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Abstract

We realize O’Grady’s six-dimensional example of an irreducible holomorphic symplectic
(IHS) manifold as a quotient of an IHS manifold of K3[3] type by a birational involution,
thereby computing its Hodge numbers.

1. Introduction

In this paper we present a new way of obtaining O’Grady’s six-dimensional example of an
irreducible holomorphic symplectic manifold and use this to compute its Hodge numbers. Further
applications, such as the description of the movable cone or the answer to Torelli-type questions
for this deformation class of irreducible holomorphic symplectic manifolds, will be the topic of a
subsequent paper.

Recall that irreducible holomorphic symplectic (IHS) manifolds are simply connected
compact Kähler manifolds that have a holomorphic symplectic form, unique up to scalars. They
arise naturally as one of the three building blocks of manifolds with trivial first Chern class
according to the Beauville–Bogomolov decomposition [Bog78, Bea83], the other two blocks being
abelian varieties and Calabi–Yau manifolds. By definition, IHS manifolds are higher-dimensional
generalizations of K3 surfaces; moreover, they have a canonically defined quadratic form on their
integral second cohomology group, which allows one to speak of their periods and to develop
their theory in a way which is analogous to the theory of K3 surfaces. The interested reader can
see [Huy99] and [O’Gr12] for a general introduction on the topic.

Two deformation classes of IHS manifolds in every even dimension greater than two were
introduced by Beauville in [Bea83]. They are the Hilbert scheme of n points on a K3 and the
generalized Kummer variety of dimension 2n of an abelian surface (i.e. the Albanese fiber of the
Hilbert scheme of n+ 1 points of the abelian surface). Elements of these two deformation classes
have second Betti number equal to 23 and 7, respectively, and are referred to as IHS manifolds of
K3[n] type and of generalized Kummer type, respectively. There are two more examples, found by
O’Grady in [O’Gr99] and [O’Gr03], of dimensions ten and six, respectively, which are obtained
from a symplectic resolution of certain singular moduli spaces of sheaves on a K3 surface and
on an abelian surface, respectively. They are referred to as the exceptional examples of IHS, and
their deformation classes are denoted by OG10, respectively OG6.

These exceptional examples have not been studied as much as IHSs of K3[n] type and of
generalized Kummer type and their geometry is less well understood. Though their topological
Euler characteristic is known (see [Rap04] and [Moz06]), even other basic invariants such as
their Hodge numbers have not been computed yet. In the case of manifolds of K3[n] type or

Received 31 January 2017, accepted in final form 31 July 2017, published online 21 March 2018.
2010 Mathematics Subject Classification 14J40 (primary), 14E07, 14F05 (secondary).
Keywords: irreducible holomorphic symplectic manifolds, Hodge numbers, O’Grady’s six-dimensional manifold.
This journal is c© Foundation Compositio Mathematica 2018.

https://doi.org/10.1112/S0010437X1700803X Published online by Cambridge University Press

http://www.compositio.nl/
http://www.ams.org/msc/
http://www.compositio.nl/
https://doi.org/10.1112/S0010437X1700803X


Hodge diamond of O’Grady’s six-dimensional example

of generalized Kummer type, the Hodge numbers were computed by Göttsche in [Got90] and
Göttsche and Sörgel in [GS93].

One of the main results of this paper is to realize O’Grady’s six-dimensional example as a
quotient of an IHS manifold of K3[3] type by a birational symplectic involution: we therefore
relate this deformation class to the most studied deformation class of IHS manifolds and this
allows us, by resolving the indeterminacy locus of the involution and by describing explicitly
its fixed locus (which has codimension 2), to compute the Hodge numbers. The involution we
use was first introduced in [Rap04] in order to compute the Beauville–Bogomolov form for IHS
of type OG6 and then used in [MW17] to determine a special subgroup of the automorphisms
group of such manifolds. The main result of the present paper is the following.

Theorem 1.1. Let K̃ be an irreducible holomorphic symplectic of type OG6. The odd Betti
numbers of K̃ are zero, and its non-zero Hodge numbers are collected in the following table:

H0,0 = 1

H2,0 = 1 H1,1 = 6 H0,2 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1

H6,0 = 1 H5,1 = 6 H4,2 = 173 H3,3 = 1144 H2,4 = 173 H1,5 = 6 H0,6 = 1

H6,2 = 1 H5,3 = 12 H4,4 = 173 H3,5 = 12 H2,6 = 1

H6,4 = 1 H5,5 = 6 H4,6 = 1

H6,6 = 1.

As a corollary, we also get the Chern numbers of this sixfold, see Proposition 6.8 for details.
Let us outline the main ideas that go into the proof of our main result.
Recall that O’Grady’s six-dimensional example is obtained as a symplectic resolution of

a certain natural subvariety of a moduli space of sheaves on an abelian surface A. In order to
describe how to obtain it as a ‘quotient’ of another IHS by a birational symplectic automorphism,
we first need to introduce some notation.

Let X be a K3 or an abelian surface. Fix an effective Mukai vector1 v ∈ H∗alg(X,Z), with

v2 > −2, and let H be a sufficiently general ample line bundle on X. It is well known [Muk88,
Yos07] that, if v is primitive, the moduli space Mv(X,H) of H-stable sheaves on X with Mukai
vector v is a smooth projective manifold of dimension v2 + 2 and that, if v2 > 0, it admits a
holomorphic symplectic form. If X is a K3 surface, then Mv(X,H) is an IHS variety of K3[n]

type, for n = v2/2+1. Whereas, if X = A is an abelian surface and if v2 > 4, there is a nontrivial
Albanese variety and, in order to get an irreducible holomorphic symplectic manifold, one needs
to consider a fiber

Kv(A,H) := alb−1(0) (1.1)

of the Albanese morphism (which is isotrivial)

alb : Mv(A,H) → A×A∨.

Recall that if v2 > 6, Kv(A,H) is deformation equivalent to the generalized Kummer variety
K [n](A) :=

∑−1(0), where
∑

: A[n+1]
→ A is the summation morphism.

If we consider an H-stable sheaf F with a primitive Mukai vector v0, then for m > 2, the
sheaf F⊕m is strictly H-semistable. If we set v = mv0 and assume v2

0 > 0, this sheaf determines
a singular point of the moduli space Mv(X,H), whose smooth locus still carries a holomorphic

1 Vector v is effective if it is the Mukai vector of a coherent sheaf on X.
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symplectic form. In [O’Gr99] and [O’Gr03], O’Grady considered the case of v0 = (1, 0,−1) and
m = 2, and showed that the singular symplectic variety Mv(X,H) admits a symplectic resolution

M̃v(X,H). For X K3, this resolution gives a 10-dimensional IHS manifold of type OG10. For
X = A, fix F0 ∈Mv(A,H) and denote by Kv(A,H) the fiber over 0 of the isotrivial fibration

av : Mv(A,H) −→ A×A∨,
F 7−→ (Alb(c2(F )), det(F )⊗ det(F0)−1),

(1.2)

where Alb : CH0(A) → A is the Albanese homomorphism. The proper transform K̃v(A,H) of

Kv(A,H) in M̃v(X,H) is smooth and the induced map

fv : K̃v(A,H) → Kv(A,H) (1.3)

is a symplectic resolution. The gives the six-dimensional IHS K̃v(A,H), whose deformation type
is called OG6, that is the object of this paper.

Lehn and Sorger proved in [LS06] that for any primitive v0, with v2
0 = 2, the moduli space

M2v0(X,H) admits a symplectic resolution. Finally, Perego and the second named author [PR13]
showed that for any choice of v0, with v2

0 = 2, on a K3 or abelian surface, the IHS manifolds that
one gets are deformation equivalent to OG10 and OG6, respectively.

When A is a general principally polarized abelian surface and Mv(X,H) parametrizes pure
one-dimensional sheaves, the IHS manifold K̃v(A,H) is the image of a degree-2 rational map
whose domain is an IHS manifold of K3[3] type as we now briefly sketch: this is the starting point
of our proof.

Let us consider a principal polarization Θ ⊂ A. The Mukai vector v0 = (0,Θ, 1) satisfies
v2

0 = 2, and hence, if we set v = 2v0, there is symplectic resolution K̃v(A,H) → Kv(A,H) that
is deformation equivalent to OG6. There is a natural support morphism Kv(A,H) → |2Θ| = P3,
realizing Kv(A,H) as a Lagrangian fibration. By definition of Kv(A,H), the fiber over a smooth
curve C ∈ |2Θ| is the kernel of the natural morphism Pic6(C) → A (which is also the restriction
of av to Pic6(C) ⊂Mv(A,H)).

It is well known that the morphism associated to the linear system |2Θ| is the quotient
morphism A → A/±1 ⊂ P3 onto the singular Kummer surface of A. Let S → A/±1 be the
minimal resolution of A. It is well known that S, the Kummer surface of A, is a K3 surface. Note
that S comes naturally equipped with the degree-4 nef line bundle D obtained by pulling back
the hyperplane section of A/±1 ⊂ P3. Consider the diagram

Ã

b

��

a // S

p

��
A q

// A/±1

(1.4)

where Ã is the blow up of A at its 16 2-torsion points or, equivalently, the ramified cover of S
along the exceptional curves E1, . . . , E16 of p. Consider the moduli space Mw(S) of sheaves on
S with Mukai vector w = (0, D, 1) that are stable with respect to a chosen, sufficiently general,
polarization. This is an IHS manifold birational to the Hilbert cube of S and it has a natural
morphism Mw(S) → |D| = P3 realizing it as the relative compactified Jacobian of the linear
system |D| (also a Lagrangian fibration).

The morphisms in diagram (1.4) induce a rational map

Φ : Mw(S) 99K Kv(A,H) ⊂Mv(A,H),
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which maps the generic [F ] ∈Mw(S) to [q∗p∗F ] ∈Mv(A,H) and is generically 2:1 onto its image.
Since Mw(S) is simply connected, the image of this map lies in a fiber of av, giving a generically
2:1 map Φ : Mw(S) 99K Kv(A,H).

The map Φ commutes with the Lagrangian fibrations on Mw(S) and Kv(A,H). If C ′ is a
smooth curve in |D|, Pic3(C ′) embeds into Mw(S) as a fiber of the Lagrangian fibration. If
C ∈ |2Θ| is the étale cover of C ′, analogously ker[Pic6(C) → A] embeds into Kv(A,H) as a fiber
of the Lagrangian fibration. On these fibers, the map Φ restricts to the natural 2:1 pull back
morphism Pic3(C ′) → Pic6(C), whose image is precisely ker[Pic6(C) → A]. Recall that

∑
iEi

is divisible by 2 in H2(S,Z) and that the line bundle η := OS(1
2

∑
Ei) determines the double

cover q. It follows that the involution on Mw(S) corresponding to Φ is given by tensoring by
η and K̃v(A,H) is a birational model of the ‘quotient’ of Mw(S) by the birational involution
induced by tensorization by η.

In this paper, for any abelian surface A and for an effective Mukai vector v = 2v0 with
v2

0 = 2 on A, we show that K̃v(A,H) admits a rational double cover from an IHS manifold
Y v(A,H) of K3[3] type. Recall that the singular locus Σv ⊂ Kv(A,H) has codimension 2 and
can be identified with (A×A∨)/±1 (for more details, see § 2). Following [O’Gr03], the symplectic
resolution (1.3) can be obtained by two subsequent blow ups followed by a contraction: first, one
blows up the singular locus of Σv, then one blows up the proper transform of Σv itself (which is
smooth). These two operations produce a manifold K̂v(A,H) that has a holomorphic two form
degenerating along the strict transform of the exceptional divisor of the first blow up; contracting
this exceptional divisor finally gives the manifold K̃v(A,H) that has a symplectic two form and
a regular morphism K̃v(A,H) → Kv(A,H), which is, therefore, a symplectic resolution. The
inverse image Σ̃v of Σv in K̃v(A,H) is an irreducible divisor, which is divisible by two in the
integral cohomology by results of the second named author [Rap04]. We show that the associated
ramified double cover is a projective variety birational to an IHS manifold of K3[3] type, which
we denote by Y v(A,H) and which is equipped with a birational symplectic involution.

