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Abstract

A map θ : A→ B between algebras A and B is called n-multiplicative if θ(a1a2 · · · an)= θ(a1)

θ(a2) · · · θ(an) for all elements a1, a2, . . . , an ∈ A. If θ is also linear then it is called an n-
homomorphism. This notion is an extension of a homomorphism. We obtain some results on automatic
continuity of n-homomorphisms between certain topological algebras, as well as Banach algebras. The
main results are extensions of Johnson’s theorem to surjective n-homomorphisms on topological algebras,
a theorem due to C. E. Rickart in 1950 to dense range n-homomorphisms on topological algebras and two
theorems due to E. Park and J. Trout in 2009 to ∗-preserving n-homomorphisms on lmc ∗-algebras.
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1. Introduction

Let A and B be algebras and n ≥ 2 be an integer. A mapping θ : A→ B is called
n-multiplicative [anti-n-multiplicative] if

θ(a1a2 · · · an)= θ(a1)θ(a2) · · · θ(an)[= θ(an)θ(a2) · · · θ(a1)]

for all elements a1, a2, . . . , an ∈ A. If θ is also linear then it is called an n-homo-
morphism [anti-n-homomorphism]. Obviously, each homomorphism is an n-homo-
morphism for every n ≥ 2, but the converse is not true, in general. For example, if ϕ is
a homomorphism then θ =−ϕ is a 3-homomorphism, which is not a homomorphism.
For certain properties of 3-homomorphisms one may refer to [1]. If A is unital with the
unit element eA and θ : A→ B is an n-homomorphism then by [7, Proposition 2.2],
there exists a homomorphism ϕ : A→ B such that θ(a)= θ(eA)ϕ(a) for all a ∈ A.
Furthermore, a 2-homomorphism is then just a homomorphism, in the usual sense.
Thus we may assume in the following that n ≥ 3. The concept of n-homomorphism
was studied for complex algebras by Hejazian et al. in [7]. Fragoulopoulou [4, 5] in
1991 and 1993, and then Honary and Najafi [8] in 2008, obtained some results on the
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automatic continuity of homomorphisms between topological Q-algebras. We extend
some of these results to n-homomorphisms.

We now provide some notation and state some definitions and known results. For
further details one can refer, for example, to [2, 6, 9]. If A is a unital complex algebra
with the unit eA then the spectrum of a ∈ A is spA(a)= {λ ∈ C : λeA − a /∈ Inv A},
where Inv A is the set of invertible elements of A. If A is a nonunital complex algebra,
then the spectrum of a is

spA(a)= {0} ∪
{
λ ∈ C \ {0} :

1
λ

a /∈ q- Inv A
}
,

where q-Inv A is the set of quasi-invertible elements of A. If A+ is the unitization of
A, then spA(a)= spA+((a, 0)) and so νA(a)= νA+((a, 0)) for all a ∈ A, where νA(a)
is the spectral radius of a with respect to the algebra A.

A left ideal I of an algebra A is a modular left ideal if there exists u ∈ A such that
A(eA − u)⊆ I , where A(eA − u)= {x − xu : x ∈ A}. The Jacobson radical Rad(A)
of A is the intersection of all maximal modular left ideals of A. The strong radical
R(A) of A is the intersection of all maximal modular (two-sided) ideals of A. An
algebra A is called simple if A2

6= 0 and if 0 and A are the only ideals in A. An
algebra A is called semisimple whenever its Jacobson radical Rad(A) is trivial and it
is called strongly semisimple if R(A) is trivial.

A locally multiplicatively convex (lmc) algebra is a topological algebra whose
topology is defined by a separating family P = (pα) of submultiplicative seminorms.
A complete metrizable lmc algebra is a Fréchet algebra. An F-algebra is a topological
algebra whose underlying topological linear space is an F-space; in other words, the
topology of an F-algebra is defined by a complete invariant metric. A Fréchet algebra
is an F-algebra which is also an lmc algebra. The topology of a Fréchet algebra A can
be generated by a sequence (pn)n∈N of separating submultiplicative seminorms, that
is, pn(xy)≤ pn(x)pn(y) for all n ∈ N and x, y ∈ A, such that pn(x)≤ pn+1(x) for all
x ∈ A and n ∈ N.

