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1. Introduction

In our previous work [8], we picked up the elliptic equation
W {—Au:xf(u)e““ inB={z|<1} CR,
" =0 on 0B

with the nonlinearity f(#) = 0 in C'. We studied the asymptotics of the family
{QA, u(x))} of classical solutions satisfying

(2) A10 and [ul.— + oo.

Taking the result by Gidas-Ni-Nirenberg [5] into account, we may assume
that the solution is radially symmetric and decreasing in 7 = | x| , Le,

u=ulz]) 20, u.<00<r=|z|<1).

Furthermore, the coefficient nonlinear term f(#) is supposed to have the polyno-
mial growth. More precisely,

) =0w>1),
lim (log f)"(u) = 0,

U—too
and for some k € R,
(3) 0 < liminf f()u " < limsup f)u """ < + oo,
U oo U+

First, the global asymptotics is stated as follows.
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ProposiTioN 1 ([8]). Let (u, A) be a family of solutions of (1) with (2).
1LIF0<a<l,thenforamyx € B, u(x) > + © as 1 — 0.
2. Ifa > 1, then u(x) — 0 for any x € B\ {0} as A — 0.

It is well-known that the solutions are expressed explicitly if f(#) =1 and «
= 1. In this case the singular limit is explicitly determined as

u(z) — 4log]%[ as A | 0.

Thus the exponent & = 1 is the borderline of the global asymptotics.
Incidentally, the number of solutions for f(#) =1 and @« =1 is 0, 1, and 2
accordingto A > 2, A = 2, and 0 < A < 2, respectively. The unique solution for

{—Au=2e" in B,
u =0 ondB

is given as

u(x) = 2log

lxf*

This function plays an important role in microscopic asymptotics in the follow-
ing. Henceforth, we suppose that a > 1.

ProprosiTION 2 ([8]). Passing to a subsequence, it holds that

a -7, a -7 2
(4) e y) = u@) + 2log——— + o(1)
1 2

+lyl

locally uniformly iny € Rz\ {0}, where T— + 0 is taken appropriately.

The purpose of the present paper is to study the uniformity of (4). When the
exponent is in 1 < & < 2, the following fact has proven in [8] with the aid of
o.d.e. approach by Atkinson-Peletier [2].

ProposiTION 3 ([8]). In the case of f(u) =1 and 1 < a < 2, the uniform con-

vergence m (4);

—-1/2 —-T/2

sup |u(e”y) —u(e”"") — 2log

lyl <e2 1+ I?/ ‘2

never holds for any {t}.
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In case of & > 2, it is not known whether classical solutions for (1) with (2)
exist or not ([1], [2]). The exponent & = 2 is considered to be a borderline for the
existence. What we want to claim here is that it is also the borderline from the
microscopic asymptotic point of view. We shall give a uniform convergence result
for this borderline case. The following theorem is the main result of the present
paper.

THEOREM 4. Ifa = 2 and
(5) o = lim sup f |Vu |2dx < 6m,
A—0 B

then the convergence (4) is locally uniform n y € R® In other words, the uniform
asymptotics near y = 0 is exactly expressed as in (4).

Concerning the existence of such a family, we have the following theorem.

THEOREM 5. If k > 2 in (3), theve exists a family {(A, u(x))} of classical solu-
tions of (1) with @ = 2, satisfying (2) and

(6) EEfB|vu|2dx-»4n.

In case of @ < 2, E; <  implies that
Af we € L'*(Q)

for some € > 0 because of the Trudinger-Moser inequality ([11], [7]) i.e.
(7) sup {fe”zdxlllellﬁﬁmr] <Cl|8l.
v 2

Consequently the blow-up (2) does not occur by the standard elliptic estimates. In
this sense, Theorems 4 and 5 are peculiar to the case ¢ = 2.
A similar observation also yields for the case o = 2, that

liminf | |Vu Izdx 24,
A-0 B
for the solution of (1) with (2). We shall give a more specified estimate (Lemma 8)
for the Dirichlet integral for the solution by using the scaling parameter which
will be a key estimate to show Theorem 4.
The special case
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—du=ue”, u>0inB={z|<1 R
with
u = 0on 0B

is closely related to the Trudinger-Moser inequality and also Carleson-Chang’s
theorem ([4], see also [6], [10]). However, this case of £ = 2 is not treated in
Theorem 5. We shall pick up such a kind of equations in a forthcoming paper.

For the proof of Theorem 4, we invoke the following uniform estimate by
Brezis-Merle [3]. Assume that £ C R’ is a bounded domain. Consider a family of
solutions to

8) [— Au, = V,e" in L2,
u, =0 on 082,

where {V,} is a given family of functions on £.

