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Abstract
Intra-uterine growth restriction (IUGR) is associated with adverse metabolic outcome later in life. Healthy mice challenged with a Western-style diet
(WSD) accumulated less body fat when previously fed a diet containing large lipid globules (complex lipid matrix (CLM)). This study was designed
to clarify whether an early-life CLM diet mitigates ‘programmed’ visceral adiposity and associated metabolic sequelae after IUGR. In rats, IUGR was
induced either by bilateral uterine vessel ligation (LIG) or sham operation (i.e. intra-uterine stress) of the dam on gestational day 19. Offspring from
non-operated (NOP) dams served as controls. Male offspring of all groups were either fed CLM or ‘normal matrix’ control diet (CTRL) from postnatal
days (PND) 15 to 42. Thereafter, animals were challenged with a mild WSD until dissection (PND 98). Fat mass (micro computer-tomograph scan;
weight of fat compartments), circulating metabolic markers and expression of ‘metabolic’ genes (quantitative real-time PCR) were assessed. CLM
diet significantly reduced visceral fat mass in LIG at PND 40. At dissection, visceral fat mass, fasted blood glucose, TAG and leptin concentrations
were significantly increased in LIG-CTRL v. NOP-CTRL, and significantly decreased in LIG-CLM v. LIG-CTRL. Gene expression levels of leptin
(mesenteric fat) and insulin-like growth factor 1 (liver) were significantly reduced in LIG-CLM v. LIG-CTRL. In conclusion, early-life CLM diet
mitigated the adverse metabolic phenotype after utero-placental insufficiency. The supramolecular structure of dietary lipids may be a novel aspect
of nutrient quality that has to be considered in the context of primary prevention of obesity and metabolic disease in at-risk populations.
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Term infants born small-for-gestational age (SGA; >37 weeks
gestation and <10th percentile) often show accelerated postnatal
weight gain(1,2), which is associated with an increased risk of non-
communicable diseases later in life(3–5). Adverse sequelae include
visceral fat mass accumulation(6), hypertension(7,8), CVD(9), the
metabolic syndrome(10) and type 2 diabetes mellitus(11).
In line with the Developmental Origins of Health and Disease

hypothesis(12), intra-uterine deficiency during specific develop-
mental periods leads to intra-uterine growth restriction (IUGR) and
affects lifelong metabolic health by modification of organ structure
and function, as well as epigenetic programming(8,13,14). We
demonstrated that experimental utero-placental insufficiency by

uterine vessel ligation in pregnant rats results in fetal programming
of impaired glucose tolerance, hyperinsulinaemia, hyperlipidaemia
and hyperleptinaemia, as well as altered gene and protein expres-
sions in the offspring(15–17).

Despite some inconclusive evidence(18), breast-feeding and
breast-feeding duration have been associated with a moderate,
yet consistent, reduction of childhood obesity risk and later
metabolic disease(19–24). In breast-fed SGA infants, enhanced
early growth(25) and lower circulating adiponectin and insulin-
like growth factor 1 (IGF-1)(26,27) concentrations also hint at
some protective effect compared with infant milk formula (IF)
feeding.

Abbreviations: AIN, American Institute of Nutrition; CLM, complex lipid matrix (intervention diet); CTRL, normal matrix control diet; HM, human milk; IF, infant
milk formula; IGF-1, insulin-like growth factor 1; IUGR, intra-uterine growth restriction; LEP, leptin gene; LIG, ligation (uterine vessel ligation group); MFG, milk
fat globule; MFGM, MFG membrane; μCT, micro computer tomograph; NOP, non-operated (control group); PL, phospholipids; PND, postnatal day; SOP, sham
operation (SOP group, i.e. intra-uterine stress group); WSD, Western-style diet (‘challenge’ diet).
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In both human milk (HM) and IF, dietary lipids are pre-
dominantly presented in the form of TAG. However, there are
distinct differences in phospholipid and other polar lipid content.
Furthermore, a major difference is the supramolecular structure of
the milk fat globule (MFG)(28). The raw human MFG is on average
4μm in diameter(28,29), and the TAG core is surrounded by a triple-
layered physiological membrane(29,30). This complex supramole-
cular structure has been shown to affect digestion, absorption
kinetics and utilisation of dietary lipids(31,32). In contrast, IF lipids
mostly originate from plant oil blends and are not structured as
MFG, but typically consist of small fat droplets (average diameter
of 0·5μm). Dietary lipids affect growth and development not only
as energy source, but also as cellular constituents, signalling
molecules and transcription factors(33). To be able to investigate
the physiological effects of the supramolecular lipid structure in
milk, a complex lipid matrix (CLM) IF concept (Nuturis®; Nutricia
Research B.V.) was developed by adding dairy-derived phos-
pholipids (PL) in MFG membrane (MFGM) fragments (Fonterra
Co-operative Group Limited) in comparable amount and profile as
HM, in addition to applying an altered processing procedure to
obtain PL-coated lipid droplets larger than those in standard IF.
Briefly, the polar PL were added to the aqueous phase and
blended with the lipid phase containing the neutral vegetable
lipids to generate a PL coating around the lipid droplets. Homo-
genisation pressure during processing was adjusted to not only
secure a homogeneous mixture of ingredients but also to retain a
large lipid droplet size(34,35). To investigate whether the supra-
molecular structure of lipids in early-life diet affects long-term
metabolic health, recently, healthy preweaning mice were
exposed to the new CLM IF concept diet. Indeed, fat accumulation
was reduced, and metabolic profile was improved in adult CLM
mice challenged by a moderate Western-style diet (WSD) from
adolescence onwards(36–38).
Our aim was to ameliorate programmed metabolic disease

in an ‘at-risk’ population by early nutrition. We hypothesised that
known metabolic long-term sequelae in our established IUGR
rat model(15–17) would be alleviated by feeding intervention with
a diet containing large lipid droplets (CLM diet)(36–38) during
development in early life. The diet intervention was started on
postnatal day (PND) 15 when the offspring starts intake of solid
food, corresponding to the complimentary feeding period in
humans, and was continued until late adolescence(39).