This enables us to reconstruct K̃(A,H) starting from Y v(A,H), and its symplectic birational
involution

τv : Y v(A,H) 99K Y v(A,H).

More specifically, Y v(A,H) contains 256 P3, the birational involution τv is regular on the
complement of these P3, and, moreover, this involution lifts to a regular involution on the blow
up Y v(A,H) of Y v(A,H) along the 256 P3. The fixed locus ∆v of the induced involution on
Y v(A,H) is smooth and four-dimensional, hence the blow up Ŷv(A,H) of Y v(A,H) along this
fixed locus carries an involution τ̂v admitting a smooth quotient Ŷv(A,H)/τ̂v. This quotient is
K̂v(A,H), and Ŷv(A,H) is its double cover branched over Σ̂v. Finally, K̂v(A,H) is the blow up
of K̃v(A,H) along 256 smooth three-dimensional quadrics.

This construction allows one to relate the Hodge numbers of K̃v(A,H) to the invariant Hodge
numbers of Y v(A,H). Finally, the invariant Hodge numbers of Y v(A,H) may be determined
by using monodromy results of Markman [Mar02]. In particular, the computation of the
Betti numbers can be carried out more easily by observing that ∆v ⊂ Y v(A,H) is a smooth
submanifold with vanishing rational odd cohomology. As the odd Betti numbers of Y v(A,H) are
zero, the same holds for the odd Betti numbers of Ŷv(A,H). Since the rational cohomology of
K̃v(A,H) injects into the rational cohomology of Ŷv(A,H), the odd Betti numbers of K̃v(A,H)
are zero too. Since the Betti numbers b0 and b2 are known, it remains to determine b4 and b6:
this can be done by using the knowledge of the Euler characteristic and Salomon’s universal
relation on Betti numbers of IHS manifolds (see Proposition 6.1).
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We should point out that this construction cannot be carried out for IHS manifolds of type
OG10, since the exceptional divisor of the second blow up (the procedure to obtain the symplectic
resolution is the same) is not divisible by 2 in the integral cohomology (see [Rap08] for the proof).

Remark 1.2. Recently, there has been considerable interest in exhibiting and classifying
symplectic automorphisms of IHS manifolds [BS12, HM14, Men15, Mon16]. Note that quotients
of IHS by symplectic automorphisms rarely admit a symplectic resolution since for this to
happen the fixed locus has to be of codimension 2 (see [Kaw09] for one of the few cases where
this happens). Our construction, however, indicates that ‘quotients’ by birational symplectic
automorphisms can have a symplectic resolution, and thus they are potentially interesting. In
upcoming work, we will study some of these birational morphisms for manifolds of K3[n] type.

The structure of the paper is as follows. In § 2, we recall local and global properties of
O’Grady’s and Lehn–Sorger symplectic resolution. In § 3, we construct an affine double of the
Lehn–Sorger local model of the deepest stratum of the singularity of Kv(A,H), branched over
the singular locus. In § 4, we globalize the previous results to construct global double covers Yv
of Kv(A,H) branched over the singular locus. In § 5, we prove that Yv is birational to an IHS
manifold of K3[3] type. Finally, in § 6, we use the previous results to compute the Hodge numbers.

Notation
For a closed embedding X1 ⊂ X2 of algebraic varieties we denote with BlX1X2 the blow up of
X2 along X1.

For a vector bundle X3 → Y , we denote by P(X3) → Y its projectification.
For an affine cone X4 we denote by P(X4) its projectification.
Finally we denote by Hk(X1) the kth singular cohomology group of X1 with rational

coefficient and by hk(X1) its dimension.

2. The resolution

Let us fix a primitive Mukai vector v0 ∈ H∗alg(A,Z) with v2
0 = 2, set v = 2v0, and consider a

v-generic ample line bundle H on A (see [PR13, § 2.1]). By [LS06, Théorème 1.1] the projective
variety Kv := Kv(A,H) admits a symplectic resolution K̃v which is deformation equivalent to
O’Grady’s six-dimensional example by [PR13, Theorem 1.6(2)]. In this section we recall the
description of the singularities of Kv and of the symplectic resolution f : K̃v → Kv following
both the papers of O’Grady [O’Gr99, O’Gr99] and Lehn and Sorger [LS06].

Since the singular locus Σv of Kv parametrizes polystable sheaves of the form F1 ⊕ F2, with
Fi ∈Mv0(X,H), we have Σv = Kv∩Sym2Mv0(A,H). Since v2

0 = 2 the smooth moduli space Mv0

is isomorphic to A×A∨ and, as the Albanese map alb is an isotrivial fibration, the singular locus
Σv is isomorphic to (A×A∨)/±1. This also implies that the singular locus Ωv of Σv consists of
256 points representing sheaves of the form F⊕2 with F ∈Mv0(X,H).

The analytic type of the singularities appearing in Kv is completely understood. If p ∈ Σv\Ωv,
i.e. p represents a polystable sheaf of the form F1⊕F2 where F1 6= F2, there exists a neighborhood
U ⊂ Kv of p, in the classical topology, biholomorphic to a neighborhood of the origin in the
hypersurface defined in A7 by the equation

∑3
i=1 x

2
i = 0 (see for example [AS18, Proposition 4.4]

or [O’Gr99, Proposition 1.4.1]), i.e. Kv has an A1 singularity along Σv\Ωv.
If p ∈ Ωv, the description of the analytic type of the singularity of Kv at p is due to Lehn

and Sorger and it is contained in [LS06, Théorème 4.5]. To recall this description, let V be a
four-dimensional vector space, let σ be a symplectic form on V , and let sp(V ) be the symplectic
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Lie algebra of (V, σ), i.e. the Lie algebra of the Lie group of the automorphisms of V preserving
the symplectic form σ.

We let
Z := {A ∈ sp(V ) |A2 = 0}

be the subvariety of matrices in sp(V ) having square zero. It is known that Z is the closure of
the nilpotent orbit of type o(2, 2), which parametrizes rank-2 square-zero matrices. Moreover,
by Criterion 2 of [Hes79], Z is also a normal variety.

By [LS06, Théorèm 4.5], if p ∈ Ωv, there exists a Euclidean neighborhood of p in Kv,
biholomorphic to a neighborhood of the origin in Z. Hence the local geometry of a symplectic
desingularization of Kv is encoded in the local geometry of a symplectic desingularization of Z.

Let Σ be the singular locus of Z and let Ω be the singular locus of Σ. Let us recall that
dimZ = 6, dim Σ = 4, dim Ω = 0 and, more precisely,

Σ = {A ∈ Z | rkA 6 1} and Ω = {0}.

Let G ⊂ Gr(2, V ) ⊂ P(∧2V ) be the Grassmannian of Lagrangian subspaces of V , note that G is
a smooth three-dimensional quadric and set

Z̃ := {(A,U) |A(U) = 0} ⊂ Z ×G.

The restriction πG : Z̃ → G of the second projection of Z × G makes Z̃ the total space of a
three-dimensional vector bundle, the cotangent bundle of G. In particular, Z̃ is smooth and the
restriction

f : Z̃ → Z

of the first projection of Z ×G, which is an isomorphism when restricted to the locus of rank-2
matrices, is a resolution of the singularities. The fiber f−1(A), over a point A ∈ Σ, is the P1

parametrizing Lagrangian subspaces contained in the three-dimensional kernel of A and the
central fiber f−1(0) is the whole G. As Z has an A1 singularity along Σ\Ω and G has dimension
3, it follows that f : Z̃ → Z is a symplectic resolution.

Remark 2.1. Let U ⊂ V ⊗OG be the rank-2 tautological bundle. The smooth symplectic variety
Z̃ is isomorphic to the total space Sym2

G U of the second symmetric power Sym2
G U of U . In fact,

an endomorphism A ∈ gl(V ) belongs to Z if and only if the following conditions hold:

(1) A2 = 0;

(2) σ(Av1, v2) = σ(Av2, v1) for any v1, v2 ∈ V .

By (2) the kernel kerA and the image ImA of A are orthogonal with respect to σ. Hence,
for (A,U) ∈ Z̃, we have V → ImA ⊂ U ⊂ kerA ⊂ V . Since U ⊂ V is Lagrangian we have
V/U ∼= U∨, so A has a factorization of the form V � U∨ → U ↪→ V . Moreover the induced
linear map ϕA ∈ Hom(U∨, U) = U ⊗ U defines a bilinear form on U∨ that is symmetric if and
only if (2) holds.

Remark 2.2. Set
Σ̃ := {(A,U) ∈ Z̃ | rank(A) 6 1}.

The variety Σ̃ is the exceptional locus of f . It is a locally trivial bundle over G with fiber the
affine cone over a conic in P2. Using the isomorphism Z̃ = Sym2

G U , the variety Σ̃ is identified
with the locus parametrizing singular symmetric bilinear forms on the fibers of the dual of the
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tautological rank-2 vector bundle U . In particular, Σ̃ is a fibration over G in cones over a smooth
conic, i.e. Σ̃ is singular only along the zero-section Ω̃ ' G of Sym2

G U and it has an A1 singularity
along it.

The following theorem due to Lehn and Sorger [LS06] gives an intrinsic reformulation of the
symplectic desingularization f : Z̃ → Z.

Theorem 2.3 [LS06]. Let p ∈ Ω be a singular point of the singular locus Σ ⊂ Kv. Then,

(a) [LS06, Théorème 4.5] there is a local analytic isomorphism

(Z, 0)
loc∼= (Kv, p);

(b) [LS06, Théorème 3.1] the resolution f : Z̃ → Z, defined above, coincides with the blow up
of Z along its singular locus Σ.

In order to discuss the topology of the symplectic desingularization of fv : K̃v → Kv, we are
going to describe f in terms of blow ups along smooth subvarieties.

Proposition 2.4. Let Σ be the strict transform of Σ in BlΩZ.

(1) Σ is the singular locus of BlΩ, Σ is smooth and BlΩZ has an A1 singularity along Σ.

(2) The varieties Bl
Ω̃
BlΣZ and BlΣBlΩZ are smooth and isomorphic over Z. In particular, the

diagram
Bl

Ω̃
BlΣZ = BlΣBlΩZ

ξ

((

ρ

uu

Z̃ = BlΣZ

f
))

BlΩZ

η
vv

Z

where the arrows are blow up maps, is commutative.

Proof. (1) Let P(Z) := Z/C∗ be the projectivization of the affine cone Z. As Z is a cone, its blow
up BlΩZ at the origin is the total space of the tautological line bundle over P(Z). The singular
locus Σ of Z is a subcone, hence its strict transform Σ = BlΩΣ is the total space of the restriction
to P(Σ) ⊂ P(Z) of the tautological line bundle. As Σ\{0} is smooth, P(Σ) is smooth. Moreover,
since Z has an A1 singularity along Σ\{0}, the singular locus of P(Z) is P(Σ), and P(Z) has
an A1 singularity along P(Σ). Passing to the total spaces of the tautological line bundles we get
item (1).

(2) We only need to show that Bl
Ω̃
BlΣZ and BlΣBl0Z are isomorphic. By Remark 2.1, Z̃

is isomorphic to Sym2
G U and, by Remark 2.2, Bl

Ω̃
BlΣZ is the blow up of Sym2

G U along its

zero section. Letting P(Sym2
G U) be the projective bundle associated to Sym2

G U , the blow up
Bl

Ω̃
BlΣZ is isomorphic to the total space T ⊂ P(Sym2

G U) ×G Sym2
G U of the tautological line

bundle of the projective bundle P(Sym2
G U). The isomorphism

Sym2
G U = Z̃ := {(A,U) |A(U) = 0} ⊂ Z ×G

also implies
P(Sym2

G U) = {([A], U) |A(U) = 0} ⊂ P(Z)×G
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and, using this identification, we conclude that

Bl
Ω̃
BlΣZ = T = {([A], B, U) |A(U) = 0, B ∈ [A]} ⊂ P(Z)× Z ×G.