An algebra A equipped with an involution is called an involutive algebra, or a
∗-algebra. A topological ∗-algebra is a topological algebra with a continuous
involution. If (A, (pα)) is an involutive topological algebra with a family of
seminorms (pα) such that pα(x∗)= pα(x) for all x ∈ A and for every α, then A is
clearly a topological ∗-algebra. If A is an involutive algebra and p is a seminorm
on A, which satisfies the property p(x∗x)= p(x)2 for all x ∈ A, then p is called a
C*-seminorm. The completion of an involutive topological algebra, whose topology
is defined by a family of C*-seminorms, is called a locally C*-algebra. An lmc
∗-algebra is an involutive lmc algebra with a family of seminorms P = (pα) such
that pα(a∗)= pα(a) for every α and all a ∈ A. If, moreover, pα is a C*-seminorm for
every α, it is called an lmc C*-algebra.

For a topological algebra (A, (pα)), with a family of submultiplicative seminorms
P = (pα), the completion of A/ker pα with respect to the norm p′α([x]α)= pα(x) is
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denoted by Aα , where [x]α = x + ker pα . Clearly, Aα is a Banach algebra. If A is an
lmc C*-algebra, then Aα is a (Banach) C*-algebra for every α.

If A and B are involutive algebras, then an n-homomorphism θ : A→ B is called a
∗-preserving n-homomorphism if θ(x∗)= θ(x)∗ for all x ∈ A.

A topological algebra A is advertibly complete if a Cauchy net (aα) in A converges
in A whenever, for some b ∈ A, both aα + b − aα · b and aα + b − b · aα converge to
zero.

A topological algebra A is a Q-algebra if the set of its quasi-invertible elements
(q-Inv A) is open in A.

It is interesting to note that every topological Q-algebra is advertibly complete [9,
Theorem I.6.4]. Moreover, every complete topological algebra is also advertibly
complete [9, p. 45].

PROPOSITION 1.1 [6, Theorem 4.6]. If (B, (pα)) is an advertibly complete lmc
algebra, then, for every x ∈ B,

spB(x)=
⋃
α

spBα ([x]α),

νB(x)= sup
α
νBα ([x]α)= sup

α
lim

m→∞
(pα(x

m))1/m .

Let A and B be topological linear spaces, and let θ : A→ B be a linear mapping.
The separating space of θ is defined by

S(θ)= {b ∈ B : ∃ net (aδ) in A such that aδ→ 0 and θ(aδ)→ b}.

The separating space S(θ) is a closed linear subspace of B; moreover, if A and
B are F-spaces, then, by the closed graph theorem, θ is continuous if and only if
S(θ)= {0} [2, Proposition 5.1.2].

The following lemma has been proved by Ransford in [11], for unital Banach
algebras, but it is also valid for nonunital algebras.

LEMMA 1.2. Let B be an algebra, let y ∈ B, and suppose that νB(y′y)= 0 for all
y′ ∈ B. Then y ∈ Rad(B).

The following lemma, which will be used later, is also due to Ransford [11].

LEMMA 1.3. Let B be a Banach algebra, let p(z) be a polynomial with coefficients
in B, and let R > 0. Then

νB(p(1))2 ≤ sup
|z|=R

νB(p(z)) sup
|z|=1/R

νB(p(z)).

2. Extensions of Johnson’s theorem for n-homomorphisms on topological
algebras

We first state the following theorem, which appeared in [7, Proposition 2.2], and
then deduce two useful results.
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THEOREM 2.1. Let A be a unital algebra with the identity eA, let B be an algebra and
θ : A→ B be an n-homomorphism. If ψ : A→ B is defined by ψ(x)= θ(eA)

n−2θ(x)
then ψ is a homomorphism and θ(x)= θ(eA)ψ(x).

COROLLARY 2.2. With the same hypotheses as in the theorem, if θ is surjective then
ψ is also surjective.

PROOF. Clearly, θ(eA)
n−1θ(x)= θ(x) for all x ∈ A. For every y ∈ B there exists

x ∈ A such that θ(x)= y. Moreover, there exists t ∈ A such that θ(t)= θ(eA)θ(x).
Hence θ(eA)

n−2θ(t)= θ(eA)
n−1θ(x)= θ(x) and so ψ(t)= θ(x)= y. Therefore, ψ

is surjective. 2

COROLLARY 2.3. Let A and B be topological algebras, where A is unital. If θ : A→
B is a dense range n-homomorphism, then ψ is a dense range homomorphism.