Methods

Animals and surgical procedures

This study was conducted in accordance with institutional
guidelines for the care and use of laboratory animals established
by the Ethics Committee for Animal Experimentation of the
University of Cologne and the German Government (AZ 2011.
A248), in full compliance to the European Directive 2010/63/EU
for the use of animals for scientific purposes.
Time-mated female Wistar rats (age 3 months) were obtained

on post-conceptual day (PCD) 13 or 14 (plug day is PCD 1) of
their first pregnancy from Charles River Wiga Deutschland
GmbH. Dams were housed individually under standard condi-
tions with free access to water and semi-synthetic rodent diet

(American Institute of Nutrition (AIN)-93G; ssniff Spezialdiäten
GmbH).

Similar to that described before(15–17), IUGR was induced
either by performing a bilateral ligation (LIG) of uterine arteries
and veins caudally of the most caudal vessel branch running to
the most caudal feto-placental unit or by sham operation (SOP) –
that is, the suture material was not fixed but removed before
closing the abdomen. All surgeries were performed under iso-
flurane anaesthesia and metamizol analgesia. Total duration of
each intervention was 15–20min. All fetuses were counted
intra-operatively. LIG dams (n 8) carried eight to fourteen and
SOP dams (n 7) eight to thirteen living fetuses. Dams started
to drink water (containing tramadol for 24 h after surgery)
5–10min after surgery, and their behaviour recovered fully
within 1 h. As both LIG and SOP (i.e. intra-uterine stress) off-
spring show IUGR and metabolic programming(15–17), offspring
of non-operated (NOP) dams (n 16) served as controls for both
groups. All dams delivered spontaneously after approximately
22·5 PCD within a time frame of 12 h. Litters comprised between
seven and fifteen living pups, except one LIG litter of four (six
fetuses were resorbed; three of the remaining pups were
included in the study). On PND 2, all offspring were weighed,
measured and determined for sex visually. The body weight of
pups born alive was as follows: NOP (n 160), 6·84 (SEM 0·06) g;
LIG (all pups, n 71), 5·73 (SEM 0·08) g; LIG (selected light pups,
n 36, see below for explanation), 5·40 (SEM 0·10) g; and SOP
(n 75), 6·28 (SEM 0·08) g. Thus, the mean percentage growth
restriction was 16·2% for all LIG pups, 21·1% for selected light
LIG pups and 8·2% for SOP pups (P< 0·001 for comparisons
LIG–NOP, SOP–NOP and LIG–SOP). The error of our visual
sexing method is approximately 1% in our laboratory; hence,
we did not perform sex determining region Y (SRY) PCR as
previously reported(16,17). Immediately afterwards, postnatal
environmental conditions were equalised in all groups as we
wanted to clearly restrict the exposure to deficiency in groups
LIG and SOP to late pregnancy. Thus, all offspring were trans-
ferred to foster dams originating from group NOP to ensure
similar postnatal handling; all foster dams received AIN-93G
diet until PND 14, and all foster litters were adjusted to five male
and one female offspring (males originating from at least two
different litters). From LIG dams, either three (in case of litter
size below 10) or six lightest pups of each original litter were
selected and randomly reassembled to four foster dams. From
SOP and NOP dams, offspring were randomly selected and
reassembled to four foster dams for SOP and eight foster dams
for NOP offspring. The whole selection and transfer procedure
took 5–10min for each litter and was performed in a similar way
in all litters. Group names were assigned to the litters/pups on
PND 2: two foster litters each either containing NOP, LIG or
SOP offspring heading for ‘normal matrix’ control diet (CTRL)
from PND 15 to 42 and moderate WSD thereafter (NOP-CTRL;
LIG-CTRL and SOP-CTRL); four foster litters containing NOP
offspring heading for CLM diet from PND 15 to 42 and WSD
thereafter (NOP-CLM); and two foster litters each either con-
taining LIG or SOP offspring heading for CLM diet from PND 15
to 42 and WSD thereafter (LIG-CLM; SOP-CLM). In addition, two
foster litters containing NOP offspring heading for CTRL diet
from PND 15 to 42 and AIN-93M diet (i.e. no WSD challenge)

764 I. C. Teller et al.

https://doi.org/10.1017/S0007114518001988  Published online by Cam
bridge U

niversity Press

https://doi.org/10.1017/S0007114518001988


thereafter (group ‘REF’) were used as comparators to healthy
control rats (group NOP-CTRL) exclusively to illustrate the
metabolic effects of WSD in healthy rat offspring (for data see
online Supplementary Table S1). Group ‘REF’ was not com-
pared with the other groups and not used as a statistical control
group. For full experimental setup, see Fig. 1.

Feeding interventions (programming diets and
Western-style diet challenge)

On PND 15, the feeding intervention was started in eight foster
litters for exposure to CLM diet and in eight foster litters for
exposure to CTRL diet (Fig. 1). Pups had free access to maternal
milk, water and their dams’ respective diets. On PND 21, pups
were weaned, females were excluded and males continued to
receive the respective intervention diets until PND 42. For the
dietary challenge in early adulthood (PND 43–98), animals of all
experimental groups were switched to a moderate WSD. The
additional ‘REF’ group (for further explanation of this group see
above) received AIN-93M diet from PND 43 to 98. WSD was
included in all experimental groups to provide a moderately
nutritionally challenging environment corresponding to the
human situation with a Western lifestyle. Food and water were
available ad libitum.

Anthropometrics and body composition

Weight of the offspring was determined at PND 2, 4, 7 and
weekly thereafter. Crown-rump length was measured bi-weekly

until week 3 using a measuring ruler, and on PND 40 and 92 by
means of micro computer tomograph (μCT).

A LaTheta LCT-100 (Aloka Co. Ltd) μCT was used for mor-
phometry and whole-body scan (excluding tail) under iso-
flurane anaesthesia. The X-ray source tube voltage was set at
50 kV with a constant 1mA current using a holder with inner
diameter of 120mm, resulting in pixel resolutions of 250 μm.
Pitch size was 2·0mm and scan speed was 4·5 s/image. The
LaTheta software version 2.10 was used to measure body length
(tip of the nose to base of the tail) and to determine volumes of
whole-body fat, visceral and subcutaneous adipose tissue com-
partments. Different densities on the X-ray images were used to
differentiate bone, air, adipose tissue and the remainder. Visceral
and subcutaneous adipose tissue was determined by using
abdominal scans between vertebrae L4 and L6 using the ‘Visceral
Fat Measurement’ function of the software. Hereby, the abdominal
muscle layer was used to differentiate visceral fat located inside
the abdominal muscle from subcutaneous fat (area outside the
abdominal muscle).

