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Abstract
This study investigated the effects of a maternal dyslipidaemic (DLP) diet on lipid metabolism, microbial counts in faeces and hepatic and
intestinal morphology in rat offspring with respect to sex during different phases of life. Wistar rats (dams) were fed a control (CTL) or DLP during
gestation and lactation. After weaning, CTL and DLP offspring were fed a standard diet. The effects of a maternal DLP on body composition,
biochemical parameters, faecal microbiota and intestinal and hepatic histomorphometric characteristics in rat offspring were evaluated at 30 and
90d of age. The DLP diet during gestation and lactation caused lower birth weight and a greater weight gain percentage at the end of the 90-d
period in both male and female offspring. Female pups from DLP dams had higher liver fat levels compared with CTL (P≤ 0·001) at 90d of age.
Males from DLP dams had greater visceral fat weight and lower Lactobacillus spp. faecal counts at 90d of age (P≤ 0·001) as well as lower faecal
fat excretion (P≤ 0·05) and Bacteroides spp. faecal counts (P≤ 0·001) at 30d of age when compared with pups from CTL dams. However, both
dams and DLP pups showed damage to intestinal villi. A maternal DLP alters intestinal function and lipid metabolism in a sex-specific manner and
is a potential predisposing factor for health complications in offspring from the juvenile period to the adult period.
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Dietary habits and Western lifestyles have been studied because
they may be the influential factors for a variety of metabolic
diseases(1–3). The consumption of diets with high energy den-
sity and high levels of fat, cholesterol and saturated and trans-
fatty acids has been associated with several metabolic disorders,
such as dyslipidaemia, which are the main risk factors for
CVD(4,5).
Dyslipidaemia, which is characterised by altered levels of

circulating lipids and lipoproteins in organisms, may have a
genetic or environmental aetiology and mainly affects sedentary
individuals with inadequate eating habits(6). These changes in

lipid levels may also affect pregnant women and infants, by
whom predisposition to disease may be acquired before or
during pregnancy(7) as well as be a consequence of maternal
overweight(8,9).

Although the modulation of gut microbiota in newborns has
been believed to occur through breast-feeding and the inclu-
sion of other foods in the post-weaning diet, there has been
strong evidence indicating that the gut colonisation of infants
may have already occurred before birth(10–12). Dyslipidaemia
may promote intestinal villi wear and in the long-term, altera-
tions in gut microbiota composition(13–15). Populations of

Abbreviations: CTL, control; DLP, dyslipidaemic; TC, total cholesterol.
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Enterococcus spp., Lactobacillus spp. and Bifidobacterium spp.
have been positively associated with HDL serum levels and
negatively associated with total cholesterol (TC), LDL and
VLDL-cholesterol serum levels as well as with the extension of
atherosclerotic lesions(16).
The available literature reports remarkable sensitivity of the

offspring to nutritional, hormonal and environmental changes
in both the prenatal and postnatal periods, modulating the risk
for the development of metabolic diseases in adulthood(17,18).
Diet has been considered an important influential factor in the
health/disease state(19,20). Although the mechanisms are not
fully understood, previous studies have suggested that meta-
bolic dysfunction in adult offspring exposed to nutritional
insults during early life may be sex-specific(21–23). Primarily, this
sex difference has been related to female hormones, which are
thought to protect against the development of metabolic
disorders(20,24).
Some studies have been performed using rats to ascertain the

effect of maternal diets and treatments on the offspring(25,26), being
a well-recognised and widely used experimental model, con-
sidering the levels of evidence in health and scientific investiga-
tions(27). Based on the fact that high levels of saturated fats and
cholesterol may be harmful to the body, this study investigated
whether the consumption of a dyslipidaemic diet affects the lipid
metabolism, microbial counts in faeces and intestinal and hepatic
morphology of dams during pregnancy and lactation as well as of
their male and female pups from lactation to adulthood, since
previous studies are limited to the follow-up of male pups of a pre-
established age and usually without follow-up of the potential
changes in different life phases.