PROOF. It is clear that B is also unital and eB = θ(eA)
n−1. Let y ∈ B. For z = θ(eA)y

there is a net (xα) in A such that θ(xα)→ z. Hence

ψ(xα)= θ(eA)
n−2θ(xα)→ θ(eA)

n−2z = y.

Since y ∈ B is arbitrary, it follows that ψ(A)= B. 2

LEMMA 2.4. Let A be an algebra, λ ∈ C \ {0} and k ∈ N. If a, d ∈ A and λ /∈ spA(a
k)

then there exists an element c ∈ A such that c(λeA+ − ak)= d.

PROOF. If λ /∈ spA(a
k), then c = d(λeA+ − ak)−1

∈ A+ satisfies

c(λeA+ − ak)= d(λeA+ − ak)−1(λeA+ − ak)= d.

Since c ∈ A+, there exist α ∈ C and b ∈ A such that c = (b, α) and so

(d, 0)= (b, α)[(0, λ)− (ak, 0)] = (λb, λα)− (bak
+ αak, 0).

Thus λα = 0 and hence α = 0, which shows that c ∈ A. 2

LEMMA 2.5. Let (B, (pα)α∈I ) be an lmc algebra, λ ∈ C \ {0} and k ∈ N. If, for b ∈
B, there exists an element c ∈ B such that c(λeB+ − bk)= b, then λ /∈ bd(spB+α

[bk
]α)

for all α ∈ I , where bd denotes the boundary (of a set) in the complex plane.

PROOF. If λ ∈ bd(spB+α
[bk
]α) for some α ∈ I , then, by [2, Theorem 2.3.21(ii)], there

exists a sequence cn ∈ Inv B+α such that ‖cn‖α = 1, where ‖ · ‖α is the norm on B+α ,
and

([λeB+]α − [b
k
]α)cn→ 0.

Then by the hypothesis we have

[c]α([λeB+]α − [b
k
]α)cn = [b]αcn→ 0.

Since λ 6= 0 and λ ∈ bd(spB+α
[bk
]α), it follows that b /∈ ker pα . Hence limn→∞ cn = 0,

which is a contradiction. 2
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LEMMA 2.6. Let A be an lmc algebra and (B, (pα)α∈I ) be an advertibly complete
lmc algebra. If θ : A→ B is an n-homomorphism and a ∈ A, then

bd(spB+α
([θ(a)n−1

]α))⊆ spA(a
n−1) ∪ {0},

for all α ∈ I . Moreover, νBα ([θ(a)
n−1
]α)≤ νA(an−1) for all α ∈ I and hence

νB(θ(a)
n−1)≤ νA(a

n−1).

PROOF. Since A is an lmc algebra and spA+((a, 0))= spA(a) for every a ∈ A,
by [9, Corollary II.4.1], spA(a) 6= ∅ for every a ∈ A. Suppose that λ 6= 0 such that
λ /∈ spA(a

n−1). By Lemma 2.4, for d = a, there exists an element c ∈ A such that
a = c(λeA+ − an−1)= λc − can−1. Hence

θ(a)= θ(λc − can−1)= θ(c)(λeB+ − θ(a)
n−1).

From Lemma 2.5, it follows that λ /∈ bd(spB+α
([θ(a)n−1

]α)) for all α ∈ I and hence
that

bd(spB+α
([θ(a)n−1

]α))⊆ spA(a
n−1) ∪ {0},

for all α ∈ I . It is now clear from Proposition 1.1 that νB(θ(a)n−1)≤ νA(an−1). 2

It is interesting to note that the above lemma is also valid if θ is an anti-n-homo-
morphism.

THEOREM 2.7. Let A be a unital topological Q-algebra and let B be an advertibly
complete semisimple lmc algebra. If θ : A→ B is a surjective n-homomorphism
then θ has a closed graph.