Termination and dissection

Animals were killed by cervical dislocation at PND 98 under
deep isoflurane anaesthesia after overnight fasting. Organs
(kidneys, liver, pretibial muscle and various fat depots (ingu-
inal, mesenteric, retroperitoneal and perirenal)) were harvested
immediately, weighed, snap-frozen in liquid N2 and stored at
–80°C or fixed in 4% paraformaldehyde and embedded in
paraffin for later analyses.

Western-style diet

AIN-93M diet (group “REF”)CTRL diet

IUGR models
by surgery

Early-life feeding
Programming diet

21

Adult feeding
Nutritional challenge

Dietary intervention

CTRL diet

CTRL diet

CLM diet

CTRL diet

CLM diet

SOP

LIG

NOP
(control)

CLM diet

PCD 1 PND 1 15 42 98
Breast-feeding

All pups
transferred to

NOP
foster dams
on PND 2

Dams:
AIN-93G diet

Pups:
exclusively
breast-fed

Intake of solid food by offspringPregnancy

Tissue and organ harvesting

µCT scan, blood samplingWeaning

LIG/SOP surgery (PCD 19)

Fig. 1. Experimental setup. A timeline is provided at the bottom; each line represents 1 d. LIG, experimental utero-placental insufficiency by bilateral ligation of the
uterine arteries and veins on postconceptional day (PCD) 19; SOP, sham operation (i.e. intra-uterine stress) on PCD 19; NOP, no operation (normal pregnancy); CTRL,
infant formula-based ‘normal matrix’ control diet; CLM, infant formula-based intervention diet containing a complex lipid matrix; AIN-93G, American Institute of Nutrition
standard growth diet; AIN-93M, American Institute of Nutrition standard maintenance diet; ‘REF’, background reference group, which was used as a comparator to
healthy control rats (group NOP-CTRL) exclusively to illustrate the metabolic effects of Western-style diet in healthy rat offspring. Group REF was neither compared
with other groups nor used as a statistical control group. PND, postnatal day; μCT, micro computer tomograph.
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Metabolic readouts and tissue analyses

At the age of PND 35–42 and 88–95, sixty out of eighty ran-
domly selected offspring animals were housed in metabolic
cages (Tecniplast) for 24 h to record food and water intake, as
well as urine and faeces excretion. Blood was collected retro-
orbitally after fasting overnight on PND 42 and 95 after iso-
flurane anaesthesia for 3min. Fasted blood glucose and Hb
concentrations were analysed immediately using 150 μl of blood
(ABL 800 FLEX; Radiometer GmbH). The remaining blood was
used to obtain EDTA-blood, EDTA-plasma and serum. Rat
leptin, adiponectin and insulin concentrations in serum were
determined using ELISA kits (Millipore) according to the man-
ufacturer’s instructions. Similar to previous reports(15), Hb con-
centrations were determined by blood count; glycosylated Hb
(HbA1c; as marker for long-term circulating glucose concentra-
tions), total cholesterol, HDL-cholesterol (calculated as percentage
of total cholesterol), TAG and total protein concentrations were
measured by clinical routine laboratory procedures and corticos-
terone and 11-dehydrocorticosterone (11-DHC) concentrations by
tandem MS. Homeostatic model assessment of insulin resistance
(HOMA-IR) was calculated using the formula HOMA-IR= (fasting
insulin (mU/l) × fasting glucose (mmol/l)/22·5.

Quantitative real-time PCR

In mesenteric fat, retroperitoneal fat and liver and skeletal
muscle, gene expressions of ‘metabolic’ genes were analysed
by quantitative RT-PCR as previously described(17). We per-
formed a thorough evaluation of reference genes in all tissues
and finally used ribosomal protein S29 (RPS29) as the house-
keeping gene, because it was most stable between different
tissues and groups. Mitogen-activated protein kinase kinase
kinase 12 (MAP3K12), heat-shock 70-kDa protein 1 (HSPA1),
NADH:ubiquinone oxidoreductase subunit A5 (NDUFA5),
uncoupling protein 2 (UCP2) and uncoupling protein 3 (UCP3)
gene expressions were measured in skeletal muscle, PPARα,
IGF-1, IGF-2 and insulin-like growth factor binding protein
(IGFBP)-3 gene expressions in liver and leptin (LEP) gene
expression in mesenteric and retroperitoneal fat. For primers
and probes, see the online Supplementary Table S2.

Experimental diets

The early programming CTRL and CLM diets contained 28·3% w/
w standard IF powder or Nuturis® IF powder (stage 1 IF recipe for
infants aged between 0 and 6 months), respectively. The standard
stage 1 IF powder was manufactured according to current stan-
dard processing procedures (Nutricia) yielding small non-coated
fat droplets (mode diameter based on volume 0·4 (SEM 0·0)μm(34))
with a plant oil core consisting predominantly of rapeseed, sun-
flower, fish, coconut and palm oil. For the manufacturing of
Nuturis® concept IF, processing procedures were applied as pre-
viously reported(35). These modifications yielded large fat droplets
with a vegetable oil core and a mode diameter based on volume
of 4·3 (SEM 0·1)μm(34). By adding bovine MFGM fragments (Fon-
terra Co-operative Group Ltd to a level of 1·5wt% PL based on
total fat, yielding 0·54g/l reconstituted powder) during the

manufacturing process, these large fat droplets were coated with a
simplified layer of PL and other membrane components such as
glycoproteins and cholesterol(34). These IF powders provided the
complete fat fractions of the diets, which were then com-
plemented with nutrients meeting requirements defined by the
American Institute of Nutrition for the semi-synthetic AIN-93G
laboratory rodent diet(40). The moderate semi-synthetic WSD used
as challenge for adult rodents contained 20% (w/w) fat and 33%
sucrose. All diets were prepared by ssniff Spezialdiäten GmbH. An
overview of diet composition is given in Table 1.

