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Introduction

1.1 What is dynamo theory?

Dynamo theory is concerned with the manner in which magnetic fields are gener-
ated and maintained in planets, stars and galaxies. The Earth, Sun and Milky Way
provide examples of most immediate interest, for which a huge quantity of obser-
vational detail is now available; and yet the fundamental theory applies equally to
any sufficiently large mass of electrically conducting fluid, either liquid metal or
ionised gas (‘plasma’ when fully ionised), under the combined effects of global
rotation and convective motion, this usually having a turbulent character. This tur-
bulence may be either ‘strong turbulence’ of a type familiar in aerodynamics and
meteorology, or ‘weak turbulence’ – a field of weakly interacting random waves
internal to the fluid. Either way, it is the combination of rotation and convection
that turns out to be particularly conducive to the spontaneous growth of magnetic
fields in fluid systems of sufficient spatial extent.

It is this latter requirement that has made laboratory realisation of the self-
exciting dynamo process such a great challenge for experimentalists. The triple
requirements of sufficient conductivity, scale and turbulent intensity have placed
huge demands on the design of experiments, and it is only over the last decade that
the necessary conditions have been achieved and that self-exciting dynamo action
has been convincingly demonstrated. These experimental achievements have run in
parallel with great computational achievements in modelling the dynamo process
both in planetary liquid cores and in stellar convection zones. Theoretical progress,
so essential for a full understanding of the dynamo process, has been much stimu-
lated by the great advances on observational, experimental and numerical fronts.

In this introductory chapter, we first set out some of the historical background,
with reference to subsequent chapters where specific issues are treated in detail.
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4 Introduction

1.2 Historical background

1.2.1 The geodynamo

A very complete history of magnetism over the past millennium may be found in
Stern (2002). We content ourselves here with some of the highlights of a fascinating
story.1

Every child who has played with a magnetic compass knows that the compass
needle points North; but he learns as she grows older that magnetic North is not
quite the same as ‘true’ North defined by the Pole star; or to put it differently, that
the magnetic dipole axis is slightly inclined to the axis of rotation of the Earth. This
worrying mismatch was already known to the Chinese of the Sung dynasty. In his
great work Science and Civilisation in China, Joseph Needham (1962) quotes the
Mêng Chhi Pi Than of Shen Kua (c.1088), which he translates thus: “Magicians
rub the point of a needle with the lodestone; then it is able to point to the south.
But it always inclines slightly to the east, and does not point directly at the south”.
So the ‘declination’ of the field was known, at least to the Chinese, 930 years ago.
It was rediscovered and charted out by the early navigators of the fifteenth and
sixteenth centuries and in particular by Christopher Columbus whose great voyage
of discovery in 1492 opened new windows in the Western World. We recognise this
declination now as a manifestation of a crucial departure from axisymmetry which
is essential for the Earth’s internal dynamo to operate.

In his seminal work De Magnete, William Gilbert (1600) recognised that ‘mag-
net Earth’ could be modelled by a spherical lodestone – his ‘terrella’ – over whose
surface he was able to measure the magnetic field and plot its direction. Figure 1.1
shows a page from the second (1613) edition of this book, describing the sort of
measurement that Gilbert was able to make. He spoke scathingly of earlier fanciful
speculations concerning magnetism and was a pioneer of the ‘scientific approach’
based on careful observation and experiment.

The distinction between local magnetic north and ‘true’ north is often indicated
on large-scale maps. The small print usually warns that the angle between the two
directions changes irregularly by up to 1◦ in 6 years. This is the ‘secular variation’
of the magnetic field which was known to navigators of the seventeenth century
and was no doubt a considerable nuisance to them. Edmund Halley considered the
possible causes of this secular variation (Halley 1692) and concluded that

the external parts of the globe may well be reckoned as the shell, and the internal as a
nucleus or inner globe included within ours, with a fluid medium between . . . only this
outer Sphere having its turbinating motion some small matter either swifter or slower than
the inner Ball.

1 Parts of this section are an edited version of the introduction to a Union Lecture (Moffatt 1992) delivered at
the IUGG General Assembly (Vienna 1991).
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1.2 Historical background 5

Figure 1.1 A page from the 1613 edition of Gilbert’s De Magnete showing the
result of an experiment conducted with his ‘terrella’, modelling the Earth’s mag-
netic field. [Courtesy of the Wren Library, Trinity College, Cambridge.]
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6 Introduction

This was a prophetic vision as far as the inner structure of the Earth is concerned,
but also remarkable in its perception of the need for differential rotation, now
recognised as a further key element in the dynamo process.