PROOF. By Corollary 2.2 we have ψ(A)= B, where ψ(x)= θ(eA)
n−2θ(x). By [8,

Theorem 2.3], ψ has a closed graph and hence θ(x)= θ(eA)ψ(x) also has a closed
graph. 2

COROLLARY 2.8. Let A be a unital F-algebra which is also a Q-algebra and let B
be a semisimple Fréchet algebra. Then every surjective n-homomorphism θ : A→ B
is automatically continuous.

An algebra A is called factorizable if, for each a ∈ A, there exist b, c ∈ A such that
a = bc. If A is not unital in the above theorem then we have the following result.

THEOREM 2.9. Let A be an lmc Q-algebra and B be a factorizable advertibly
complete lmc semisimple algebra. Then every surjective n-homomorphism θ : A→ B
has a closed graph.

PROOF. Let (pβ) be a family of seminorms on A, and (qα) be a family of seminorms
on B. Denote by Bα the Banach algebra obtained by the completion of B/ker qα with
respect to the norm q ′α([b]α)= qα(b), for b ∈ B. It is enough to show that, for any net
(xδ) in A, if xδ→ 0 in A and θ(xδ)→ y in B, then y = 0.
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By the surjectivity of θ , there exists x ∈ A such that θ(x)= y. We define a
polynomial with coefficients in B by Pδ(z)= zθ(xδ)+ θ(x − xδ). Since Bα is a
Banach algebra,

νBα ([Pδ(z)]α)≤ qα(Pδ(z))≤ |z|qα(θ(xδ))+ qα(θ(x)− θ(xδ)).

On the other hand, [θ ]α = θ + ker qα is an n-homomorphism from A to Bα . By
Lemma 2.6, for all z ∈ C,

νBα ([Pδ(z)]
n−1
α )≤ νA((zxδ + (x − xδ))

n−1).

Since A is a Q-algebra, there exists pβ with νA ≤ pβ [6, Theorem 6.18]. Hence

νBα ([Pδ(z)]
n−1
α )≤ pβ((zxδ + (x − xδ))

n−1)≤ (|z|pβ(xδ)+ pβ(x − xδ))
n−1.

If λ ∈ spBα ([Pδ(z)]α) then λn−1
∈ spBα ([Pδ(z)]

n−1
α ) and so

|λ| ≤ (|z|pβ(xδ)+ pβ(x − xδ)).

Therefore,
νBα ([Pδ(z)]α)≤ |z|pβ(xδ)+ pβ(x − xδ).

Combining these estimates with Lemma 1.3, we deduce that, for all δ and all R > 0,

νBα ([y]α)
2
≤ sup
|z|=1/R

(|z|qα(θ(xδ))+ qα(θ(x)− θ(xδ)))

× sup
|z|=R

(|z|pβ(xδ)+ pβ(x − xδ)).

Since xδ→ 0 and θ(xδ)→ θ(x), we obtain

νBα ([y]α)
2
≤

1
R

qα(y) · pβ(x).

By letting R→∞, it follows that νBα ([y]α)= 0. Therefore, by Proposition 1.1,
νB(y)= 0.

Now let y′ ∈ B. Since B is a factorizable algebra there exist y′1, . . . , y′n−1 ∈ B such
that y′ = y′1 · · · y

′

n−1. Now we choose x ′i ∈ A, i = 1, . . . , n − 1, with θ(x ′i )= y′i , i =
1, . . . , n − 1. Then x ′1 · · · x

′

n−1xδ→ 0 in A and θ(x ′1 · · · x
′

n−1xδ)→ y′1 · · · y
′

n−1 y =
y′y in B. Hence a repetition of the above argument shows that νB(y′y)= 0. Since y′

is arbitrary, by Lemma 1.2, it follows that y ∈ Rad(B) and hence y = 0, as desired. 2

COROLLARY 2.10. Let A and B be Fréchet algebras such that A is a Q-algebra and
B is factorizable and semisimple. Then every surjective n-homomorphism θ : A→ B
is automatically continuous.

PROOF. This is immediate by the closed graph theorem. 2
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Since any unital algebra is factorizable, we also conclude the following result.

COROLLARY 2.11. Let A be an lmc Q-algebra and B be a unital advertibly complete
semisimple lmc algebra. Then every surjective n-homomorphism θ : A→ B has a
closed graph.

