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Based on the multiple-scale expansion technique, a new set of extended nonlinear
Schrödinger (ENLS) equations up to the third order is derived to account for the additional
high-order bottom and dispersion effects as well as the nonlinear wave interaction on
wave transformation over periodic sandbars of sinusoidal geometry. By employing the
small-amplitude wave assumption, a closed-form analytical solution for Bragg scattering
is obtained from the linearised ENLS equations, which demonstrates that a downshift
of wave frequency of the maximum reflection is mainly due to the inclusion of the
high-order bottom effect. The factors that affect the downshift of the resonant frequency
are identified and a theoretical expression in parabolic form is derived to quantify
the downshift magnitude. The fully ENLS equations are further analysed to reveal the
additional wave nonlinear effects on Bragg scattering characteristics. Under the condition
of infinitesimal sandbar amplitude, the ENLS equations render a theoretical expression of
the critical value of kh when the nonlinear wave self-modulation effect and the nonlinear
wave cross-modulation effect are equal, whereas the former effect is responsible for
wavenumber upshifting and the latter downshifting. When kh is larger than the critical
value, the increase of wave nonlinearity will enhance the downshift magnitude of the
Bragg resonance, and vice versa. For finite amplitude of the bottom sandbar, the ENLS
equations are solved numerically to examine the influence of both wave nonlinearity and
sandbar amplitude on the characteristics of Bragg resonance. The results reveal that as the
increase of sandbar amplitude, the critical kh increases monotonically.

Key words: wave scattering, surface gravity waves, coastal engineering

1. Introduction

The Bragg resonance phenomenon, characterised by the partial reflection and transmission
of incident waves over sinusoidal sandbars, exhibits the maximal reflection when the
wavelength of the incident wave (λ) is approximately twice the wavelength of the
sandbar undulations (λd). Initially confirmed in the laboratory by Davies & Heathershaw
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(1984), the phenomenon was further studied experimentally, particularly in relation
to wave–current interactions, by Magne, Rey & Ardhuin (2005) and Laffitte et al.
(2021). The higher-order Bragg resonance under more complex resonance conditions has
been investigated by Guazzelli, Rey & Belzons (1992) and Peng et al. (2019) through
experimental measurements. The Bragg resonance phenomenon has usually been utilised
to design artificial bars for coastal protection (Mei, Hara & Naciri 1988; Kirby & Anton
1990; Liu, Luo & Zeng 2015).

Wave scattering theories have been widely used to explain the Bragg resonance
phenomenon. The full nonlinear potential flow theory, incorporating surface and bottom
nonlinearity, is capable of accurately describing wave scattering. However, numerical
approaches are required to solve the equations, as shown by Liu & Yue (1998) and
Peng et al. (2019). To explore the analytical solutions or obtain simplified models,
other water wave equations with different assumptions are employed. Starting from the
surface-linearised Laplace equation, the analytical solutions including Floquet solutions
(Howard & Yu 2007; Yu & Howard 2012) and perturbation solution (Davies &
Heathershaw 1984) are derived.

By further assuming a wavenumber varying with water depth, the surface-linearised
Laplace equation can lead to the mild-slope-type equations (Berkhoff 1973; Kirby 1986a;
Chamberlain & Porter 1995). Kirby (1986a) developed extended mild-slope equations by
dividing the seabeds into two components that vary slowly and rapidly, which provided
an effective method to deal with arbitrary geometries of one- and two-dimensional
topography directly. In addition, the mild-slope-type equation has been extended to
include the third-order nonlinear effect for Stokes waves where only the forward mode
is considered (Kirby & Dalrymple 1983, 1984). These works have been further extended
to incorporate the effect of third-order coupling between incident and reflected waves (Liu
& Tsay 1984; Kirby 1986b). In particular, Kirby (1986b) used a Lagrangian formulation
and derived new nonlinear coupling equations for a weakly nonlinear Stokes wave,
which provided an effective and accurate model for both normal and oblique incidence
conditions. The mild-slope-type equations are effective when the sandbar amplitude and
its variation are mild, where series form solutions have been formulated for wave scattering
problems as demonstrated by Liu, Li & Lin (2019), Liu & Zhou (2014) and Fang, Tang
& Lin (2023). Recently, Liang et al. (2020) combined the mild-slope equation with the
Mathieu instability theorem and derived a formula for phase downshift of Bragg resonance
given the infinite bottom length condition. Alternatively, the Boussinesq equation, as an
integral model, can be used to describe weak nonlinearity wave propagation over varying
topography in shallow water (Madsen, Fuhrman & Wang 2005; Gao et al. 2021), while
numerical solution is usually the only viable access.

To derive the analytical solutions for wave scattering over varying topography, not
restricted to the shallow-water condition, Mei (1985) developed wave envelope equations
based on the multiple-scale expansion to analyse Bragg scattering by sandbars. The
equations and solutions were subsequently extended to oblique incidence (Mei et al. 1988;
Kirby 1993), doubly sinusoidal ripples (Rey, Guazzelli & Mei 1996), including the current
effect (Kirby 1988; Ardhuin & Magne 2007) and random waves with an irregular bottom
(Ardhuin & Herbers 2002). Furthermore, the approach of Mei (1985) was further extended
to linear Schrödinger equations by Hara & Mei (1988) to include higher-order effects of
bottom and dispersion to investigate wave-envelope evolution. Although their equations
have difficulties to propose exact solutions for incident and reflected wave amplitudes
due to the introduction of additional boundary conditions for continuity of pressure,
their analysis demonstrated the importance of the higher-order effects of the bottom and
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dispersion on Bragg scattering. However, nonlinear wave interaction, which is known to be
an influential factor that affects wave reflection by modifying wave speed and producing
nonlinear behaviours, are difficult to express in the linear Schrödinger equations of Hara
& Mei (1988).

The nonlinear Schrödinger (NLS) equation was initially designed for nonlinear waves
propagation over a constant water depth (Benjamin & Feir 1967; Lake et al. 1977). In
addition, the NLS has been extended to include wave–current or wave–wave interactions,
as shown in Thomas, Kharif & Manna (2012) and Liao et al. (2017). In addition, Onorato,
Osborne & Serio (2006) and Hammack, Henderson & Segur (2005) derived the coupled
nonlinear Schrödinger (CNLS) equations for a two-wave system, providing the possibility
to investigate the effects of nonlinear wave–wave interaction on Bragg scattering.
Nevertheless, the NLS equation that directly incorporates all the higher-order bottom
effects of sinusoidal sandbars, higher-order dispersion effects and wave nonlinearity,
has not been reported yet, likely due to the increased complexity of introducing bottom
undulations into two-progressive-wave interactions.

To include high-order effects induced by bottom, dispersion and the nonlinear wave
interaction and to explore the underlying mechanisms of physical process of Bragg
scattering, a new set of extended nonlinear Schrödinger (ENLS) equations is derived to
describe wave scattering over periodic sinusoidal sandbars. This paper is organised as
follows. In § 2, the multiple-scale expansion method is utilised to formulate a system of
nonlinear equations that considers high-order bottom and dispersion effects, as well as the
wave nonlinearity effect. In § 3, analytical solutions for the reflection and transmission
rates of the linearised equations are constructed, presenting an analysis of the generation
of the wave components, and their mathematical expression in the equations after
carefully considering the complex interactions. Subsequently, the causes of the downshift
behaviour are elucidated, and a theoretical formula for the downshift magnitude of the
Bragg resonance is derived. In § 4, a numerical approach to the full ENLS equations
is implemented to further examine the influence of the wave nonlinearity on the Bragg
resonance.

2. Mathematical derivation

2.1. Derivation of the coupled model
In this section, the ENLS equations up to third order are derived to consider the
additional high-order bottom, dispersion effects and nonlinear wave interactions on wave
transformation over spatially periodic cosine sandbars. As depicted in figure 1, waves
propagate over cosine sandbars with an averaged water depth of h below the mean
water surface, with D and kd representing the amplitude and wavenumber of sandbars,
respectively. The bottom wavelength λd = 2π/kd is the spacing between adjacent peaks
from a cosine topography. In addition, waves are assumed to be periodic in both time and
space, with ω and k denoting the wave angular frequency and wavenumber. The waves are
allowed to slowly modulate in both time and space scales during the propagation process.

Assuming the weak nonlinearity of waves and topography, we give priority to the
problems over [0, L], where the associated parameters, namely, the wave amplitude of
incident waves and amplitude of sinusoidal sandbars, are characterised by the same small
parameter ε. Here, we denote φ as the velocity potential function, which satisfies the
Laplace equation in the fluid domain,

∂2φ

∂x2 + ∂2φ

∂z2 = 0 (−h + σ < z < η), (2.1)
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Figure 1. Schematic of the wave propagation domain.

where σ = σ(x) and η = η(x, t) are the bottom undulation above the mean bottom and free
surface elevation, respectively. On the free surface, the kinematic and dynamic boundary
conditions are

∂η

∂t
+ ∂φ

∂x
∂η

∂x
− ∂φ

∂z
= 0 (z = η), (2.2)

and
∂φ

∂t
+ gη + 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂z

)2
]

= 0 (z = η). (2.3)

Equations (2.2) and (2.3) are combined to give(
∂

∂t
+ ∂η

∂t
∂

∂z

){
∂φ

∂t
+ 1

2

[(
∂φ

∂x

)2

+
(
∂φ

∂z

)2
]}

+ gφz − g
∂φ

∂x
∂η

∂x
= 0 (z = η).

(2.4)
On the bottom, the no-flux boundary condition yields

∂φ

∂z
− ∂φ

∂x
∂σ

∂x
= 0 (z = −h + σ). (2.5)

To consider third-order effects on the Bragg resonance, the slow variables up to the
second order are introduced to capture the higher-order effects of sinusoidal bottom and
wave–wave interactions:

ξ1 = εx, ξ2 = ε2x, τ1 = εt, τ2 = ε2t. (2.6a–d)

The multiple-scale expansions for φ and η with third-order accuracy give

φ = εφ1 + ε2φ2 + ε3φ3 + O(ε4) (2.7)

and
η = εη1 + ε2η2 + ε3η3 + O(ε4) (2.8)

in which φ1 = φ1(x, z, t, ξ1, τ1, ξ2, τ2), η1 = η1(x, t, ξ1, τ1, ξ2, τ2), etc. Here O( ) is an
infinitesimal of the same order. Notably, in comparison with the second-order analysis
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of Mei (1985), we utilise a third-order expansion and introduce two additional slow
variables, ξ2 and τ2, to consider a third-order problem. In addition, we take into account the
nonlinear effect in the surface boundary condition, accounting for wave–wave interactions
and higher-order bottom and dispersion effects.