On the other side of the diagram, as Z is a cone, its blow up at the origin can explicitly be
given as

BlΩZ = {([A], B) |B ∈ [A]} ⊂ P(Z)× Z.
It remains to show that the map ξ : Bl

Ω̃
BlΣZ → BlΩZ induced by the projection π1,2 : P(Z)×

Z×G → P(Z)×Z is the blow up of P(Z)×Z along Σ. Since for q ∈ Σ the schematic fiber ξ−1(q)
is isomorphic to P1 and Σ is smooth, the schematic inverse image ξ−1(Σ) is a smooth, hence
reduced and irreducible Cartier divisor. By the universal property of blow ups, ξ factors through
a proper map ι : Bl

Ω̃
BlΣZ → BlΣBlΩZ sending ξ−1(Σ) surjectively onto the exceptional divisor

of the blow up of BlΩZ along Σ. Finally, since BlΩZ is only singular along Σ and has an A1

singularity along Σ, the blow up BlΣBlΩZ is smooth. It follows that ι is a proper birational map
between smooth varieties that does not contract any divisor, therefore ι is a isomorphism. 2

This proposition also allows us to describe the exceptional loci of the blow up maps appearing
in item (2).

Let Σ̂ ⊂ Bl
Ω̃
BlΣZ be the exceptional divisor of ξ, let Ω̂ ⊂ Bl

Ω̃
BlΣZ be the exceptional

divisor of ρ, and recall that Ω̃ ∼= G is the inverse image of Ω under the resolution f .

Corollary 2.5.

(1) Σ̂ is a P1-bundle over Σ and Σ̂ = Bl
Ω̃

Σ̃.

(2) Ω̂ is a P2-bundle over Ω̃ isomorphic to P(Sym2
G U).

Proof. (1) By item (1) of Proposition 2.4, the restriction of ξ realizes Σ̂ as a P1-bundle over Σ.

Since Σ̂ is also the strict transform of Σ̃ under ρ and Ω̃ ⊂ Σ̃, the restriction of ρ to Σ̂ can be
identified with the blow up map of Σ̃ along Ω̃. As for (2), we can argue as follows. Since Ω̃ is a

smooth subvariety of codimension 3 in the smooth variety Z̃, the restriction of ρ to Ω̂ makes it a
P2-bundle over Ω̃. More precisely, since Ω̃ is the zero section of Z̃ = Sym2

G U (see Remark 2.2),

there is an isomorphism Ω̂ ' P(Sym2
G U). 2

To compute invariants of K̃v we need the following global versions of Proposition 2.4 and
Corollary 2.5.

Proposition 2.6. Let Σv be the strict transform of Σv in BlΩvKv.

(1) Σv is the singular locus of BlΩvKv, Σv is smooth and BlΩKvKv has an A1 singularity along

Σv.

(2) The projective varieties Bl
Ω̃v
BlΣvKv and BlΣvBlΩvKv are smooth and isomorphic over Kv.

Hence the diagram

Bl
Ω̃v
BlΣvKv = BlΣvBlΩvKv

ξv

))

ρv

tt

K̃v = BlΣvKv

fv **

BlΩvKv

ηv
uu

Kv

where the arrows are blow ups, is commutative.
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Proof. As Σv\Ωv is smooth and Kv has an A1 singularity along Σv\Ωv, item (1) follows from
Theorem 2.3(a) and Proposition 2.4(1), since the blow up is a local construction. Item (2)
holds since item (2) of Proposition 2.4 also implies that the natural birational map between
Bl

Ω̃v
BlΣvKv and BlΣvBlΩvKv is actually an isomorphism. 2

Remark 2.7. Since Σv contains Ωv as a closed subscheme, its strict transform Σv in BlΩvKv is
isomorphic to the blow up BlΩvΣv. Recall that Σv ' (A × A∨)/±1, so that its singular locus
Sing((A×A∨)/±1) is in bijective correspondence with the set of 2-torsion points (A×A∨)[2] of
A×A∨. It follows that there is a chain of isomorphisms

Σv ' BlSing((A×A∨)/±1)((A×A∨)/±1) ' (Bl(A×A∨)[2](A×A∨))/±1.

This also implies that the exceptional divisor of BlΩvΣv, which is given by the (reduced induced)
intersection of the exceptional divisor Ωv of BlΩvKv and Σv, consists of a union of 256 disjoint P3.

Corollary 2.8. Let Σ̂v ⊂ Bl
Ω̃v
BlΣvKv be the exceptional divisor of ξ, let Ω̂v ⊂ Bl

Ω̃v
BlΣvK̃v

be the exceptional divisor of ρ, let Ωv ⊂ BlΩvKv be the exceptional divisor of η, and, finally, let
Ωv ∩ Σv denote the intersection of Ωv and Σv with its reduced induced structure.

(1) Σ̂v is a P1-bundle over Σv and Σ̂v = Bl
Ω̃v

Σ̃v.

(2) Ω̂v is a P2-bundle over Ω̃v isomorphic to P(Sym2
G U).

Proof. This follows from item (2) of Theorem 2.3 and Corollary 2.5. 2

Remark 2.9. The proof of the existence of an isomorphism between the smooth projective
varieties Bl

Ω̃v
BlΣvKv and BlΣvBlΩvKv follows the original strategy used by O’Grady

in [O’Gr99]. For v = (2, 0,−2), he proved that a symplectic desingularization of Kv can be

obtained by contracting the strict transform Ω̂v of Ωv in BlΣvBlΩvKv. Proposition 2.6 shows,
in particular, that O’Grady’s procedure gives a symplectic desingularization of Kv that is
isomorphic to the Lehn–Sorger desingularization BlΣvKv. The proof of Proposition 2.6 is
elementary because it uses the crucial description, due to Lehn and Sorger, of the analytic
type of the singularities appearing in Kv.

3. The local covering

This section is devoted to the local description of the double cover, branched along the singular
locus, of O’Grady’s singularity.

It is known [CM93, Corollary 6.1.6] that the fundamental group of the open orbit o(2, 2) is
isomorphic to Z/(2). We wish to extend this double cover to a ramified double cover of o(2, 2) = Z.

To this aim, let

W := {v ⊗ w |σ(v, w) = 0} ⊂ V ⊗ V and ∆ = {v ⊗ v} ⊂W

be the affine cone over the incidence subvariety

I := {([v], [w]) |σ(v, w) = 0} ⊂ PV × PV ⊂ P(V ⊗ V ).

992

https://doi.org/10.1112/S0010437X1700803X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1700803X


Hodge diamond of O’Grady’s six-dimensional example

Finally denote by

Γ ⊂W

the vertex (i.e. the origin) of W .

Since I is smooth, the vertex Γ is also the singular locus of W . Moreover, since I ⊂ P(V ⊗V )

is projectively normal, W is a normal variety.

Let

τ : W → W

be the involution induced by restricting the linear involution τV⊗V on V ⊗ V that interchanges

the two factors.

The following lemma exhibits W as the desired double cover of Z.

Lemma 3.1. The morphism

ε : W −→ Z,

v ⊗ w 7−→ σ(v, ·)w + σ(w, ·)v

realizes Z as the quotient W/τ . In particular, ε is a finite 2:1 morphism, the ramification locus

of ε is ∆ and the branch locus of ε is Σ.

Proof. We leave it to the reader to check that ε(W ) ⊂ Z. For a rank-2 endomorphism A ∈ Z\Σ,

let us show that ε−1(A) consists of two points interchanged by τ . Let U ⊂ V be the kernel of A,

which is a Lagrangian subspace. As shown in Remark 2.1, A induces a linear map ϕA ∈ Hom(U∨,

U) = U ⊗ U that gives a rank-2 bilinear symmetric form on U∨ and, conversely, any symmetric

bilinear form on U∨ determines a rank-2 endomorphism A ∈ Z whose kernel is U . A rank-2

symmetric bilinear form on U∨ is determined, up to scalars, by two independent distinct isotropic

vectors L1 and L2, hence by their kernels ker(L1) ⊂ U and ker(L2) ⊂ U . Now it suffices to note

that, for v and w spanning U and for A = ε(v ⊗ w), the lines ker(L1) and ker(L2) are the lines

generated by v and w.

Since kerA and ImA are orthogonal (see Remark 2.1), if A ∈ Σ is a rank-1 endomorphism

or the 0 endomorphism, then there exists a unique, up to scalars, v ∈ V such that A = σ(v, ·)v.

This shows that ε−1(A) consists of a unique point, which is fixed by τ .

To show that Z ∼= W/τ , note that ε is τ -invariant and its fibers are the orbits of the action of

τ , hence ε induces a bijective morphism W/τ → Z. Since Z is normal (see Criterion 2 of [Hes79]),

this morphism is an isomorphism. 2

Remark 3.2. Using Lemma 3.1, we may reprove that the fundamental group of o(2, 2) = Z\Σ is

isomorphic to Z/(2). As ε is étale on Z\Σ, it suffices to show that ε−1(Z\Σ) = W\∆ is simply

connected. One can obtain W\∆ from the smooth variety W\{0} by removing a codimension-2

subvariety, hence there is an isomorphism of fundamental groups π1(W\∆)' π1(W\{0}). Finally

the map k : W\{0} → P(V ) defined by k(v ⊗ w) = [v] is a locally trivial fibration with fiber

isomorphic to the complement of 0 in a three-dimensional vector space. Therefore k has simply

connected base and fiber and π1(W\{0}) = 0.

The morphism ε induces double coverings of the varieties Z̃ = BlΣZ, BlΩZ and Bl
Ω̃
BlΣZ =

BlΣBlΩ. The following corollary discusses the case of BlΩZ.
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Corollary 3.3. The morphism ε lifts to a finite 2:1 morphism

ε : BlΓW → BlΩZ,

whose branch locus is the strict transform Σ of Σ in BlΩZ.

Proof. The morphism ε is the restriction to W of the linear map

εV⊗V : V ⊗ V → sp(V )

sending v ⊗ w to σ(v, ·)w + σ(w, ·)v for any v ⊗ w ⊂ V ⊗ V . As ker εV⊗V ∩W = 0, the map ε
induces a morphism P(ε) : I → P(Z) between the projectivization of W and Z. There are the
identifications

BlΓW = Bl0W = {(Cα, v ⊗ w) ∈ I ×W | v ⊗ w ∈ Cα}

and
BlΩZ = Bl0Z = {(CA,B) ∈ P(Z)× Z |B ∈ CA}.

It follows that P(ε) × ε restricts to a map ε : Bl{0}W → BlΩZ and, by Lemma 3.1, ε is a
finite 2:1 map whose branch locus is

ΣW = BlΩΣ = Bl0Σ = {(CA,B) ∈ P(Σ)× Σ |B ∈ CA}. 2

Remark 3.4. Since W is the cone over a smooth variety, both its blow up at the origin BlΓW
and the exceptional divisor Γ ⊂ BlΓW are smooth. Finally the strict transform ∆ of ∆ in BlΓW
is isomorphic to BlΓ∆ and, since ∆ is the cone over a smooth variety, also ∆ is smooth.

The following corollary treats the case of the induced double cover of Z̃.

Corollary 3.5. Let π : SCG U⊗2
→ G be the relative affine Segre cone parametrizing

decomposable tensors in the total space of the rank-4 vector bundle U⊗2.

(1) SCG U⊗2 is isomorphic to Bl∆W .

(2) Using this identification, the map

ε̃ : Bl∆W (= SCG U⊗2) → Z̃ (= Sym2
G U),

induced by symmetrization on the fibers, is a finite 2:1 morphism lifting ε, whose branch
locus is Σ̃.