Let (A, (pα)) be an lmc algebra. A uniformly bounded left (right) approximate
identity for A is a net {eγ }γ∈3 such that:

(i) limγ eγ a = a (limγ aeγ = a) for all a ∈ A;
(ii) supα pα(eγ ) <∞ for all γ ∈3.

REMARK 2.12. Many lmc algebras which do not have an identity do have uniformly
bounded left or right approximate identities. For example, every locally C*-algebra
has a uniformly bounded approximate identity [6, Theorem 11.5]. Moreover, every
Fréchet algebra, with a uniformly bounded left approximate identity, is factorizable [3,
Theorem 4.1].

Hence we have the following result.

COROLLARY 2.13. Let A be an lmc Q-algebra and B be a semisimple Fréchet
algebra with a uniformly bounded left approximate identity. Then every surjective
n-homomorphism θ : A→ B has a closed graph. In particular, if A and B are Fréchet
algebras such that A is a Q-algebra and B is a semisimple locally C*-algebra, then
every surjective n-homomorphism θ : A→ B is continuous.

PROPOSITION 2.14. Every anti-n-homomorphism on an lmc Q-algebra A onto an
advertibly complete factorizable semisimple lmc algebra B has a closed graph.

PROOF. Since spB(y
′y) ∪ {0} = spB(yy′) ∪ {0} for all y, y′ ∈ B we have νB(y′y)=

νB(yy′) for all y, y′ ∈ B. If we replace y′y by yy′ in Lemma 1.2 then the lemma is still
true. Since Lemma 2.6 is also valid for anti-n-homomorphisms, by the same argument
as in the proof of Theorem 2.9 the result follows. 2

Let A and B be linear spaces over K (R or C). A map θ : A→ B is conjugate-linear
if

θ(λx + y)= λ̄θ(x)+ θ(y), x, y ∈ A, λ ∈ K .

LEMMA 2.15. Let A be an lmc algebra and (B, (pα)α∈I ) be an advertibly complete
lmc algebra. If θ : A→ B is a conjugate-linear and n-multiplicative (or anti-n-
multiplicative) mapping, then for every a ∈ A and for each α ∈ I ,

bd(spB+α
([θ(a)n−1

]α))⊆ spA(an−1) ∪ {0} (conjugate of spA(a
n−1)),

where bd denotes the boundary (of a set) in the complex plane. Therefore,

νBα ([θ(a)
n−1
]α)≤ νA(a

n−1),

for all α ∈ I and hence νB(θ(a)n−1)≤ νA(an−1).

PROOF. By modifying the proof of Lemma 2.6, the result follows. 2
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An n-involution on an algebra A over C is a map ∗ : A→ A satisfying:

(i) (a + b)∗ = a∗ + b∗;
(ii) (a1a2 · · · an)

∗
= a∗na∗n−1 · · · a

∗

1 ;
(iii) (λa)∗ = λ̄a∗;
(iv) (((a∗)∗)∗ · · · )∗︸ ︷︷ ︸

n

= an∗
= a.

Note that every n-involution is conjugate-linear and anti-n-multiplicative. Hence we
have the following result.

PROPOSITION 2.16. Let A be a factorizable semisimple lmc Q-algebra. Then every
n-involution on A has a closed graph. If, in addition, A is an F-algebra, then every
n-involution on A is automatically continuous.

PROOF. By Proposition 2.14, Lemma 2.15 and by modification of the proof of
Theorem 2.9 the result follows. 2

3. Extension of Rickart’s theorem for dense range n-homomorphisms on
topological algebras

We first extend [2, Proposition 5.1.3(i)] as follows.

PROPOSITION 3.1. Let A and B be topological algebras and θ : A→ B be a dense
range n-homomorphism such that θ(A) is factorizable. Then the separating space
S(θ) is a closed (two-sided) ideal in B.