A discovery of great importance was made by Oersted (1820), namely that cur-
rent in a wire produces a magnetic field whose field lines embrace the wire. This
led Ampère (1822) to propose that an east/west current must flow within the Earth.
He wrote2

L’idée la plus simple, et celle qui se présenterait immédiatement à celui qui voudrait ex-
pliquer cette direction constante de l’aiguille, ne serait-elle pas d’admettre dans la terre un
courant électrique, dans une direction telle que le nord se trouvât à gauche d’un homme qui,
couché sur sa surface pour avoir la face tournée du côté de l’aiguille, recevrait ce courant
dans la direction de ses pieds à sa tête, et d’en conclure qu’il a lieu, de l’est à l’ouest, dans
une direction perpendiculaire au méridien magnétique ?

A modern understanding of the origin of these currents is based both on Ampère’s
law, essentially that electric current is the source of magnetic field, and on Fara-
day’s law of induction (Faraday 1832). By painstaking experiments, Faraday dis-
covered that if a conductor moves across a magnetic field, and if a path is available
for the completion of a current circuit, then in general current will flow in that cir-
cuit. For this achievement, Faraday was awarded the Copley Medal of the Royal
Society of London. The citation records that

he gives indisputable evidence of electric action due to terrestrial magnetism alone. An
important addition is thus made to the facts which have long been accumulating for the
solution of that most interesting problem, the magnetism of the Earth.

It was in fact more than an important addition; it was the key ingredient of the
dynamo process, although this was not recognised till much later.

At about the same time, in two great papers Carl Friedrich Gauss (1832, 1838)
established the spherical harmonic decomposition of the Earth’s magnetic field
and the technique by which secular variation of the field could be quantified. The
traditional unit of field intensity in geomagnetism, and equally in astrophysics, is of
course the Gauss (G), and it is arguably regrettable that the Système International of
units now favours the tesla (1T = 104 G). Gauss’ spherical harmonic decomposition
allows us to extrapolate the Earth’s field (assumed potential) down to the core–
mantle boundary (CMB), to map the contours of constant radial field at the CMB,
and to do so at different epochs using all available data (Bloxham et al. 1989, see
Chapter 4). In these maps, the dipole ingredient of the field is still quite evident at

2 This translates, somewhat freely, as follows: “The simplest idea that must occur immediately to anyone
attempting to explain the constant direction of the compass needle is this: there must exist an electric current
in the Earth, such that, if a man were to lie on the surface of the Earth with the north to his left and his face
turned in the direction of the needle, he would sense this current in the direction from his feet to his head;
and should we not therefore conclude that this current flows from east to west perpendicular to the magnetic
meridian?”
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1.2 Historical background 7

the CMB, but there is also a strong presence of quadrupole, octupole and higher-
order ingredients, as is to be expected from the nature of downward extrapolation
towards the region where the ‘source’ currents are confined. The slow evolution of
the pattern (i.e. its secular variation) is also evident.

The high point and climax of electromagnetic theory in the nineteenth century
came with the publication of James Clerk Maxwell’s Treatise on Electricity and
Magnetism (Maxwell 1873). Maxwell built on Faraday’s discoveries and com-
pleted the system of equations that bear his name. It is interesting to note however
that in a late chapter of the treatise, devoted to Terrestrial Magnetism, Maxwell
comes nowhere near to any explanation of the real nature of the phenomenon. He
confines himself to a description of Gauss’ techniques for the determination of the
Earth’s field and its time variation, and his demonstration that the dominant source
for the field is of internal rather than external origin; but as to the root cause of the
phenomenon, he writes in sonorous tones:

The field of investigation into which we are introduced by the study of terrestrial mag-
netism is as profound as it is extensive. . . . What cause [is it], whether exterior to the Earth
or in its inner depths, [that] produces such enormous changes in the Earth’s magnetism,
that its magnetic poles move slowly from one part of the globe to another? . . . These im-
mense changes in so large a body force us to conclude that we are not yet acquainted with
one of the most powerful agents in nature, the scene of whose activity lies in those inner
depths of the Earth, to the knowledge of which we have so few means of access.

It was the science of seismology that was to provide the vital means of access,
establishing the existence first of a liquid outer core (Jeffreys 1926, who concluded
that “the central core is probably fluid, but its viscosity is uncertain”), and secondly
of an inner solid core (Lehmann 1936, Bullen 1946); both inner and outer cores are
believed to be important for the operation of the geodynamo.3