Methods

Animals and experimental design

The experimental protocol was submitted and approved by the
institutional animal care and use committee (CEUA-UFPB pro-
tocol 017/2017) of Federal University of Paraíba (Brazil). All
experiments were carried out in agreement with the guidelines
of the Brazilian Society of Science in Laboratory Animals
(SBCAL).
All animals used in the experiment received water and diet

ad libitum and were maintained at a temperature of 21± 1°C,
with humidity between 50 and 55% and a 12-h alternation of
light–dark cycles. Primiparous Wistar (Rattus norvegicus) rats
±90 d of age and weighing over 200 g (n 12) were mated to 4:1
fertile male rats (n 3). The presence of sperm in the vaginal
smear was used to define the 1st day of pregnancy. Subse-
quently, the dams were placed in single cages and randomly
allocated into two groups: control (CTL, n 6) and dyslipidaemic
(DLP, n 6). The CTL group was fed a CTL diet for growth with
soyabean oil as the fat source (AIN-93G; 15·92% fat)(28), and the
DLP group was fed a dyslipidaemic diet with 31·11% fat, con-
taining soyabean oil, cholesterol, lard and non-hydrolysed
vegetable fat as fat sources (Tables 1 and 2).
After the determination of pregnancy, the body weight of

dams was measured weekly. Food intake during gestation (time
G0, G1, G2 and G3) and lactation (time L0, L1, L2 and L3) was

also measured. After birth, the weight of the litters (weight of
pups divided by the number of pups), number of pups per dam
and sex were assessed.

On the 2nd day of life, the pups were reduced to eight per
litter (four males and four females)(26). After weaning, on the
21st day of life, all pups were separated by sex and group in
box-type group housing and were fed a commercial diet (Pre-
sence Purina®) and water ad libitum. Body weight and food
intake of dams and pups were measured weekly during the
experimental period using a digital electronic scale (prix III;
Toledo). Lipid and total energy intake were calculated based on
the composition of the diet consumed by the groups. Eutha-
nasia and collection of faeces, blood, the liver and the intestines
were performed after lactation for dams and on the 30th and
90th day of life for the pups during the light phase (online
Supplementary Fig. S1).

Fat and microbial counts in faeces

Faecal samples were collected on the three consecutive days
before euthanasia for quantification of excreted fat or counting
of the faecal microbiota population in both dams and offspring
on the 30th and 90th days. Part of the faecal samples from dams
and pups was used to quantify total lipids by cold extraction
using a previously described procedure(29). The other part of
the faecal samples was homogenised in peptone water
(100mg/ml) and serially diluted in the same diluent. In all, 20 µl
aliquots of the respective dilutions were inoculated using a
microdrop technique(30) in Bifidobacterium agar (HiMedia) to
count Bifidobacterium spp.; agar Man, Rogosa and Sharpe
(HiMedia) to count Lactobacillus spp.; agar MacConkey
(HiMedia) to count Enterobacteriaceae and agar Bacteroides
Bile Esculina (Acumedia) to count Bacteroides spp. (Acumedia).

Table 1. Composition of control and dyslipidaemic diets offered to dams
during pregnancy and lactation (AIN-93G)

Diets

Ingredients (g/100 g) Control (AIN-93G)* Dyslipidaemic†

Maize starch 39·75 33·09
Dextrinised maize starch 13·20 15·50
Casein 20·00 19·86
Sucrose 10·00 6·00
Soyabean oil 7·00 3·00
Animal fat (lard) – 6·00
Non-hydrolysed vegetable fat – 5·00
Sigma cholesterol – 1·00
Sigma colic acid – 0·50
Fibre 5·00 5·00
Mineral mix 93G 3·50 3·50
Vitamin mix 1·00 1·00
L-Cystine 0·30 0·30
Choline bitartrate 0·25 0·25
t-BHQ 0·014 0·014
Total energy value (kJ/g) 16·57 18·16
Carbohydrates (kJ %) 63·58 50·32
Proteins (kJ %) 20·20 20·06
Lipids (kJ %) 15·91 31·82

t-BHQ, tert-butylhydroquinone.
* Adapted from Reeves et al.(28).
† Rhoster – Industry and Trade Ltd.
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Incubation was performed under anaerobic conditions (Anaerobic
System Anaerogen; Oxoid Ltd) for counting Bifidobacterium spp.,
Lactobacillus spp. and Bacteroides spp. and under aerobic condi-
tions for counting Enterobacteriaceae. After an incubation period of
24–48h, the number of colonies on each selective medium was
counted, and the results were expressed as log colony-forming
units/g(15).