PROOF. By [2, Proposition 5.1.2], the separating space S(θ) is a closed linear
subspace of B. Let b ∈S(θ) and a ∈ A. There exists a net {aδ} in A such that aδ→ 0
and θ(aδ)→ b. Since θ(A) is a factorizable algebra, there are a′1, . . . , a′n−1 ∈ A such
that θ(a)= θ(a′1) · · · θ(a

′

n−1). Since a′1 · · · a
′

n−1aδ→ 0 and θ(a′1 · · · a
′

n−1aδ)→
θ(a′1) · · · θ(a

′

n−1)b = θ(a)b, it follows that θ(a)b ∈S(θ). Similarly, bθ(a) ∈S(θ).
If b′ ∈ B then there exists a net {a′β} in A such that θ(a′β)→ b′ and so θ(a′β)b→

b′b. Since θ(a′β)b ∈S(θ) and S(θ) is closed, it follows that b′b ∈S(θ). Similarly,
bb′ ∈S(θ). Hence S(θ) is an ideal in B. 2

We now state a result due to Rickart in 1950, see [12, Theorem 6.18] and then
extend it to more general cases.

THEOREM 3.2. Let A and B be Banach algebras such that A is unital and B
is strongly semisimple. Then every dense range homomorphism θ : A→ B is
automatically continuous.

PROPOSITION 3.3. Let A and B be Banach algebras such that A is unital and B
is strongly semisimple. If θ : A→ B is a dense range n-homomorphism, then it is
automatically continuous.
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PROOF. By Corollary 2.3 we have ψ(A)= B, where ψ(x)= θn−2(eA)θ(x), x ∈ A,
is a homomorphism. By Theorem 3.2, ψ is continuous. Hence θ(x)= θ(eA)ψ(x) is
also continuous. 2

In a unital algebra every ideal is modular. Moreover, in a unital Q-algebra every
maximal ideal is closed. We now extend the above result to certain topological
algebras.

THEOREM 3.4. Let A and B be lmc Q-algebras such that B is a unital, strongly
semisimple algebra. If θ : A→ B is a dense range n-homomorphism such that θ(A)
is factorizable, then θ has a closed graph.

PROOF. It is enough to show that, for every net xδ ∈ A, if xδ→ 0 in A and θ(xδ)→ y
in B, then y = 0. Let M be a maximal ideal of B. Since B is a unital Q-algebra, M
is closed and so, by [6, 6.14(3)], B/M is a Q-algebra. Since ideals in B/M are in the
form of J/M , where J is an ideal in B containing M , it is clear that the only ideals
of B/M are zero (that is, M) and B/M . Hence B/M is simple. We now consider the
n-homomorphism θ ′ : A→ B/M , which is the composition of θ and the natural map
of B onto B/M . By Proposition 3.1, S(θ ′) is an ideal of B/M . On the other hand, by
Lemma 2.6 we have

νB/M (θ
′(a)n−1)≤ νA(a

n−1) (a ∈ A).

If λ ∈ spB/M (θ
′(a)) then λn−1

∈ spB/M (θ
′(a)n−1) and so νB/M (θ

′(a))≤ νA(a).
If eB/M ∈S(θ ′) then there exists a net {aδ} in A such that aδ→ 0 in A and

θ ′(aδ)→ eB/M in B. Moreover,

1 = νB/M (eB/M )≤ νB/M (θ
′(aδ))+ νB/M (eB/M − θ

′(aδ))

≤ νA(aδ)+ νB/M (eB/M − θ
′(aδ)).

Since A and B/M are lmc Q-algebras, it follows from [9, Proposition III.6.2] that νA
and νB/M are continuous at zero and so

νA(aδ)+ νB/M (eB/M − θ
′(aδ))→ 0,

which is a contradiction. Hence eB/M /∈S(θ ′). Since B/M is simple, it follows that
S(θ ′)= M , that is, θ ′ is continuous and hence θ ′(xδ)→ 0, which implies that y ∈ M .
Since M is an arbitrary maximal (modular) ideal, we conclude that y ∈R(B). Since
B is strongly semisimple, y = 0. Therefore, θ has a closed graph. 2

COROLLARY 3.5. Let A and B be Fréchet Q-algebras and let B be unital and strongly
semisimple. Suppose that θ : A→ B is a dense range n-homomorphism such that θ(A)
is factorizable. Then θ is automatically continuous.

PROOF. By the closed graph theorem the result follows. 2
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4. Automatic continuity of n-homomorphism on lmc C*-algebras

For certain results on the automatic continuity of n-homomorphisms on Banach
C*-algebras one may refer to [10], and for the automatic continuity of homomorphisms
on lmc C*-algebras one may refer to [4].