Proof. (1) By definition of fiber product, W ×Z Z̃ is equal to

{(v ⊗ w,A,U) ∈W × Z ×G | ε(v ⊗ w) = A and v, w ∈ U}

and, by Lemma 3.1, the fiber over U of the projection πG : W ×Z Z̃ → G is naturally isomorphic
to the variety SC U⊗2 of decomposable tensors in U ⊗U . It follows that SCG U⊗2 is isomorphic
to W ×Z Z̃.

Let us show that W ×Z Z̃ has a birational morphism to Bl∆W . Let πW : W ×Z Z̃ → W be
the projection. By the universal property of blow ups, it will suffice to show that the schematic
inverse image π−1

W (∆) is a Cartier divisor.
For U ∈ G, the projection πW sends the fiber π−1

G (U) isomorphically onto SC U⊗2. Hence the
schematic intersection π−1

W (∆)∩π−1
G (U) is isomorphic to the schematic intersection ∆∩SC U⊗2,
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i.e. the reduced cone over a smooth conic C ⊂ P(U ⊗U) parametrizing symmetric decomposable
tensors in U ⊗U . As, on varying U ∈ G, the intersections π−1

W (∆)∩π−1
G (U) form a locally trivial

family over G, the family π−1
W (∆) → G is locally trivial. Finally, as the cone over C ⊂ P(U ⊗U)

is a Cartier divisor in the variety of decomposable tensors of U ⊗ U , the scheme π−1
W (∆) is a

Cartier divisor in W ×Z Z̃.
On the other hand, Bl∆W has a regular birational morphism to W ×Z Z̃ inverting the

previous birational morphism.
This will follow if we prove that the ideal of ε−1(Σ) in W is the square I2

∆ of the ideal of ∆. In
fact, in this case, the blow up Bl∆W equals the blow up Blε−1(Σ)W ; hence the schematic inverse

image of Σ in Bl∆W is a Cartier divisor. Therefore, as Z̃ = BlΣZ, by the universal property of
blow ups, we can conclude that there exists a commutative diagram

Bl∆W

g

��

ξ′ // Z̃

f

��
W ε

// Z

inducing the desired birational regular morphism from Bl∆W to W ×Z Z̃.
To determine the ideals of ε−1(Σ) and ∆ in W , we recall that the involution τ is the restriction

of the linear involution τV⊗V on V ⊗ V which can be interpreted as the transposition on 4 × 4
matrices if we choose a basis for V . Moreover, the ideal of ∆ in W is generated by the restrictions
of the linear antiinvariant functions on V ⊗ V (this already holds for the ideal of ∆ in the affine
cone over the Segre variety P(V )× P(V ) ⊂ P(V ⊗ V )). Hence, I2

∆ is generated by restrictions of
products of pairs of linear antiinvariant functions on V ⊗ V and any such product comes from a
function on the quotient (V ⊗ V )/τV⊗V vanishing along the branch locus B. Since B contains
the branch locus Σ of W/τ , we conclude that the ideal of ε−1(Σ) contains I2

∆. Equality holds
because W\{0} is smooth and the fixed locus ∆\{0} has codimension 2, hence ε−1(Σ) equals
the subscheme ∆2 defined by I2

∆ outside the origin. As ∆2 is a subcone of W , it is the closure of
∆2\{0}, therefore it is a closed subscheme of ε−1(Σ).

(2) The existence of the regular morphism ε̃ lifting ε follows from (1). The branch locus
of ε̃ is Σ̃ because, by our description of ε̃, it parametrizes singular bilinear symmetric tensors
(see Remark 2.2). 2

Corollary 3.5 also allows us to describe the singularities of the exceptional divisor ∆̃ of the
blow up Bl∆W of W along ∆.

Remark 3.6. We have that Bl∆W ' SCG U⊗2 is a locally trivial bundle over G with fiber the
affine cone over a smooth quadric in P3. Hence it is smooth outside the zero section Γ̃ and
any point of Γ̃ has a neighborhood isomorphic to the product of the affine cone over a smooth
quadric and a smooth three-dimensional variety. As ε and ε̃ are finite, the morphism ε̃ sends the
exceptional divisor ∆̃ ⊂ Bl∆W onto the exceptional divisor Σ̃ ⊂ Z̃. By the definition of ε̃ in item
(2) of Corollary 3.5, the divisor ∆̃ parametrizes symmetric decomposable tensors in the fibers of
πG : SCG U⊗2

→ G, hence it is a locally trivial bundle with fiber the affine cone over a smooth
conic. Therefore it is smooth outside Γ̃ and has an A1 singularity along Γ̃.

The following corollary completes the picture of the double covering induced by ε in the local
case.
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Corollary 3.7.

(1) There exist finite degree-2 morphisms ε̂1 : Bl
Γ̃
Bl∆W → Bl

Ω̃
BlΣZ and ε̂2 : Bl∆BlΓW →

BlΣBlΩZ, lifting ε̃ and ε, whose branch loci are the strict transform of Σ̃ in Bl
Ω̃
BlΣZ and

the exceptional divisor Σ̂ of BlΣBlΩZ, respectively.

(2) The varieties Bl
Γ̃
Bl∆W and Bl∆BlΓW are smooth and isomorphic over W . Hence there

exists a commutative diagram

Bl
Γ̃
Bl∆W = Bl∆BlΓW

((
ε̂1=ε̂2

��uu
Bl∆W

ε̃
��

))

Bl
Ω̃
BlΣZ = BlΣBlΩZ

uu ((

BlΓW

ε

��vv
Z̃ = BlΣZ

))

W

ε

��

BlΩZ

uu
Z

where the diagonal arrows are blow ups.

Proof. (1) Recall that Bl∆W ' SCG U⊗2 and BlΣZ ' Sym2
G U are locally trivial bundles over

G, and Γ̃ and Ω̃ are their respective zero sections. As ε̃ : Bl∆W → BlΣZ is a morphism over G,
the existence of ε̂1 : Bl

Γ̃
Bl∆W → Bl

Ω̃
BlΣZ branched over the strict transform of Σ̃ in Bl

Ω̃
BlΣZ

follows from the existence of a commutative diagram of the form

Bl0SC U
⊗2

��

// Bl0 Sym2 U

��
SC U⊗2 // Sym2 U

where U is a two-dimensional vector space, SC U⊗2 ⊂ U ⊗ U is the affine cone, parametrizing
decomposable tensors, over the Segre variety P(U)×P(U), the vertical arrows are blow ups, and
the horizontal arrows are induced by symmetrization (hence their branch locus parametrizes
singular symmetric tensors).

By Corollary 3.3, the branch locus of the finite 2:1 morphism ε :BlΓW →BlΩZ is the singular
locus Σ of BlΩZ. By item (1) of Proposition 2.4, BlΩZ has an A1 singularity along Σ and this
suffices to imply the existence of the desired finite 2:1 morphism ε̂2 : Bl∆BlΓW → BlΣBlΩZ

whose branch locus is the exceptional divisor Σ̂ of BlΣBlΩZ.
(2) The smoothness of Bl

Γ̃
Bl∆W and Bl∆BlΓW follows from Remark 3.6 and Remark 3.4,

respectively.
It remains to show that the natural birational map j : Bl

Γ̃
Bl∆W 99K Bl∆BlΓW extends to

a biregular morphism. Using the identification Bl
Ω̃
BlΣZ = BlΣBlΩ, ε̂1 and ε̂2 may be seen as

finite covers of Bl
Ω̃
BlΣZ and we have an equality of rational maps ε2 ◦ j = ε1. It follows that the

closure of the graph of j is contained in the fiber product Bl
Γ̃
Bl∆W ×Bl

Ω̃
BlΣZ Bl∆BlΓW . As ε̂1

and ε̂2 are finite, the closure of the graph of j is finite and generically injective on the smooth
factors Bl

Γ̃
Bl∆W and Bl∆BlΓW . By Zariski’s main theorem it is the graph of an isomorphism

extending j.
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The commutativity of the diagram holds because all maps are regular and commutativity is
trivial on open dense subsets. 2

In the final remark of this section we discuss the behavior of the restriction of the morphisms
appearing in the diagram in item (2) of Corollary 3.7 to the divisors appearing over Ω. Since
this remark will not be used in the rest of the paper, some of the computations are left to the
reader.

Remark 3.8. Let Γ̂ be the exceptional divisor of the blow up of Bl∆W along its singular locus Γ̃
(see Remark 3.6). By restricting the morphisms in the upper part of the diagram in Corollary 3.7,
we get the following diagram.

Γ̃

a3

��

Γ̂
a1oo

a4

��

a2 // I

a5

��
Ω̃ Ω̂

a6oo a7 // Ω

As Ω̃ is contained in the branch locus of ε̃, the morphism a4 is an isomorphism and Γ̃ and
Ω̃ are isomorphic to G. By item (1) of Corollary 3.5, the exceptional divisor Γ̂ has a natural
identification with P(U) ×G P(U) and a1 is the natural fibration over G. Analogously, by
Remark 2.1, the divisor Ω̂ is identified with P(Sym2 U) = P(Z̃) and a6 is the fibration over G.

The restriction a4 : P(U)×G P(U) → P(Sym2 U) of ε̂1,v is the natural 2:1 morphism.
The birational morphism a2 : P(U) ×G P(U) → I ⊂ P(V ) × P(V ) is induced by composing

with the natural morphism P(U) → P(V ).
The birational morphism a7 : P(Z̃) → Z is induced by f , and finally the finite 2:1 morphism

a5 : I → Ω = P(Z) is the map P(ε) obtained from ε by projectivization (see the proof of
Corollary 3.3).

4. The global covering

In this section we globalize the local double coverings of Lemma 3.7.2 Our starting point is the
following result contained in [Rap04] and [PR14]. Keeping the notation as above, let Σ̃v ⊂ K̃v

be the exceptional divisor of the blow up K̃v = BlΣKv → Kv.

Theorem 4.1 [Rap04, Theorem 3.3.1]. The class of Σ̃v in the Picard group Pic(K̃v) of K̃v is
divisible by two.

Proof. The case of K̃(2,0,−2) is dealt in [Rap04, Theorem 3.3.1]. The general case follows
from [PR14, Theorem 3.1 and Remark 3.4]. 2

As the Picard group of the IHS manifold K̃v is torsion-free, there exists a unique normal
projective variety Ỹv equipped with a double cover ε̃v : Ỹv → K̃v branched over Σ̃v. This double
cover allows us to construct the global analogue of the morphism ε of Lemma 3.7.

Theorem 4.2. There exists a unique normal projective variety Yv equipped with a finite 2:1
morphism εv : Yv → Kv whose branch locus is Σv. The ramified double cover induced by εv on a
small analytic neighborhood of a point of Ωv is isomorphic to the ramified double cover induced
by ε : W → Z on a small analytic neighborhood of a point of Ω in Z.

2 The varieties that we construct in this section depend on the abelian surface A and the chosen v-generic
polarization but, as in the previous sections, we omit this dependence to avoid cumbersome notation.
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Proof. For any p ∈ Ωv there exists a small analytic neighborhood Up,v of p ∈ Kv that is
biholomorphic to the intersection of Z with an open ball. Hence, for any p ∈ Ωv there exists
a proper complex analytic space Yp,v and a finite 2:1 morphism εp,v : Yp,v → Up,v branched along
Up,v ∩ Σv, which is obtained by restricting ε.