LemMmA 6 ([3]). Let {V,} be given functions with

" Vn "L’(m =B
for some 1 < p < © and u, be a solution of (8) in the sense of distribution. Suppose
that ‘
. im -,
(9) [ivilear<r<iip=pp-1

then the solution u, is bounded independent of n, i.e.,

" Un ”L" S C(B’ 7 ‘Q9 p)

The smallness assumption (5) in Theorem 4 comes from the assumption (9).

The proof of Theorem 4 is based on that of Proposition 2. In §2 we shall re-
view the latter to perform the former in §3. The proof of Theorem 5 is indepen-
dent and shall be given in §4.

2. Summary of the Proof of Proposition 2

We take the case o = 2 for simplicity. Namely, we consider the smooth solu-
tion # of

(10) [—Au=2f(u)eu2 in B,
u =0 on 0B,
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where f(u) =2 0is a C! function satisfying (3).
The solution # becomes radially symmetric and has the property that

u, <00 <r=lzl<1
We put the scaling solution v(#) as
(11) v() = u*(rr) — u’(y)

for some scaling constant y— 0. This function v is subject to

—A v=k(»e — p(» inB,

(12) v>0 in B,
v=20 on 0B,
v <0 on BT—I\B,

where we set

_ ul(y) 2
a3 [k(r) = 20u(yr) fu(rn) e’

o =27 | Vulyn |*

and B,« = {x € R? |z| <771},
Writing both equations (10) and (12) into the ODE form, we introduce the
transformation » = ¢~ %, U(®) = u(») and V(® = v(») to get

lH—~ﬂwUz—
(14) U>0(>0),
U>0(>0),
Ue"*— 0 (t— + )
and
v+ %K@/m”—2$w=ﬂx
(15) V>0>0),

V>0(>0),
Ve — 0 (t— + ),

where = — 2log 7, U.() = Ut + 0 and K(® = 2AUF(U)e" ™ " = k(»).
The equation (15) has a representation of the integral equation as

K (s)

16 Vo=V + [ =TS as=2 [ - 0Uoas.
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In the proof of Proposition 1 (cf. [8]), the asymptotics

(17) 7 = max lru,l—*O
0<7<L1

is proven. Since

. 1
Ue) = = 5 7, | m ey,
it holds that
(18) 1 U e = O.
This relation deduces that
(19) K(H — constant, locally uniformly in ¢ € R.

Two cases should be distinguished for the parameter 7— +  to be speci-
fied. Let

max 2Au(?) f () e r*
0<r<1

sup 21 U(t)f(U(t))eUz("_'.
teR

(20)

N
Il

Casel: m— +
In this case we can take 7— + o as

(21) K@) = 2.
The asymptotics (18) and (19) imply that
(22) 0— 0, k— 2 locally uniformly in R*\ {0}.
The relations (12) is reduced to
I = Av ey = OQ)
with
v=0on|ly=1

for any R > 1. Hence {v} never blows-up on {|y| = 1}.
On the other hand, by (22), the boundedness of the equation (12) near 0B fol-
lows and this implies

” v, "L""(&B) <C.
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Therefore, for any € > 0,

[ ke = o)z
B/B.,

= f (— Av)dx
B/B.,
< —ww,(l) < C.

While by (22),

f ke’ — oM} dx

1, l}
s, {2 e 1 dx

ﬂj: v(») rdr

/2
< CEve).

>

v

Hence we obtain an apriori estimate for v on R”\ {0}. Together with the equation
(12), we may obtain the limit function v, as

v(#) = vy(#) locally uniformly on R\ {0}
by the Ascori-Arzela theorem.

2
Finally, the singular limit v,(y) = 2log ——— is specified through

+ 1yl
— Ay, = 2¢" in R*\ {0}

and
v,=0on|y| <1.
Case 2: m = 0(1)
In this case, we choose # — + % by
(23) U(+ @) = U0) + 2log 2.

The condition 7 = O(1) implies that
(24) 1K - o = OD)
and hence by passing to a subsequence,

K(0) — 2y
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for some ¢ = 0.
From (19), it follows the convergence

K(f) = 2p locally uniformly in ¢ € ( — o0, + o),
while
" v “L“(‘y](ef/z) = 2log2

holds by (23). Utilizing the elliptic estimate, we see that a subsequence of
{0} converges locally uniformly in R*\ {0}. The limiting function v,(y) satisfies

— Av, = 2pe” in R?,
v,=0onl|y|=1

and

I 2, .- = 2,(0) < 21log 2.

The conclusion v,(y) = 2log ] follows from g = 1 or equivalently

+ 1yl
v,(0) = 2log 2. However, the right-hand side of (16) is non-negative and

V(+ o) = 2log 2. Therefore, the dominated convergence theorem implies that
0=V, + f (s— 10 %ev"(S)—sds — 2log2
i
= V,(+ ) — 2log 2
for V,(f) = v,(#), or equivalently,
v,(0) = 2 log 2.