By substituting the solutions of (2.7) and (2.8) into (2.1) and utilising the boundary
conditions of (2.3), (2.4) and (2.5) with Taylor series expansions at z = 0 (for (2.3) and
(2.4)) and z = −h (for (2.5)), boundary value problems (BVPs) can be obtained for each
order of ε upon separation of the different orders.

2.1.1. First-order problem
The first-order problem is composed of waves propagating both forwards and backwards,
as Mei (1985) demonstrated, and an additional non-propagative mode, B, which represents
the wave-induced mean flow and is generated in the process of nonlinear wave modulations
in slow spatial and time scales (Thomas et al. 2012). Considering the significant influence
of term B on stability of wave modulation (Thomas et al. 2012; Francius & Kharif 2017;
Dhar & Kirby 2023), wave kinematic and dynamic properties (Pizzo et al. 2023), and
the geometry of the fluid particle trajectories (Wang, Guan & Vanden-Broeck 2020), we
included this term in the present study.

Assuming the associated potential and surface elevation can be expressed as

φ1 = (
ψ+A+S+ + ψ−A−S− + c.c.

) + B, (2.9)

and

η1 = 1
2 A+S+ + 1

2 A−S− + c.c., (2.10)

where c.c. denotes the conjugate component. The superscripts + and − refer to the incident
and reflected waves, respectively. Here ψ± are the corresponding vertical profiles,

ψ± = − gi
2ω

cosh k(z + h)
cosh kh

. (2.11)

We use A+ and A− to denote the complex wave amplitudes, and B is a function, modulated
by the slow variables,

A± = A± (ξ1, τ1, ξ2, τ2) , B± = B± (ξ1, τ1, ξ2, τ2) . (2.12a,b)

Here S+ and S− are functions of phases,

S± = exp(±ikx − iωt). (2.13)

We use ω to denote the angular frequency that satisfies the dispersion equation,
ω = gk tanh kh, while the wavenumber k should satisfy the standard Bragg resonance
condition established by Mei (1985) to accurately capture wave reflection in the vicinity
of the resonance,

k = 1
2 kd. (2.14)

Thus, the cosine topography can be expressed in terms of the wavenumber k

σ = D cos 2kx. (2.15)
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2.1.2. Second-order problem
At O(ε2), the BVP can be represented by the following system of equations

∂2φ2

∂x2 + ∂2φ2

∂z2 = T2 (−h < z < 0), (2.16)

∂2φ2

∂t2
+ g

∂φ2

∂z
= P2 (z = 0), (2.17)

∂φ2

∂z
= W2 (z = −h), (2.18)

η2 = R2 (z = 0), (2.19)

where T2,P2,W2 and R2 are compulsory components consisting of lower-order terms,
which can be expressed as follows:

T2 = −2
∂2φ1

∂x∂ξ1
= −gk

ω

cosh k(z + h)
cosh kh

(
∂A+

∂ξ1
S+ − ∂A−

∂ξ1
S−

)
+ c.c.,

P2 =
(

−2
∂2φ1

∂t∂τ1
− ∂η1

∂t
∂2φ1

∂z∂t
− ∂φ1

∂z
∂2φ1

∂z∂t
− η1

∂3φ1

∂z∂t2
− gη1

∂2φ1

∂z2 + g
∂η1

∂x
∂φ1

∂x
− ∂φ1

∂x
∂2φ1

∂x∂t

) ∣∣∣∣
z=0

= g
(
∂A+

∂τ1
S+ + ∂A−

∂τ1
S−

)
− i

(
3ω4 + g2k2)

2ω
A+A−S+

0,2

− 3i
(
ω4 − g2k2)

4ω

[(
A+)2 S+

2,2 + (
A−)2 S−

2,2

]
+ c.c.,

W2 = −σ ∂
2φ1

∂z2

∣∣∣∣
z=−h

+ dσ
dx
∂φ1

∂x

∣∣∣∣
z=−h

= − iDgk2

4ω cosh kh

(
A−S+ + A+S−) + 3iDgk2

4ω cosh kh

(
A+S+

3,1 + A−S−
3,1

)
+ c.c.,

R2 = −1
g

{
∂φ2

∂t
+ ∂φ1

∂τ1
+ η1

∂2φ1

∂z∂t
+ 1

2

[(
∂φ1

∂x

)2

+
(
∂φ1

∂z

)2
]}

= ω4 − g2k2

4gω2

[
A+ (

A+)∗ + A− (
A−)∗] − 1

g
∂B
∂τ1

− 1
g
∂φ2

∂t

∣∣∣∣
z=0

+
[

i
2ω

(
∂A+

∂τ1
S+

1,1 + ∂A−

∂τ1
S−

1,1

)
+ 3ω4 + g2k2

4gω2 A+A−S+
0,2 + ω4 + g2k2

4gω2 A+ (
A−)∗ S+

2,0

+ 3ω4 − g2k2

8gω2

(
A+)2 S+

2,2 + 3ω4 − g2k2

8gω2

(
A−)2 S−

2,2 + c.c.
]
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.20)

in which S+
m,n and S−

m,n denote the phase functions for waves propagating in the forward
and backward directions, expressed as

S±
m,n = exp(i(±mkx − nωt)), (2.21)
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in particular, S± = S±
1,1. By solving (2.16)–(2.18) (detailed in Appendix A), φ2 can be

expressed as

φ2 = −g sinh k(z + h)
4ω cosh kh

[
2(z + h)

(
∂A+

∂ξ1
S+

1,1 − ∂A−

∂ξ1
S−

1,1

)
+ ikD

(
A−S+

1,1 + A+S−
1,1

)]

− 3i
(
ω4 − g2k2)2

16ω7 sech 2k(z + h)

[(
A+)2 S+

2,2 + (
A−)2 S−

2,2

]
+ i

(
3ω4 + g2k2)

8ω3 A+A−S+
0,2

+ iDgk
4ω cosh kh

3gk cosh 3kz + ω2 sinh 3kz
ω2 cosh 3kh − 3gk sinh 3kh

(
A+S+

3,1 + A−S−
3,1

)
+ c.c. (2.22)

Then, from (2.19), η2 can be derived,

η2 = ω4 + g2k2

4gω2

[
A+ (

A+)∗ + A− (
A−)∗] − 1

g
∂B
∂τ1

+
{

3D
(
ω4 − g2k2)2

32g3k2ω2

(
A+S+

3,1 + A−S−
3,1

)

+ 1
4gkω

[
2i

(
gk
∂A+

∂τ1
− hω3 ∂A+

∂ξ1

)
+ Dkω3A−

]
S+

1,1

+ 1
4gkω

[
2i

(
gk
∂A−

∂τ1
+ hω3 ∂A−

∂ξ1

)
+ Dkω3A+

]
S−

1,1

−gk2 (ω4 − 3g2k2)
8ω6

[(
A+)2 S+

2,2 + (
A−)2 S−

2,2

]
+ ω4 + g2k2

4gω2 A+ (
A−)∗ S+

2,0 + c.c.

}
.

(2.23)

As demonstrated in Appendix A, the following solvable conditions must be satisfied:

∫ 0

−h

(
∓gk
ω

cosh k(z + h)
cosh kh

∂A±

∂ξ1

)
ψ± dz =

(
∂A±

∂τ1

)
ψ±

∣∣∣∣
z=0

−
(

− iDgk2

4ω cosh kh
A∓

)
ψ±

∣∣∣∣
z=−h
(2.24)

which can be simplified as

∂A±

∂τ1
+ C±

g
∂A±

∂ξ1
+ iD±

0 A∓ = 0 (2.25)

in which C±
g and D±

0 are the group velocities and topography-induced terms,

C±
g = ±

( ω
2k

+ hω csch 2kh
)
, (2.26)

and

D±
0 = 1

2 Dkω csch 2kh. (2.27)

in which D±
0 , with the dimension of frequency, is a forcing term and represents

leading-order interaction between the waves and the sandbars, where the forward
(backward) mode is reflected by the ripple components, thereby forcing a resonant
backward (forward) wave mode. Its expression is identical to earlier work (Mei 1985) for
pure wave condition. If we ignore the current effects in the early work of Kirby (1988), the
present expressions of D±

0 in (2.27) are identical to their results.
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2.1.3. Third-order problem
For the third-order problem, the solvable conditions of the singular modes, S+

1,1 and S−
1,1,

and the zero mode are considered in the present solution. The other harmonics in the
compulsory terms, which have no association with resonance, are not considered here.
The third-order problem for potential function is defined as

∂2φ3

∂x2 + ∂2φ3

∂z2 = T3,+
0,0 +

(
T3,+

1,1 S+
1,1 + T3,−

1,1 S−
1,1 + c.c.

)
(−h < z < 0),

∂2φ3

∂t2
+ g

∂φ3

∂z
= P3,+

0,0 +
(

P3,+
1,1 S+

1,1 + P3,−
1,1 S−

1,1 + c.c.
)

(z = 0),

∂φ3

∂z
= W3,+

1,1 S+
1,1 + W3,−

1,1 S−
1,1 + c.c. (z = −h),

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.28)

in which

T3,+
0,0 = −∂

2B

∂ξ2
1
,

T3,±
1,1 = ∓g sech kh

2ω

{
2k cosh k(z + h)

∂A±

∂ξ2
+ Dk2 sinh k(z + h)

∂A∓

∂ξ1

∓i[2k(z + h) sinh k(z + h)+ cosh k(z + h)]
∂2A±

∂ξ2
1

}
,

P3,+
0,0 = ω4 − g2k2

4ω2

∂
[
A+ (

A+)∗ + A− (
A−)∗]

∂τ1
+ g2k

2ω
∂
[
A+ (

A+)∗ − A− (
A−)∗]

∂ξ1
− ∂2B

∂τ 2
1
,

P3,±
1,1 = g

∂A±

∂τ2
+ ig

2ω
∂2A±

∂τ 2
1

∓ ihω2

k
∂2A±

∂ξ1∂τ1
+ ω2D

2
∂A∓

∂τ1
− i

(
ω4 + g2k2)2

4gω3 A±A∓ (
A∓)∗

+ i
(
9g6k6 − 12g4k4ω4 + 13g2k2ω8 − 2ω12)

16gω7

(
A±)2 (A±)∗

+ i
(
ω4 − g2k2)