On the other hand, there exists an analytic manifold Y o
v and a finite 2:1 morphism εov : Y o

v →

Kv\Ωv branched along Σv\Ωv. To see this, first of all note that by restricting ε̃v : Ỹv → K̃v we
get a double covering of K̃v\Ω̃v branched along Σ̃v\Ω̃v. Since Kv has an A1 singularity along Σv,
the exceptional divisor Σ̃v\Ω̃ is a P1-bundle whose normal bundle has degree −2 on the fibers.
It follows that ε̃−1

v (Σ̃v\Ω̃) is a P1-bundle whose normal bundle has degree −1 on the fibers. By
Nakano’s theorem (see [Nak71] and [FN71/72]), ε̃−1

v (K̃v\Ω̃) is the blow up of a complex manifold

Y o
v along a submanifold isomorphic to Σv\Ωv. Moreover, since fv◦ε̃v : Ỹv →Kv is constant on the

fibers of the P1 bundle ε̃−1
v (Σ̃v\Ω̃), it induces the desired finite 2:1 morphism εov : Y o

v → Kv\Ωv.
To yield the existence of εv : Yv → Kv, it will suffice to prove that εp,v and εov induce

isomorphic double covers on Up\{p} so that they can be glued to get εv. Recall from Remark 3.2
that the fundamental group of Z\Σ is Z/2Z. Since the same holds for Up,v\Σ, the étale
double covers induced by εp,v and εov on Up,v\Σ are isomorphic. The closure of the graph
of this isomorphism in the fiber product εo−1

v (Up,v\{p}) ×Up,v\{p} ε−1
p,v(Up\{p}) is finite and

bimeromorphic on the manifolds εo−1
v (Up,v\{p}) and ε−1

p,v(Up\{p}), hence it is the graph of an
isomorphism of double covers Kv.

The glued complex analytic space Yv is also projective as a consequence of GAGA’s
principles [Gro63, Corollary 4.6], since it has a finite proper map to a projective variety. Finally
Yv is normal since W is normal and since the normality of a complex variety may be checked on
the associated complex analytic space [Gro63, Proposition 2.1].

To prove uniqueness of εv, let ε′v : Y ′v → Kv be a finite 2:1 morphism branched over Σv such
that Y ′v is normal. In this case Yv\ε−1

v (Σv) and Y ′v\ε′−1
v (Σv) are algebraic proper étale double

covers of Kv\Σv = K̃v\Σ̃v. Any such cover is determined by a 2-torsion point in the Picard group
Pic(K̃v\Σ̃v) and a nowhere vanishing section (unique up to scalars) of the trivial line bundle. As
Σ̃v is irreducible and its class is divisible by 2 in the free group Pic(K̃v), there exists a unique
nontrivial 2-torsion point in Pic(K̃v\Σ̃v). Moreover, as Kv is normal and Σv has codimension
2 in Kv, a regular function on Kv\Σv extends to the projective variety Kv and therefore it
is constant. It follows that Yv\ε−1

v (Σv) and Y ′v\ε′−1
v (Σv) are isomorphic étale double covers of

Kv\Σv.
Repeating the argument in the final part of the proof of the existence, the closure of the graph

of this isomorphism in the fiber product Yv×KvY ′v is finite and birational over the normal varieties
Yv and Y ′v , hence it is the graph of an isomorphism of double covers. The local characterization
of ε near points of Ωv holds by construction. 2

Theorem 4.2 allows one to prove a straightforward global version of Lemma 3.7. Let ∆v ⊂ Yv
be the ramification locus (with the reduced induced structure) of εv and let Γv be the singular
locus (consisting of 256 points) of Yv. Denote by Γ̃v the inverse image with reduced structure of
Γv in Bl∆vYv and denote by ∆v the strict transform of ∆v in BlΓvYv.

Corollary 4.3.

(1) The projective varieties Bl
Γ̃v
Bl∆vYv and Bl∆v

BlΓvYv are smooth and isomorphic over Yv.

(2) There exist finite 2:1 morphisms ε̃v : Bl∆vYv → K̃v, εv : BlΓvYv → BlΩvKv, ε̂1,v :
Bl

Γ̃v
Bl∆vYv → Bl

Ω̃v
BlΣvKv and ε̂2,v : Bl∆v

BlΓvYv → BlΣvBlΩvKv lifting εv. Hence, there
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exists a commutative diagram

Bl
Γ̃v
Bl∆vYv = Bl∆v

BlΓvYv

))
ε̂1,v=ε̂2,v

��tt
Bl∆vYv

ε̃v
��

**

Bl
Ω̃v
BlΣvKv = BlΣvBlΩvKvKv

tt ))

BlΓvYv

εv

��uu
K̃v = BlΣvKv

**

Yv

εv

��

BlΩvKv

tt
Kv

where the diagonal arrows are blow ups.

Proof. (1) Over the inverse images of the smooth locus of Yv, the existence of the isomorphism is
trivial, whereas over the inverse images of small Euclidean neighborhoods of the singular points
of Yv it follows from item (2) of Lemma 3.7. Since the global blow up is obtained by gluing local
blow ups, Bl

Γ̃v
Bl∆vYv and Bl∆v

BlΓvYv are isomorphic over Yv. The smoothness of Bl∆v
BlΓvYv

and Bl∆v
BlΓvYv follows from the smoothness of Bl∆BlΓW and Bl∆BlΓW , which was proven in

Corollary 3.7. Hence item (1) holds.
(2) The existence of the liftings of the double cover εv over the inverse images of Kv\Ωv is

clear. Over the inverse images of a small Euclidean neighborhood in Kv of a point of Ωv, the
existence of the lift follows from Theorem 2.3(a), Corollaries 3.3 and 3.5 and Lemma 3.7(1). Since
the lift of a morphism to bimeromorphic varieties is unique, whenever it exists, it is possible to
glue the local liftings and obtain the desired global morphism. 2

Remark 4.4. In Corollary 4.3 we have shown that Bl∆vYv is a double cover of K̃v and that it
is branched over Σ̃v. Moreover, by Corollary 3.5, the projective variety Bl∆vYv is normal. Since
the Picard group of the IHS manifold K̃v is torsion-free, there exists a unique such double cover.
It follows that Bl∆vYv = Ỹv and ε̃v = ε̃v.

In order to describe the ramification loci of these double coverings, we need to introduce
some further notation. In the following corollary we denote by ∆̃v ⊂ Bl∆vYv the exceptional
divisor and by ∆̂v ⊂ BlΓ̃vBl∆vYv = Bl∆v

BlΓvYv the strict transform of ∆̃v or, equivalently, the

exceptional divisor of the blow up of BlΓvYv along ∆v.

Corollary 4.5.

(1) The branch loci of ε̃v, εv and ε̂1,v (= ε̂2,v) are Σ̃v, Σv and Σ̂v, respectively.

(2) The ramification loci of ε̃v, εv and ε̂1,v (= ε̂2,v) are ∆̃v, ∆v and ∆̂v, respectively.

Proof. The statements on the branch loci are determined by the analogous statement proved for
the local case. Specifically, (1) follows from Corollaries 3.5 and 3.3 and item (1) of Corollary 3.7.

Since the ramification locus of εv is ∆v and its branch locus is Σv, (2) follows from (1) and
from the commutativity of the diagram in item (2) of Corollary 4.3. 2

In the final part of this section on the global geometry of the double covers induced by εv,
we compare their ramification and their branch loci and discuss the associated involutions.
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Remark 4.6. Since Σv ' A × A∨/±1, Σ̃v has an A1 singularity along its singular locus
(see Remark 2.2). Moreover, Σv and Σ̂v are smooth (see Proposition 2.6) and the branch loci of
εv, ε̃v, εv and ε̂1,v (= ε̂2,v) are normal. Hence these double covers induce isomorphisms ∆v ' Σv,

∆̃v ' Σ̃v, ∆v ' Σv and ∆̂v ' Σ̂v.

Remark 4.7. Remark 3.4 implies that BlΓvYv and Bl
Γ̃v
Bl∆vYv = Bl∆v

BlΓvYv are smooth,
Corollary 3.5 implies that Bl∆vYv is normal and, by Theorem 4.2, Yv is normal too. Hence
the finite 2:1 morphisms εv, ε̃v, εv and ε̂1,v(= ε̂2,v) induce regular involutions τv, τ̃v, τv, τ̂1,v

and τ̂2,v on Yv, Bl∆vYv, BlΓvYv, BlΓ̃vBl∆vYv and Bl∆v
BlΓvYv, respectively. Recall that Kv is

normal, and hence so is BlΩvKv by Proposition 2.4. As for K̃v and Bl
Ω̃v
BlΣvKv = BlΣvBlΩvKv,

they are both smooth. It follows that the morphisms εv, ε̃v, εv and ε̂1,v(= ε̂2,v) can be identified
with the quotient maps of the respective involutions τv, τ̃v, τv, τ̂1,v and τ̂2,v.

5. The birational geometry of Yv

In this section we describe the global geometry of Yv, we show that it is birational to an IHS
manifold of K3[n] type, and we describe the birational map explicitly.

In the first part of the section, we consider the special case where A is a principally polarized
abelian surface, whose Néron–Severi group is generated by the principal symmetric polarization
Θ. As is well known, the linear system |2Θ| defines a morphism g|2Θ| : A → |2Θ|∨ ' P3 whose
image is the singular Kummer surface Kums of A, a nodal quartic surface isomorphic to the
quotient A/±1. The smooth Kummer surface S of A is the blow up of Kums along the singular
locus A[2].

We are going to show that in this case Y(0,2Θ,2) is birational to the Hilbert scheme S[3], for
which we will need the following remark on known properties of the linear system |2Θ|.

Remark 5.1. (1) The locus of |2Θ| parametrizing singular curves consists of 17 irreducible
divisors: the divisor R parametrizing reducible curves and, for any 2-torsion point α ∈ A[2],
the divisor Nα parametrizing curves passing through α. The divisor R is isomorphic to Kums

and a general point of R corresponds to a curve of the form Θx ∪ Θ−x, where Θx and Θ−x
meet transversally outside of A[2]. For every α ∈ A[2], the divisor Nα is isomorphic to P2 and
parametrizes curves whose images in Kums are plane sections through the singular point g|2Θ|(α).
The general point of Nα corresponds to a curve C that is a double cover of a quartic plane curve
with precisely one node; this double covers ramifies over the node and therefore C has a node in
α and no other singularity.

(2) For the natural choices in the definition of the map

a(0,2Θ,2) : M(0,2Θ,2)(A,Θ) → A×A∨

(see Introduction, formula (1.2)), the subvariety K(0,2Θ,2) := a−1
(0,2Θ,2)(0, 0) ⊂ M(0,2Θ,2)(A,Θ)

parametrizes sheaves whose determinant is equal to O(2Θ) and whose second Chern class sums
up to 0 ∈ A. Since M(0,2Θ,2)(A,Θ) parametrizes pure dimension-1 sheaves, there exists a regular
morphism t : Kv → |2Θ| ' P3, called the support morphism, which to every polystable sheaf
associates its Fitting subscheme (see [Lep93]). The morphism t is surjective and, since K(0,2Θ,2)

has a resolution that is an IHS manifold, all its fibers are three-dimensional.
(3) Since the polarization Θ is symmetric, −1∗ induces an involution on the moduli space

M(0,2Θ,2)(A,Θ) whose fixed locus contains the variety K(0,2Θ,2). Indeed, any smooth curve C ∈
|2Θ| is an étale double cover of its image g|2Θ|(C). The pull back to C of any degree-3 line bundle
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on g|2Θ|(C) is a stable sheaf of K(0,2Θ,2) which is −1∗-invariant. Moreover, the pull backs of two
line bundles on g|2Θ|(C) are isomorphic if and only if the two line bundles differ by a 2-torsion
line bundle defining the étale double cover C → g|2Θ|(C). Hence, there exists a six-dimensional
algebraic subset of K(0,2Θ,2) that is fixed by the involution and hence, by closure of the fixed
locus, the whole K(0,2Θ,2) is fixed.

(4) If C ∈ |2Θ| is smooth or general in R or Nα, the general point of t−1(C) represents a sheaf
that is locally free on its support. This holds because, for any nodal curve C, any torsion-free
sheaf on C that is not locally free is the limit of locally free sheaves on C varying in a family
parametrized by P1. Since any P1 has to be contracted by a(0,2Θ,2), it follows that it has to be
contained in K(0,2Θ,2) and the claim follows.

