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B-STABILITY
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Abstract

A random variable Y is branching stable (B-stable) for a nonnegative integer-valued
random variable J with E(J ) > 1 if Y ∗J ∼ cY for some scalar c, where Y ∗J is the sum
of J independent copies of Y . We explore some aspects of this notion of stability and
show that, for any Y0 with finite nonzero mean, if we define Yn+1 = Yn

∗J /E(J ) then the
sequence Yn converges in law to a random variable Y∞ that is B-stable for J . Also Y∞
is the unique B-stable law with mean E(Y0). We also present results relating to random
variables Y0 with zero means and infinite means. The notion of B-stability arose in a
scheme for cataloguing a large network of computers.
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1. Introduction

Let Y be a random variable (RV). Denote by Y ∗j the sum of j independent copies of Y .
According to Feller (1971), Y is strictly stable if, for all j , there is a constant cj such that
Y ∗j ∼ cjY , where X ∼ Y means that X and Y have the same distribution. Suppose that J
is an RV taking values in {1, 2, . . .}. We denote by Y ∗J the RV that takes the value Y ∗j with
probability pj = P(J = j). We define Y to be B-stable (i.e. branching stable) if and only
if, for some scalar c (depending on the distributions of Y and J ), we have Y ∗J ∼ cY . Then
((Y ∗J )∗J ) ∼ (cY )∗J ∼ c2Y , and so on. Let the probability generating function (PGF) of J be

f (u) =
∞∑
j=1

uj P(J = j),

and let the characteristic function (CF) of Y be φ(t). Then the CF of Y ∗J is f (φ(t)), and the
condition of B-stability is

f (φ(t)) = φ(ct), (1)

for some c. Clearly, if E(Y ) and E(J ) are finite and E(Y ) �= 0 then we must have c = E(J ). Our
object in this paper is to initiate the study of B-stable distributions. Clearly, if φ(t) satisfies (1)
then so does φ(at) for any real a. We will ignore this trivial nonuniqueness. If P(J = j) = 1,
for some j > 1, then (1) reduces to φ(t)j = φ(cj t), which (if it holds for all j , or even for any
two relatively prime js; see Feller (1971)) requires Y to be (strictly) stable in the usual sense.
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The reason for using the name ‘B-stable’ is that this new theory is related to the theory of
branching processes, for which the classic reference is Harris (1963). A branching process {Xn}
is defined by setting X0 = 1 and

Xn = J ∗Xn−1 , n = 1, 2, . . . ,

i.e. Xn is the sum of Xn−1 independent copies of J .
We can define another process {Yn} by taking Y0 to be an arbitrary RV, and setting

Yn = (Yn−1)
∗J , n = 1, 2, . . . ,

i.e. Yn is the sum of J independent copies of Yn−1. Note that the sequence {Yn} is a sequence
of independent RVs.

2. Preliminary results

We begin with two simple lemmas.

Lemma 1. If Y0 = 1 then Yn ∼ Xn.

Proof. As above, let the PGF of J be f (u) = ∑∞
j=1 u

j P(J = j). The PGF of bothX0 and
Y0 is simply u. Suppose we have proved that bothXn−1 and Yn−1 have the PGF fn−1(u). Then
the PGF of Xn is fn−1(f (u)), and the PGF of Yn is f (fn−1(u)). So both Xn and Yn have the
same PGF, namely the nth iterate of f .

Lemma 2. For any Y0, Yn is distributed in the same way as the sum of Xn independent and
identically distributed copies of Y0.

Proof. If the CF of Y0 is φ(t) then we can easily show by induction that the CF of Yn is
fn(φ(t)).