Euthanasia, evaluation of murinometric parameters and
quantification of visceral and hepatic fat

At the end of the pregnancy and lactation period, the dams and
eight pups (30 d old) from each group were euthanised. The
remaining eight animals were maintained until 90 d after birth.
After 8 h of fasting, the animals were anaesthetised with intra-
peritoneal administration of ketamine–xylazine solution (75 and
5mg/kg, respectively) and euthanised by aortic transection.
Murinometric parameters, such as chest circumference

(immediately before the hind paw), abdominal circumference
(immediately behind the front leg), body weight and naso-anal
length, all measured in cm using a metric tape, were evaluated
in anaesthetised rats. BMI was calculated using the formula
body weight (g)/length2 (cm2)(31) and the Lee index divided by
the nasal length (cm)(32).
After euthanasia, the visceral fat was collected for direct

weighing on an analytical balance, and its quantification was
normalised by the weight of the respective animal. Liver samples

were collected for quantification of total lipids using a previously
described procedure(29). Samples of liver and intestinal colon
were collected, weighed and used for histological analysis.

Lipid profile

After collection, blood was centrifuged (58 136g for 15min at
25°C), and the serum was collected for analysis of TC, TAG and
HDL, LDL and VLDL. The analyses were performed using com-
mercial kits (Labtest) following the recommendations of manu-
facturers and an automatic analyser LabMax 240 premium (Labtest)
calibrated to read at 505nm (TAG), 500nm (TC) or 600nm (HDL).

Histological evaluation of liver and intestine

For histological evaluation of the intestine and liver, fragments
of the major lobe of the liver and medial portion of the large
intestine, viz. the colon (2 cm), were removed from dams and
offspring (30 and 90 d), washed in saline solution (0·9% NaCl)
and fixed in 10% buffered formalin for 24 h. The tissues were
subjected to a histological procedure for obtaining blocks from
which semi-serial 4-µm sections were cut. The slides were
hydrated, stained with haematoxylin–eosin (HE), dehydrated,
diaphanised in xylol and mounted with ‘entellan’ for optical
microscopic analysis (Motic BA 200). Hyperaemia, inflamma-
tory exudate, haemorrhage, vasodilation, necrosis, epithelial
preservation, hypertrophy and hyperplasia of the smooth muscle

Table 2. Fatty acid composition of control and dyslipidaemic diets offered to dams during pregnancy and lactation (AIN-93G)
(Mean values and standard deviations)

Diets

Control (AIN-93G) Dyslipidaemic

Fatty acids (%) Mean SD Mean SD

Capric acid (C10 : 0) – 0·03 0·01
Lauric acid (C12 : 0) 0·05 0·01 0·12 0·00
Myristic acid (C14 : 0) 0·10 0·01 0·99 0·02
Pentadecanoic acid (C15 : 0) 0·15 0·09 0·05 0·00
Palmitic acid (C16 : 0) 12·43 0·22 26·76 0·35
Marginic acid (C17 : 0) 0·03 0·01 0·23 0·01
Stearic acid (C18 : 0) 3·45 0·12 8·66 0·16
Arachidic acid (C20 : 0) 0·40 0·01 0·31 0·01
Behenic acid (C22 : 0) – 0·16 0·01
SFA (SFA%) 16·61 0·50 37·31 0·57

Palmitoleic acid (C16 : 1n-7) 0·15 0·05 1·02 0·02
Heptadecenoic acid (C17 : 1n-7) 0·22 0·04 0·13 0·00
Oleic acid (C18 : 1n-9) 22·94 0·32 34·52 0·22
Vaccine acid (C18 : 1n-11) – 1·76 0·01
Gondoic acid (C20 : 1n-9) 0·10 0·01 0·42 0·01
Erucic acid (C22 : 1n-9) 0·08 0·01 0·19 0·04

MUFA (MUFA%) 23·49 0·45 38·04 0·30
Linoleic acid (C18 : 2n-6) 53·35 0·35 22·35 0·24
γ-Linolenic acid (C18 : 3n-6) 0·25 0·05 0·01 0·01
α-Linolenic acid (C18 : 3n-3) 5·87 0·21 1·74 0·04
Eicosadienoic acid (C20 : 2n-6) – 0·32 0·01
Dihomo-γ-linoleic acid (C20 : 3n-6) 0·08 0·02 0·06 0·00
cis-Eicosatrienoic acid (C20 : 3n-3) 0·32 0·08 0·15 0·00
EPA (C20 : 5n-3) 0·08 0·01 –