One of the earliest discussions of possible causes of terrestrial magnetism was
given by Arthur Schuster (1911) in his Presidential Address to the Physical Society
of London. Schuster discussed the arguments for and against a system of electric
currents in the Earth’s interior and concluded that “the difficulties which stand in
the way of basing terrestrial magnetism on electric currents inside the Earth are
insurmountable” – strong words, which have since been invalidated with the pas-
sage of time and the birth and advance of magnetohydrodynamics. Nevertheless,
even as late as 1940 in their great treatise on Geomagnetism, Chapman & Bartels
(1940) came to the same defeatist conclusion as Schuster. They discussed Lar-
mor’s (1919) suggestion concerning the possibility of self-exciting dynamo action
(see below) but stated that “Cowling, however, has shown that such self-excitation

3 An illuminating discussion of the developments leading to these discoveries is given by Brush (1980).
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is not possible. Consequently, Schuster’s view still holds, that the difficulties . . . are
insuperable”. Cowling (1934) had not in fact shown that such self-excitation is not
possible: he had merely shown that it was not possible for axisymmetric systems
(for Cowling’s anti-dynamo theorem, see §§6.4 and 6.5), and yet the tilt of the mag-
netic dipole which had been known for centuries shows that we are dealing with
an emphatically non-axisymmetric system. Nevertheless the fact that Chapman &
Bartel could be so easily persuaded that Cowling’s theorem closed the matter is an
indication of the powerful influence that this theorem then had – this no doubt be-
cause it was one of the few exact results of the subject. The year 1940 marked a high
point in the collection and systematisation of geomagnetic data, but it also marks
the nadir as regards real understanding of the origins of terrestrial magnetism,

The post-war years saw a profound transformation in the situation, to the point at
which a dynamo theory of the origin of the Earth’s magnetic field is now universally
accepted among geophysicists. The progress in dynamo theory has been dramatic,
and the theory applies with equal force to planets other than the Earth. Statements
in textbooks since the 1980s are as vigorously positive as Schuster’s (1912) state-
ment was negative. Thus, for example, Jacobs (1994) writes, “There has been much
speculation on the origin of the Earth’s magnetic field. . . . The only possible means
seems to be some form of electromagnetic induction, electric currents flowing in
the Earth’s core”; and Cook (2009) writes, “There is no theory other than a dynamo
theory that shows any signs of accounting for the magnetic fields of the planets”.
It is a dynamo theory based on the principles of magnetohydrodynamics, and ulti-
mately on a suitable exploitation of Faraday’s law of induction, that has led to this
remarkable revolution in our understanding of Nature.

1.2.2 The solar dynamo

Galileo’s celebrated discovery of sunspots dates back to the MDCXIII publica-
tion of his Istoria e Dimostrazioni. Figure 1.2 shows Galileo’s representation of
the sunspots that he had by then observed. This apparent ‘imperfection’ in God’s
creation caused consternation in the powerful Catholic Church of that epoch; but
paradoxically, it is this very imperfection and the manner in which it has evolved
over the last four centuries that has provided a prime source of information con-
cerning the physics of the surface layers of the Sun. This will be discussed in detail
in Chapter 5; for the moment, we need only note Maunder’s discovery of the 11-
year sunspot cycle (Maunder 1904), and Hale’s discovery of the relatively strong
magnetic field in sunspots (Hale 1908) and the polarity laws that govern their be-
haviour.

Since the 1990s, the science of ‘helioseismology’ (analysis of the spectrum of
solar oscillations, Christensen-Dalsgaard et al. 1996) has provided a wealth of
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Figure 1.2 Galileo’s volume Istoria e Dimostrazioni, showing here the record of
his observations of sunspots on successive days in August 1612 (Galileo 1613).
[Courtesy of the Wren Library, Trinity College, Cambridge.]

information concerning the flow field within the solar interior. In particular, through
helioseismology, the differential rotation throughout most of the solar convection
zone has been determined, and the presence of the ‘tachocline’, a layer of rapid
shear at the base of the convection zone postulated by Spiegel & Zahn (1992),
has been confirmed (Charbonneau et al. 1999). This in turn has led to renewed
debate concerning the ‘mean-field electrodynamics’ applicable to the Sun through
the ‘αω-mechanism’, matters that will be discussed in detail in later chapters.

The birth of solar dynamo theory proper is generally attributed to Joseph Larmor,
Lucasian Professor at the University of Cambridge, who, exactly 100 years before
publication of this book, posed the question “How could a rotating body such as the
Sun become a magnet?” (Larmor 1919); and the question was certainly a natural
one since the origin of the magnetic field of the Sun was at that time a total mystery.