Note that we have not shown that, for a single realization of {Xn}, we can define Yn to be
the sum of Xn copies of Y0. This is not true because, with that definition, it is not the case
that Yn is distributed in the same way as the sum of J copies of Yn−1. For example, suppose
that f (u) = (u+ u2)/2. A possible realization of (X0, X1, X2) is (1, 2, 3), which occurs with
probability 1

2 · 2
4 = 1

4 . But, if Y1 is the sum of two copies of Y0 then Y2 cannot be the sum of
three copies of Y0; it would have to be either the sum of two copies or the sum of four copies
(with a probability of 1

2 each).
In the classical theory, it is convenient to work with the process {Xn} rather than {Yn},

because if E(J ) is finite and equal to µ, say, then the process

Zn = Xn

µn
, n = 0, 1, 2, . . . ,

is a martingale, and so converges almost surely to a random variable Z, say. (Clearly the
distribution of Z depends on the distribution of J .) Thus, when Y0 = 1, Yn/µn must converge,
in distribution, to Z. Proving this directly is not straightforward because Yn/µn is not a
martingale. In the following we will show that, for any Y0 with nonzero finite mean µ, Yn/µn

does converge, in distribution, to a B-stable RV. We will always assume that E(J ) = µ is finite
and greater than 1. Except for in Section 8, below, we assume that P(J = 0) = 0.
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3. Motivation

The motivation for this work was the following problem. In a certain method for cataloguing
a large network of computers (see Mallows and Meloche (2005)), it is possible to search for
active computers by sending packets to them in sequence, using their IP addresses. When-
ever an active computer is found, it can be co-opted to help in the remaining search. As a
simple model for this situation, consider a Bernoulli process Z on the positive integers, with
P(Zn = {0, 1}) = {1 − p, p} (in an obvious notation). The positions of the 1s represent the
(unknown) positions of active computers. We denote the number of computers active at time
t by Kt . We start at time t = 0 at position X0 = 0 with one active computer (K0 = 1), and
move to the right with speed 1. At time t = 1 we are at position X1 = 1 and if Z1 = 1 we
have found a second computer, so that K1 = 2. If Z1 = 0 then K1 = 1. In general, if at time t
we are at position Xt and have Kt active computers, then at time t + 1 we will be in position
Xt+1 = Xt +Kt and will have found Kt+1 = Kt + ∑Xt+Kt

i=Xt+1 Zi active computers.

It is easy to establish that E(Kt ) = st and p E(Xt ) = st − 1, where s = 1 + p. We find
that, as t → ∞, both Kt/st and pXt/st have asymptotically the same distribution, whose CF
φ(u) satisfies

φ(su) = (1 − p)φ(u)+ pφ(u)2.

This limiting distribution is thus B-stable with f (u) = (1 − p)u+ pu2. A similar analysis
can be performed with computers appearing on the real line according to a Poisson process.
This general problem seemed interesting to the authors.

4. Strictly stable random variables

First we describe the family of strictly stable RVs. These depend on three parameters as
follows. Here k(α) = 1 − |1 − α| and c is positive. Then ψ(t) = ψ(t, α, β, c) is the CF of a
strictly stable RV if and only if ψ(t) = ew(t), where

• α = 2, β = 0, and w(t) = −ct2 (i.e. Gaussian with mean 0); or

• 0 < α < 2 (α �= 1), −1 ≤ β ≤ 1, and w(t) = −c|t |α exp(− 1
2π iβk(α)sgn(t)); or

• α = 1, −∞ < β < ∞, and w(t) = −c|t | + iβt (i.e. translated Cauchy).

Remark 1. The asymmetric stable distributions with α = 1 are not strictly stable; they cannot
be located to satisfy the property of strict stability. Neither Feller (1971) nor Loève (1960)
pointed out that translated Cauchy laws are strictly stable.

5. B-stability when E(Y0) is finite and nonzero

Theorem 1. If E(Y0) is finite and nonzero then Yn/E(Y0)µ
n converges, in distribution, to Z.

