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Abstract. Let k � Fq�t� be the rational function ¢eld with ¢nite constant ¢eld and
characteristic pX 3, and let K=k be a ¢nite separable extension. For a ¢xed place v of k and
an elliptic curve E=K which has ordinary reduction at all places of K extending v, we consider
a canonical height pairing h ; iv:E�Ksep� � E�K sep� ! C�v which is symmetric, bilinear and
Galois equivariant. The pairing h ; i1 for the `̀ in¢nite'' place of k is a natural extension of
the classical Nëron^Tate height. For v ¢nite, the pairing h ; iv plays the role of global analytic
p-adic heights.We further determine some hypotheses for the nondegeneracy of these pairings.
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1. Introduction

Our goal in this paper is to construct and investigate canonical heights on elliptic
curves de¢ned over global function ¢elds in characteristic p. These heights will take
values in the completions of the function ¢eld and serve as analogues of both
the classical Nëron^Tate height and also analytic p-adic heights on elliptic curves
over number ¢elds, cf. [3, 8, 10, 13, 14].

Except in Sections 3 and 4, we maintain the following notation throughout the
paper. We take p to be an odd prime; Fq the ¢nite ¢eld with q � pn elements; k
the rational function ¢eld Fq�t�; and A the polynomial ring Fq�t�. The valuations
of the ¢eld k corresponding to maximal ideals of A are called ¢nite places; the unique
remaining place is the in¢nite place, denoted1, with ord1 � ÿ deg, where deg is the
degree map on polynomials extended to rational functions.

We letK=k denote a global function ¢eld, i.e., a ¢nite separable ¢eld extension of k,
and we letO be the integral closure ofA inK . For a place w ofK , we letKw denote the
completion at w; Ow its valuation ring; Fw its residue ¢eld; andCw the completion of
an algebraic closure of Kw. Furthermore, U1�Kw� and U1�Cw� are the groups of
1-units. A place of K is either ¢nite or in¢nite depending on the place it extends
from k. Finally, for any ¢eld F , we let F sep be a separable closure and F an algebraic
closure.
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For a ¢xed place v of k, we consider an elliptic curve E=K which has ordinary
reduction at all places of K extending v. That is, the formal group of each reduced
curve has height 1. In Section 5 we de¢ne a Galois equivariant quadratic formbHv:E�K sep� ! C�v ; which equivalently induces a symmetric bilinear pairing,

h ; iv:E�K sep� � E�K sep� ! C�v :

We construct bHv as a product of local factors. At the places not dividing v, these local
factors are derived from intersection multiplicities on the Nëron model for E=K , and
at the places above v, the local heights are de¢ned using the Mazur^Tate sigma
function [9].

It should be noted that these constructions contain differences depending on
whether v is a ¢nite or in¢nite place of k. We ¢nd in Section 6 that for v � 1,
the resulting 1-adic height extends the Nëron^Tate height. Indeed we ¢nd for
all P 2 E�Ksep� that deg�bH1�P�� � 2ĥNT�P�: If v is a ¢nite place, the v-adic height
takes values inU1�Cv�. In Sections 7 and 8 we investigate the nondegeneracy of these
height functions. Just as for p-adic heights for elliptic curves de¢ned over number
¢elds, the nondegeneracy of the v-adic height is related to the nonexistence of uni-
versal norms coming from the so-called Carlitz cyclotomic tower of K (see [11, 12]).

The assumption that p is odd is not necessary, but for the purposes of length we
have disregarded the case where p � 2. Moreover, the £avor of the results are
identical [12].

Finally, it is important to remark that the canonical heights discussed in this paper
are effectively computable, and in Section 9 we discuss an explicit example.

2. Elliptic Curves over Global Function Fields

Fixing a ¢eld K=k which is the function ¢eld of a smooth curve X=Fq, we let E=K be
an elliptic curve de¢ned over K and take E=X to be a Nëron model for E=K with
identity component E0=X . Using the intersection multiplicities of sections on E,
it is possible to construct the classical Nëron^Tate canonical height pairing,

h ; iNT:E�K sep� � E�K sep� ! Q;

which is symmetric and bilinear and when restricted to E�K� is nondegenerate
modulo torsion [16]. Equivalently, we can construct the associated quadratic
form ĥNT, which we de¢ne so that ĥNT�P� � 1

2 hP;PiNT. We note that here the
Nëron^Tate height is normalized to take values which are independent of the chosen
¢eld of de¢nition.

As is well known, the Nëron^Tate height can be computed as a sum of local
heights (see [7, 16]). We ¢x a Weierstrass equation for E,

y2 � a1xy� a3y � x3 � a2x2 � a4x� a6; ai 2 K : �2:1�
For a place w of K , we let E0�Kw� � E�Kw� denote the subgroup of points whose
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reduction is nonsingular at w, i.e., the points whose sections meet E0 on the ¢ber
above w. There is a local height function, lw:E0�Kw� ! Z, de¢ned so that for
P 2 E0�X � � E�K�, the Nëron^Tate height is obtained by the formula

ĥNT�P� � 1
2 �K : k�

X
w2X
�Fw : Fq�lw�P�: �2:2�

If P 2 E0�X � and (2.1) is minimal at w, then lw is de¢ned by
lw�P� � maxfÿordw�x�P��; 0g.