The CTRL and CLM diets were prepared as fresh dough by
mixing 150g of powder with 30ml of water in a plastic bag and
squeezed gently to retain the fat architecture. Once prepared, the
dough ball with a weight of 60g per animal was placed in the
cages and replaced every 48h. The remaining dough was stored
in the plastic bag at 4°C for a maximum of 3d. AIN-93G, WSD and
the reference diet AIN-93M were stored at 4°C as pellets, directly
placed in the cage and replaced at least once per week.

Statistical analysis

Sample size was calculated by G*Power Software version 3.1
before the start of the study. The calculation was designed to
detect relevant differences either in blood parameters (e.g.
leptin, insulin, glucose, TAG and cholesterol) or gene expres-
sion (e.g. LEP, IGF-1) or fat mass (e.g. visceral fat mass mea-
sured by μCT scan; weights of fat compartments). We aimed to
detect a 50% difference at 25% SD with a power (1–β error) of
0·8 and a significance level (α error) of <0·05 in a two-sided
Mann–Whitney test. Accordingly, sample size was calculated to
be at least eight in each group.

All data were tested for outliers by Grubb’s test, and an
outlier was excluded from some data sets. Thereafter, each
parameter was analysed by a Kruskal–Wallis test including
the groups LIG-CTRL, LIG-CLM, SOP-CTRL, SOP-CLM, NOP-
CTRL and NOP-CLM. In case of significance, single-group
comparisons were carried out by Mann–Whitney test (LIG-
CTRL v. LIG-CLM, SOP-CTRL v. SOP-CLM, NOP-CTRL
v. NOP-CLM, LIG-CTRL v. NOP-CTRL, LIG-CTRL v. SOP-CTRL,
SOP-CTRL v. NOP-CTRL, LIG-CLM v. NOP-CLM, LIG-CLM
v. SOP-CLM, SOP-CLM v. NOP-CLM). The significance level
for the P-values generated by both tests was defined as P≤ 0·01
to avoid over-interpretation and account for multiple testing. All
data are shown as means and standard error of the mean. Sta-
tistical analysis was performed using Graph Pad Prism Software
version 6.

Results

Ligation and sham operation induced a phenotype of
intra-uterine growth restriction

During the course of the experiment, one LIG-CTRL animal had
to be excluded owing to lack of weight gain in the neonate, one
LIG-CLM owing to weight loss after blood sampling and one
LIG-CLM animal owing to significant lower weight gain
throughout life. The remaining group sizes were as follows:
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NOP-CTRL, n 10; LIG-CTRL, n 9; SOP-CTRL, n 10; NOP-CLM,
n 20; LIG-CLM, n 8; SOP-CLM, n 10; and ‘REF’, n 10.
At birth (PND 2), male LIG and SOP offspring were sig-

nificantly (P≤ 0·01) lighter than NOP offspring regardless of the
future assigned diet group. Length measured on PND 3 also was
significantly reduced in LIG and SOP (Table 2). Body weight
gain was similar in all groups except SOP-CLM compared with
NOP-CLM during lactation and similar in all groups during the
intervention period until PND 42 (online Supplementary
Table S3). During WSD challenge, however, the LIG-CLM group
gained 23 g less weight compared with LIG-CTRL (P= 0·070),
which in turn gained as much weight as the control group NOP-
CTRL (Fig. 2). Comparisons of body length gain did not show
significant differences. However, length was 0·5 cm less in LIG-
CLM compared with LIG-CTRL on PND 92 (Table 2). BMI and
food intake were similar in all groups, except a slightly
increased food intake relative to body weight in group LIG-CLM v.
LIG-CTRL at the second measurement (Table 2).

Complex lipid matrix diet reduced visceral fat mass in
ligation both in early and later life

Most interestingly, the data from μCT scans indicated that
CLM diet significantly (P≤ 0·01) reduced visceral fat mass in LIG
offspring as early as PND 40 (LIG-CLM v. LIG-CTRL; Fig. 3(a)).
On PND 92, this significant effect was even more pronounced,
and LIG-CTRL animals now showed significantly more visceral
fat mass compared with SOP-CTRL and NOP-CTRL (Fig. 3(b)).
The gain of visceral and total fat mass between PND 40 and 92
also was less in LIG-CLM v. LIG-CTRL, and increased in LIG-
CTRL v. SOP-CTRL (online Supplementary Table S4). For
representative μCT scans, see Fig. 3(c) (LIG-CLM; PND 92) and
3(d) (LIG-CTRL; PND 92). In line with the μCT findings, abso-
lute and relative weight of mesenteric, retroperitoneal and
epididymal fat depots were significantly reduced in the LIG-
CLM group compared with the other groups at PND 98. Group
LIG-CTRL showed significantly increased retroperitoneal and

Table 1. Diet composition*

Diets CTRL CLM WSD AIN-93M

Ingredients
Casein (g/kg) 168 168 200 140
CTRL–IF (g/kg) 283 – – –

CLM–IF (g/kg) – 283 – –

Maize starch, pre-gelatinized (g/kg) 300 300 100 466
Maltodextrin (g/kg) 101 101 60 155
Sucrose (g/kg) 70 70 330 100
Cellulose powder B800 (g/kg) 39 39 50 50
L-Cys (g/kg) 2·2 2·2 3 1·8
Vitamin premix (g/kg) 7 7 10 10
Mineral and trace element premix (g/kg) 28 28 35 35
Choline chloride (g/kg) 1·9 1·9 2·5 2·2
Pork lard (g/kg) – – 170 –

Soyabean oil (g/kg) – – 30 40
Nutritional composition

Carbohydrates 500 500 437 567
Starch (g/kg) 268 268 98 455
Sugar (g/kg)† 232 232 339 112

Protein (g/kg) 177 177 177 123
Fat (g/kg) 70 70 211 41

SFA (g/kg) 28·7 29·7 41 5·9
MUFA (g/kg) 26·5 26·1 42·3 10·3
PUFA (g/kg) 11·5 11 13·2 23·5
LA (g/kg) 9·8 9·3 11·9 20·4
ALA (g/kg) 1·8 1·7 1·3 2·7
ARA (g/kg) 0·25 0·25 – –

EPA (g/kg) 0·03 0·04 – –

DHA (g/kg) 0·14 0·14 – –

LA:ALA (g/kg) 5·4 5·3 9·5 7·5
Phospholipids (g/kg) 0·09 1·13 – –

Cholesterol (mg/kg) 4·8 15·7 – –

Fibre (g/kg) 49 49 50 50
Ash (g/kg) 33 33 31 30
Energy content
Metabolisable energy (Atwater) (MJ/kg) 16·2 16·2 19·4 15·8
kJ protein (%) 18 18 15 13
kJ carbohydrates (%) 65 65 44 77
kJ fat (%) 17 17 41 10

CTRL, normal matrix control diet (infant milk formula based); CLM, complex lipid matrix intervention diet (infant milk formula based); WSD,
Western-style diet; AIN-93M, American Institute of Nutrition standard maintenance diet; IF, infant milk formula; LA, linoleic acid; ALA,
α-LA; ARA, arachidonic acid.