And not only the Sun! We now know that a magnetic field is a normal accompa-
niment of any cosmic body that is both fluid (wholly or in part) and rotating. There
appears to be a universal validity about this statement which applies quite irrespec-
tive of the length-scales considered. For example, on the planetary length-scale,
Jupiter shares with the Earth the property of strong rotation (its rotation period
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10 Introduction

being approximately 10 hours) and it is believed to have a fluid interior composed
of an alloy of liquid metallic hydrogen and helium (Hide 1974); it exhibits a surface
magnetic field of order 10 G in magnitude (as compared with the Earth’s field of
order 1 G). On the stellar length-scale, magnetic fields as weak as 1 G are hard to
detect in general; there are however numerous examples of stars which rotate with
periods ranging from several days to several months, and with detectable surface
magnetic fields in the range 102 to 3 × 104 G (Preston 1967); and on the galac-
tic length-scale, our own galaxy rotates about the normal to the plane of its disc
with a period of order 3 × 108 years and exhibits a galactic-scale magnetic field
roughly confined to the plane of the disc whose typical magnitude is of order 3 or
4 × 10−6 G.

The detailed character of these naturally occurring magnetic fields and the man-
ner in which they evolve in time will be described in subsequent chapters; for the
moment it is enough to note that it is the mere existence of these fields (irrespective
of their detailed properties) which provides the initial motivation for the various in-
vestigations which will be described in this book.

Larmor put forward three alternative and very tentative suggestions concerning
the origin of the Sun’s magnetic field, only one of which has in any sense stood
the test of time. This suggestion, which is fundamental to hydromagnetic dynamo
theory, was that, just as for the Earth, motion of the electrically conducting fluid
within the rotating body, might by its inductive action in flowing across the mag-
netic field generate just those currents J(x) required to provide the self-same field
B(x).

1.3 The homopolar disc dynamo

This type of ‘bootstrap’ effect is most simply illustrated with reference to a system
consisting entirely of solid (rather than fluid) conductors. This is the ‘homopolar’
disc dynamo (Bullard 1955) illustrated in Figure 1.3. A solid copper disc rotates
about its axis with angular velocity Ω, and a current path between its rim and its
axle is provided by the wire twisted as shown in a loop round the axle. This system
can be unstable to the growth of magnetic perturbations. For suppose that a current
I(t) flows in the loop; this generates a magnetic fluxΦ across the disc, and, provided
the conductivity of the disc is not too high,4 this flux is given by Φ = M0I where
M0 is the mutual inductance between the loop and the rim of the disc. Rotation of
the disc leads to an electromotive force E = ΩΦ/2π which drives the current I, and
the equation for I(t) is then

4 This proviso is necessary as is evident from the consideration that a superconducting disc would not allow
any flux to cross its rim; a highly conducting disc in a time-dependent magnetic field tends to behave in the
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Figure 1.3 The homopolar disc dynamo. Note that the twist in the wire which
carries the current I(t) must be in the same sense as the sense of rotation Ω .

L
dI
dt
+ RI = E = MΩI , (1.1)

where M = M0/2π and L and R are the self-inductance and resistance of the com-
plete current circuit. The device is evidently unstable to the growth of I (and so of
Φ) from an infinitesimal level if

Ω > R/M. (1.2)

Under this condition, the current grows exponentially, as does the retarding torque
associated with the Lorentz force distribution in the disc. Ultimately the disc an-
gular velocity slows down, and tends to equilibrium at the critical level Ω0 = R/M
at which the driving torque G just balances the sum of this retarding torque and
any frictional torque that may be present. (The system may overshoot this equilib-
rium state and then oscillate about it, such oscillations being damped by frictional
resistance.)

This type of example is certainly suggestive, but it differs from the conducting
fluid situation in that the current is constrained by the twisted geometry to follow a
very special path that is particularly conducive to dynamo action (i.e. to the conver-
sion of mechanical energy into magnetic energy). No such geometrical constraints
are apparent in, say, a spherical body of fluid of uniform electrical conductivity,
and the question arises whether fluid motion within such a sphere, or other simply-
connected region, can drive a suitably contorted current flow to provide the same
sort of homopolar (self-excited) dynamo effect.

There are however two properties of the disc dynamo which reappear in some of

same way; a corrected theory allowing for the associated azimuthal current in the disc will be presented in
§10.4.
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12 Introduction

the hydromagnetic situations to be considered later, and which deserve particular
emphasis at this stage. Firstly, there is a discontinuity in angular velocity at the
sliding contact S between the rotating disc and the stationary wire, i.e. the system
exhibits differential rotation. The concentration of this differential rotation at the
single point S is by no means essential for the working of the dynamo; we could
in principle distribute the differential rotation arbitrarily by dividing the disc into
a number of rings, each kept in electrical contact with its neighbours by means of
lubricating films of, say, mercury, and by rotating the rings with different angular
velocities. If the outermost ring is held fixed (so that there is no longer any sliding
at the contact S ), then the velocity field is entirely axisymmetric, the differential
rotation being distributed across the plane of the disc. The system will still gen-
erally work as a dynamo provided the angular velocity of the inner rings is in the
sense indicated in Figure 1.3 and sufficiently large.