We now extend [10, Theorems 2.3 and 3.2], originally proved for Banach
C*-algebras. For this purpose, we need the following useful lemmas.

LEMMA 4.1. Let (B, (pα)α∈I ) be an lmc ∗-algebra, λ ∈ C \ {0} and k ∈ N. If,
for b ∈ B, there exists an element c ∈ B such that c(λeB+ − (b

∗b)k)= b, then λ /∈
bd(spB+α

[(b∗b)k]α) for all α ∈ I .

PROOF. The proof is similar to the proof of Lemma 2.5. 2

LEMMA 4.2. Let A be an lmc ∗-algebra and (B, (pα)α∈I ) be an advertibly complete
lmc ∗-algebra. If θ : A→ B is a ∗-preserving n-homomorphism, n = 2k + 1 and
a ∈ A, then

bd(spB+α
([(θ(a)∗θ(a))k]α))⊆ spA((a

∗a)k) ∪ {0},

for all α ∈ I . Moreover, νBα ([(θ(a)
∗θ(a))k]α)≤ νA((a∗a)k) for all α ∈ I and hence

νB((θ(a)
∗θ(a))k)≤ νA((a

∗a)k).

PROOF. Let λ 6= 0 and λ /∈ spA((a
∗a)k). By Lemma 2.4 there exists c ∈ A such that

c(λeA+ − (a
∗a)k)= a. By applying Lemmas 2.6 and 4.1 the result follows. 2

THEOREM 4.3. Let A be a topological Q-algebra, which is an lmc ∗-algebra with
the family of seminorms P = (Pα). Let B be an lmc C*-algebra with the family of
seminorms Q= (qβ). If θ : a→ B is a ∗-preserving n-homomorphism, then for each
qβ there exists a pα such that qβ(θ(x))≤ pα(x) for all x ∈ A. Hence θ is continuous
on A.

PROOF. Since A is a Q-algebra, there is a pα such that νA ≤ pα [6, Theorem 6.18].
Since Bβ is a (Banach) C*-algebra, by [2, Proposition 3.2.3],

νBβ ([θ(x)]
∗
β [θ(x)]β)= q ′β([θ(x)]

∗
β [θ(x)]β)= qβ(θ(x)

∗θ(x))= qβ(θ(x))
2. (4.1)

Without loss of generality, we may assume that B is complete. By Proposition 1.1, for
every β and for all x ∈ A, we have

νBβ (([θ(x)]
∗
β [θ(x)]β))≤ νB((θ(x))

∗θ(x)). (4.2)

We now consider two cases. First we assume that n = 2k. By Lemma 2.6, for every
x ∈ A,

νB(θ((x
∗x)k)n−1) ≤ νA((x

∗x)k(n−1))≤ pα((x
∗x)k(n−1))

≤ (pα(x
∗x))k(n−1)

≤ pα(x)
2k(n−1).
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Also

θ((x∗x)k)= θ(x∗x · · · x∗x)= (θ(x∗)θ(x))k = (θ(x)∗θ(x))k for all x ∈ A.

Hence λ∈ spB((θ(x))
∗θ(x)) implies that λk(n−1)

∈ spB(θ((x
∗x)k)n−1). Consequently,

νB((θ(x))
∗θ(x))≤ pα(x)

2.

From (4.1) and (4.2) we obtain qβ(θ(x))≤ pα(x).
Next we assume that n = 2k + 1. By Lemma 4.2 we have

νB((θ(x)
∗θ(x))k)≤ νA((x

∗x)k)≤ pα((x
∗x)k)≤ pα(x)

2k .

If λ ∈ spB((θ(x))
∗θ(x)) then λk

∈ spB((θ(x))
∗θ(x))k . Consequently,

νB((θ(x))
∗θ(x))≤ pα(x)

2.

Now by (4.1) and (4.2) we have

qβ(θ(x))
2
≤ νB((θ(x))

∗θ(x))≤ pα(x)
2.

Hence qβ(θ(x))≤ pα(x) for all x ∈ A. It is now clear that this inequality implies the
continuity of θ at zero and hence θ is continuous on A. 2

REMARK 4.4. It is clear that all results of this paper are valid for Banach algebras A
and B if they have other properties required in each result.
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