* There was no difference in nutrient amounts between CTRL and CLM diets except increased phospholipid and cholesterol content in
CLM necessary to form large lipid droplets.

† Total sugar: including lactose, glucose and sucrose.
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Table 2. Anthropometric data and food intake
(Mean values with their standard errors)

NOP groups LIG groups SOP groups

CTRL (n 10) CLM (n 20) CTRL (n 9) CLM (n 8) CTRL (n 10) CLM (n 10) P

PND (d) Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM KW-test
LIG-CTRL v.
NOP-CTRL

LIG-CTRL v.
LIG-CLM

Body weight (g) 2 7·28 0·18 7·23 0·18 5·77 0·17 5·69 0·12 6·66 0·07 6·19 0·23 <0·001 <0·001 0·758
12 32·5 0·7 32·1 0·5 28·2 0·4 28·8 0·9 30·1 0·4 28·4 0·4 <0·001 <0·001 0·409
19 52·0 1·2 52·2 0·6 47·8 0·5 49·2 0·7 48·2 0·9 45·1 0·7 <0·001 0·005 0·109
40 174 4 175 2 164 2 162 2 163 4 165 3 0·004 0·079 0·795
89 409 10 406 8 398 10 373 8 387 6 387 6 0·083 0·510 0·093

Body length (cm) 3 5·74 0·07 5·92 0·04 5·31 0·08 5·23 0·06 5·59 0·08 5·66 0·05 <0·001 <0·001 0·341
12 8·96 0·18 8·61 0·07 8·35 0·24 8·18 0·15 8·69 0·15 8·41 0·11 0·028 0·059 0·194
19 10·9 0·1 11·0 0·1 10·4 0·1 10·4 0·2 10·3 0·2 10·5 0·1 0·004 <0·001 0·999
40 17·6 0·2 17·8 0·1 17·2 0·2 17·2 0·2 17·3 0·3 17·4 0·2 0·260 0·187 0·907
92 23·2 0·2 23·4 0·1 23·1 0·1 22·6 0·2 23·1 0·2 23·0 0·1 0·060 0·617 0·060

BMI (g/cm²) 2 0·22 0·01 0·21 0·01 0·18 0·02 0·21 0·01 0·21 0·01 0·19 0·01 0·084 0·031 0·213
12 0·41 0·01 0·43 0·01 0·35 0·04 0·43 0·01 0·40 0·01 0·40 0·01 0·005 0·153 0·106
19 0·44 0·01 0·44 0·01 0·44 0·01 0·46 0·01 0·45 0·02 0·41 0·01 0·082 0·619 0·277
40 0·56 0·01 0·55 0·01 0·56 0·02 0·55 0·01 0·54 0·01 0·55 0·01 0·724 0·905 0·651
92 0·76 0·01 0·74 0·01 0·75 0·02 0·73 0·01 0·73 0·01 0·73 0·01 0·397 0·821 0·449

Food intake (g/d) 38 19·4 0·7 19·8 1·6 17·2 0·6 17·3 0·8 18·6 0·7 17·2 0·5 0·155 0·043 0·548
88 23·4 1·0 23·7 1·1 22·0 1·1 22·3 1·1 20·4 1·5 20·7 1·1 0·187 0·337 0·489

Food intake/body weight (g/kg per d) 38 110 7 116 8 105 4 110 4 122 2 102 3 0·035 0·743 0·356
88 55·7 3·1 63·0 2·0 54·6 2·3 62·5 2·2 52·4 3·8 53·4 2·9 0·032 0·918 0·011

NOP, offspring of no operation (control) dams; LIG, offspring of ligated dams; SOP, offspring of sham-operated dams; PND, postnatal day; CTRL, normal matrix control diet (infant milk formula based); CLM, complex lipid matrix intervention
diet (infant milk formula based); KW-test, Kruskal–Wallis test; LIG-CTRL v. NOP-CTRL, Mann–Whitney test comparing the groups LIG-CTRL and NOP-CTRL; LIG-CTRL v. LIG-CLM, Mann–Whitney test comparing the groups LIG-
CTRL and LIG-CLM.
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epididymal fat weights compared with SOP-CTRL and increased
epididymal fat weight compared with NOP-CTRL. Kidney and
liver weights did not differ significantly (Table 3).

Complex lipid matrix prevented leptin resistance and
reduced basal glucose and TAG in later life

At the end of programming diet intervention (PND 42), serum
leptin concentrations were comparable between groups (Fig. 4
(a)). After the WSD challenge (PND 96), however, serum leptin
was more than twice as high in LIG-CTRL compared with
LIG-CLM, SOP-CTRL and NOP-CTRL animals (all significant
(P≤ 0·01); Fig. 4(b)). Leptin relative to total body fat showed a
similar pattern (Fig. 4(c)). The LIG-CTRL group was the only
group to show a significant increase in leptin to total body fat
ratio between PND 42 and 96 (Fig. 4(d)). In line with circulating
leptin concentrations, LIG-CLM showed 3·2-fold lower LEP gene
expression compared with LIG-CTRL (P= 0·013) in mesenteric
fat (Fig. 4(e)). This CLM effect was not present in retroperitoneal
fat (Fig. 4(f)). Unlike in other tissues, however, the reference
gene RPS29 showed some variation between the groups in fat,
slightly limiting the significance of these results.
Blood glucose concentrations were similar in all groups on