DHA (C22 : 6n-3) 0·11 0·00 0·06 0·00
PUFA (PUFA%) 59·90 0·71 24·65 0·30
Ratio (PUFA+MUFA):SFA* 5·02 1·68

* Adapted from Chalvon-Demersay et al.(27).
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layer were evaluated in intestinal histological sections(15). Inflam-
matory exudate, hyperaemia, haemorrhage, necrosis, preservation
of the hepatic parenchyma (cell integrity, centralised nuclei and
highly evident nucleoli) and degenerative processes (e.g. fat
degeneration) were evaluated in liver histological sections(15).
Quantitative analyses of the intestinal morphometry of ani-

mals were also performed. Morphometric analyses to quantify
the ratio of villus and intestinal crypt using HE were performed
using an image analyser with Zeiss Imaging Processing Soft-
ware (KS 300, Zeiss; licensed to the Department of General
Pathology, Institute of Biological Sciences, Federal University of
Minas Gerais)(33). From each specimen, twenty-five fields of each
histological slide were randomly selected using the 10× objective
and captured through the image analyser. In the liver, a semi-
quantitative analysis was performed by creating a score related to
the distribution of the main lesion (i.e. hepatic steatosis) ranging
from 0 to 3, where 0–1 indicates animal with absence of the lesion;
1–2 indicates discrete lesion distribution (light focal); 2–3 indicates
moderate distribution (pronounced focal to diffuse light) and 3–4
indicates sharp (multifocal accentuated to diffuse accentuated).
Reading of slides was performed randomly by two pathologists.
A 10× objective and 40× photomicrograph of the colon and liver
were used to obtain the images.

Statistical analysis

Statistical power of 0·80 (80%) was obtained by estimating
twelve adult female Wistar rats (six females per group), sixteen

30-d-old pups (eight pups per group) and sixteen 90-d-old pups
(eight pups per group). The minimally detectable effect size
was 1·0, and the significance level was 0·05. Statistical analyses
were performed using GraphPad Prism 6.0 (GraphPad Software Inc.)
with the application of two-way repeated-measures ANOVA or
Student’s t test. For the multiple comparison test between the groups,
the Bonferroni post hoc test was used. For correlation analysis,
Pearson’s correlation test was performed, in which correlations
were classified as low (r2 0·10–0·29), moderate (r2 0·30–0·49), sig-
nificant (r2 0·5–0·69) or very high (r2 0·70)(34). A significance level of
5% (P≤0·05) was considered for all tests.

Results

Food intake and body weight

DLP dams had lower body weight (Fig. 1(a)) during the lacta-
tion period (L1 and L2) (P≤ 0·05) compared with the CTL dams.
DLP dams also had lower food intake (Fig. 1(b)) during
two periods of gestation (G0 and G3) and all lactation period
(L1–L3), but no differences were observed in lipid intake
between DLP and CTL dams (Fig. 1 (c)) throughout the
experiment (P> 0·05), in spite of the lower total energy intake
by DLP dams at L3 time (Fig. 1(d)) (P≤ 0·001).

As shown in Fig. 2(a), the pups from DLP dams had low birth
weight (LBW) and low weight at 21 d of age for both sexes
(P≤ 0·01), but no difference was observed in weight gain at 30,
60 and 90 d of age (Fig. 2(b)). Considering the percentage of
total weight gain from birth to 90 d of age (Fig. 2(c)), pups from
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Fig. 1. Body weight (a) of dams that consumed the control (CTL, ) or dyslipidaemic (DLP, ) diet during pregnancy (G1, G2, G3) and lactation (L1, L2, L3);
food intake (b), lipid intake (c) and total energy intake (d). Values are means, with standard deviations represented by vertical bars. * P≤ 0·05, ** P≤ 0·01, *** P≤ 0·001.
Two-way ANOVA followed by Bonferroni post hoc test.
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DLP dams had a higher percentage of weight gain than pups
from CTL dams in both sexes (P≤ 0·05).

Murinometric parameters and organ and tissue weights

The murinometric parameters of dams measured at the end of
the lactation period as well as those of pups at 30 and 90 d of
age were similar for both the CTL and DLP groups (P> 0·05).
Liver weight was higher (P≤ 0·001) in DLP dams than in CTL
dams. At 30 d of age, pups from DLP dams had higher wet
weight liver (P≤ 0·05) than pups from CTL dams, but no dif-
ference was observed in relative wet weight (g/100 g) of visc-
eral fat or gut, which followed the same pattern seen in the
dams. At 90 d of age, pups of both sexes from DLP dams had
higher liver and intestinal weight than pups from CTL dams
(P≤ 0·01); however, only males from DLP dams had greater
visceral fat weight (P≤ 0·001) (Table 3).