2gω
A± ∂B
∂τ1

± igkA± ∂B
∂ξ1

,

W3,±
1,1 = 3iD2gk3 sech kh

(
3gk cosh 3kh − ω2 sinh 3kh

)
24gkω sinh 3kh − 8ω3 cosh 3kh

A±.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.29)

At the order of ε3, (A25) yields solvability conditions for singular components, S±
1,1, by

way of the Green formula depicted in (A24)∫ 0

−h
T3,±

1,1 ψ
± dz = 1

g
P3,±

1,1 ψ
±∣∣ z=0 − W3,±

1,1 ψ±∣∣ z=−h, (2.30)

which can be further integrated with the substitution of T3,±
1,1 , etc., resulting in two coupled

equations for A+,A− and B

∂A±

∂τ2
+ C±

g
∂A±

∂ξ2
+ B±

1
∂2A±

∂τ 2
1

+ B±
2
∂2A±

∂ξ1∂τ1
+ B±

3
∂2A±

∂ξ2
1

+ D±
1
∂A∓

∂τ1
+ D±

2
∂A∓

∂ξ1

+D±
3 A± +

{
σ±

1

∣∣A±∣∣2 + σ±
2

∣∣A∓∣∣2 + σ±
3
∂B
∂τ1

+ σ±
4
∂B
∂ξ1

}
A± = 0, (2.31)
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Bragg scattering of nonlinear waves by sinusoidal sandbars

in which |A±| corresponds the modulus of A±, given by
√

A±(A±)∗. The coefficients can
be expressed as

B±
1 = i

2ω
,B±

2 = ∓ih tanh kh,B±
3 = − ihω

2k
coth kh,D±

1 = Dω2

2g
,D±

2 = ±Dω3

4gk
,

D±
3 = 3gk cosh 3kh − ω2 sinh 3kh

4ω2 cosh 3kh − 12gk sinh 3kh
3iD2k2ω

sinh 2kh
,

σ±
1 = igk3(20 + 13 cosh 2kh + 2 cosh 4kh + cosh 6kh)

8ω sinh3 2kh
,

σ±
2 = − i

(
ω4 + g2k2)2

4g2ω3 , σ±
3 = i

(
ω4 − g2k2)

2g2ω
, σ±

4 = ±ik.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(2.32)

The zero mode, T3,+
0,0 , does not depend on z. Consequently, combining the Laplace

equation, bottom boundary and bottom conditions, the solvable condition for B is derived
to fulfil the surface boundary condition,

ghT3,+
0,0 = P3,+

0,0 . (2.33)

By introducing the expressions of T3,+
0,0 , etc., (2.33) is transformed into a hyperbolic partial

differential equation

∂2B

∂τ 2
1

− gh
∂2B

∂ξ2
1

= ω4 − g2k2

4ω2

∂
(∣∣A+∣∣2 + ∣∣A−∣∣2)

∂τ1
+ g2k

2ω

∂
(∣∣A+∣∣2 − ∣∣A−∣∣2)

∂ξ1
. (2.34)

We multiply (2.25) by (A±)∗ and, upon conjugation and summation, obtain

∂
(∣∣A+∣∣2 + ∣∣A−∣∣2)

∂τ1
+ C+

g

∂
(∣∣A+∣∣2 − ∣∣A−∣∣2)

∂ξ1
= 0, (2.35)

which indicates that (2.34) can be automatically satisfied by constructing the formulation
of

∂B
∂τ1

= −C+
g λ

(∣∣A+∣∣2 + ∣∣A−∣∣2) , ∂B
∂ξ1

= λ
(∣∣A+∣∣2 − ∣∣A−∣∣2) , (2.36a,b)

in which

λ = 1

C+2
g − gh

(
g2k
2ω

− C+
g
ω4 − g2k

4ω2

)
. (2.37)

By introducing the first-order derivatives of B from (2.36a,b) into (2.31), we can eliminate
the terms related to it and thereby attain the second set of solvability conditions for A±

∂A±

∂τ2
+ C±

g
∂A±

∂ξ2
+ B±

1
∂2A±

∂τ 2
1

+ B±
2
∂2A±

∂ξ1∂τ1
+ B±

3
∂2A±

∂ξ2
1

+ D±
1
∂A∓

∂τ1

+D±
2
∂A∓

∂ξ1
+ D±

3 A± +
{

F±
1

∣∣A±∣∣2 + F±
2

∣∣A∓∣∣2}A± = 0, (2.38)
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in which

F±
1 = igk3(20 + 13 cosh 2kh + 2 cosh 4kh + cosh 6kh)

8ω sinh3 2kh
−

i
[
2g2kω + C+

g
(
g2k2 − ω4)]2

8g2ω3
[
gh − C+2

g

] ,

F±
2 = − i

(
ω4 + g2k2)2

4g2ω3 −
i
[
−4g4k2ω2 + (

ω4 − g2k2)2 C+2
g

]
8g2ω3

[
gh − C+2

g

] .

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.39)

Equation (2.38) can be reduced to the linear Schrödinger equation derived by Hara &
Mei (1988), if wave–wave interaction is neglected and the transformations to (2.25)
are implemented. However, their equation formulates a partial differential equation with
respect to the second-order derivative of the spatial variable x, necessitating additional
boundary conditions for continuity of pressure, thereby posing a challenge for seeking
exact solutions. Therefore, they derived the ratio of the envelope height at antinodes in
the strip to the envelope height at the strip’s edge to settle for the second best. In the
present study, to directly identify the solutions for incident and reflected wave evolutions,
the differential transformations on (2.25) are employed to replace the second derivatives
with respect to x in (2.38) as follows:

∂2A±

∂ξ2
1

→ − iD±
0

C±
g

∂A∓

∂ξ1
− 1

C±
g

∂2A±

∂τ1∂ξ1
,

∂2A±

∂τ1∂ξ1
→ − iD±

0

C±
g

∂A∓

∂τ1
− 1

C±
g

∂2A±

∂τ 2
1
.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(2.40)

We introduce transforms of temporal and spatial scales to recover x and t

ε
∂

∂τ1
+ ε2 ∂

∂τ2
→ ∂

∂t
, ε

∂

∂ξ1
+ ε2 ∂

∂ξ2
→ ∂

∂x
, (2.41a,b)

which enables A±(ξ1, τ1, ξ2, τ2) to return to A±(x, t) and, thus, obtain a set of coupled
nonlinear equations for A+ and A−, which can be employed to investigate the envelope
evolution of waves,

∂A+

∂t
+ C+

g
∂A+

∂x
+ iD+

0 A−

+

high−order bottom effect︷ ︸︸ ︷(
D+

1 − iB+
2 D+

0

C+
g

+ iB+
3 D+

0(
C+

g
)2

)
∂A−

∂t
+

(
D+

2 − iB+
3 D+

0

C+
g

)
∂A−

∂x
+ D+

3 A+

+
(

B+
1 − B+

2

C+
g

+ B+
3(

C+
g
)2

)
∂2A+

∂t2︸ ︷︷ ︸
high−order dispersion effect

+ F+
1

∣∣A+∣∣2 A+ + F+
2

∣∣A−∣∣2 A+︸ ︷︷ ︸
nonlinear wave interaction

= 0, (2.42)
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Bragg scattering of nonlinear waves by sinusoidal sandbars

∂A−

∂t
+ C−

g
∂A−

∂x
+ iD−

0 A+

+

high-order bottom effect︷ ︸︸ ︷(
D−

1 − iB−
2 D−

0

C−
g

+ iB−
3 D−

0(
C−

g
)2

)
∂A+

∂t
+

(
D−

2 − iB−
3 D−

0

C−
g

)
∂A+

∂x
+ D−

3 A−

+
(

B−
1 − B−

2

C−
g

+ B−
3(

C−
g
)2

)
∂2A−

∂t2︸ ︷︷ ︸
high-order dispersion effect

+ F−
1

∣∣A−∣∣2 A− + F−
2

∣∣A+∣∣2 A−︸ ︷︷ ︸
nonlinear wave interaction

= 0. (2.43)

Equations (2.42) and (2.43) are the newly derived ENLS equations, consisting of the basic
governing equations of Mei (1985) (the first three items), the bottom effect terms with D±

0
representing the first-order bottom effect and D±

1 ,D±
2 and D±

3 being second-order bottom
effects, the high-order wave dispersion effect terms (B±

1 , etc.) and the nonlinear terms with
F±

1 and F±
2 related to the wave–wave interactions.

The internal correlations between the newly derived ENLS and the Schrödinger
equations are summarised as follows. (1) If the topography-related terms are eliminated
and the substitution of ∂2/∂t2 for ∂2/∂x∂t and ∂2/∂x2 is applied in accordance with the
first solvable conditions, the ENLS is reduced to a range of variants of the Schrödinger
equation. (2) If the sandbars vanish and water depth is assumed to be infinite, the ENLS
can be reduced to the CNLS equations established by Hammack et al. (2005); compared
with the CNLS of Onorato et al. (2006), the only slight difference lies on the coefficients
F±

2 . (3) The ENLS can be simplified to the NLS equations of Thomas et al. (2012) and
Liao et al. (2017) if the influence of the current is neglected.

3. Exact solution for the linearised ENLS equations

3.1. Derivation of the exact solution
Closed-form solutions for the ENLS equations are difficult to propose due to the
nonlinearity derived from the wave–wave interactions. However, by assuming wave
amplitudes to be sufficiently small, the equations can be reduced to a linear system
coupling A+ and A−, leading to exact solutions, which enables systematic investigation
on the influence of topographical factors on Bragg resonance. Therefore, in this section,
by neglecting the wave nonlinearity, the linearised ENLS equations are obtained

∂A+

∂t
+ C+

g
∂A+

∂x
+ iD+

0 A− +
(

B+
1 − B+

2

C+
g

+ B+
3(

C+
g
)2

)
∂2A+

∂t2

+
(

D+
1 − iB+

2 D+
0

C+
g

+ iB+
3 D+

0(
C+

g
)2

)
∂A−

∂t
+

(
D+

2 − iB+
3 D+

0

C+
g

)
∂A−

∂x
+ D+

3 A+ = 0, (3.1)

∂A−

∂t
+ C−

g
∂A−

∂x
+ iD−

0 A+ +
(

B−
1 − B−

2

C−
g

+ B−
3(

C−
g
)2

)
∂2A−

∂t2

+
(

D−
1 − iB−

2 D−
0

C−
g

+ iB−
3 D−

0(
C−

g
)2

)
∂A+

∂t
+

(
D−

2 − iB−
3 D−

0

C−
g

)
∂A+

∂x
+ D−

3 A− = 0. (3.2)
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H. Fang, L. Tang and P. Lin

As illustrated in figure 1, an incident wave train of both temporally and spatially periodic
waves arrives from x = −∞ and these waves are continuously reflected by the bottom
sandbars, forming reflected waves that propagate in the reverse direction and produce
standing waves by the superposition of the incident and reflected waves. In the region
x > L, where the varying topography vanishes, only the forward-propagating mode
exists, designated as transmitted waves. The region 0 < x < L is highlighted by periodic
sinusoidal bars of amplitude D and wavenumber 2k, and L is the total length of the
sandbars and Nd = L/λd denotes the number of sandbars.