Secondly, the device lacks reflectional symmetry: in Figure 1.3 the disc must ro-
tate in the same sense as the twist in the wire if dynamo action is to occur. Indeed it
is clear from equation (1.1) that if Ω < 0 the rotation leads only to an accelerated
decay of any current that may initially flow in the circuit. Recognition of this es-
sential lack of reflectional symmetry provides the key to understanding the nature
of dynamo action as it occurs in conducting fluids undergoing complex motions.

1.4 Axisymmetric and non-axisymmetric systems

It was natural however for early investigators to analyse systems having a maxi-
mum degree of symmetry in order to limit the analytical difficulties of the problem.
The most natural ‘primitive’ system to consider in the context of rotating bodies
such as the Earth or the Sun is one in which both the velocity field and magnetic
field are axisymmetric. As already mentioned, Cowling (1934) considered this ide-
alisation in an investigation of the origin of the much more local and intense mag-
netic fields of sunspots, but concluded that a steady axisymmetric field could not
be maintained by axisymmetric motions. This first ‘anti-dynamo’ theorem was re-
inforced by later investigations (Backus & Chandrasekhar 1956; Cowling 1975b)
and it was finally shown by Backus (1957) that axisymmetric motions could at most
extend the natural decay time of an axisymmetric field in a spherical system by a
factor of about 4. In the context of the Earth’s magnetic field, whose natural decay
time is of the order of 104–105 years (see Chapter 4), this modest delaying action
is totally inadequate to explain the continued existence of the main dipole field for
a period of the same order as the age of the Earth itself (3 × 109 years) (the evi-
dence being from studies of rock magnetism), and its relative stability over periods
of order 106 years and greater (Bullard 1968). It was clear that non-axisymmetric
configurations had to be considered if any real progress in dynamo theory were to
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be made. It is in fact the essentially three-dimensional character of ‘the dynamo
problem’ (as the problem of explaining the origin of the magnetic field of the Earth
or of any other cosmic body has come to be called) that provides both its particular
difficulty and its peculiar fascination.

Recognition of the three-dimensional nature of the problem led Elsasser (1946)
to initiate the study of the interaction of a prescribed non-axisymmetric velocity
field with a general non-axisymmetric magnetic field in a conducting fluid con-
tained with a rigid spherical boundary, the medium outside this boundary being
assumed non-conducting. Elsasser advocated the technique of expansion of both
fields in spherical harmonics, a technique that was greatly developed and extended
in the pioneering study of Bullard & Gellman (1954). The discussion of §7(e)
of this remarkable paper shows clear recognition of the desirability of two ingre-
dients in the velocity field for effective dynamo action: (i) a differential rotation
which would draw out the lines of force of the poloidal magnetic field to generate
a toroidal field (for the definition of these terms, see Chapter 2), and (ii) a non-
axisymmetric motion capable of distorting a toroidal line of force by an upwelling
followed by a twist in such a way as to provide a feedback to the poloidal field.

Interaction of the velocity field u(x) and the magnetic field B(x) (through the
u ∧ B term in Ohm’s law) leads to an infinite set of coupled ordinary differential
equations for the determination of the various spherical-harmonic ingredients of
possible steady magnetic field patterns, and numerical solution of these equations
naturally involves truncation of the system and discretisation of radial derivatives.
These procedures are of course legitimate in a numerical search for a solution that
is known to exist, but they can lead to erroneous conclusions when the existence of
an exact steady solution to the problem is in doubt. The dangers were recognised
and accepted by Bullard & Gellman, but it was in fact later demonstrated that
the velocity field u(x) that they proposed most forcibly as a candidate for steady
dynamo action in a sphere is a failure in this respect under the more searching
scrutiny of higher-speed computers (Gibson & Roberts 1969).

The inadequacy of purely computational approaches to the problem intensified
the need for theoretical approaches that do not, at the fundamental level, require
recourse to the computer. In this respect a breakthrough in understanding was
provided by Parker (1955b) who argued that the effect of the non-axisymmetric
upwellings (his ‘cyclonic events’) referred to above might be incorporated by an
averaging procedure in equations for the components of the mean magnetic field
(i.e. the field averaged over the azimuth angle ϕ about the axis of rotation of the
system). Parker’s arguments were heuristic rather than deductive, and it was per-
haps for this reason that some years elapsed before the power of the approach was
generally appreciated. The theory is referred to briefly in Cowling’s monograph
Magnetohydrodynamics (Cowling 1957) with the following conclusions:
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The argument is not altogether satisfactory; a more detailed analysis is really needed.
Parker does not attempt such an analysis; his mathematical discussion is limited to eluci-
dating the consequences if his picture of what occurs is accepted. But clearly his suggestion
deserves a good deal of attention.5