This completes the proof. O

We note that the relation
/{u(e-—r/z) f(u(e—r/z))euz(e"’z)—r =1+ 0Q)

follows from the proof.

3. Proof of Theorem 4

We have to prepare a few lemmas.
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LemMa 7. The function k(| y|) defined by (13) satisfies that
(25) He Ny = OQ) for 1 < p < oo
Proof. In the case of m = O(1), the uniform estimate (24) holds. Therefore,

we have only to consider the case m— + oo,
Then, 7— + ©© is determined through (21), i.e.,

2= K(0) = 24U f(UD)e"

Hence
(26) K® = 22U, F(U(8)e” O 7°
— 9 U®fFWU()) _ (Uf(t)>"
T U@fUR) T \NU®
by (3).
Writing
AGEE 1 t
@ = 1 +—_U(z') J; U.(s)ds,
we reach
U.(H
(27) OSW—SC(1+t) t=0)

by (18). The conclusion (25) follows from (26), (27), and

k(») = K@ for r = ¢~

LEmMMA 8. For any fixed R > 0, we have

(28) 47 < lim inf |Vu|dx.

-0 {Re™72<|z|<1}

Proof. As is described in the previous section,
V(t) — Vy(®) locally uniformly in t € (— oo, + 00)

for

—t*

V. =2lo
° 1+
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Making use of the elliptic estimate in (15), this implies that

V(t) = V,(H locally uniformly in t € (— o0, 4 o),

Here,
V) =20+ U+ 1)
and
. 207"
V,(H = BE—
1+e
Therefore, writing R = ¢~ "*, we obtain
2
(29) — Re™ " u(Re™ " u,(Re™*) — 2k e
1+ R
The equation (10) deduces that
(30) f |Vu’dr = — 2nRe”*u(Re” " u,(Re™™?
{Re™™2< |z|<1)
+ Auf () *dzx.
Re™™?<|zi<1
Therefore, combining (29) and (30), we see for R > R
4R’ Lo w2
(31) & — < liminf | (Vul? = 2ufwe”)dx
1+ R -0 {Re™™2<|z|<1}
< liminf | |Vu|’dx
-0 {Re™™2< |z|<1}
< lim inf |Vu |’dz.
A—0 {Re™?<|z|<1}

By taking R arbitrarily large, we obtain (28).

LEMMA 9.  Under the assumption of

(32) lim sup fqu Pdz < 67,
1-~0 B

we have

(33) ” v "L“"(ly|<R) = 0(1)

for any R > 0. Here, the function v(| y|) is defined by (11).
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Proof. We prove this lemma by the aid of Lemma 6 in Section 1.
The estimates (28) and (32) imply that

lim sup |Vu |2dx < 27m for any R > 0.

20 tlzl<Re™™?}

Hence the function p(| y|) introduced in (13) satisfies that

T_l
(34) lim sup || o ;1 1<py = 47 f |Vu@ [Pdr < 4r.
A-0 0
We may suppose that 0 < R € 1 in showing (33). Let us take the functions
hy and h, as
—Ah,=0 in|ly|l<R, hy=v only|=R
and

—4h,= —p inly| <R, h,=0 only|=R.

We have already proven that

% ”L""(M:R) = 0()
so that
(35) I 2y =y 1<) = OQ)
holds by the maximum principle. On the other hand, p = 0 and hence
(36) h,<0inly| <R.
This implies the estimate
(37) I e" =gy < = OD)
for

h=h,+ h,

Because of (12), the function w = v — & solves that

(38) —Adw=—Av+A4h=—Av+p
:kev:kehewin[yl<R

and

(39) w=0on|y|=R.
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Here, Lemma 7 and (37) are utilized to deduce
I ke" Ioyicmy = OQ) for 1 < p < oo,
On the other hand we have

(40) " ke'e" "L1(|y|<R) = “ ke" “L‘(!y!<R)

=1 0 lgyrem + f“ (= Az

by (12) and k, o = 0. By Proposition 2, we have
v,(R) = v, (R) + 0(1).
Therefore, from (40) and (29) we obtain

| ke"e" liowi<er = 10 It <ar — 27R0,(R)
< o llpyen — 27R,, (R) + 0(1)

4rR*
<o ligyien +1_+P + 0(1)

for0 < R<1.
Here, we take R > 0 sufficiently small to deduce that

lim sup “ /Cehew ”Ll(m<R) <d4r
-0

by (34).
Now, we can apply Lemma 6 for (38) with (29). Then it follows that

e “L“"(!u|<R) = 0().
However, we have from (36),
(41) 0<v=w+h +h,<w- hinly| <R.

Consequently (33) follows from (35) and (41).
We are in position to complete the proof of Theorem 4.