(5) The inverse image on K(0,2Θ,2) of an irreducible surface contained in |2Θ| ' P3 is
irreducible. Since t is equidimensional, it suffices to prove that t−1(C) is irreducible for any
curve C that is smooth or general in R or in Nα. If C is such a curve, the locus t−1(C)lf

parametrizing sheaves in t−1(C) that are locally free on their support is dense in t−1(C) and,
moreover, −1 has at most one fixed point on C. It follows that, for any F ∈ t−1(C)lf , the −1
action on F can be linearized in such a way that the action is trivial on the fiber over the fixed
point. By Kempf’s descent lemma (see [HL10, Theorem 4.2.15]), this means that F is the pull
back of a line bundle on the irreducible nodal curve g|2Θ|(C). Since the generalized Jacobian of

an irreducible nodal curve is irreducible, t−1(C)lf and its closure t−1(C) are also irreducible.

Lemma 5.2. Let A be a principally polarized abelian surface, with NS(A) = ZΘ. Then Ỹ(0,2Θ,2)

is birational to the Hilbert scheme S[3].

Proof. Let D be the pull back on S of a plane section of Kums. We are going to show that Ỹ(0,Θ,2)

is birational to the smooth projective moduli space M(0,D,1) parametrizing sheaves on S with
Mukai vector (0, D, 1) and which are stable with respect to a fixed (0, D, 1)-generic polarization.
The moduli space M(0,D,1) is well known to be birational to S[3] (see [Bea99, Proposition 1.3]).

By construction, there exists an isomorphism between linear systems ψ : |D| → |2Θ|.
Moreover, any sheaf F ∈ M(0,D,1), whose support is a smooth curve, may be seen as a sheaf
on Kums and its pull back to A is a stable sheaf of K(0,2Θ,2). It follows that there exists a
commutative diagram

K̃(0,2Θ,2)

f(0,2Θ,2)

��
M(0,D,1)

s
��

ϕ
99

K(0,2Θ,2)

t
��

|D|
ψ

// |2Θ|

(5.1)

where s and t are the two support morphisms. If C ∈ |2Θ| is a smooth curve, it is a connected étale
double cover of the smooth curve g|2Θ|(C), and since g|2Θ|(C)∩A[2] = ∅, it can be considered as

a curve in |D|. The restriction of ϕ on s−1(g|2Θ|(C)) ' Pic3(g|2Θ|(C)) is therefore well defined

and gives an étale double cover of (t◦f(0,2Θ,2))
−1(C) ' t−1(C) ⊂ Pic6(C) (see (3) of Remark 5.1).

This shows that ϕ is a rational map of degree 2.
In order to compare Ỹ(0,2Θ,2) and M(0,D,1), we need to determine the branch divisor B of ϕ,

i.e. the divisor on K̃v where a resolution of the indeterminacy of ϕ is not étale. We have already
seen that B has to parametrize sheaves supported on singular curves.
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Let U ⊂ M(0,D,1) be the biggest open subset where ϕ extends to a regular morphism. As
M(0,D,1) and K(0,2Θ,2) have trivial canonical bundle, the differential of ϕ is an isomorphism at
any point of U . As a consequence, ϕ does not contract any positive dimensional subvariety and
ϕ(U) ⊂ K̃(0,2Θ,2) is an open subset.

We claim that the open subset ϕ(U) intersects any divisor of K̃(0,2Θ,2), with the possible

exception of Σ̃(0,2Θ,2). Since we have already shown that (t ◦ f(0,2Θ,2))
−1(C) ∈ ϕ(U) if C is

smooth, it remains to check this statement for divisors contained in (t ◦ f(0,2Θ,2))
−1(R) and

(t ◦ f(0,2Θ,2))
−1(Nα). As Σ(0,2Θ,2) ⊂ t−1(R), by (5) of Remark 5.1, the divisor (t ◦ f(0,2Θ,2))

−1(R) is

the union of Σ̃(0,2Θ,2) and the strict transform of t−1(R). Finally, (t ◦ f(0,2Θ,2))
−1Nα is irreducible.

The general point F of t−1(R) represents a line bundle supported on the general curve C
of R. As C does not intersect A[2], its image g|2Θ|(C) ' C/±1 may be seen as a curve in D and,
as in the smooth case, F descends to a line bundle on g|2Θ|(C). Hence ϕ(U) intersects the strict
transform of t−1(R).

Finally, by the commutativity of diagram (5.1), ϕ sends an open subset of (ψ ◦ s)−1(Nα) to
the irreducible divisor (t ◦ f(0,2Θ,2))

−1Nα. Since (ψ ◦ s)−1(Nα) cannot be contracted, ϕ(U) also
intersects (t ◦ f(0,2Θ,2))

−1Nα. This completes the proof of our claim.

Let r : N → K̃v be a resolution of the indeterminacy of ϕ, hence N is a smooth projective
variety such that there exists a commutative diagram

N

b

��

r // K̃(0,2Θ,2)

M(0,D,1)

ϕ
99

where b is birational and induces an isomorphism between b−1(U) and U . Let U ′ ⊂ K̃(0,2Θ,2)\Ω̃v

be the open subset where the fibers of ξ are zero-dimensional. Note that, since N and K̃(0,2Θ,2)

are smooth, r is flat over U ′. Therefore r−1(U ′) is a flat ramified double cover of U ′ and, since
K̃(0,2Θ,2)\U ′ has codimension at least 2 and Pic(K̃(0,2Θ,2)) is torsion-free, this double cover is
determined by its branch divisor B, i.e. by the locus where fibers of r are length-2 non-reduced
subschemes.

We already know that if p ∈ U ′ ∩ϕ(U) the fiber r−1(p) has at least one component consisting
of a reduced point of U . Hence B is a divisor contained in U ′\ϕ(U): therefore, by our claim, either
B is empty or B = U ′ ∩ Σ̃(0,2Θ,2). The first case is impossible becouse U ′ is simply connected
and N is irreducible. In the second case r−1(U ′) is the unique double cover of U ′ ramified over
U ′ ∩ Σ̃(0,2Θ,2), hence r−1(U ′) is isomorphic to ε−1

v (U ′) ⊂ Ỹ(0,2Θ,2). 2

The following proposition generalizes Lemma 5.2, by showing that Yv is always birational to
an IHS manifold, and describes a resolution of the indeterminacy of the birational map.

Recall that the exceptional divisor Γv of BlΓvYv consists of the disjoint union of 256 copies
Ii,v of the incidence variety I ⊂ P(V )× P(V ), each of which has two natural P2 fibrations given
by the projections onto P(V ). For any i, we let pi : Ii,v → P(V ) be one of the two projections.
Since Yv is locally analytically isomorphic to the cone W , the normal bundle of Ii,v in BlΓvYv
has degree −1 on the fibers of pi.

Therefore, by applying Nakano’s contraction theorem [Nak71], there exists a complex
manifold Y v and a morphism of complex manifolds hv : BlΓvYv → Y v whose exceptional locus
is Γv and is such that the image Ji,v := hv(Ii,v) of any component Γv is isomorphic to P3.
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Moreover, the restriction of hv on Ii,v equals pi and hv realizes BlΓvYv as the blow up of Y v

along the disjoint union J := hv(Γv) of the Ji,v.

Proposition 5.3. Keeping the notation as above, the complex manifold Y v is a projective IHS
manifold that is deformation equivalent to the Hilbert scheme parametrizing zero-dimensional
subschemes of length 3 on a K3 surface.

Proof. Note that the ramification locus of εv : Yv → Kv has codimension 2. It follows that the
canonical divisor of Yv is trivial and the canonical divisor of BlΓvYv is supported on Γv. As the
normal bundle of Ii,v in BlΓvYv has degree −1 on the fibers of both the P2 fibrations of Ii,v, by
adjunction, the canonical bundle of the smooth variety BlΓvYv is 2

∑256
i=1 Ii,v.

Let ri be a line contained in a fiber of pi and let li be a line contained in a fiber of the
other P2 fibration of Ii,v. A priori, it is not clear whether ri and li are numerically equivalent.
Nevertheless, since Yv is projective and ri and li generate the cone of effective curves on Ii,v, the
set {ri} represents 256 KBlΓvYv

-negative extremal rays of the Mori cone of BlΓvYv. If ri and li
are equivalent, the contraction of ri contracts Ii,v to a point admitting a Zariski neighborhood
isomorphic to a Zariski neighborhood of the ith singular point of Γv in the normal variety Yv.
If ri and li are independent, the contraction of ri can be identified with the Nakano contraction
restricting to pi on Ii,v.

In any case, the contraction of ri is divisorial and, by [KM98, Corollary 3.18], it produces
only Q-factorial singularities. Hence, after 256 extremal contractions we terminate with a Q-
factorial variety with trivial canonical divisor and with terminal singularities. If v = (0, 2Θ, 2),
by Lemma 5.2, the variety M(0,2Θ,2) is a minimal model of the IHS manifold S[3] and by a
theorem due to Greb, Lehn and Rollenske (see [GLR13, Proposition 6.4]) it is an IHS manifold.
In particular ri and li are always numerically independent and this IHS manifold is isomorphic
to the Nakano contraction Y v.

To deal with the general case, recall from [PR13, Theorem 1.6] (and its proof) that the
singular variety Kv can be deformed to K(0,2Θ,2) using only isomorphisms induced by Fourier–
Mukai transform and locally trivial deformations induced by deformation of the underlying
abelian surface (see [PR13, Proposition 2.16]).

Extending the construction of Theorem 4.2 to the case of a locally trivial deformation, it
is also possible to deform Yv to Y(0,2Θ,2) by a locally trivial deformation. By blowing up the
subvariety consisting of singular points of all fibers in the total space of the deformation, we
get that BlΓvYv can be deformed to BlΓ(0,2Θ,2)

Y(0,2Θ,2). Up to an étale base change on the base
of the deformation, we may also assume that the exceptional divisor consists of 256 connected
components Ii, each of which has two fibrations and one of them restricts to pi on Ii,v. Applying
again Nakano’s theorem, the Ii may be contracted respecting the chosen fibration.

As a consequence, the complex manifold Y v obtained from BlΓvYv by contracting the ri is
deformation equivalent (via smooth deformations) to an IHS manifold Y (0,2Θ,2) that is birational

to S[3]. It remains to show that Y v is projective. As in the case v = (0, 2Θ, 2), it suffices
to show that ri and li are numerically independent. This is true because parallel transport
preserves numerical independence and the analogous statement has been shown to hold on
BlΓ(0,2Θ,2)

Y(0,2Θ,2). 2

By construction, Y v has a regular birational morphism to Yv contracting J to Γv. In the
following remark we show that the involution τv on Yv cannot be lifted to a regular involution
on Y v.
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Remark 5.4. Since the involution τv : BlΓvYv → BlΓvYv sends Γv to itself, it descends to a
rational involution τT : Y v 99K Y v restricting to a regular involution on the complement Y v\Jv
of the union of the projective spaces Ji,v in Y v. Since, by definition of τ , the involution τv
exchanges the two P2 fibrations on Ii,v, the indeterminacy locus of τT is Jv. Finally, since
BlΓvYv ' BlJvY v, the rational involution τT may be described as the composition of a Mukai
flop along Jv and an isomorphism outside of this locus.

6. The Hodge numbers

Collecting the results of the previous sections, we finally present the new construction of K̃v that
allows us to calculate the Betti and Hodge numbers of K̃v.

To simplify notation, let us set

Ŷv := Bl
Γ̃v
Bl∆vYv = Bl∆v

BlΓvYv,

K̂v := Bl
Σ̃v
BlΩvKv = Bl∆v

BlΓvKv,

Y v := BlΓvYv.

With this notation, the finite 2:1 morphism

ε̂v := ε̂1,v = ε̂2,v : Ŷv → K̂v

is a double cover between smooth varieties and is branched over the smooth divisor Σ̂v (see (1)
of Corollary 4.3). Hence, ε̂v realizes K̂v as the quotient of Ŷv under the action of the associated
involution τ̂v : Ŷv → Ŷv.