Hepatic and faecal fat

The percentage of liver fat was higher in DLP dams than in CTL
dams (P≤ 0·05) (Fig. 3 (a)). In addition, a higher percentage of
fat was observed in the liver of pups of both sexes at 30 d of age
whose dams had been fed the DLP diet (P≤ 0·05) (Fig. 3 (c)).
However, only female pups from DLP dams at 90 d of age had
higher levels of liver fat (P≤ 0·05) than pups from the CTL dams
(Fig. 3(c)).
Faecal fat excretion was higher in DLP dams (Fig. 3(a)), and it

was lower in male pups from DLP dams at 30 d of age (P≤ 0·05)
when compared with pups from CTL dams (Fig. 3(b)); however,

no effect of the diet on faecal fat excretion was observed in
pups at 90 d of age.

Microbial counts in faeces

Consumption of a dyslipidaemic diet caused a reduction in the
counts of Lactobacillus spp. and Bifidobacterium spp. as well
as an increase in counts of Bacteroides spp. in faeces of DLP
dams after the pregnancy period (P≤ 0·05) compared with
those of CTL dams (Fig. 4(a)).

Male and female pups from DLP dams had lower Lactobacillus
spp. faecal counts at 30 d of age compared with pups from CTL
dams (P≤ 0·001) (Fig. 4(b)). However, only the male pups from
DLP dams presented lower Lactobacillus spp. faecal counts
compared with pups from CTL dams at 90d of age (P≤ 0·05).
The lowest faecal counts of Bifidobacterium spp. were observed
in male pups from DLP dams either at 30 or 90 d of age (P≤ 0·05)
(Fig. 4(c)).

Male pups from DLP dams had lower faecal counts of
Bacteroides spp. than male pups from CTL dams at 30 d of age
(P≤ 0·001); however, these counts increased in male pups from
DLP dams at 90 d of age, which were higher than those in male
pups from CTL dams (P≤ 0·05). Interestingly, these differences
were not observed in female pups (Fig. 4(d)). No difference
was observed in faecal Enterobacteriaceae counts between
groups or sexes at any time points evaluated (P> 0·05)
(Fig. 4(e)).

Lipid profile

DLP dams showed higher levels of TC, LDL and TAG compared
with CTL dams (Fig. 5(a)). Similarly, higher TAG (Fig. 5(b)) and
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of age (b) and total percentage of weight gain (from birth up to the 90th day of age) (c). Values are means, with standard deviations represented by vertical bars.
* P≤ 0·05, *** P≤ 0·001. Two-way ANOVA followed by Bonferroni post hoc test. CTL-M ( ), male pups fed by dams that consumed a control diet; DLP-M ( ), male
pups fed by dams that consumed a dyslipidaemic diet; CTL-F ( ), female pups fed by dams that consumed a control diet; DLP-F ( ), female pups fed by dams that
consumed a dyslipidaemic diet.
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VLDL levels (Fig. 5(e)) were observed in male and female pups
from DLP dams at 30 d of age (P≤ 0·001) compared with those
in pups from CTL dams (P≤ 0·05). No differences were
observed in the other measured lipid profile parameters at 30 d
of age (P> 0·05), and no alteration was observed in the lipid
profile in offspring at 90 d of age.
Pearson correlation analyses showed a significant negative

correlation between HDL and Bacteroides spp. counts in DLP
dams (P≤ 0·05) (online Supplementary Fig. S2(a)). A strong
negative correlation was observed between TAG and VLDL
levels and Bacteroides spp. counts (P≤ 0·05) in DLP male pups
at 30 d of age (online Supplementary Fig. S2(b) and (c)).
A significant negative correlation was observed between TAG
levels and Lactobacillus spp. counts (P≤ 0·05) in DLP female
pups at 30 d of age (online Supplementary Fig. S2(d)), but a
significant positive correlation between HDL levels and

Lactobacillus spp. counts was also found (P≤ 0·05) (online
Supplementary Fig. S2(e)).

Histopathological evaluation of the intestine and liver

Morphological assessment was performed by a histological
analysis of intestinal cells as well as by morphometric analysis
of the colon (Fig. 6). These analyses revealed that the DLP
dams had villous atrophy (Fig. 6(a)). Similar results were
observed in pups from DLP dams at 30 (Fig. 6(b)) and 90 d of
age (Fig. 6(c)); both male and female pups showed inflam-
mation, and only female pups presented epithelial villus
atrophy. These findings were in accordance with the results of
the morphometric analysis, which showed a decreased dis-
tance between the crypt and villi in pups from DLP dams
(Fig. 6(d) and (e)).