PND 42, but significantly reduced in LIG-CLM compared with
both LIG-CTRL and NOP-CLM, and significantly increased in
LIG-CTRL compared with NOP-CTRL animals on PND 96.
Serum insulin and HOMA-IR, however, were comparable

between groups (Table 4). Fasted serum TAG concentrations
were similar in all groups on PND 42. On PND 96, TAG con-
centrations were lower in LIG-CLM compared with LIG-CTRL
(P= 0·018) and significantly increased in LIG-CTRL compared
with both SOP-CTRL and NOP-CTRL (Table 4). Circulating total
cholesterol concentrations were comparable between groups
on PND 42, but significantly increased in both LIG-CTRL and
SOP-CTRL compared with NOP-CTRL on PND 96. However,
there was no significant CLM effect (Table 4). Circulating
HbA1c, corticosterone, 11-DHC, HDL-cholesterol and adipo-
nectin concentrations were similar in all groups. Hb and total
protein concentrations showed some small differences between
specific groups (Table 4).

Complex lipid matrix reduced liver insulin-like growth
factor 1 and attenuated increased skeletal muscle
uncoupling gene expression in the ligation group

Expression levels of other ‘metabolic’ genes were measured in
liver and skeletal muscle to gain first insight in molecular
mechanisms of reduced fat accumulation in the LIG-CLM
group (Table 5). In the liver, IGF-1, IGF-2 and IGFBP-3 gene
expressions were measured to evaluate genes encoding growth
factors. IGF-1 was significantly (P≤ 0·01) reduced in both
LIG-CLM compared with LIG-CTRL (1·4-fold) and SOP-CLM
compared with SOP-CTRL (1·3-fold). IGF-2 gene expression
was significantly reduced in LIG-CLM v. NOP-CLM only
(1·5-fold), but similar compared with LIG-CTRL. We did not
find other significant differences in liver gene expressions
in any group of animals, including PPARα, which was measured
to ensure similar energy status and lipid metabolism in all
groups.

In skeletal muscle, MAP3K12, HSPA1 and NDUFA5 gene
expressions were measured to exclude locomotor activity-
related gene regulation. There were some significant, however,
small differences in SOP-CTRL compared with NOP-CTRL only
(differences≤1·3-fold; Table 5), indicating similar locomotor
activity in all groups. UCP2 and UCP3 gene expressions were
measured to evaluate mitochondrial function. For UCP2, we
found significant inductions in both LIG-CTRL (1·7-fold) and
SOP-CTRL (1·4-fold) v. NOP-CTRL, as well as in SOP-CLM v.
NOP-CLM (1·3-fold). Comparison between LIG-CLM and LIG-
CTRL merely showed a trend for decreased UCP2 gene
expression in LIG-CLM (P= 0·075). For UCP3, there were sig-
nificant inductions in both LIG-CTRL v. NOP-CTRL (1·8-fold)
and SOP-CTRL v. NOP-CTRL (2·0-fold; Table 5), but no sig-
nificant reduction in LIG-CLM compared with LIG-CTRL.

Discussion

There is a growing body of evidence that quantity and quality of
early-life nutrition has long-lasting effects on health and disease
risk throughout life. Providing an optimal diet in infancy and
childhood is a key factor in the primary prevention of disease(41).
HM provided by breast-feeding is established as the preferred
infant feeding and serves as normative standard for infant nutri-
tion(42). Accumulating evidence shows that breast-feeding
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Fig. 2. Body weight gain in the ligation (LIG)-complex lipid matrix (CLM) (n 8)
group compared with LIG-CTRL (n 9) during nutritional challenge by a
moderate Western-style diet (WSD). The control group no operation (NOP)-
normal matrix control diet (CTRL) (n 10) also is shown to illustrate weight gain
during nutritional challenge after normal pregnancy and CTRL in early life. LIG
animals fed CTRL diet showed full weight gain, resulting in a body weight
similar to the healthy controls at postnatal day (PND) 89. LIG animals fed CLM
before WSD exposure consistently accumulated less weight, but still narrowly
missed statistical significance on PND 89 ((P= 0·070); LIG-CLM compared with
LIG-CTRL between PND 42 and PND 98). Values are means, with their
standard errors. , NOP-CTRL; , LIG-CTRL; , LIG-CLM.
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protects against adiposity later in life(43), although the exact
underlying mechanisms are not sufficiently understood.
In this study, we demonstrate in an ‘at-risk’ population that the

supramolecular structure of dietary lipids in early postnatal
nutrition is a novel aspect of nutrient quality that has to be con-
sidered in the context of primary prevention of obesity and
metabolic disease. Human MFG are large and their membranes
are complex(30). By nutritional intervention with a CLM diet
containing artificial large lipid droplets coated with bovine MFGM
fragments (Nuturis®) during rat development from the beginning
of complimentary feeding until late adolescence(39), we were able
to alleviate the well-known metabolic long-term sequelae in our
established IUGR rat model. The main feature of the CLM diet is
the supramolecular lipid structure inspired by the model of HM
droplets. In addition, minor differences between CLM and stan-
dard IF exist in the amount of PL and cholesterol(34). A recent
study investigating the contribution of the different features of the
altered physical structure, for example, droplet size and MFGM
addition, showed that only the complete concept resulted in the

long-term protection for body composition development(38). In
our study, CLM diet significantly reduced visceral fat mass in LIG
offspring as early as PND 42. In addition, gain of visceral fat mass
was reduced in LIG-CLM compared with LIG-CTRL offspring
between PND 42 and 98. The metabolic profile was improved
despite equal diet and comparable food intake. Furthermore,
metabolic outcome in LIG-CLM offspring was improved despite
postnatal transfer of all LIG offspring to healthy foster mothers,
which also may ameliorate metabolic sequelae(44). These results
indicate a significant impact of complex lipid globules in early-life
nutrition on metabolic outcome in our LIG animals. Although LIG-
CLM animals tended towards slower body weight and length gain,
other organ weights were not affected. In contrast to previous
findings in mice(36–38), there is a certain resistance to WSD-
induced fat accumulation in our non-IUGR rats as described
before(45). The limited effect of CLM in healthy rats compared
with mice may be owing to relatively normal body composition in
rats despite WSD challenge, which leaves ‘little window of
opportunity to ameliorate the outcome’(45). Thus, the possibility to
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Fig. 3. Body composition before (a) and at the end of Western-style diet challenge (b) measured by micro computer tomograph. Example scans of the abdominal
cavity, offspring from groups LIG-CTRL (c) and LIG-CLM (d) are shown. (c) and (d) show subcutaneous fat in yellow and visceral fat in magenta. NOP, offspring of no
operation (control) dams; LIG, offspring of ligated dams; SOP, offspring of sham-operated dams; CTRL, normal matrix control diet (infant milk formula based); CLM,
complex lipid matrix intervention diet (infant milk formula based); PND, postnatal day. Values are means, with their standard errors.
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Table 3. Weights of organs and organ compartments
(Mean values with their standard errors)