This attention was not provided for some years, however, and was finally stimu-
lated by two rather different approaches to the problem, one by Braginskii (1964b)
and the other by Steenbeck et al. (1966). The essential idea behind Braginskii’s ap-
proach was that, while steady axisymmetric solutions to the dynamo problem are
ruled out by Cowling’s theorem, nevertheless weak departures from axisymmetry
might provide a means of regeneration of the mean magnetic field. This approach
can succeed only if the fluid conductivity σ is very high (or equivalently if the mag-
netic diffusivity η = (μ0σ)−1 is very weak), and the theory was developed in terms
of power series in a small parameter proportional to η1/2. By this means, Braginskii
demonstrated that, as Parker had argued, non-axisymmetric motions could indeed
provide an effective mean toroidal electromotive force (emf) in the presence of a
predominantly toroidal magnetic field. This emf drives a toroidal current thus gen-
erating a poloidal field, and the dynamo cycle anticipated by Bullard & Gellman
can be completed. An account of Braginsky’s theory, as reformulated by Soward
(1972), is presented in Chapter 8.

The approach advocated by Steenbeck, Krause & Rädler is potentially more
general, and is applicable when the velocity field consists of a mean and a tur-
bulent (or random) ingredient having widely different length-scales L and �, say
(L � �). Attention is then focussed on the evolution of the mean magnetic field
on scales large compared with �. The mean-field approach is of course highly de-
veloped in the theory of shear-flow turbulence in non-conducting fluids (see, for
example, Townsend, 1975) and it had previously been advocated in the hydromag-
netic context by, for example, Kovasznay (1960). The power of the approach of
Steenbeck et al. (1966) however lay in recognition of the fact that the turbulence
can give rise to a mean electromotive force having a component parallel to the
prevailing local mean magnetic field (as in Braginskii’s model); and these authors
succeeded in showing that this effect would certainly occur whenever the statistical
properties of the background turbulence lack reflectional symmetry. This property
of ‘chirality’ is the random counterpart of the purely geometrical property of the
simple disc dynamo discussed above. The theory of ‘mean-field electrodynamics’
will be presented in Chapter 7, where the central role of chirality will become
apparent.

Since 1966, there has been a growing flood of papers developing different
aspects of these theories and their applications to the Earth and Sun and other

5 It is only fair to note that this somewhat guarded assessment is eliminated in the later edition of the book
(Cowling 1975a).
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celestial systems. It is the aim of this book to provide a coherent account of the
most significant of these developments, and reference to specific papers published
since 1970 will for the most part be delayed till the appropriate point in the text.

Several other earlier papers are, however, historical landmarks and deserve men-
tion at this stage. The fact that turbulence could be of crucial importance for dy-
namo action was recognised independently by Batchelor (1950) and Schlüter &
Biermann (1950), who considered the effect of a random velocity field on a ran-
dom magnetic field, both having zero mean. Batchelor recognised that random
stretching of magnetic lines of force would lead to exponential increase of mag-
netic energy in a fluid of infinite conductivity; and, on the basis of the analogy with
vorticity (see §3.6), he obtained a criterion for just how large the conductivity must
be for this conclusion to remain valid, and an estimate for the ultimate equilibrium
level of magnetic energy density that might be expected when Lorentz forces react
back upon the velocity field. Schlüter & Biermann, by arguments based on the con-
cept of equipartition of energy, obtained a different criterion for growth and a much
greater estimate for the ultimate level of magnetic energy density. Yet a third possi-
bility was advanced by Saffman (1963) who came to the conclusion that, although
the magnetic energy might increase for a while from a very weak initial level, ul-
timately it would always decay to zero due to accelerated ohmic decay associated
with persistent decrease in the characteristic length-scale of the magnetic field. It
is now known from consideration of the effect of turbulence that lacks reflectional
symmetry (see Chapter 7) that none of the conclusions of the above papers can have
any general validity, although the question of what happens when the turbulence is
reflectionally symmetric remains to some extent open (see §15.4).

The problem as posed by Batchelor has to some extent been bypassed through
recognition of the fact that it is the ensemble-average magnetic field that is of real
interest and that if this average vanishes, as in the model conceived by Batchelor,
the model can have little direct relevance for the Earth and Sun, both of which
certainly exhibit a non-zero dipole moment. It is fortunate that the problem has
been bypassed, because in a rather pessimistic diagnosis of the various conflicting
theories, Kraichnan & Nagarajan (1967) concluded that

equipartition arguments, the vorticity analogy, and the known turbulence approximations
are all found inadequate for predicting whether the magnetic energy eventually dies away
or grows exponentially. Lack of bounds on errors makes it impossible to predict reliably
the sign of the eventual net growth rate of magnetic energy.