Proof. As above, define X0 = 1 and Xn = J ∗Xn−1 , so that {Xn} is a branching process.
Then Xn/µn is a martingale and, so, converges almost everywhere to an RV Z, say. Let Nn
be a sequence of independent RVs with Nn ∼ Xn. Then Nn/µn → Z in distribution. By
Lemma 2, we can assume (for each n separately) that Yn is the sum of Nn copies of Y0. Then

Yn

µn
= Yn

Nn

Nn

µn
(2)
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and, as n → ∞, we have Nn → ∞, in distribution, so the first fraction on the right-hand side
of (2) tends to the constant E(Y ) by the strong law of large numbers, while the second fraction
on the right-hand side of (2) tends to Z, as shown above.

6. B-stability when E(Y ) is not finite

There are positive B-stable RVs that do not have finite means. Suppose that 0 < α < 1 and
Sα is a positive, strictly stable RV with index α. The Laplace transform of the distribution of
Sα is E(e−sSα ) = e−sα , for s > 0. Define

Y = SαZ
1/α,

where Z is (as above) the limit law ofXn/µn, and Sα and Z are independent. Suppose that the
Laplace transform of the distribution of Z is ζ(s). Then ζ satisfies

f (ζ(s)) = ζ(µs).

The Laplace transform g(s) of the distribution of Y is

g(s) = E(e−sY ) = E(E(e−sY | Z)) = E(e−sαZ) = ζ(sα),

and we have
f (g(s)) = g(cs),

with c = µ1/α .
The next theorem shows that this construction also works when the stable RV Sα is not

necessarily positive, for α < 1, and it also works when α = 1, in the strictly stable case.

Theorem 2. If Y0 is in the domain of attraction of a strictly stable RV Sα , with 0 < α ≤ 1,
then Yn/µn/α converges, in distribution, to SαZ1/α , where Sα and Z are independent.

Proof. We use the same device as in Theorem 1, introducing a branching process {Xn},
defining independent Nn ∼ Xn, and defining Yn to be the sum of Nn independent copies of Y0.
Then we obtain

Yn

µn
= AnB

1/α
n ,

where

An = Yn

N
1/α
n

, Bn = Nn

µn
.

We need to be careful because now both factors tend to nontrivial limits, and we need to establish
that they are independent in the limit. We are assuming that, as n → ∞, Y ∗n

0 /n1/α → Sα , so,
given any ε > 0, we can find n0 sufficiently large that, for m > n0, we have

∣∣∣∣P
(
Y ∗m

0

m1/α < y

)
− P(Sα < y)

∣∣∣∣ < ε, (3)

for all y. Since Xn → ∞ with probability 1, there exists an n1 sufficiently large that, for
n > n1, we have P(Nn ≤ n0) < ε. Thus, for n > n1 with probability at least 1 − ε for each
value m of Xn, we have (3). It follows that, asymptotically, An and Bn are independent, with
An ∼ Sα and Bn ∼ Z.
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7. B-stability with zero means

When E(Y0) = 0 we get a similar class of limits; the following theorem can be proved in
the same way as Theorem 2.

Theorem 3. If Y0 is in the domain of attraction of a strictly stable RV Sα , with 1 < α ≤ 2
and E(Y0) = 0, then Yn/µn/α converges, in distribution, to SαZ1/α , where Sα and Z are
independent.

Of course, if E(Y0) is nonzero then Theorem 1 applies.

8. Examples

Two tractable examples of branching processes were given by Harris (1963).

Example 1. Take µ > 1 and

f (u) = u

µ− (µ− 1)u
,

so that J is a geometric RV (shifted by 1), with mean E(J ) = µ. It is easily verified that fn(u)
is of the same form, with µ replaced by µn. Taking the limit as n → ∞, we find that Z is
exponential, i.e. E(e−sZ) = 1/(1 + s). From Section 4, we know that the CF of Sα is of the
form ew(t), so that

E(eitY ) = E(eitSαZ1/α
) = E(ew(tZ

1/α)) = E(ew(t)Z) = 1

1 − w(t)
.

Example 2. Take

f (u) = u

(µ− (µ− 1)uk)1/k
,

for some integer k ≥ 2. Again, E(J ) = µ, and fn is obtained by replacing µ by µn. Here
eitZ = 1/(1 − it)1/k .