Let the incident and reflected waves be slightly detuned from the Bragg resonance,
with their wave frequencies being ω+ = ω− = ω + ω′, where ω′ implies wavenumber
deviations k′ and k′′ for the incident and reflected waves, respectively. Over the sandbars
0 < x < L, we can find solutions such as

A+ = A0T(x)e−iω′t (0 < x < L), (3.3)

and
A− = A0R(x)e−iω′t (0 < x < L). (3.4)

Let R̃ denote the reflection coefficient, given by |R(0)|. An exact solution for the reflection
rate, R̃, can be written as (details can be found in Appendix B)

R̃ =
√

Q2
1

|P cot PL|2 + Q2
2
, (3.5)

in which Q1,Q2 and P are functions of ω′:

Q1 =
−i

{
E3

[
D+

3 + ω′ (−i + E2ω
′)] + C+

g
(
E1ω

′ + iD+
0
)}

E2
3 − (

C+
g
)2 ,

Q2 =
E3D+

0 − i
{

E1E3ω
′ + C+

g
[
D+

3 + ω′ (−i + E2ω
′)]}

E2
3 − (

C+
g
)2 ,

P =
√√√√(

D+
3 + ω′ (−i + E2ω′)

)2 − (
E1ω′ + iD+

0
)2

E2
3 − (

C+
g
)2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.6)

where E1,E2 and E3 are coefficients, expressed as

E1 = − iD
(
g4hk4 + gω6 − hω8)

2
(
g2hk2 + gω2 − hω4

)2 ,

E2 = − i
2ω

+ 2ihω

(−g + hω2) (−g2k2 + ω4)(
g2hk2 + gω2 − hω4

)2 ,

E3 = D
(

− gk
4ω

+ ω3

4gk
+ g2kω

4g2hk2 + 4gω2 − 4hω4

)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.7)

It is clear that the only difference between the present solution (3.5) and the solution of
Mei (1985) lies in the terms Q1, Q2 and P. If the higher-order contributions of E1, E2, E3
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Bragg scattering of nonlinear waves by sinusoidal sandbars

Case h (m) D/h kd (m−1) λd (m) Nd L (m)

D1 0.312 0.160 2π 1.0 10 10
L1 0.220 0.159 4π 0.5 10 5

Table 1. Parameters for wave scattering by sinusoidal sandbars.

and D+
3 are set to zero, the present solution reduces to the solution of Mei (1985),

R̃M =
√√√√ Q2

1,M

Q2
2,M + |PM cot PML|2 , (3.8)

in which

Q1,M = −D+
0

C+
g
, Q2,M = ω′

C+
g
, PM = 1

C+
g

√
(ω′)2 − (

D+
0
)2
, (3.9a–c)

where the subscript M represents the solution of Mei (1985). Q1,M,Q2,M and PM are
even functions with respect to ω′, indicating good symmetry with R̃M(ω

′) = R̃M(−ω′) and
the maximum reflection occurring at ω′ = 0. However, as evidenced by the inequalities
of Q1(ω

′) /= Q1(−ω′),Q2(ω
′) /= Q2(−ω′) and P(ω′) /= P(−ω′), the present solution is

not symmetrically distributed, which could potentially shift the positions of maximum
reflection.

3.2. Verifications of the solution for reflection
To verify the analytical solution for reflection in (3.5), experiment-based wave scattering
by sinusoidal sandbars is investigated. The geometrical configuration of the experimental
set-up is depicted in figure 1. The performance of the present solution is verified
by comparing it with the experiments conducted by Davies & Heathershaw (1984)
and Laffitte et al. (2021), denoted as D1 and L1, respectively. The wave- and
topographic-related parameters of the experiments are shown in table 1.

Figure 2 shows the comparisons of the reflection R̃ obtained from the present solution,
the analytical solution from Mei (1985), the numerical solution of Liu & Yue (1998), and
the measured data by Davies & Heathershaw (1984) and Laffitte et al. (2021). The red
dotted lines in figure 2(a) signify 2k+/kd = 1, which is the peak of the Bragg resonance
predicted by Mei (1985). However, in practice, a slight phase downshift is commonly
observed, as indicated by the numerical solutions of Liu & Yue (1998) and the measured
data, which is accurately captured by the present solution. In prior research studies, the
downshift characteristics for case D1 were investigated (Madsen et al. 2005; Liang et al.
2020), and the results of these studies are summarised in table 2.

Table 2 presents the results of the wavenumber and reflection rate for case D1. As can be
observed, based on and extending the pioneering work of Mei (1985), the present analytical
solution can accurately describe the downshift behaviour of Bragg resonance and precisely
capture the shift magnitude of the peak Bragg resonance phase.

While the phenomenon of the downshift of the wave frequency upon resonance has been
extensively reported, providing essential parameters for the design of artificial bars for
coastal protection, the underlying mechanism for its formation remains elusive. Therefore,
it is of great significance to elucidate the mechanism of the downshift behaviour and
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0.8
0

0.5R̃

1.0

0

0.5

1.0

0.9 1.0 1.1 1.2 0.8

ω+/(2π) (Hz)2k+/kd

1.0 1.2 1.4 1.6

(b)(a)

Figure 2. Comparison of the reflection rate R̃ for case-D1 and case-L1 among the present solution in (3.5)
(blue solid line), analytical solution from Mei (1985) in (3.8) (red dashed line), numerical solutions of Liu &
Yue (1998) (green dots) and experimental data from Davies & Heathershaw (1984) (black circles) and Laffitte
et al. (2021) (black diamond), respectively. (a) case D1; (b) case L1.

The present Liu & Yue Madsen et al. Liang et al. Mei
Variables solution (1998) (2005) (2020) (1985)

2k+/kd 0.983 0.989 0.980 0.991 1
R̃ 0.731 0.728 0.718 0.731 0.719

Table 2. The wavenumber and the reflection rate of the peak Bragg resonance.

explore the influencing factors on the magnitude of the downshift of the wave frequency
based on the present solutions.

3.3. Frequency downshift of the Bragg resonance

3.3.1. Derivation of the downshift magnitude
In this section, we first present a theoretical expression of the downshift magnitude of
the wave frequency. The solution of reflection rate, denoted as R̃ = R̃(ω′), is expressed in
(3.5). The wave frequency shift at maximum reflection, denoted as δ, can be obtained from
the derivative of the reflection rate with respect to ω′ being equal to zero,

d
dω′

[
R̃
(
ω′)]2

∣∣∣∣
ω′=δ

= 0. (3.10)

Employing the Taylor expansion of ω′ and D to approximate the solution,

δ ≈ δ0 + δ2

=
3iC+

g

(
E3 + iE1C+

g

)
6E2E3C+

g − iL2D+
0

+ ð4L4 + ð2L2

5C+
g
(
6E2E3C+

g − iL2D+
0
)2 , (3.11)

in which

ð4 = E3D+3
0 + iC+

g D+2
0

(
5D+

3 + 6E1D+
0
)
, (3.12)
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Bragg scattering of nonlinear waves by sinusoidal sandbars

Case Variables The Present solution D+
1 = 0 D+

2 = 0 D+
3 = 0 B+

1 = 0 B+
2 = 0 B+

3 = 0

D1 2k+/kd 0.983 0.991 0.987 0.990 0.983 0.981 0.984
L1 ω+/2π 1.151 1.162 1.157 1.156 1.151 1.150 1.150

Table 3. The influence of B+
s and D+

s on the wavenumber or the wave frequency of the Bragg resonance.

and

ð2 = 15
{
−E3

3D+
0 − 2iE1E2

3C+
g D+

0 + iE1C+3
g D+

3
(
E1 + 2E2D+

0
)

+E1E3C+2
g

[
D+

3 + D+
0
(
E1 − 2E2D+

0
)]}

. (3.13)

This is detailed in Appendix C. In Mei’s (1985) theory, the coefficients E1,E2,E3 and D±
3

are equal to 0, and therefore ð4 = ð2 = 0, causing δ = 0.

3.3.2. Formation of the downshift behaviour
As has been demonstrated, the additional terms, i.e. B±

s and D±
s (s = 1, 2, 3) in the present

solutions are proven to be the causes of downshift behaviour. The following work is to
identify the most influential term with respect to the wavenumber or wave frequency in
the cases of D1 and L1 by setting each term to zero one by one, of which the terms related
to the superscript + are considered.