This permits the reconstruction of K̂v starting from the IHS manifold Y v of K3[3] type and
using only birational modifications of smooth projective varieties and the finite 2:1 morphism ε̂v.

The following commutative diagram contains all the varieties and maps that we will use.

Ŷv

τ̂v
qq

ε̂v
��

βv

  
K̂v

ρv

��

Y v

τv
rr

hv

��
K̃v Y v

τv
rr

Here βv is the blow up map of Y v along the smooth subvariety ∆v, and τv is the involution
associated with τv (see Remark 4.7).

Note that this diagram contains only maps between smooth varieties that appear in (2) of
Corollary 4.3 and any diagonal map that appears is the blow up of a smooth variety along a
smooth subvariety.

The IHS manifold Y v carries a rational involution τv whose indeterminacy locus Jv is
the disjoint union of 256 projective three-dimensional spaces (see Remark 5.4). The rational
involution τv lifts to the regular involution τv on the blow up Y v of Y v along Jv, which in turn
lifts to the involution τ̂v : Ŷv → Ŷv on the blow up of Y v along the fixed locus ∆v of τv (see (2)
of Corollary 4.5). Finally, the quotient K̂v of Ŷv modulo τ̂v is the blow up of K̃v along the union
Ω̃v of 256 disjoint copies of the smooth three-dimensional quadric G.

We will start by computing the Betti numbers.
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Proposition 6.1. The odd Betti numbers of K̃v are zero and the non-zero even ones are

h0(K̃v) = h12(K̃v) = 1, h2(K̃v) = h10(K̃v) = 8, h4(K̃v) = h8(K̃v) = 199, h6(K̃v) = 1504.

Proof. By Proposition 5.3, Y v is deformation equivalent to the Hilbert scheme parametrizing
length-3 subschemes on a K3 surface, hence its odd Betti numbers are zero. By construction,
Y v is the blow up of Y v along 256 disjoint projective spaces. Since the odd cohomology of the
projective space is trivial, the same holds for Y v. By definition, Ŷv is the blow up of Y v along ∆v.
We have already recalled that the ramification locus ∆v of εv is isomorphic to the corresponding
branch locus Σv, which, by Remark 4.6, is isomorphic to (Bl(A×A∨)[2](A×A∨))/±1. As the odd
cohomology classes of a torus are always antiinvariant under the action of ±1, the odd Betti
numbers of Ŷv are zero. Since ρv ◦ ε̂v : Ŷv → K̃v is a regular surjective map between smooth
projective varieties, the rational cohomology of K̃v injects into the rational cohomology of Ŷv.
Hence the odd Betti numbers of K̃v are zero.

We already know that h2(K̃v) = 8 [O’Gr03] and that χtop(K̃v) = 1920 [Rap04]. The result
follows using Salamon’s formula [Sal96], which gives a linear relation among the Betti numbers
of a 2n-dimensional irreducible holomorphic symplectic manifold

2
2n∑
j=1

(−1)j(3j2 − n)b2n−j = nb2n.

In our case this yields
18b4 + 90b2 + 210 = 3b6.

Since b2 = 8 and
2 + 2b2 + 2b4 + b6 = 1920

we obtain the proposition. 2

The strategy to compute the Hodge numbers of K̃v is the following. Since K̂v is the quotient
of Ŷv by the action of τ̂v, the Hodge numbers of K̂v that determine the Hodge numbers of K̃v

are the τ̂v-invariant Hodge numbers of Ŷv. The Hodge numbers of Ŷv can be easily computed in
terms of the known Hodge numbers of the IHS manifold Y v of K3[3] type, and the action of τ̂v
is determined by the action of the rational involution τv : Y v 99K Y v (see Remark 5.4) on the
Hodge groups of Y v. Finally, by Markman’s monodromy results, this action only depends on its
part on the second cohomology group, which is easy to compute.

In order to determine the Hodge numbers of K̃v, we first relate the Hodge numbers of K̃v

with the τv-invariant Hodge numbers of Y v. More specifically, we have the following lemmas.

Lemma 6.2.

(1) The following equalities of Hodge numbers hold:

hp,q(K̂v) = hp,q(K̃v) if p 6= q,

h1,1(K̂v) = h1,1(K̃v) + 256,

h2,2(K̂v) = h2,2(K̃v) + 512,

h3,3(K̂v) = h3,3(K̃v) + 512.

(2) The vector space Hp,q(Ŷv)
τ̂v of τ̂v-invariant (p, q)-forms on Ŷv is isomorphic to Hp,q(K̂v).
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Proof. (1) This follows from the fact that r : K̂v → K̃v is the blow up along the 256 quadrics
Gi ⊂ K̃v, and that the cohomology of a three-dimensional quadric is one-dimensional in even
degrees and zero otherwise.

(2) This holds because K̃v ' Ŷv/τ̂v (see Remark 4.7). 2

In the following lemma we set
(
a
b

)
:= 0 if b > a or b < 0.

Lemma 6.3. The τ̂v-invariant Hodge numbers of Ŷv and the τv-invariant Hodge numbers of Y v

are related in the following way:

hp,q(Ŷv)
τ̂v = hp,q(Y v)

τv = 0 for p+ q odd,

hp,q(Ŷv)
τ̂v = hp,q(Y v)

τv +
(

4
p−1

)(
4
q−1

)
for p+ q even and p 6= q,

hp,p(Ŷv)
τ̂v = hp,p(Y v)

τv +
(

4
p−1

)2
for p = 0, 1, 5, 6,

hp,p(Ŷv)
τ̂v = hp,p(Y v)

τv +
(

4
p−1

)2
+ 256 for p = 2, 3, 4.

Proof. The morphism βv : Ŷv → Y v is the blow up of Y v along a smooth subvariety isomorphic
to ∆v. By Corollary 4.5 and Remark 4.6, the variety ∆v is isomorphic to BlA×A∨[2](A×A∨/±1),
hence its Hodge numbers are the ±1-invariant Hodge numbers of BlA×A∨[2]. In other words

hp,q(∆v) = 0 for p+ q odd,

hp,q(∆v) = hp,q(A×A∨) for p+ q even and p 6= q,

hp,p(∆v) = hp,p(A×A∨) for p = 0, 4,

hp,p(∆v) = hp,p(A×A∨) + 256 for p = 1, 2, 3,

with hp,q(A× A∨) =
(

4
p

)(
4
q

)
. As a consequence (see [Voi07, Theorem 7.31]), the Hodge numbers

of Ŷv satisfy

hp,q(Ŷv) = hp,q(Y v) = 0 for p+ q odd,

hp,q(Ŷv) = hp,q(Y v) +
(

4
p−1

)(
4
q−1

)
for p+ q even and p 6= q,

hp,p(Ŷv) = hp,p(Y v) +
(

4
p−1

)2
for p = 0, 1, 5, 6,

hp,p(Ŷv) = hp,p(Y v) +
(

4
p−1

)2
+ 256 for p = 2, 3, 4.

The lemma follows, since the classes in hp,q(Ŷv) that come from ∆v are the push forward of
cohomology classes of the exceptional divisor ∆̂v which, by Corollary 4.5, is the fixed locus
of τ̂v. 2

It remains to determine the τv-invariant Hodge numbers hp,q(Y v)
τv of Y v. This will be done

by relating the action in cohomology of τv with the monodromy operator

m(τv) : H•(Y v) → H•(Y v)

associated to the birational involution τv.
To explain this relation, first let us recall some details on the definition of m(τv).

Remark 6.4. By Theorem 2.5 of [Huy03] there exist smooth proper families of IHS manifolds
Y ′v → S and Yv → S over a one-dimensional disk S such that both the central fibers are
isomorphic to Y v and there exists a rational S-morphism T v : Y ′v 99K Yv sending Y ′v\Jv
isomorphically to Yv\Jv and restricting to τv on central fibers.
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By specializing the closure in Y ′v ×S Yv of the graph of T v over the central fiber, we obtain

a pure six-dimensional cycle Υ on Y v × Y v.

By definition m(τv) is the Hodge ring automorphism of H•(Y v) obtained as the associated

correspondence of the cycle Υ. In our case, since T v induces an isomorphism between Y ′v\Jv and

Yv\Jv and restricts to τv on central fibers, it follows that

Υ = Υτ +
∑
i

miJi,v × Ji,v,

where Υτ is the closure of the graph of τ and the mi are nonnegative integers.3

Lemma 6.5.

(1) For every i the cohomology class [Ji,v] ∈ H6(Y v) of Ji,v is m(τv)-antiinvariant.

(2) The following relations between m(τv)-invariant Hodge numbers of Y v and τv-invariant

Hodge numbers of Y v hold:

hp,q(Y v)
τv = hp,q(Y v)

m(τv) for p+ q 6 6 and p 6= q,

h1,1(Y v)
τv = h1,1(Y v)

m(τv) + 256

h2,2(Y v)
τv = h2,2(Y v)

m(τv) + 256

h3,3(Y v)
τv = h3,3(Y v)

m(τv) + 512.

Proof. (1) As the differential of the map (hv, hv ◦ τv) : Y v → Y v × Y v is everywhere injective, it

induces an isomorphism Υτ ' Y v = BlJvY v. By the key formula of [Ful98, Proposition 6.7], the

class [Ji,v] is an eigenvector for correspondence [Υτ ]∗ induced by [Υτ ] on H6(Y v) and, moreover,

the corresponding eigenvalue λ only depends on the normal bundle of Ji,v in Y v; therefore it

does not depend on i.

On the other hand, the correspondence induced by Ji,v × Ji,v on H6(Y v) multiplies [Ji,v]

by the degree of the third Chern class of its normal bundle in Y v. As this normal bundle is

isomorphic to the cotangent bundle of P3, we obtain [Ji,v × Ji,v]∗[Ji,v] = −4[Ji,v].

It follows that

m(τv)[Ji,v] = (λ− 4mi)[Ji,v].

As m(τv) is an isomorphism on the integral cohomology, λ − 4mi = ±1 and the sign cannot

depend on i.

It remains to exclude that m(τv)[Ji,v] = [Ji,v] for every i. In this case, letting A be the class

of an ample divisor A of τ , we have∫
Y v

m(τv)[A]3 ∧ [Ji,v] =

∫
Y v

[A]3 ∧ [Ji,v] > 0.

Therefore, the line bundle associated with m(τv)[A] would be positive on the Ji,v and, as A is

ample, it would have positive degree on any curve on Y v. Finally, by [Huy03, Proposition 3.2],

τ∗v(A) would be an ample divisor and this is absurd because τv does not extend to an

isomorphism.

3 Using the key formula of [Ful98, Proposition 6.7], it can be shown that mi = 1 for every i.
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(2) Since Y v is an IHS manifold of K3[n] type, its odd Betti numbers are trivial and the same
holds for Y v as it is isomorphic to the blow up of Y v along J that is the disjoint union of 256
projective spaces. Hence, we only need to consider the case where p+ q is even.

If p + q = 6, the exact sequences of the pairs (Y v, Y v\Γv) and (Y v, Y v\Jv), using excision
and Thom isomorphism, give rise to the following commutative diagram.

0 // H0(Jv)

��

r1 // H6(Y v)

h∗v
��

r2 // H6(Y v\Jv)

��

// 0

0 // H4(Γv)
s1 // H6(Y v)

s2 // H6(Y v\Γv) // 0

In this diagram, r2 and s2 are surjective because the odd Betti numbers of Jv and Γv are zero
and r1 is injective because the classes [Ji,v] are independent. This also implies that H5(Y v\Γv) =
H5(Y v\Jv) = H5(Y v) = 0 and therefore s1 is injective too.