Kraichnan & Nagarajan have not yet been proved wrong as regards the basic
problem with homogeneous isotropic reflectionally symmetric turbulence. Parker
(1970) comments on the situation in the following terms:
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Cyclonic turbulence,6 together with large-scale shear, generates magnetic field at a very
high rate. Therefore we ask whether the possible growth of fields in random turbulence
without cyclonic ordering . . . is really of paramount physical interest. We suggest that,
even if random turbulence could be shown to enhance magnetic field densities, the effect
in most astrophysical objects would be obscured by the more rapid generation of fields by
the cyclonic turbulence and non-uniform rotation.

The crucial importance of a lack of reflectional symmetry in fluid motions con-
ducive to dynamo action is apparent also in the papers of Herzenberg (1958) and
Backus (1958) who provided the first examples of laminar velocity fields inside
a sphere which could be shown by rigorous procedures to be capable of sus-
tained dynamo action. Herzenberg’s model involved two spherical rotors rotating
with angular velocities ω1 and ω2 and separated by vector distance R inside the
conducting sphere. The configuration can be described as right-handed or left-
handed according as the triple scalar product [ω1,ω2,R] is positive or negative.
A necessary condition for dynamo action (see §6.9) was that this triple scalar
product should be non-zero, and the configuration then certainly lacks reflectional
symmetry.

The Backus dynamo followed the pattern of the Bullard & Gellman dynamo,
but decomposed temporally into mathematically tractable units. The velocity field
considered consisted of three active phases separated by long periods of rest (or
‘stasis’) to allow unwanted high harmonics of the magnetic field to decay to a
negligibly low level. The three phases were: (i) a vigorous differential rotation
which generated strong toroidal field from pre-existing poloidal field; (ii) a non-
axisymmetric poloidal convection which regenerated poloidal field from toroidal;
(iii) a rigid rotation through an angle of π/2 to bring the newly generated dipole
moment into alignment with the direction of the original dipole moment. The lack
of reflectional symmetry lies here in the mutual relationship between the phase
(i) and phase (ii) velocity fields (see §6.15). These theories, and others relating to
laminar dynamo action, will be presented in detail in Chapter 6.

The viewpoint adopted in this book is that random fluctuations in the velocity
field and the magnetic field are almost certainly present both in the Earth’s core and
in the Sun’s convection zone, and that a realistic theory of dynamo action should
incorporate effects of such fluctuations at the outset. Laminar theories are of course
not without value, particularly for the mathematical insight that they provide; but
anyone who has conscientiously worked through such papers as those of Bullard
& Gellman (1954), Herzenberg (1958) and Backus (1958) will readily admit the
enormous complexity of the laminar problem. It is a remarkable fact that accep-
tance of turbulence (or possibly random wave motions) and appropriate averaging
procedures actually leads to a dramatic simplification of the problem. The reason

6 This is Parker’s terminology for turbulence whose statistical properties lack reflectional symmetry.
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is that the mean fields satisfy equations to which Cowling’s anti-dynamo theorem
does not apply, and which are therefore amenable to an axisymmetric analysis with
distinctly positive and encouraging results. The equations admit both steady solu-
tions modelling the Earth’s quasi-steady dipole field, and, in other circumstances,
time-periodic solutions which behave in many respects like the magnetic field of
the Sun with its 22-year periodic cycle.

A further crucial advantage of an approach involving random fluctuations is that
dynamic, as opposed to purely kinematic, considerations become to some extent
amenable to analysis. A kinematic theory is one in which a kinematically possible
velocity field u(x, t) is assumed known, either in detail or at least statistically when
random fluctuations are involved, and its effect on magnetic field evolution is stud-
ied. A dynamic theory is one in which u(x, t) is constrained to satisfy the relevant
equations of motion (generally the Navier–Stokes equations with buoyancy forces,
Coriolis forces and Lorentz forces included according to the context); and again the
effect of this velocity field on magnetic field evolution is studied. It is only since
the advent of the mean-field electrodynamics of Steenbeck, Krause & Rädler that
progress on the dynamic aspects of dynamo theory has become possible. These
dynamic aspects, which have been increasingly explored over the last 30 years,
will be treated in Part III of this book.