Proof of Theorem 4. As we have shown,
v — v, locally uniformly in R\ {0}

so that
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(42) Vo(+ o0) =2log2 < lir? %)nf V(+ o0).
Furthermore,

(43) K — 2, V() = V,(® locally uniformly in (— oo, + c0)
and also

(44) I V"Lml,m) = 0(1) for any t, ER

by Lemma 9. Finally, we have
(45) [KO|<CAQ+D"fort>1

from (26) and (27).
Here, the dominated convergence theorem is utilized to take the limit in (16).
We obtain

0 < lim inff 2(s — HU*(s)ds < lim supf 2(s — HU(s)ds
t

=0 t =0
” 1 Vols)—=s . .
<V, +f g(s—t)e " ds — lim inf V(+ o0)
t A—0
= V,(+ o) — lim inf V(+ o) <0

A0

by (42). Therefore,

(46) f 2(s — DUNs)ds— 0 (tE R).
t

Furthermore,

0=lim [ 2~ DUA)ds

A-=0 vt

=V, + j; %(s — Pe"ds — lim V(+ o0)

A—0
= V,(+ o) — lim V(+ o0).
=0
Hence

(47) V(4 00) = V (4 o0).

Going back to (16), we have

VO = Vi1 < [ (= D20%9ds + | V(+ @) — V,(+ ) |
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+ _[ (s—19 ‘—Kis) e’ — %ev"“) e *ds

so that
supl Vi — V, (0 | < j;w (s — t)2U%(s)ds + | V(+ o0) — V,(+ ) |

t=>t 1
” K©) v 1 vy
+ ‘/; (s—t)| = e —5e

e °ds,

where ¢, € R.
The first two terms converges to zero by (46) and (47). For the last term, we
utilize (43)-(45) and the dominated convergence theorem. Thus we obtain

" V-1, ”L“(t‘,eo) —0,
which means that
v— v, locally uniformly in R’

the desired convergence. Il

4. Proof of Theorem 5

The Trudinger-Moser inequality mentioned in Section 1 is expressed as
(48) sup {f edx| |V lP £47r] < Cle|.
v B

The constant 47 in (48) is shown to be best possibly by [7]. The following prop-
osition is a slight refinement.

ProposiTION 10.  For any continuous function k(u) = 0 with

lim k(u) = + oo,

U—+oo
there exists a family {w} C H, (B) satisfying
w =0, fle|2dx<47r
B
and

fk(w)ew2 dx— + oo,

B
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This fact is combined with the following lemma proven by Shaw via the Lag-
range multiplier principle.

LemmMa 11 ([9)). Suppose the existence of a non-negative function w €
H, (B) such that

fle‘zdx= y < Ar.
B
Then, there exists a solution (A, u(x)) for (10) such that

J;G(u)dx=j;6(w)dx

and

fqu Pdx < 7,
B

where
G(u) = j;uf(u)e“zdu.

The condition (3) with £ > 2 implies that

lim f(u)/u = + oo,

U—+00

If
Gu) = kw)e”,
this means that

lim k(u) = + .

U—+oo

Hence Proposition 10 and Lemma 11 are applicable.
We get a family {(4, #(x))} of solutions for (10) satisfying

(49) lim supfl Vuldr < 47
A—0 B
and
— + oo,
(50) LG(u)dx s
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The asymptotics (50) holds only when
lall-— + oo,

Furthermore, f(#) > 0 for # > 1 so that there exists a constant C > 0 such that
Gl = f e du < Cufwe” (u=0).
0
Therefore,
< “
szG(u)dx_ chxuf(u)e dr
_ 2,
= CJ;IVu] dr = 0(Q1)

by (49) and hence
A10

by (50).
In this way Theorem 5 has been reduced to Proposition 10. For the sake of
completeness we show the proof, although it is quite similar to {7].

Proof of Proposition 10. The family is constructed from W() = w(#) for »r =
—t/2

e . We have

[ wtar= g [1vela

and
~ Weet o, __ }_ w?
j(: k(Wye” ~'dt = ”Lk(w)e dz.

Therefore, the desired relations are reduced to

(51) {W) < AC[0, ), W(0) =0, W= 0,
(52) fm Wiat < 1
and

f k(W)™ ' dt— + oo,

0
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where AC denotes the set of absolutely continuous functions.
Taking ¢ sufficiently small, we put

n.(s) = min(s, 1 —¢)
and
W(t) = ¢, (et).

For this function, the requirement (51) is obvious. The inequality (52) is examined

as
f Wt = f n()ds = (1 — e’ < 1.
0 0
Finally, we conclude that
f kW) e” at = f k(s_mr)s(s))es—ln‘—”_lsr]_lds
0 0
> k(n—l/z(l —9) ® e(l—e—s)e‘le—lds
1-n

=k(Ee?Q —¢)—+oase | 0.

Thus the proof has been completed. ]
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