Table 3 presents the impact of B+
s and D+

s (s = 1, 2, 3) on the wavenumber or wave
frequency of the Bragg resonance. The downshift behaviour is impacted by each of the
terms, with D+

1 holding primacy over the two cases. The bottom-induced terms, D+
s , are

more influential than the dispersion-related items, B+
s . To further explore the significance

of these terms, their generation process in the present equations is investigated.
Figure 3 demonstrates the correlations among the terms of the equations, operators and

wave components. The generation of these elements is induced by three second-order
differential operators for potential functions, defined in fluids (Lflu), on the surface (Lsur)

and at the bottom (Lbot), as well as first-order operators (L̄flu and L̄bot), the details of
which are provided in Appendix D. Seven wave components in the potential function
contribute to B+

s and D+
s , comprising second-order modes, namely, the non-resonant

element γ 2,+
3,1 S+

3,1 and resonant elements γ b±S±
1,1 and γ f ±S±

1,1, as well as first-order

resonant modes, i.e. γ 1,±
1,1 S±

1,1. The second-order modes are induced by γ 1,±
1,1 S±

1,1 through

first-order operators L̄flu and L̄bot, and the non-resonant mode γ 2,+
3,1 S+

3,1 is expressed as

γ
2,+
3,1 = 3igDk2sechkh

(
3gk cosh 3kz + ω2 sinh 3kz

)
4ω

(
3kω2 cosh 3kh − 9gk2 sinh 3kh

) A+, (3.14)

which is generated by γ
1,+
1,1 S+

1,1
L̄bot−→ γ

2,+
3,1 S+

3,1. The resonant modes include four
components, given by

γ
2,±
1,1 S+

1,1 = γ b±S+
1,1 + γ f ±S+

1,1, (3.15)
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Lbot at bottom

D+
3

γf –γb–
γb+ γf +

D+
2D+

1B+
1B+

2B+
3

Lsur on surface

L̄f lu in fluids

Lf lu in fluids

L̄bot at bottom

First-order waves

Second-order waves

Additional terms

First-order operators

Second-order operators

γ2,+
3,1

γ1,–
1,1

γ1,+
1,1

Figure 3. Illustration of the correlations between the wave components and the additional terms (red points).

in which γ
2,±
1,1 S±

1,1 is composed of a bottom-forced component (γ b±S±
1,1) and a

fluid-modulated component (γ f ±S±
1,1),

γ b± = − ikDg sinh k(z + h)
4ω cosh kh

A∓, (3.16)

and

γ f ± = ∓g(z + h) sinh k(z + h)
2ω cosh kh

∂A±

∂ξ1
, (3.17)

which are induced via γ 1,±
1,1 S±

1,1
L̄flu−→ γ f ±S±

1,1 and γ 1,∓
1,1 S∓

1,1
L̄bot−→ γ b±S±

1,1, respectively.
The generations of B+

1 , B+
2 and B+

3 are described as

γ
1,+
1,1 S+

1,1
Lsur−→ B+

1 , γ f +S+
1,1

Lsur−→ B+
2 ,

(
γ

1,+
1,1 S+

1,1, γ f +S+
1,1

) Lflu−→ B+
3 . (3.18a–c)

The generation of D+
1 is demonstrated by γ 1,−

1,1 S−
1,1

L̄bot−→ γ b+S+
1,1

Lsur−→ D+
1 . This process

is initiated by the first-order reflected wave, γ 1,−
1,1 S−

1,1, which is further reflected by the
positive component of the bottom, e2ikx, resulting in the forward mode γ b+S+

1,1. Finally,
the wave is temporally modulated at the surface boundary to generate the term, D+

1 . The
detailed generation process of D+

1 revealed the impact mechanisms of D+
1 on downshifting

behaviour, that is the combination of the bottom re-reflection effect and the surface
modulation effect.

The generation of D+
2 is more intricate and involves three distinct paths: γ 1,−

1,1 S−
1,1

Lbot−→
D+

2 , γ
1,−
1,1 S−

1,1
L̄bot−→ γ b+S+

1,1
Lflu−→ D+

2 and γ
1,−
1,1 S−

1,1
L̄flu−→ γ f −S−

1,1
Lbot−→ D+

2 , which is a
combination of the first- and second-order contributions from the fluid and bottom.

D+
3 is generated by γ 1,+

1,1 S+
1,1, with paths γ 1,+

1,1 S+
1,1

L̄bot−→ γ
2,+
3,1 S+

3,1
Lbot−→ D+

3 , indicating
that the first-order incident wave is induced by the first-order bottom effect to generate
the non-resonant forward wave, γ 2,+

3,1 S+
3,1. This wave is further forced by the second-order

bottom effect to strengthen the resonant modes.
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0
0.90

0.95

1.00

1.05

0.1 0.2 0.3

D/h
0.4 0.5

D3
+ = 0

D3
+ ≠ 0

2
k+

/
k d

Figure 4. Comparison of wavenumber of the incident wave of the Bragg resonance among the analytical
solution of (3.11) (blue solid line), the numerical results of (3.10) (red dashed line) that includes the influence
of the non-resonant mode (D+

3 /= 0) or excludes this mode (D+
3 = 0), and results of Liu et al. (2019) from the

MMSE (black dots).

To examine the effect of D+
3 on the frequency downshift, we compare our results with

the solutions of Liu et al. (2019), in which the modified mild-slope equation (MMSE)
was applied to investigate the effect of bottom height on the downshift behaviour of the
Bragg resonance. The experimental settings of case-D1 are adopted, with h = 0.312 m,
L = 10 m, λd = 1 m and Nd = 10 fixed, with varying sandbar amplitude D.

As shown in figure 4, with the increase of sandbar amplitude, significant divergence
between the present solution and the results of Liu et al. (2019) is observed, which is
probably attributed to the influence of the non-resonant wave mode, γ 2,+

3,1 S+
3,1, which

was not included in the MMSE. By setting D+
3 to zero to eliminate the effect of

this non-resonant wave, the present analytical and numerical results show satisfactory
agreement with the solutions obtained by the MMSE. This reveals that the non-resonant
mode is a dominant factor responsible for the downward shift in the wavenumber of the
Bragg resonance for steep sandbar amplitude.

3.3.3. Impact of the sandbar amplitude on the magnitude of the Bragg resonance
downshift

The approximate expression for the magnitude of the wave frequency downshift (3.11),
which is of a parabolic form, i.e. δ ≈ δ0 + δ2, with δ0 = O(1) and δ2 = O(D2), reveals
that with the increase of sandbar amplitude D, the parabolic or squared trend of δ is more
pronounced than its linear trend since δ1 (the primary term of D ) is always equal to zero.
In addition, a threshold downshift magnitude is observed; for D → 0, δ converges to δ0,
which is negative for finite sandbar lengths (L < ∞), indicating that for finite sandbar
lengths, any amplitude can result in a downward shift, while for L → ∞, where δ0 tends
to 0, and the downshift threshold is eliminated.

To further examine the theoretical expression of the downshift magnitude and provide
further insight into the phenomenon, the solutions of reflection rate and resonance
frequency for gradually increased D/h are presented. In case L1, the parameters
h, L, λd,Nd, kd, and k are set to 0.22 m, 2.5 m, 0.5 m, 10, 4π m−1, and 2π m−1. The
reflection rate for various sandbar amplitudes D is then calculated for a range of wave
frequencies.
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D→01.0

0.5

1.0 1.1 1.2 1.3 0
1.10

1.15

1.20

0.1 0.2 0.3 0.4

fth+

0

R̃

ω+/(2π) (Hz)

(b)(a)

Figure 5. (a) Reflection coefficient (3.5) vs wave frequency for various D/h values, with circles denoting
the peak value, and the solid lines, from top to bottom, represent D/h = 0.4, 0.3, 0.2, 0.1, 0.05, 0.01.
(b) Comparison of the analytical solution in (3.11) (blue solid line) and numerical results from (3.10) (red
dashed line) on the frequency of the Bragg resonance vs sandbar amplitude. Green and orange dotted lines
represent the threshold frequency and wave frequency, respectively.

Figure 5(a) presents the variation of the reflection coefficients with respect to the ratio
of the sandbar amplitude D to the water depth h. The shift of the open markers indicates
an enhancement of downshift behaviour of the Bragg resonance with the increase of D/h.
Conversely, with the decrease of D/h, the frequency of the reflection peaks increases up
to a limit of 1.1578 Hz, as shown in figure 5(b) (depicted by the green dotted line), with
f +
th denoting the downward shift of the wave frequency to the threshold frequency. This

frequency can be obtained both analytically (blue solid line from the theoretical expression
(3.11)) and numerically (red dashed line, by conducting the numerical procedure for
(3.10)). Overall agreement between the two solutions is observed, confirming the parabolic
trend of the Bragg resonance frequency as a function of the sandbar amplitude. In addition,
the wave frequency f = ω/2π = 1.1725 Hz, which is the frequency without downshift and
depicted by the orange dotted line in both figure 5(a,b), is always above the other curves,
indicating the downshift behaviour for any sandbar amplitude D. The agreement between
the two solutions in figure 5(b) further demonstrates the hypothesis of the existence of a
threshold frequency.

4. Analyses of the fully nonlinear ENLS equations

In the previous work, we neglected the influence of nonlinearity on Bragg resonance for
the convenience of analytical solution. However, wave nonlinearity is a key factor that
affects wave transformation and reflection by altering wave speed and can cause nonlinear
behaviours. In this section, the influence of nonlinearity on Bragg resonance is analysed
and discussed. First, based on the Bragg resonance criteria and the nonlinear dispersion
relation derived from the full nonlinear ENLS equation, we present a theoretical analysis
on nonlinear Bragg scattering by the sandbars with infinitesimal amplitude. Then, the full
nonlinear ENLS equation is solved numerically to investigate the wave nonlinearity impact
on wave reflection by sandbars with finite amplitude.

Let Rre(x), Tre(x) and Rim(x), Tim(x) denote the real and imaginary parts of R(x) and
T(x), respectively. A± can be expressed as

A+ = A0 [Tre(x)+ iTim(x)] e−iω′t, (0 < x < L) (4.1)
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and
A− = A0 [Rre(x)+ iRim(x)] e−iω′t. (0 < x < L). (4.2)

Substituting (4.1) and (4.2) into (2.42) and (2.43), and separating real and imaginary items,
we can obtain a set of nonlinear differential equations. The reflection coefficient can be
obtained by:

R̃ = |Rre(0)+ iRim(0)| . (4.3)

4.1. Theoretical analysis on the critical kh of resonance shift under infinitesimal sandbar
amplitude condition

In this section, to examine the impact of wave nonlinearity on resonant wavenumber shift,
the Bragg resonance criterion proposed by Mei (1985) is applied to consider a limiting
condition: large number of sandbars with infinitesimal amplitude (kdD → 0).

According to the analysis in § 3, under this condition, the following criterion,
which indicates the wavenumber of the maximum reflection, can precisely predict the
wavenumber of the incident wave:

k+ + k− = kd. (4.4)

On the side where x < 0, waves propagate over constant water depth, and the dispersion
relation for nonlinear waves can be obtained, where the wavenumbers of the incident and
reflected waves can be expressed as

k+ = k + iE2
(
ω′)2 + ω′

C+
g

+

wave nonlinearity induced︷ ︸︸ ︷
A2

0

(
iF+

1

C+
g

+ iF+
2

C+
g

R̃2

)
,

k− = k + iE2
(
ω′)2 + ω′

C+
g

+ A2
0

(
iF+

1

C+
g

R̃2 + iF+
2

C+
g

)
︸ ︷︷ ︸

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.5)

where the third terms on the right-hand sides are the additional wavenumbers induced by
the nonlinearity of incident and reflected waves, usually we have k+ /= k−. This is a typical
characteristic different from small amplitude waves condition, where the wavenumbers
are identical. However, when waves approach a full reflection condition, with R̃ → 1, the
difference induced by wave nonlinearity tends to 0 , namely k+ − k− → 0.