The general pattern of the book will therefore be as follows. Chapter 2 will be
devoted to simple preliminaries concerning magnetic field structure and diffusion
in a stationary conductor. Chapter 3 will be concerned with the interplay of con-
vection and diffusion effects insofar as these influence magnetic field evolution in
a moving fluid. In Chapters 4 and 5 we shall digress from the purely mathemat-
ical development to provide a necessarily brief survey of the observed properties
of the Earth’s magnetic field (and other planetary fields) and of the Sun’s magnetic
field (and other astrophysical fields) and of the relevant physical properties of these
systems. This is designed to provide more detailed motivation for the material of
subsequent chapters. Some readers may find this motivation superfluous; but it is
necessary, particularly when it comes to the study of specific dynamic models, to
consider limiting processes in which the various dimensionless numbers character-
ising the system are either very small or very large; and it is clearly desirable that
such limiting processes should at the least be not in contradiction with observation
in the particular sphere of relevance claimed for the theory.

Part II (Chapters 6–10) is concerned with the foundations of kinematic dynamo
theory, with Chapter 6 focussing on laminar flows and Chapter 7 on both weak and
strong turbulence in mean-field electrodynamics, and the theory of the famous α-
effect. Chapter 8 will treat nearly axisymmetric systems, and Chapter 9 will survey
solutions of the mean-field equations of α2- or αω-type. Chapter 10 will treat the
concept of the ‘fast dynamo’ as introduced by Vainshtein & Zel’dovich (1972),
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i.e. dynamo action for which the growth rate of the magnetic field is independent
of resistivity η in the limit η→ 0, and the pathological structure of magnetic fields
that emerge in this situation.

Part III (Chapters 11–17) is concerned with dynamic aspects of the theory. We
start in Chapter 11 with low-dimensional models that incorporate dynamic effects,
with either mechanical or thermal forcing; such models exhibit the manner in which
a dynamo-generated field saturates due to the back reaction of the Lorentz force,
frequently in a chaotic state. Chapter 12 treats the phenomenon that has come to
be known as α-quenching, which again induces magnetic energy saturation. Chap-
ters 13 and 14 focus respectively on the geodynamo and the solar dynamo, with
consideration of the full equations of magnetohydrodynamics in a rotating medium,
including the back-reaction of the Lorentz force. Chapter 15 treats specific aspects
of turbulence with and without ‘helicity’ (the simplest measure of chirality) in the
statistics of the turbulence.

Finally, Chapters 16 and 17 treat the problem of magnetic relaxation under the
topological contraint of a ‘frozen-in’ magnetic field. In a statistically steady state,
the magnetic energy will continue to grow by dynamo action in some regions of the
flow, but this growth will be compensated by relaxation of magnetic energy in other
regions, a statistically steady state being thereby maintained. Magnetic relaxation
is in some respects therefore the counterpart of dynamo action, the two process
having comparable ‘weight’ when statistical equilibrium is attained.

Given the present state of knowledge, it is inevitable that the kinematic theory
will occupy a rather greater proportion of the book than it would ideally deserve.
It must be remembered however that any results that can be obtained in kinematic
theory on the minimal assumption that u(x, t) is a kinematically possible but other-
wise arbitrary velocity field will have a generality that transcends any dynamical
model that is subsequently adopted for the determination of u. It is important to
seek this generality because, although there is little uncertainty regarding the equa-
tions governing magnetic field evolution (i.e. Maxwell’s equations and Ohm’s law),
there are wide areas of uncertainty concerning the relevance of different dynamical
models in both terrestrial and solar contexts; for example, it is not yet known what
the ultimate source of energy is for core motions that drive the Earth’s dynamo. In
this situation, any results that do not depend on the details of the governing dynam-
ical equations (whatever these may be) are of particular value. For this reason, the
postponement of dynamical considerations to Part III of this work should perhaps
be welcomed rather than lamented.

It will be found that the concept of helicity – the spatial average of the scalar
product of velocity and vorticity – plays a very central role in dynamo theory and
equally in the theory of magnetic relaxation. Figure 1.4 shows a reproduction of
Leonardo da Vinci’s drawing The Deluge held in the Royal Archive at Windsor
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Figure 1.4 Leonardo’s drawing The Deluge, c.1517/18 (pen and black ink with
wash): an artist’s conception of turbulence with helicity. [RCIN 912380; Royal
Collection Trust / © Her Majesty Queen Elizabeth II 2018; reproduced by per-
mission.]

Castle. It would appear that Leonardo was well aware of the helicity of the flows
that he imagined, predominantly left-handed in this drawing. The year 2019 is the
500th anniversary of Leonardo’s death, when the royal collection of his works will
be on open display to the public, an opportunity for helicity to be more widely
appreciated! We shall in fact find in Chapter 7 that turbulence with non-zero mean
helicity is always capable of generating a large-scale magnetic field in a conducting
fluid of sufficient spatial extent, a result that may be conveniently summarised in
the couplet

Convection and diffusion in turb’lence with helicity
Yields order from confusion in cosmic electricity,

a fitting note on which to terminate this introductory chapter.
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