and verifying the image of zeros and inûni-
ties through the map (x , y) ↦ (x , y, x−1 , y−1) reveals a complex quadrilateral as a
codimension 2 subvariety in (CP1)4.
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