Combining the Bragg resonance criterion (4.4) and the dispersion relation (4.5), the
non-dimensional incident wavenumber 2k+/kd under resonant condition can be obtained:

2k+

kd
= 1 + k+ − k−

kd
= 1 + 1 − R̃2

C+
g kd

(
iF+

1 − iF+
2
)

A2
0, (4.6)

where iF+
1 and iF+

2 are the self- and cross-modulation coefficients (Hammack et al. 2005;
Onorato et al. 2006). As can be seen, for small amplitude waves (A0 → 0), the resonance
occurs at 2k+/kd = 1, as the incident wavenumber is identical to that of reflected waves.
While for waves with finite wave amplitude (A0 = O(1)), wave self- and cross-modulation
effects induce an additional shift of the resonant wavenumber, for which the shift direction
is determined by iF+

1 − iF+
2 , whereas the former effect dominates wavenumber upshifting

and the latter downshifting.
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iF1
+ > iF+

2

iF1
+ < iF+

2

5

15

1.0 1.5

 kh0
c ≈ 1.158

2.0
kh

Figure 6. The self-modulation iF+
1 (black line) and cross-modulation coefficients iF+

2 (red dashed line) vary
with kh.

As illustrated in figure 6, the values of iF+
1 and iF+

2 vary with kh. Let iF+
1 = iF+

2 ,
combined with their definitions in (2.39), the solution for critical kh, which represents the
condition of the prefect balance of self-modulation and cross-modulation, of resonance
shift under infinitesimal sandbar amplitude condition can be obtained theoretically:

khc
0 = 1.15798 · · · ≈ 1.158. (4.7)

Combining the relationship presented in figure 6 and (4.6), we can find that opposing
shift behaviours will occur on the two sides of kh = khc

0, owing to the discrepancy
between the incident and reflected wavenumbers induced by the differences between wave
self- and cross-modulation effects. More specifically, when kh < khc

0, the self-modulation
effect is stronger than wave cross-modulation, resulting in k+ > k−, therefore, 2k+/kd
shifts upward with the increase of wave amplitude A0. While when kh > khc

0, the
cross-modulation effect becomes more pre-dominant and results in k+ < k−, therefore,
2k+/kd shows downshift behaviour with the increase of A0, where we have k+ < k−.

4.2. Numerical study on critical kh of resonance shift under finite sandbar amplitude
condition

Under infinitesimal sandbar amplitude condition (kdD → 0), the existence of the critical
kh has been theoretically demonstrated. To further consider the condition of sandbars with
finite amplitude (kdD = O(1)), numerical approach is needed to solve the fully nonlinear
ENLS for reflection coefficient, and the details of the numerical procedure is outlined in
Appendix E.

Following the set-up of experimental case D1, we set kd = 2π m−1 and k = π m−1,
and the number of sandbars is fixed at 25. Seven cases with different sandbar amplitude
D were adopted, to calculate the reflection coefficients under the conditions with
varying water depth, i.e. kh = 0.8 ∼ 2.2, for incident waves with different wavenumber
(2k+/kd = 0.9 ∼ 1.1) and different wave amplitude (kA0 = 0 ∼ 0.08). The parameters of
our numerical solutions are detailed in table 4, in which the calculated critical kh are listed
in the last columns.

Figure 7 shows the reflection coefficients for three different cases, namely kh is lower
than, equal to and higher than the critical value khc, to illustrate the numerical procure
of calculating the critical kh. First, we calculate the reflection coefficient under a small
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Case kdD kA0 2k+/kd kh khc

(I) 10−6 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.158
(II) 0.04 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.168
(III) 0.08 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.196
(IV) 0.12 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.243
(V) 0.16 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.305
(VI) 0.20 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.373
(VII) 0.24 0 ∼ 0.08 0.9 ∼ 1.1 0.8 ∼ 2.2 1.444

Table 4. Incident wave and bottom conditions.

R̃

2k+/kd

0.90
0

0.4

0.8

0

0.3

0.6

0

0.08

0.16

0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10 0.90 0.95 1.00 1.05 1.10

2k+/kd 2k+/kd

(b)(a) (c)

Figure 7. Comparisons of reflection coefficients vs incident wavenumber for case (III) with different kh among
linear analytical solution in (3.5) (blue solid line), numerical solutions for kA0 = 0 (red dashed line), 0.06 (black
dot-dashed line) and 0.08 (green dotted line): (a) kh = 0.8; (b) kh = 1.196; (c) kh = 2.2.

kh condition, i.e. kh = 0.8 for waves with different wavenumber and wave amplitude.
Figure 7(a) shows that as the wave steepness increases, the wavenumber of the Bragg
resonance shifts upward, in which intensifying the wave steepness significantly increases
the wavenumber of the Bragg resonance. Second, the results with a large kh are calculated.
As shown in figure 7(c), the wavenumber of the Bragg resonance decreases monotonically
with increasing wave steepness, showing a downward shift. Then, we consider the
condition of a medium kh, i.e. kh = (0.8 + 2.2)/2 = 1.5, if downshift occurs then the
critical kh is located between 0.8 and 1.5, otherwise we consider the region of [1.5, 2.2].
We repeat the above procedure until we find an approximate value of khc. Specifically,
for case (III), kh = khc ≈ 1.196, as shown in figure 7(b), where the increase of wave
nonlinearity will not induce a shift to the resonant wavenumber.

Thus, for sandbars with finite amplitude, the critical kh, khc still exists, which
corresponds to the condition where wave nonlinearity will not induce a shift to the resonant
wavenumber. Following the same calculation procedure, the relationship between khc and
kdD is obtained for cases (I)–(VII) regarding reflection coefficients for kh ranging from
0.8 to 2.2, as illustrated in figure 8, with the critical kh being the dividing line of upshift
and downshift behaviour.

As illustrated in figure 8, the critical kh, khc shows an overall increase trend with
the increase of sandbar amplitude. Under the condition of mild sandbar amplitude, i.e.
kdD < 0.04, the critical kh presents slight variation, and khc tends to the critical kh,
khc

0 ≈ 1.158, which has also been predicted by theoretical analysis with (4.7) as kdD → 0.
For kh < khc, the frequency of Bragg resonance presents an upshift with the increase of
wave nonlinearity. Whereas for kh larger than khc, the regime of frequency shift induced
by wave nonlinearity transits to a downshift one.
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khc (kdD)

lim
kdD→0

khc = khc
0

0 0.08
0.5

1.5

2.5

0.16 0.24

Figure 8. Critical kh(khc) varies with kdD.

5. Conclusion

In this work, the ENLS equations have been derived by employing the multiple-scale
expansion method to describe wave scattering by sinusoidal sandbars. A closed-form
solution has been established by solving the linearised ENLS equations and a theoretical
formula for the downshift magnitude of the resonance frequency has been proposed. The
factors that influence the downshift of the Bragg resonance have been examined and the
underlying mechanisms are revealed. Finally, fully nonlinear ENLS equations are solved
numerically to investigate the effect of wave nonlinearity on wave reflection. The main
conclusions are drawn as follows.

(i) Among the effects of high-order bottom, high-order dispersion and nonlinear
wave–wave interaction on Bragg scattering, the high-order bottom effect is the major
cause of the downshift behaviour, attributed to the combination of the re-reflection
of waves and the surface modulation effect. In addition, the interaction between
the forward non-resonant mode and sinusoidal sandbars also plays an important
role in causing downshift behaviour, especially when the sandbar amplitude varies
steeply, where a significant increase in the downward shift appears that leads to an
underestimation of the downshift behaviour by the MMSE.

(ii) An analytical formula for the wave frequency downshift has been presented that
exhibits a parabolic form with respect to the amplitude and length of sandbars, which
remains valid even if the bar length approaches infinity. As the bar amplitude tends
to zero, the magnitude of the frequency downshift converges to a negative threshold.
This phenomenon is caused by the finite length of the sandbars and vanishes as
the length approaches infinity. In addition, an expression for the wavenumber of
the reflection peaks has been derived via the dispersion relation, which degenerates
to the standard Bragg law as the sandbar length approaches infinity and the bar
amplitude approaches zero, validating the standard Bragg law under this condition.

(iii) The nonlinearity of the waves has been observed to cause a shift of the
Bragg resonance, with both an upward and a downward behaviour, attributed to
the discrepancy between the wavenumbers of the incident and reflected waves,
which is highly represented by kh. Under an infinitesimal sandbar amplitude
condition, theoretical analysis has revealed the existence of a critical kh, khc

0, which
corresponds to the condition where self-modulation equals the cross-modulation
effect, where on the two sides, wave nonlinearity presents converse behaviours
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regarding wavenumber shift of the Bragg resonance. The self-modulation effect is
responsible for wavenumber upshifting and the cross-modulation effect dominates
downshifting. When kh is above khc, the increase of wave nonlinearity causes
a significant downshift of the Bragg resonance, where it is dominated by the
cross-modulation effect with the reflected wavenumber larger than that of the
incident wave. With the decreases of kh, the waves gradually transition from being
cross-modulated-dominated to self-modulated-dominated; as a result, the incident
wavenumber gradually increases and becomes larger than the reflected wavenumber,
together with the gradual change of Bragg resonance frequency from downshift
to upshift. Therefore, when kh is smaller than the critical kh, the enhancement of
wave nonlinearity triggers an upshift behaviour. Furthermore, numerical results have
proved the relation between the critical kh and sandbar amplitude D, which will move
upwards with an increase of the amplitude of sandbars.
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Appendix A. Solution procedure for the jth-order problem for φj

In general, we consider the jth-order problem for φj, defined by the following equations,

∂2φj

∂x2 + ∂2φj

∂z2 = Tj (−h < z < 0), (A1)

∂2φj

∂t2
+ g

∂φj

∂z
= Pj (z = 0), (A2)

∂φj

∂z
= Wj (z = −h). (A3)

Here φj is assumed to be expressed as series form in terms of multiple harmonics,

φj = γ
j,+
0,0 +

∑
mn=0

m+n>0

(
γ j,+

m,nS+
m,n + c.c.

)
+

∞∑
m=1

∞∑
n=1

(
γ j,+

m,nS+
m,n + γ j,−

m,nS−
m,n + c.c.