NOP groups LIG groups SOP groups

CTRL (n 10) CLM (n 20) CTRL (n 9) CLM (n 8) CTRL (n 10) CLM (n 10) P

PND (d) Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM KW-test
LIG-CTRL v.
NOP-CTRL

LIG-CTRL v.
LIG-CLM

Fat (g)
Mesenteric 98 4·66 0·27 4·52 0·26 5·40 0·31 3·89 0·27 4·56 0·33 4·84 0·29 0·145 0·190 0·011
Retroperitoneal 98 11·3 1·0 11·3 0·6 13·2 0·8 8·4 0·6 9·7 0·6 10·4 1·0 0·009 0·182 <0·001
Epididymal 98 12·3 0·7 13·1 0·9 15·3 0·7 10·6 0·6 12·9 0·3 12·2 0·7 0·030 0·182 <0·001

Fat (g/kg body weight)
Mesenteric 98 11·9 0·6 11·4 0·5 13·8 0·7 10·6 0·6 12·1 1·0 12·8 0·7 0·004 0·077 0·008
Retroperitoneal 98 28·1 2·2 28·5 1·2 33·7 1·9 23·3 1·5 25·4 1·5 27·4 2·4 0·009 0·054 0·001
Epididymal 98 31·4 1·7 32·9 1·9 39·1 1·3 29·0 1·3 30·5 0·8 32·3 1·7 0·022 0·003 <0·001

Organs (g)
Liver 98 10·4 0·4 10·5 0·3 10·3 0·4 10·5 0·7 10·4 0·3 10·7 0·5 0·999 0·829 0·959
Kidney (left) 98 1·20 0·05 1·26 0·04 1·11 0·05 1·18 0·03 1·16 0·04 1·16 0·04 0·318 0·420 0·340
Kidney (right) 98 1·25 0·04 1·23 0·04 1·18 0·06 1·19 0·04 1·21 0·03 1·20 0·04 0·778 0·234 0·556

Organs (g/kg body weight)
Liver 98 25·9 0·6 26·6 0·4 26·8 0·7 28·6 1·5 27·2 0·3 28·4 1·1 0·602 0·460 0·798
Kidneys (both) 98 6·14 0·20 6·29 0·14 5·89 0·19 6·51 0·19 6·23 0·13 6·25 0·22 0·475 0·408 0·105

NOP, offspring of no operation (control) dams; LIG, offspring of ligated dams; SOP, offspring of sham-operated dams; PND, postnatal day; CTRL, normal matrix control diet (infant milk formula based); CLM, complex lipid matrix intervention
diet (infant milk formula based); KW-test, Kruskal–Wallis test; LIG-CTRL v. NOP-CTRL, Mann–Whitney test comparing the groups LIG-CTRL and NOP-CTRL; LIG-CTRL v. NOP-CLM, Mann–Whitney test comparing the groups LIG-
CTRL and LIG-CLM.
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Fig. 4. Circulating leptin concentrations in serum at the end of the diet intervention period on postnatal day (PND) 42 (a) and at the end of the experiment on PND 96 (b);
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Table 4. Blood parameters (fasted) on postnatal days (PND) 42 and 96
(Mean values with their standard errors).

NOP groups LIG groups SOP groups

CTRL (n 10) CLM (n 20) CTRL (n 9) CLM (n 8) CTRL (n 10) CLM (n 10) P

PND (d) Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

KW-
test LIG-CTRL v. NOP-CTRL LIG-CTRL v. LIG-CLM

Glucose (mmol/l) 42 8·98 0·25 8·76 0·29 8·50 0·25 7·96 0·33 7·95 0·26 8·67 0·16 0·075 0·285 0·287
96 8·67 0·12 9·16 0·17 9·79 0·29 8·19 0·27 8·54 0·49 8·51 0·30 0·006 0·008 0·004

Insulin (mU/l) 42 0·99 0·21 0·78 0·07 0·80 0·13 0·79 0·09 0·72 0·04 0·98 0·22 0·969 0·798 0·798
96 1·57 0·28 1·70 0·21 2·12 0·50 1·84 0·31 0·96 0·09 2·41 0·67 0·292 0·497 0·918

HOMA-IR 42 0·41 0·10 0·30 0·02 0·31 0·06 0·28 0·03 0·25 0·01 0·40 0·09 0·844 0·645 0·879
96 0·60 0·11 0·69 0·09 0·95 0·23 0·67 0·14 0·38 0·05 1·01 0·29 0·346 0·400 0·776

HbA1c (mmol/mol) 42 13·6 0·4 14·1 0·3 13·5 0·3 13·7 0·67 14·1 0·3 13·1 0·3 0·204 0·876 0·356
96 19·4 0·5 20·0 0·4 20·1 0·7 19·3 0·4 20·6 0·4 19·5 0·4 0·370 0·503 0·496

Corticosterone (ng/ml) 42 521 57 649 42 598 33 720 59 553 41 693 60 0·153 0·328 0·167
96 646 38 628 32 702 83 613 55 737 33 643 61 0·389 0·190 0·252

11-DHC (ng/ml) 42 27·8 2·5 29·3 1·6 27·4 2·2 31·0 2·5 29·6 1·4 28·0 1·6 0·836 0·863 0·370
96 21·5 1·7 23·5 1·4 21·9 2·8 20·3 2·1 22·4 1·5 24·8 1·9 0·700 0·796 0·681