Two new examples are as follows. Firstly, take f (u) = u2/(2 − u2). Then E(e−sZ) =
1/ cosh(

√
s). Secondly, take f (u) = u2/(2 − u)2. Then E(e−sZ) = 1/(cosh(

√
s))2.

9. The case P(J = 0) > 0

Suppose that p0 = P(J = 0) > 0, while E(J ) > 1. A classical argument shows that there
is a unique ξ in (0, 1) such that f (ξ) = ξ and P(Xn = 0) → ξ . Thus, P(Z = 0) = ξ . We
define an associated RV J ′ with PGF f ′(u), where

f (ξ + (1 − ξ)u) = ξ + (1 − ξ)f ′(u), 0 ≤ u ≤ 1.

Then E(J ′) = E(J ) = µ and P(J ′ = 0) = 0. Corresponding to J and J ′ we have branching
processes {Xn} and {X′

n}, respectively; the limits of Xn/µn and X′
n/µ

n are Z and Z′ with
Laplace transforms ζ(s) and ζ ′(s), respectively.

Lemma 3. We have ζ(s) = ξ + (1 − ξ)ζ ′(s).

Proof. This follows immediately from the definitions.

Thus, the conditional distribution of Z given {Z > 0} is simply Z′. We immediately obtain
the following theorem.

Theorem 4. Theorems 1–3 apply when P(J = 0) > 0 (provided that E(J ) > 1).
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10. Miscellaneous remarks

Remark 2. (A case with E(J ) infinite.) Suppose that E(uJ ) = 1 − (1 − u)γ , for some
γ in (0, 1). We find that E(uXk ) = 1 − (1 − u)γ

k
, and some messy computations show that

the median mk of Xk is approximately e1/γ k , and that the distribution of Xk/mk approaches
an improper distribution, i.e. P(Xk/mk < x) → 1

2 for all x > 0. The assumption that E(J ) is
finite seems to be essential to obtain proper limits.

Remark 3. The distribution ofZ is determined by the distribution of J , but not every (positive)
RV Z can be obtained. Given a Laplace transform φ(s) = E(e−sZ) and a constant µ > 1, we
can always define the function f (u) = φ(µφ−1(u)), but this need not be a proper PGF. For
example, if Z is exponential and φ(s) = 1/(1 + s) then we find that f (u) = u/(µ− (µ− 1)u)
for any µ > 1. However, if φ(s) = 1/ cosh(

√
s) then f (u) is a proper PGF only when µ is the

square of an integer.

Remark 4. It is known that stable distributions are unimodal, but B-stable distributions need
not be. Suppose that f (u) = (u+uk)/2 with k very large, so µ = (k+1)/2. The density of Z
is close to (a(z) + b(z))/2, where a(z) is approximately Gaussian, with mean 2 and variance
1/k, and b(z) is concentrated near z = 0.

Remark 5. It is known that stable distributions are infinitely divisible, but B-stable distributions
need not be. For example, suppose that

f (u) = un + un+1 + · · · + u2n

n+ 1
,

with n large. Then Z is approximately uniform on ( 1
2 ,

3
2 ) and cannot be written as U +U ′ with

U ∼ U ′.

Remark 6. If J has moments up to order k, say, then the defining relation (1) allows the
moments of Z to be computed up to the same order. The computations are simplified if we use
cumulants instead of moments; it follows from (1) that the cumulant-generating functions of
J and Z, respectively g(t) and h(t), are related by

g(h(t)) = h(µt).

Remark 7. There are several open questions. We have shown that for each distribution
(of J ) on the nonnegative integers, with E(J ) > 1, there is a three-parameter family of
B-stable distributions. We cannot prove that these are the only possibilities. We do not know
of a convenient characterization of the possible limit distributions. We would like a fuller
understanding of the construction of φ(µφ−1(u)) described above. There are several ways in
which the classical branching process can be generalized; can our constructions be generalized
in similar ways?
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