)
, (A4)

where γ j,±
m,n = γ

j,±
m,n(z, ξ1, τ1, ξ2, τ2) are functions corresponding to S±

m,n for the jth-order
problem. Substituting (A4) into (A1)–(A3) and separating different orders of harmonics,
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S±
m,n, a set of ordinary differential equations for γ j,±

m,n can be obtained:(
∂2

∂z2 − m2k2
)
γ j,±

m,n = Tj,±
m,n (−h < z < 0), (A5)

g
∂γ

j,±
m,n

∂z
− n2ω2γ j,±

m,n = Pj,±
m,n (z = 0), (A6)

∂γ
j,±
m,n

∂z
= Wj,±

m,n (z = −h). (A7)

The method of solving (A5)–(A7) is highly dependent on the values of the parameters m
and n. For the jth-order problem, the solutions of Tj,±

m,n, etc., differ depending on whether
mn is equal to 1 or not. In the case that mn /= 1, the solutions of γ j,±

m,n are non-singular,
obtained directly by solving the BVP. Conversely, when mn = 1, the equations become
singular, thereby requiring two additional solvability conditions to be satisfied to guarantee
the existence of the solution of γ j,±

m,n .

A.1. For mn /= 1
When mn /= 1, the non-homogeneous equation with non-zero boundary conditions can be
linearly decomposed into two distinct problems. The first is a homogeneous equation, with
two non-zero boundary conditions, and the other a non-homogeneous equation with two
zero boundary conditions. Representing each problem is γ j,±

m,n , with γ̄ j,±
m,n being the solution

for the homogeneous equation and ¯̄γ j,±
m,n for the non-homogeneous equation:

γ j,±
m,n = γ̄ j,±

m,n + ¯̄γ j,±
m,n. (A8)

For γ̄ j,±
m,n , we have (

∂2

∂z2 − m2k2
)
γ̄ j,±

m,n = 0 (−h < z < 0), (A9)

g
∂γ̄

j,±
m,n

∂z
− n2ω2γ̄ j,±

m,n = Pj,±
m,n (z = 0), (A10)

∂γ̄
j,±
m,n

∂z
= Wj,±

m,n (z = −h). (A11)

The general solution of (A9) is γ̄ j,±
m,n = C̄1 cosh mk(z + h)+ C̄2 sinh mk(z + h), and C̄1

and C̄2 are two arbitrary complexes, determined by two boundaries, which can be uniquely
ensured after substituting the general solution of γ̄ j,±

m,n to (A10) and (A11). The simplified
solution for γ̄ j,±

m,n is derived,

γ̄ j,±
m,n = Pj,±

m,n

gmk tanh mkh − n2ω2
cosh mk(z + h)

cosh mkh

+Wj,±
m,n

{
sinh mk(z + h)

mk
+ n2ω2 tanh mkh − gmk

gm2k2 tanh mkh − mkn2ω2 cosh mk(z + h)
}
. (A12)
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The second problem is expressed as follows:(
∂2

∂z2 − m2k2
)

¯̄γ j,±
m,n = Tj,±

m,n (−h < z < 0), (A13)

g
∂ ¯̄γ j,±

m,n

∂z
− n2ω2 ¯̄γ j,±

m,n = 0 (z = 0), (A14)

∂ ¯̄γ j,±
m,n

∂z
= 0 (z = −h). (A15)

In this paper, we consider Tj,±
m,n of hyperbolic cosine function form, namely μ cosh k(z +

h), where μ is a constant. The general solution of (A13) is

¯̄γ j,±
m,n =

(
C1 + μz

2km

)
sinh mk(z + h)+

(
C2 − μ

4k2m2

)
cosh mk(z + h), (A16)

in which C1 and C2 are coefficients, which can be determined by boundaries (A14) and
(A15).

Substituting (A16) into (A15), C1 can be obtained

C1 = μh
2km

. (A17)

By substituting the solution of C1, (A17), into (A16), and applying the surface boundary
condition (A14), the value of C2 can be decided as

C2 = − μ

4k2m2

km
(
g − 2hn2ω2) tanh mkh + 2ghk2m2 + n2ω2

gkm tanh mkh − n2ω2 . (A18)

Therefore, all the coefficients are obtained, which leads to the unique solution from
(A16)–(A18). The unique solution of ¯̄γ j,±

m,n can be obtained,

¯̄γ j,±
m,n = μ(z + h)

2km
sinh mk(z + h)− μ

2km
gkmh + (

g − n2ω2h
)

tanh kmh
gkm tanh mkh − n2ω2 cosh mk(z + h).

(A19)

It is worth noting that the solution in (A19) is valid as mn /= 1, since the denominator of
the second term on the right-hand side is not equal to zero.

Thus, the BVP for the harmonics S±
m,n at jth order is solved, giving the solution for γ j,±

m,n
in the case of mn /= 1.

γ̄ j,±
m,n = Pj,±

m,n

gmk tanh mkh − n2ω2 cosh mk(z + h)

−Wj,±
m,n

{
sinh mk(z + h)

mk
+ n2ω2 tanh mkh − gmk

gm2k2 tanh mkh − mkn2ω2 cosh mk(z + h)
}

+μ(z + h)
2km

sinh mk(z + h)− μ

2km
gkmh + (

g − n2ω2h
)

tanh kmh
gkm tanh mkh − n2ω2 cosh mk(z + h).

(A20)
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A.2. For mn = 1
For the case of mn = 1 or m = n = 1, the solution for γ j,±

1,1 displayed in (A20) is subjected
to divergence due to the dispersion relation. The governing equation and boundary are as
follows:

(
∂2

∂z2 − k2
)
γ

j,±
1,1 = Tj,±

1,1 (−h < z < 0), (A21)

g
∂γ

j,±
1,1

∂z
− ω2γ

j,±
1,1 = Pj,±

1,1 (z = 0), (A22)

∂γ
j,±
1,1

∂z
= Wj,±

1,1 (z = −h). (A23)

Let ψ± represent the homogenous solutions of (A21)–(A23). Multiplying (A21) by ψ±
and integrating it between −h and 0, the Green formula can be applied in accordance with
the divisional integral formula, leading to the solvability of the BVP at O(ε j) for γ j,±

1,1

∫ 0

−h

{(
∂2γ

j,±
1,1

∂z2 − k2γ
j,±
1,1

)
ψ± −

(
∂2ψ±

∂z2 − k2ψ±
)
γ

j,±
1,1

}
dz =

(
ψ± ∂γ

j,±
1,1

∂z
− γ

j,±
1,1
∂ψ±

∂z

)∣∣∣∣∣
0

−h

.

(A24)
Then the simplified solvability condition is expressed as∫ 0

−h
Tj,±

1,1ψ
± dz = g−1Pj,±

1,1ψ
±
∣∣∣
z=0

− Wj,±
1,1ψ

±
∣∣∣
z=−h

, (A25)

if the solvability condition (A25) holds, then the existence of solutions for γ j,±
1,1 can be

ensured. Thus, the linear differential equation (A5) combined with the Neumann boundary
condition at z = −h, (A7), is solved for γ j,±

1,1 .

Similarly, in this paper, the form of Tj,±
1,1 is the product of cosh k(z + h) and a constant μ,

namely Tj,±
1,1 = μ cosh k(z + h), the analytical expression of the general solution for γ j,±

1,1
is

γ
j,±
1,1 = C1 cosh k(z + h)+

(
μ

2k
(z + h)+ 1

k
Wj,±

1,1

)
sinh k(z + h), (A26)

where the general solution can be indicated by the first term on the right-hand side, where
C1 is an arbitrary complex. The third term arises from the non-zero boundary at z = −h.
In the case of mn /= 1, the process of solving is analogous to the first problem, as depicted
by (A13)–(A18). The distinguishing factor is that the Robin boundary condition (A14)
is no longer applicable, thus preventing the determination of the complex C1. However,
the general solution can be included into the φ1 component, which can be disregarded in
high-order problems, with C1 = 0 being imposed in order to guarantee a unique solution,

γ
j,±
1,1 =

[
μ

2k
(z + h)+ 1

k
Wj,±

1,1

]
sinh k(z + h). (A27)
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Appendix B. Derivation for the solution of the linearised equations

On the left-hand side of the sandbars, we have

A+ = A0 exp(ik′x − iω′t) (x < 0), (B1)

and
A− = A0R(0) exp(−ik′′x − iω′t) (x < 0). (B2)

The wavenumbers of the incident and reflected waves are

k± = k + iE2
(
ω′)2 + ω′

C+
g

. (B3)

On the side x > L, only transmission occurs, indicating that

A+ = A0T(L) exp(ik′x − iω′t) (x > L) (B4)

and
A− = 0 (x > L). (B5)

Let R̃ and T̃ denote the reflection and transmission rates, given by |R(0)| and |T(L)|. The
governing equations (3.1) and (3.2) can be expressed in terms of T(x) and R(x). Here ˙( )
represents the first-order differential operator on x, and the equations can be expressed as

S+
1 R(x)+ S+

2 T(x)+ S+
3 Ṙ(x)+ S+

4 Ṫ(x) = 0,

S−
1 T(x)+ S−

2 R(x)+ S−
3 Ṫ(x)+ S−

4 Ṙ(x) = 0,

}
(B6)

where

S±
1 = E1ω

′ + iD+
0 , S±

2 = −iω′ + E2
(
ω′)2 + D+

3 , S±
3 = ±E3, S+

4 = ±C+
g ,

(B7a–d)

in which E1, E2 and E3 are coefficients, defined in (3.7). The boundary conditions for T(x)
and R(x) are given by

R(L) = 0, T(0) = 1. (B8)

The linear equations (B6) with the associated boundary conditions outlined by (B8)
constitute a solvable BVP, yielding an exact solution for the reflection rate, R̃.

The linear differential system can be expressed in matrix form,

U̇(x) = A−1BU(x) (B9)

in which U(x) is a column vector, A and B are matrix, with A−1 being the inverse matrix
of A, given by

U(x) = (R(x), T(x))T,

A =
(

S+
3 S+

4
S−

4 S−
3

)
, B = −

(
S+

1 S+
2

S−
2 S−

1

)
.