C/11-DHC (ng/ng) 42 18·9 1·5 22·3 1·0 22·7 1·7 23·4 2·4 18·7 1·0 23·9 2·2 0·025 0·114 0·423
96 30·6 1·3 27·3 1·1 30·3 1·4 31·8 3·9 34·4 2·6 26·4 2·1 0·106 0·815 0·779

Total cholesterol (mmol/l) 42 2·01 0·12 2·00 0·07 2·11 0·05 2·00 0·08 2·28 0·09 2·05 0·11 0·127 0·297 0·351
96 1·70 0·08 1·96 0·08 2·05 0·03 2·01 0·07 2·28 0·11 2·09 0·15 0·015 0·003 0·867

HDL (% TC) 42 76·9 2·2 79·7 1·9 79·7 1·9 78·2 2·1 80·4 1·3 80·7 1·2 0·505 0·277 0·999
96 64·1 3·6 68·8 1·8 59·4 2·0 65·5 4·3 70·0 1·9 63·6 2·5 0·041 0·515 0·121

TAG (mmol/l) 42 1·38 0·10 1·12 0·10 1·31 0·15 1·35 0·12 1·07 0·10 1·06 0·07 0·101 0·475 0·815
96 1·18 0·07 1·16 0·06 1·55 0·09 1·21 0·07 1·12 0·07 1·02 0·05 0·002 0·002 0·018

Adiponectin (μg/ml) 42 30·2 4·0 20·8 1·5 24·9 2·3 28·7 2·9 27·7 1·9 21·3 2·0 0·052 0·408 0·397
96 24·7 2·2 22·6 0·7 24·4 1·5 29·0 2·5 24·7 2·6 25·1 2·1 0·313 0·968 0·224

Hb (mmol/l) 42 8·71 0·10 8·85 0·10 9·07 0·18 8·74 0·14 8·71 0·09 8·86 0·11 0·585 0·197 0·129
96 9·86 0·05 9·73 0·06 10·10 0·06 9·93 0·06 9·86 0·05 9·76 0·12 0·031 0·007 0·067

Total protein (g/l) 42 58·5 0·6 59·6 0·4 61·2 1·0 58·4 0·6 60·3 0·7 60·1 1·0 0·206 0·114 0·071
96 63·8 0·6 67·2 0·5 67·2 1·0 65·0 0·8 66·2 0·7 66·3 0·9 0·007 0·021 0·152

NOP, offspring of no operation (control) dams; LIG, offspring of ligated dams; SOP, offspring of sham-operated dams; CTRL, normal matrix control diet (infant milk formula based); CLM, complex lipid matrix intervention diet (infant milk
formula based); KW-test, Kruskal–Wallis test; LIG-CTRL v. NOP-CTRL, Mann–Whitney test comparing the groups LIG-CTRL and NOP-CTRL; LIG-CTRL v. NOP-CLM, Mann–Whitney test comparing the groups LIG-CTRL and LIG-
CLM; HOMA-IR, homoeostatic model assessment of insulin resistance; HbA1c, glycosylated Hb; 11-DHC, 11-dehydrocorticosterone; TC, total cholesterol.
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draw conclusions about the protective effect of CLM in healthy
individuals may be limited in rat studies that try to exacerbate the
phenotype by WSD.

A reduction of adult fat accumulation and an improved
metabolic profile has already been shown in healthy yet WSD-
challenged mice that were fed CLM diet postnatally(36,37). To
date, acquisition of clinical data on possible effects of the
supramolecular lipid structure (Nuturis®) on growth, body
composition and long-term metabolic health in infants is
ongoing (clinical trial registry NCT01609634 and the Dutch Trial
Register NTR3683). A low-energy, low-protein and bovine
MFGM fragment containing IF in healthy term infants resulted in
cholesterol concentrations and cognitive development more
similar to those of breast-fed infants at 1 year of age compared
with standard IF(45), suggesting that dietary MFGM fragments
provide health benefits(46,47). However, both energy and pro-
tein content were also modified, and long-term data were not
recorded. Mice showed long-term metabolic improvement only
when MFGM were present at the surface of large lipid dro-
plets(38). Thus, long-term metabolic benefits may only arise
when the MFGM-derived PL are present as a coating on large-
sized lipid droplets.

The adult phenotype of increased fat mass, hyperglycaemia,
hypertriglyceridaemia and hyperleptinaemia in LIG offspring
has been reported before by our group(15). Circulating meta-
bolic markers in this study confirmed that IUGR animals born
after utero-placental insufficiency are at risk for an adverse
metabolic profile. To obtain first insights into the underlying
molecular mechanisms of metabolic protection by the supra-
molecular structure of dietary lipids, we analysed the expres-
sion of ‘metabolic’ genes in fat, muscle and liver. In mesenteric
fat, a reduction of LEP gene expression by CLM diet in the LIG
group suggested that CLM did not only reduce circulating leptin
concentration by reducing fat mass, but also by affecting leptin
production in an abdominal fat compartment that may affect
energy homoeostasis(48). In the liver, we showed a moderately
reduced IGF-1 gene expression in LIG-CLM compared LIG-
CTRL offspring, which may have contributed to the reduced
gain of fat mass and altered growth(49). Our observations are in
line with findings reported in term SGA infants, in which breast-
feeding was associated with reduced IGF-1 and glucagon-like
peptide-1 levels compared with formula feeding(27). Similar
hepatic PPARα gene expression reflects compensated energy
metabolism in all groups. Increased uncoupling protein (UCP)
gene expressions in LIG and SOP offspring on CTRL indicate
less-efficient mitochondrial β-oxidation, probably increasing
energy expenditure and preventing additional fat deposition(50).
However, UCP gene expression was not further elevated in the
CLM intervention groups.

In conclusion, this study provides clear evidence that a
complex supramolecular structure of lipids in the early-life diet
has a beneficial re-programming effect on long-term visceral fat
accumulation and metabolic health in animals formerly
exposed to utero-placental insufficiency. In rats, however, CLM
seems to predominately mitigate metabolic sequelae caused by
an adverse fetal environment, without modifying the metabolic
profile of healthy individuals. The structure of dietary lipids is a
novel aspect of nutrient quality that should be considered in theTa
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context of primary prevention of obesity and metabolic disease
in ‘at-risk’ populations.
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