Table 3. Murinometric parameters and normalised weight of organs of dams fed a control diet (CTL) or dyslipidaemic diet (DLP) and of their respective
pups at 30 and 90 d of age
(Mean values and standard deviations)

Age variables Diet groups

Dams CTL DLP

Mean SD Mean SD

Murinometric
Length (cm) 21·5 1·41 21 0·00
BMI (g/cm2) 0·49 0·03 0·54 0·03
Lee’s index 0·24 0·03 0·26 0·02
CC (cm) 11·50 0·71 11·75 1·06
AC (cm) 13·50 0·71 14·00 0·00

Organ weight (g)
Visceral fat 4·07 0·98 5·21 0·69
Liver 13·36 1·26 16·98*** 0·40
Gut 15·26 1·06 13·70 1·46

CTL-M DLP-M CTL-F DLP-F

Mean SD Mean SD Mean SD Mean SD

Pups 30 d
Murinometric
Length (cm) 16·37 0·63 16·62 0·75 15·75 0·50 16·25 0·50
BMI (g/cm2) 0·44 0·01 0·42 0·01 0·44 0·01 0·41 0·02
Lee’s index 0·26 0·01 0·28 0·01 0·24 0·01 0·25 0·01
CC (cm) 9·37 0·25 9·50 0·41 9·25 0·29 9·62 0·47
AC (cm) 10·25 0·27 16·00 0·50 11·00 1·08 11·37 0·47

Organ weight (g)
Visceral fat 0·99 0·20 1·02 0·11 0·79 0·09 1·27 0·34
Liver 4·73 0·41 6·27* 0·76 4·60 0·21 5·84 0·21
Gut 8·09 0·21 7·45 0·79 8·00 0·93 8·66 0·63

Pups 90 d
Murinometric
Length (cm) 24·5 0·46 25·25 0·50 22·00 0·81 21·50 0·57
BMI (g/cm2) 0·59 0·01 0·54 0·01 0·48 0·04 0·50 0·02
Lee’s index 0·24 0·01 0·21 0·01 0·22 0·02 0·23 0·01
TC (cm) 13·25 0·64 9·50 0·41 9·25 0·29 9·62 0·47
CC (cm) 15·00 0·81 16·00 0·70 12·25 0·50 14·5 0·57

Organ weight (g)
Visceral fat 4·56 0·35 11·57*** 2·73 4·15 3·29 3·01 0·77
Liver 8·20 0·55 13·06** 1·77 12·05 0·56 14·68** 0·31
Gut 11·93 0·84 14·87** 0·56 11·53 0·79 20·69*** 0·51

CC, chest circumference, AC, abdominal circumference; CTL-M, male pups fed by dams that consumed a control diet; DLP-M, male pups fed by dams that consumed a
dyslipidaemic diet; CTL-F, female pups fed by dams that consumed a control diet; DLP-F, female pups fed by dams that consumed a dyslipidaemic diet.

Results obtained from two-way ANOVA followed by the Bonferroni post hoc test: * P≤ 0·05, ** P≤0·01, *** P≤0·001.
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DLP dams showed fatty liver (Fig. 7(a)), which was con-
firmed by the higher histological scores of hepatic steatosis in
this group (Fig. 7(d)). There was no change in the hepatic
parenchyma of pups from either DLP or CTL dams at 30 and
90 d of age (Fig. 7(b) and (c)).

Discussion

The influence of a DLP diet rich in SFA and cholesterol on
weight gain, lipid metabolism and liver and intestinal function
of dams and their offspring was demonstrated in this study. The
investigations focused on how this diet may influence physio-
logical changes in each sex simultaneously from birth to
adulthood, since the available literature has focused on only
male pups, possibly in an attempt to avoid hormonal influence
in female pups. The results of this study showed how maternal
nutrition may modulate an array of metabolic parameters in
offspring, reinforcing the idea that an adequate nutritional
environment during pregnancy and lactation is critical for
satisfactory offspring development(5,17).
The DLP diet used in these experiments did not induce

weight differences in the dams at the beginning and at the end
of the pregnancy, although the DLP diet is more energetic than
that of the CTL. These results may be justified by the lower
consumption of DLP diet in most of the periods, possibly due to
the satietyogenic effect caused by the higher fat content of this
diet, indicating that a dyslipidaemic diet does not necessarily
induce obesity(15,18). Pups from DLP dams of both sexes had
LBW, probably because of the imbalance in the fatty acid

ratio(35) and the reduction in energy content from protein,
which is typical of a dyslipidaemic diet, and consequently, the
low consumption of this nutrient from the indicated diet(36).
Regarding weight gain, from weaning to adulthood, there was a
higher percentage of weight gain in pups from DLP dams
compared with that in pups from CTL dams, which could be
one of the negative impacts of dyslipidaemic diet consumption
by dams(37–39). Despite the higher weight gain throughout the
experiment, both male and female pups from DLP and CTL
dams presented similar Lee indexes and BMI. These findings
were probably related to the fact that weight gain was pro-
portional to animal length in both sexes during a specific
growth phase(35).