⎫⎪⎬
⎪⎭ (B10)

Let us imply a linear transform to U(x),
V(x) = QU(x), (B11)
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where V(x) is a column vector with two components R̃(x) and T̃(x), and Q is a constant
matrix, defined as follows:

V(x) = (R̃(x), T̃(x))T,

Q =
(−Q2 + P sgn

(
P2) −Q2 − P sgn

(
P2)

Q1 Q1

)−1

,

⎫⎪⎬
⎪⎭ (B12)

in which Q1 and Q2 are real parameters, defined as

Q1 = i
S+

1 S+
4 + S+

2 S+
3(

S+
4
)2 − (

S+
3
)2 , (B13)

and

Q2 = i
S+

1 S+
3 + S+

2 S+
4(

S+
4
)2 − (

S+
3
)2 . (B14)

In addition, P is a complex, given by

P =
√√√√(

S+
1
)2 − (

S+
2
)2(

S+
4
)2 − (

S+
3
)2 . (B15)

Let us denote the sign function of P2 as sgn(P2), which is equal to 1 for P2 > 0 and to −1
for P2 < 0. Under the linear transform, (B9) is converted into

V̇(x) = CV(x), (B16)

where C = QA−1B Q−1, being a diagonal matrix

C =
(

iP 0
0 −iP

)
. (B17)

Since (S+
4 )

2 − (S+
3 )

2 > 0, the sign of (S+
1 )

2 − (S+
2 )

2 is the same as P2, which results in
sgn((S+

1 )
2 − (S+

2 )
2) = sgn(P2). Thus, we discuss the solutions in terms of P2 > 0, < 0

and = 0, respectively.
The uncoupled linear system is easily solvable with general solution, expressed as

V(x) =
(

C1eiPx,C2e−iPx
)T
, (B18)

The general solution of U(x) can be formulated by utilising the inverse transformation
of (B11). This, combined with the conditions specified in (B8), yields the value for C1
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and C2. Following this, the solutions for R(x) and T(x) can be obtained:

R(x) = −Q1 sin P(L − x)
iP sgn

(
P2

)
cos PL + Q2 sin PL

,

T(x) = iP sgn
(
P2) cos P(L − x)+ Q2 sin P(L − x)

iP sgn
(
P2

)
cos PL + Q2 sin PL

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭ (B19)

For P2 > 0:

R(x) = −Q1 sin P(L − x)
iP cos PL + Q2 sin PL

,

T(x) = iP cos P(L − x)+ Q2 sin P(L − x)
iP cos PL + Q2 sin PL

.

⎫⎪⎪⎬
⎪⎪⎭ (B20)

For P2 < 0: P is a pure imaginary number. By introducing a real parameter, Pb = iP,
the solutions are

R(x) = −iQ1 sinh Pb(L − x)
iPb cosh PbL − Q2 sinh PbL

,

T(x) = iPb cosh Pb(L − x)− Q2 sinh Pb(L − x)
iPb cosh PbL − Q2 sinh PbL

.

⎫⎪⎪⎬
⎪⎪⎭ (B21)

For P2 = 0: We take P → 0 in (B20) to obtain

R(x) = −Q1(L − x)
i + Q2L

,

T(x) = i + Q2(L − x)
i + Q2L

.

⎫⎪⎪⎬
⎪⎪⎭ (B22)

In summary, reflectance R̃ and transmittance T̃ can be expressed as follows:

R̃ = |R(0)| =
√

Q2
1

|P cot PL|2 + Q2
2
,

T̃ = |T(L)| =
√

|P|2
|P cot PL|2 + Q2

2| sin PL|2 .

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(B23)

Appendix C. Magnitude of the downshift of the wave frequency

Assuming that the magnitude of the frequency shift δ is small, i.e. δ 	 O(1), we can
demonstrate that P2 < 0, resulting in the substitution of |P cot PL| with iPb cosh PbL, with
Pb = iP, as detailed in Appendix B. Combining (3.10) with (3.5) then provides an implicit
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relation for δ as follows:

Γ
(
ω′,D

)∣∣
ω′=δ = 0, (C1)

in which Γ (ω′,D) is a binary function on ω′ and D, defined as

Γ
(
ω′,D

) = 2
{

Q2
2 + (iPb cosh PbL)2

} ∂Q1

∂ω′ − Q1

{
∂Q2

2
∂ω′ + ∂ (iPb cosh PbL)2

∂ω′

}
. (C2)

Applying the first-order Taylor expansion to Γ in terms of ω′ results in

Γ (δ,D) = Γ (0,D)+ ∂Γ (0,D)
∂ω′ δ + O

(
δ2
)

= 0, (C3)

which leads to an approximate explicit solution for δ by eliminating the high-order error,

δ = Λ(D)+ O(δ) ≈ Λ(D), (C4)

in which Λ(D) is a function relying on D

Λ(D) = −
(
∂ log |Γ (0,D)|

∂ω′

)−1

. (C5)

It is necessary to further simplify the highly intricate expression of Λ(D). This can be
done through the application of a second-order Taylor expansion, expressed as follows:

Λ(D) ≈ δ0 + δ1D + δ2D2 + O
(

D3
)
, (C6)

where δ1 = dΛ(0)/dD = 0. Let δ0 and 2δ2 represent Λ(0) and d2Λ(0)/dD2, respectively.
We have

δ0 =
3iC+

g

(
E3 + iE1C+

g

)
6E2E3C+

g − iL2D+
0
, (C7)

and

δ2 = ð4L4 + ð2L2

5C+
g
(
6E2E3C+

g − iL2D+
0
)2 , (C8)

in which ð4 and ð2 are defined in (3.12) and (3.13). Thus, an approximate solution for the
frequency downshift of the Bragg resonance is expressed as

δ =
3iC+

g

(
E3 + iE1C+

g

)
6E2E3C+

g − iL2D+
0

+ ð4L4 + ð2L2

5C+
g
(
6E2E3C+

g − iL2D+
0
)2 . (C9)
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Appendix D. Expressions for the operators

The first-order operators are defined as

L̄flu

[
γ

1,±
1,1 S±

1,1

]
= T1,±

1,1 (z + h) sinh k(z + h)

2k cosh k(z + h)
, (D1)

and we have

L̄bot

[
γ

1,−
1,1 S−

1,1

]
=

[
De2ikx

(
−1

2
∂2

∂z2 + ik
∂

∂x

)
γ

1,−
1,1 S−

1,1

∣∣∣∣
z=−h

]
sinh k(z + h)

k
,

L̄bot

[
γ

1,+
1,1 S+

1,1

]
= L̄(1)bot

[
γ

1,+
1,1 S+

1,1

]
+ L̄(2)bot

[
γ

1,+
1,1 S+

1,1

]
,

⎫⎪⎪⎬
⎪⎪⎭ (D2)

and

L̄(1)bot

[
γ

1,+
1,1 S+

1,1

]
=

[
De−2ikx

(
−1

2
∂2

∂z2 + ik
∂

∂x

)
γ

1,+
1,1 S+

1,1

∣∣∣∣
z=−h

]
sinh k(z + h)

k
,

L̄(2)bot

[
γ

1,+
1,1 S+

1,1

]
=

[
De2ikx

(
−1

2
∂2

∂z2 − ik
∂

∂x

)
γ

1,+
1,1 S+

1,1

∣∣∣∣
z=−h

]{
sinh 3k(z + h)

3k

+ ω2 tanh 3kh − 3gk
9gk2 tanh 3kh − 3kω2 cosh 3k(z + h)

}
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(D3)

in which the superscripts (1) and (2) are the operator generating modes S−
1,1 and S+

3,1,
respectively.

For the second-order operators, we have

Lflu [φ1, φ2] = −
∫ 0

−h

(
−∂

2φ1

∂ξ2
1

− 2
∂2φ2

∂x∂ξ1

)
ψ+ dz,

Lsur [φ1, φ2] =
(

−∂
2φ1

∂τ 2
1

− 2
∂2φ2

∂t∂τ1

)
ψ+

g

∣∣∣∣∣
z=0

,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(D4)

and

Lbot [φ1, φ2] = ζ

{
−

[
−∂σ
∂x
∂φ1

∂ξ1
+

(
∂σ

∂x
∂

∂x
− σ

∂2

∂z2

)
φ2

]
ψ+

∣∣∣∣
z=−h

}
, (D5)

which are bilinear operators on φ1, the component at O(ε), and φ2, at O(ε2). In addition,
ζ is the operator to take out the terms related to the mode S+

1,1.

Appendix E. Numerical solution procedure for the ENLS

Substituting (4.1) and (4.2) into (2.42) and (2.43), and separating real and imaginary items,
we have

dY (x)
dx

= ℘(x), (E1)
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in which

Y (x) = (Rre,Rim, Tre, Tim)
T , (E2)

℘(x) =

⎛
⎜⎜⎝

S+
3 0 S+

4 0
0 −S+

3 0 −S+
4

S+
4 0 S+

3 0
0 S+

4 0 S+
3

⎞
⎟⎟⎠

−1
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−

⎛
⎜⎜⎜⎜⎝

iS+
1 Rim + iS+

2 Tim

iS+
1 Rre + iS+

2 Tre

−iS+
2 Rim − iS+

1 Tim

iS+
2 Rre + iS+

1 Tre

⎞
⎟⎟⎟⎟⎠ + ℘n(x)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (E3)

and ℘n(x) is the nonlinear contribution,

℘n(x) = −iA2
0

⎛
⎜⎜⎜⎜⎝

Tim
{
F+

2
(
R2

im + R2
re
) + F+

1
(
T2

im + T2
re
)}

Tre
{
F+

2
(
R2

im + R2
re
) + F+

1
(
T2

im + T2
re
)}

−Rim
{
F+

1
(
R2

im + R2
re
) + F+

2
(
T2

im + T2
re
)}

Rre
{
F+

1
(
R2

im + R2
re
) + F+

2
(
T2

im + T2
re
)}

⎞
⎟⎟⎟⎟⎠ . (E4)

According to (B8), the boundary conditions give

Tre(0) = 1, Tim(0) = 0, Rre(L) = 0, Rim(L) = 0. (E5)

For a specific frequency ω′ and wave amplitude of incident wave A0, the nonlinear system
of ordinary differential equations (E1) with boundaries (E5) forms a well-defined BVP.
We adopt a fourth-order Runge–Kutta method with a step size of �x = L/Nt, with Nt
fixed to 104, to discretise the governing equation. We denote by xn the discrete points on
[0, L], where xn = (n − 1)�x, (1 ≤ n ≤ Nt + 1), and Y (xn) and ℘(xn) are defined as Y n

and ℘n, respectively. To evaluate the error of the numerical solutions, we introduce an
indicator:

err =
Nt∑

n=1

∣∣∣∣∣Y n+1 − Y n

�x
− ℘n

∣∣∣∣∣
2
�x
L
, (E6)

which represents the global squared error of the numerical solution on [0, L]. Each incident
wave frequency and wave amplitude correspond to an error. Thus, errmax can be used to
characterise the maximum error

errmax = max
A0,ω′{err}. (E7)

By choosing this discrete format, the accuracy of the numerical solutions can be
guaranteed, with errmax < 10−6.
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