As the intersection form of the middle cohomology of Y v is nondegenerate, on H0(Jv) there
is a splitting of Hodge structures

H6(Y v) = H0(Jv)
⊥ ⊕H0(Jv),

where H0(Jv)
⊥ is the perpendicular to H0(Jv) in H6(Y v). Since m(τv) acts as −1 on H0(Jv)

and the correspondence [Ji,v × Ji,v]∗ acts trivially on H0(Jv)
⊥, we deduce that

Hp,q(Y v)
m(τv) = ((H0(Jv)

⊥)p,q)[Υτ ]∗ ,

for p+ q = 6.
Since h∗v(H

0(Jv)
⊥) is included in the perpendicular H4(Γv)

⊥ to H4(Γv) in H6(Y v), the
injective pull back h∗v induces an isomorphism of Hodge structures H4(Γv)

⊥ ' H0(Jv)
⊥. It

follows that the intersection form on the middle cohomology of Y v is nondegenerate on H4(Γv)
and there is a splitting of Hodge structures

H6(Y v) = H0(Γv)
⊥ ⊕H4(Γv).

Since τv(Γv) = Γv we also deduce

Hp,q(Y v) = ((H4(Γv)
⊥)p,q)τv ⊕Hp−1,q−1(Γv)

τv ,

for p+ q = 6.
Moreover, the Hodge isomorphism H4(Γv)

⊥ 'H0(Jv)
⊥ identifies the action of τv on H4(Γv)

⊥

with the action of [Υτ ]∗ on H0(Jv)
⊥.

In fact, for any α ∈ H0(Jv)
⊥, we have [Υτ ]∗(α) = (hv∗ ◦ τ∗v ◦h∗v)(α). As τ∗v(h

∗
v(α)) ∈ H4(Γv)

⊥

and since the kernel of hv∗ intersects trivially H4(Γv)
⊥, the class τ∗v(h

∗
v(α)) is the unique class

in H4(Γv)
⊥ whose push forward in H6(Y v) is [Υτ ]∗(α). Therefore

τ∗v(h
∗
v(α)) = h∗v([Υτ ]∗(α)).

As a consequence,

Hp,q(Y v)
τv = Hp,q(Y v)

m(τv) ⊕Hp−1,q−1(Γv)
τv
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and the result for p+ q = 6 follows because Γv consists of 256 copies of I ⊂ P(V )×P(V ) on each
of which τv acts by exchanging the factors, and the cohomology of each component of Γv comes
by restriction from the cohomology of P(V )× P(V ).

Finally, if p + q = 2k, and k = 1 or k = 2, as Jv has codimension 3 in Y v, restriction gives
an isomorphism H2k(Y v) ' H2k(Y v\Jv) and there exists a Hodge decomposition

H2k(Y v) = H2k(Y v)⊕H2k−2(Γv).

Moreover, H2k(Y v) can be seen as the subspaces of forms vanishing on Γv and it is stable under
the action of τv. The same argument used in the case p+ q = 6 shows that the action of τv on
H2k(Y v) coincides with the action of m(τv), and therefore

Hp,q(Y v)
τv = Hp,q(Y v)

m(τv) ⊕Hp−1,q−1(Γv)
τv .

As the invariant subspaces for action of τv on the degree-0 and the degree-2 cohomology of each
component of Γv has dimension 1, this proves the lemma. 2

It remains to determine the m(τv)-invariant Hodge numbers of Y v. It will suffice to deal with
the case where A is a general principally polarized abelian surface with NS(A) = ZΘ and where
v = (0, 2Θ, 2).

Lemma 6.6. In this case the m(τv)-invariant Betti numbers and Hodge numbers of Y (0,2Θ,2) are:

(h0)m(τv) = 1, (h2)m(τv) = 7, (h4)m(τv) = 171, (h6)m(τv) = 1178;

(h2,0)m(τv) = 1, (h1,1)m(τv) = 5,

(h4,0)m(τv) = 1, (h3,1)m(τv) = 6, (h2,2)m(τv) = 157,

(h6,0)m(τv) = 1, (h5,1)m(τv) = 5, (h4,2)m(τv) = 157, (h3,3)m(τv) = 852.

Proof. We first determine the weight-2m(τ (0,2Θ,2))-invariant Hodge numbers. By Lemmas 6.2, 6.3
and 6.5 we have

h2,0(Y v)
m(τv) = h2,0(Y v)

τv = h2,0(K̂v) = h2,0(K̃v) = 1

and
h1,1(Y v)

m(τv) = h1,1(Y v)
τv − 256 = h1,1(K̂v)− 257 = h1,1(K̃v)− 1 = 5.

In order to compute the invariant part of the Hodge structure of Y (0,2Θ,2), we use a result of
Markman [Mar02, Example 14], which describes the action of monodromy operators on the
Hilbert scheme of three points on a K3 surface S in terms of their action on the degree-2
cohomology. Specifically, Markman proves that there are isomorphisms of representations of the
monodromy group of S[3],

H4(S[3]) = Sym2H2(S[3])⊕H2(S[3]),

H6(S[3]) = Sym3H2(S[3])⊕ Λ2H2(S[3])⊕ C,
(6.1)

where C is a copy of the trivial representation.
If v = 2(0,Θ, 1), Y v is birational to the Hilbert scheme S[3] and hence there exists an

isomorphism of Hodge rings k : H•(S[3]) → H•(Y v) and, moreover, the Hodge involution
k−1 ◦m(τv) ◦ k is a monodromy operator on S[3]. Moreover, the m(τv)-invariant Hodge numbers
of Y v coincide with the respective k−1 ◦ m(τv) ◦ k-invariant Hodge numbers of S[3]. Since
we know the weight-2 m(τv)-invariant Hodge numbers of Y v, we also know the weight-2
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k−1 ◦ m(τv) ◦ k-invariant Hodge numbers of Y v and, using formulae (6.1), we can calculate

all the k−1 ◦m(τv) ◦ k-invariant numbers of S[3] and, therefore, all the m(τv)-invariant numbers

of Y v.
To simplify the notation in the computation, set Hp,q

+ := Hp,q(Y v)
m(τv). In particular, H2,0

− =

H2,0
− = 0. By formulae (6.1) we obtain

H4,0
+ = Sym2H2,0

+ , H3,1
+ = (H2,0

+ ⊗H1,1
+ )⊕H2,0

+ ,

H2,2
+ = (H2,0

+ ⊗H0,2
+ )⊕ Sym2H1,1

+ ⊕ Sym2H1,1
− ⊕H

1,1
+ ,

H6,0
+ = Sym3H2,0

+ , H5,1
+ = Sym2H2,0

+ ⊗H1,1
+ ,

H4,2
+ = (Sym2H2,0

+ ⊗H0,2
+ )⊕ (H2,0

+ ⊗ Sym2H1,1
+ )⊕ (H2,0

+ ⊗ Sym2H1,1
+ )⊕ (H2,0

+ ⊗H1,1
+ ),

H3,3
+ = (H2,0

+ ⊗H1,1
+ ⊗H2,0

− )⊕ Sym3H1,1
+ ⊕ (H1,1

+ ⊗ Sym2H1,1
− )

⊕ (H2,0
+ ⊗H0,2

+ )⊕ Λ2H1,1
+ ⊕ Λ2H1,1

− ⊕ C,

which give the invariant Hodge numbers. Finally, the invariant Betti numbers are determined

from the invariant Hodge numbers. 2

Now, a straightforward computation gives the Hodge numbers of O’Grady’s six-dimensional

IHS manifold.

Theorem 6.7. Let K̃ be an IHS manifold of type OG6. The odd Betti numbers of K̃ are zero,

its even Betti numbers are

b0 = 1, b2 = 8, b4 = 199, b6 = 1504, b8 = 199, b10 = 8, b12 = 1,

and its non-zero Hodge numbers are collected in the following table:

H0,0 = 1

H2,0 = 1 H1,1 = 6 H0,2 = 1

H4,0 = 1 H3,1 = 12 H2,2 = 173 H1,3 = 12 H0,4 = 1

H6,0 = 1 H5,1 = 6 H4,2 = 173 H3,3 = 1144 H2,4 = 173 H1,5 = 6 H0,6 = 1

H6,2 = 1 H5,3 = 12 H4,4 = 173 H3,5 = 12 H2,6 = 1

H6,4 = 1 H5,5 = 6 H4,6 = 1

H6,6 = 1.

Proof. As Hodge and Betti numbers are stable under smooth Kähler deformations, it will suffice

to deal with the case where K̃ = K̃(0,2Θ,2) and the underlying abelian surface A is a general

abelian surface, whose Neron–Severi group is generated by the principal polarization Θ. In this

case, Lemmas 6.2, 6.3, 6.5 and 6.6 imply the result. 2

Furthermore, the knowledge of the Hodge numbers is enough to compute the Chern numbers,

as shown by Sawon [Saw99]. We have the following corollary.

Corollary 6.8. Let K̃ be a manifold of OG6 type. Then
∫
K̃
c2(K̃)3 = 30 720,

∫
K̃
c2(K̃)c4(K̃) =

7680 and
∫
K̃
c6(K̃) = χtop(K̃) = 1920.
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Proof. Let χp(K̃) =
∑

(−1)qhp,q(K̃). In our case we have χ0(K̃) = 4, χ1(K̃) = −24 and χ2(K̃) =
348. As shown in [Saw99, Appendix B], we have∫

K̃
c2(K̃)3 = 7272χ0(K̃)− 184χ1(K̃)− 8χ2(K̃),∫

K̃
c2(K̃)c4(K̃) = 1368χ0(K̃)− 208χ1(K̃)− 8χ2(K̃),∫

K̃
c6(K̃) = 36χ0(K̃)− 16χ1(K̃) + 4χ2(K̃).

A direct computation yields our claim. 2
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Got90 L. Göttsche, The Betti numbers of the Hilbert scheme of points on a smooth projective surface,
Math. Ann. 286 (1990), 193–207.
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Mar02 E. Markman, Generators of the cohomology ring of moduli spaces of sheaves on symplectic
surfaces, J. Reine Angew. Math. 544 (2002), 61–82.

Men15 G. Menet, Beauville–Bogomolov lattice for a singular symplectic variety of dimension 4, J. Pure
Appl. Algebra 219 (2015), 1455–1495.

Mon16 G. Mongardi, Towards a classification of symplectic automorphisms on manifolds of K3[n] type,
Math. Z. 282 (2016), 651–662.

MW17 G. Mongardi and M. Wandel, Automorphisms of O’Grady’s manifolds acting trivially on
cohomology, Algebr. Geom. 4 (2017), 104–119.

Moz06 S. Mozgovyy, The Euler number of O’Grady’s ten dimensional symplectic manifold, PhD
Thesis, Mainz Universität (2006).

Muk88 S. Mukai, Moduli of vector bundles on K3 surfaces and symplectic manifolds, Sugaku
Expositions 1 (1988), 139–174.

Nak71 S. Nakano, On the inverse of monoidal transformations, Publ. Res. Inst. Math. Sci. 6 (1971),
483–502.

O’Gr99 K. G. O’Grady, Desingularized moduli spaces of sheaves on a K3, J. Reine Angew. Math. 512
(1999), 49–117.

O’Gr03 K. G. O’Grady, A new six-dimensional irreducible symplectic variety, J. Algebraic Geom. 12
(2003), 435–505.

O’Gr12 K. G. O’Grady, Higher dimensional analogues of K3 surfaces. Current developments in
algebraic geometry, Publ. Res. Inst. Math. Sci. 59 (2012), 257–293.

PR13 A. Perego and A. Rapagnetta, Deformation of the O’Grady moduli spaces, J. Reine Angew.
Math. 678 (2013), 1–34.

PR14 A. Perego and A. Rapagnetta, Factoriality properties of moduli spaces of sheaves on abelian
and K3 surfaces, Int. Math. Res. Not. IMRN 2014 (2014), 643–680.

Rap04 A. Rapagnetta, Topological invariants of O’Grady’s six dimensional irreducible symplectic
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