The results of this study also demonstrated that a dyslipi-
daemic diet during pregnancy and lactation negatively affects
maternal hepatic function, causing alterations in liver par-
enchyma, accumulation of TAG, non-alcoholic fatty liver dis-
ease and hepatic injury. A maternal dyslipidaemic diet caused a
higher percentage of liver fat in male and female pups from the
DLP dams at 30 d of age. However, the maternal dyslipidaemic
diet did not induce damage to liver parenchyma in the offspring
of either sex over the short- or long-term. This fact may be
related to the withdrawal of the negative stimulus exerted by
the dyslipidaemic diet, since other studies showed that pups
continuing to receive the same dyslipidaemic diet as their dams
presented histological changes in the liver(40,41). These results
suggest that pups may have developed additional complications
(other than hepatic steatosis) in the liver, such as the devel-
opment of hypertension, which causes weight gain in this
organ. A previous study observed that male pups from DLP
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dams presented increased blood pressure and probably
increased hydrostatic pressure, causing vascular oedema and
vasodilation in hepatic veins(35).
The percentage of liver fat decreased throughout the life of the

pups from DLP and CTL dams, which may be directly associated
with hepatic steatosis going undetected in the histological analysis
as well as with the similar faecal fat excretion among pups at 90d of
age. These results may also be associated with the fact that offspring
from DLP dams returned to a normal diet with lower saturated fat
and cholesterol intake or even that a maternal dyslipidaemic diet
may not influence the long-term fat storage and excretion in off-
spring. However, the developmental-associated events occurring

between 30 and 90d of age may have masked the possible
alterations that occurred at 30d, which should also be considered.
Apparently healthy rats at 90d of age could be more sensitive to
developing metabolic disorders later in life(18,42), as shown in
studies in which maternal malnutrition(42–44) and maternal dys-
lipidaemia(18) have impacted health complications in the young
adult period, in addition to showing a relationship between fetal
nutrition and central control of energy balance and propensity
for obesity in adult life, which is associated with an increase in
the development of adipose tissue and hypertension(18,42,44).

The pregnancy period alone causes alterations in various
systems, including the maternal microbiome, with impacts on
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the composition of intestinal microbiota of offspring(11,12). Diet,
as an external environmental factor, could also influence these
alterations. The available literature reports that a diet rich in
saturated fat may induce changes in intestinal microbiota, pri-
marily dysbiosis, in mice(25,45). The maternal DLP diet increased
Bacteroides spp. faecal counts in dams. The Bacteroides genus
has been shown to have affinity for substrates rich in saturated
fat and animal origin proteins(46,47). A high faecal population
of Bacteroides spp. has also been associated with diarrhoea
episodes(48). The highest counts of Bacteroides spp. were
observed in the pups from DLP dams at 90 d of age. However,
the maternal DLP diet did not increase the counts of Entero-
bacteriaceae in offspring throughout the monitored experi-
mental period, probably because the intestine of these animals
did not provide an ideal environment (pH 6–7) for the growth
of these bacteria. An early study reported that rats fed a DLP
diet present an intestinal pH between 8 and 9(15).
DLP diet consumption caused a reduction in faecal counts of

Lactobacillus spp. and Bifidobacterium spp. in dams and male

pups at both 30 and 90 d of age. Our results indicate that
male pups were more sensitive to changes in the counts of
Bifidobacterium spp. and Bacteroides spp. induced by a
maternal DLP diet compared with female pups. Testosterone,
oestradiol and progesterone have been shown to influence
metabolic pathways of gut microbiota, and these alterations
could be related to sexual dimorphism, since males are typi-
cally more susceptible to these effects than females. A study
relating sex to intestinal microbiota showed that testosterone
modulated the faecal populations of Lactobacillus spp. in
mice, where non-castrated males had higher counts compared
with female or castrated male rats(49). However, possible
protective mechanisms in female rats to decrease this sensi-
tivity have not been clarified(50).

DLP consumption during pregnancy and lactation caused
intestinal dysbiosis in dams and offspring of both sexes both
at 30 and 90 d of age. This change in faecal microbiota
composition possibly compromised intestinal epithelial integrity
and caused a reduction in villi size that could induce complications
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in nutrient absorption(51). Such damage possibly occurred because
the DLP diet increases the production of pro-inflammatory cyto-
kines (IL-6 and TNF-α) involved in the onset of damage to
intestinal parenchymal tissue(52).
Offspring of Japanese macaque primates (Macaca fuscata)

fed a high-fat maternal diet showed persistent changes in gut
microbiota composition, with possible effects on offspring meta-
bolism for up to 1 year(53). Other studies have shown that high-fat
diets are likely to stimulate the growth of pathogenic bacteria in

the intestine (e.g. Bacteroides spp.), causing alterations in fatty
acid metabolism and infection in the peritoneal cavity(47,54).

Another interesting finding of this study was the tendency
for offspring to restore the desired composition of intestinal
microbiota altered by a maternal DLP diet. Notably, pups from
DLP dams that received the CTL diet reconstituted their
intestinal microbiota throughout life. The intestinal microbiota
of younger pups were probably affected by their consumption
of breast milk from DLP dams, which was possibly unbalanced
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in lipid composition due to maternal ingestion of a dyslipi-
daemic diet during gestation and lactation(55).
The increase in TAG levels and VLDL in offspring was age-

specific but not sex-specific, as these parameters were altered at
30d but not at 90d of age in both male and female pups. These
results indicate that DLP diet consumption alters the lipid compo-
sition of breast milk in rats(56,57) and induces alterations in the serum

lipid profile of pups in the short-term but not in the long-term(58).
This observation could be a consequence of the replacement of a
DLP diet with a normal diet or of body homoeostatic regulation, as
demonstrated in previous studies in which offspring from dyslipi-
daemic dams presented normal levels of TC, HDL, LDL and TAG
from 90d of age(18,26). Another study showed that pups from
dams that received a diet rich in saturated fat and nursed up to
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14 d had LBW and elevated LDL-cholesterol levels due to the
increase in levels of LDL receptor protein, a receptor respon-
sible for the metabolism of LDL-cholesterol; its high levels are
linked directly to cases of familial hypercholesterolaemia(36).
The altered lipid profile and dysbiosis most prominently observed

at 30d but not 90d of age reinforces the potential influence of an
altered microbiome on host lipid metabolism(59). The composition of
gut microbiota has been reported to affect different molecular path-
ways associated with cardiovascular and cardiometabolic diseases,
for example, trimethylamine/trimethylamine N-oxide pathway, SCFA
pathway and primary and secondary bile acid pathways. Never-
theless, bacterial translocation could contribute to the presence of
bacterial products in systemic circulation, affecting the inflammatory
state(59,60).
In addition, a normal lipid profile and greater resistance to

changes in faecal microbiota in female pups from DLP dams at
90 d of age were probably influenced not only by dietary factors
but also by the action of hormones (e.g. oestrogen) capable of
increasing the expression of lipase-sensitive hormone and
consequently, the lipolysis and stimulation of lipid oxidation
with effects on lipid metabolism(61,62).
The results of Pearson’s correlation supported the hypothesis

that the maternal diet during the perinatal period impacts not
only the maternal faecal lipid profile and microbiota but also the
offspring in a sex- and age-specific manner. These positive cor-
relations were particularly observed in offspring at 30 d of age.
Due to the nutritional transition in the world population, studies

with animal models involving fetal programming that were initially
performed with nutrient-deficient diets(17,63) are now directed to
evaluate the effect of dyslipidaemic and obesogenic diets and their
metabolic repercussions throughout life(18,42,44). It is important to
emphasise that studies carried out to evaluate the impact of
maternal dyslipidaemia in children and throughout their life are
scarce because either ethical and temporal limitations or biochem-
ical assessments of lipid profiles are often not part of the routine
antenatal visits(64). In this sense, for a more complete understanding
of the mechanisms related to developmental programming and with
respect to the levels of scientific evidence in animal models as well
as in clinical and epidemiological studies, the results of the present
study may contribute to future recommendations addressed to
maternal dyslipidaemia in the context of public health.
In conclusion, the results of this study demonstrate that the

consumption of a dyslipidaemic diet during the gestational and
lactational period is a preponderant factor for the appearance of
alterations that negatively impact lipid metabolism, intestinal
parenchyma and faecal microbiota in dams and offspring,
especially in males over the short-term. These effects could be a
consequence of a possible hormonal protective effect of
females. Further studies are required to verify and explain how
this hormonal action affects the short-term/long-term health/
disease status of offspring from dams fed a DLP diet.
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