3. The Mazur^Tate Sigma Function

Here we review some facts about the Mazur^Tate sigma function as de¢ned in [9].
This function, de¢ned on the formal group of an elliptic curve over a local ¢eld,
is a natural non-Archimedean analogue of the classical Weierstrass sigma function,
and similar to the classical sigma function, it provides an analytic local height func-
tion on an elliptic curve. For more details on its connection with p-adic heights
for elliptic curves over number ¢elds see [10]. There is also an analogue of the
Weierstrass zeta function, de¢ned by Voloch [19], which is also of interest here.

Throughout this section and the next we diverge from the previous notation
and maintain the following conventions: K is a ¢eld complete with respect to
a discrete valuation ord; O is the valuation ring of K ; and F is its residue ¢eld.
We assume that both O and F have characteristic p and begin with some necess-
ary de¢nitions.

Let E=K be an elliptic curve with ordinary reduction, and ¢x an invariant
differential o on E. We choose a minimal Weierstrass equation (2.1) so that
o � dx=�2y� a1x� a3�. Taking bE=O for the formal completion of the Nëron model
of E along its zero-section, we then pick a uniformizing parameter z on bE and
let b � �o=dz��O�. The multiplication-by-p map on bE then has the form

�p��z� � abpÿ1zp � � � � ; 2 O��zp��; �3:1�
where a is the Hasse invariant of E=K (see ½12.4 of [6]).

The fraction ¢eld L of the power series ringO��z�� is naturally considered the ¢eld of
rational functions onbE, and it contains K�E� as a sub¢eld. For an integer m, the mth
division polynomial with respect to o is the function fm 2 K�E� � L with divisor
�m�ÿ1�O� ÿm2�O� such that

zm
2
fm�z�
�m��z� �O� � b1ÿm

2
;

as de¢ned in [9]. Such division polynomials satisfy many recursion formulas and
possess a rich structure. Notably,

fpn �z� � fpnÿ1��p��z��fp�z�p
2nÿ2
: �3:2�
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THEOREM 3.3 (Mazur^Tate [9]). The sigma function s � sE;o is characterized as
the unique function in bz�1� zO��z��� satisfying any one of the following equivalent
properties.

(a) If P, Q are nonzero points in bE�O�, then
s�P ÿQ�s�P �Q�

s�P�2s�Q�2 � x�Q� ÿ x�P�:

(b) If m 2 Z and Q 2 bE�O�, then
s�mQ� � s�Q�m2

fm�Q�;

where fm is the mth division polynomial with respect to o.
(c) If Q 2 bE�O�, then

s�pQ� � s�Q�p2 fp�Q�:

4. A Formula for the Sigma Function

Recalling (3.1), we deduce that �pn��z� � anb
pnÿ1zp

n � � � � 2 O��zpn ��, where
an � a � ap � ap2 � � � � � apnÿ1 � a�p

nÿ1�=�pÿ1�. An exercise in formal power series shows
that inverting �pn��z� with respect to composition yields

�pn�ÿ1�z� � 1
b

b
an

� �1=pn

z1=p
n � � � � 2 O1=pn ��z1=pn ��; �4:1�

which when raised to the pnth power results in a series in O��z��. This series will con-
verge for points in the formal group, which highlights the fact that the points inbE are uniquely p-divisible since bE has height 1.

THEOREM 4.2. Let s�z� be the power series given by the in¢nite product

s�z� � bz
Y
nX 1

bpÿ1

apnÿ1 apÿ1n
zpÿ1fp��pn�ÿ1�z��pnÿ1

" #pnÿ1

:

The product converges in O��z�� and the resulting series is the Mazur^Tate sigma
function sE;o.

Proof. For convergence, it suf¢ces to show that each factor in the square brackets
above is a 1-unit in O��z��, which follows from (4.1). A straightforward manipulation
of the factors permits us to prove that s�z� satis¢es the identity in (3.3c) and thus
represents the sigma function. See [12] for further details. &
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5. Canonical Heights

We return to the notation given in Sections 1 and 2. For a global function ¢eld K=k,
let E=K be an elliptic curve with ordinary reduction at all places of K which extend
a chosen place v of k. In this section we construct a symmetric bilinear pairing

h ; iv:E�K� � E�K� ! C�v ; �5:1�

which will serve as a canonical height. Our interests will lie with investigating various
properties of these heights as well with determining their nondegeneracy (see
Sections 7 and 8). Although the constructions are similar, the resulting pairing will
have a different meaning depending on whether the preferred place v is ¢nite or
in¢nite. The 1-adic height plays the role of the Nëron^Tate height (see
Theorem 6.1) and the v-adic height (v ¢nite) is the analogue of the analytic p-adic
heights for elliptic curves over number ¢elds, cf. [8, 10, 14].

The techniques in this section are fairly standard, so we merely address the import-
ant points. Moreover, our construction is similar to that of [10]; for more details the
reader is directed to [12]. For each place v of k we ¢x a uniformizer pv in Fvk, and we
observe that the group pQv �U1�Cv� is uniquely divisible. For x 2 C�v , we let
xh i � xh iv denote the positive part of x, i.e., the class of x in pQv �U1�Cv�
modulo F

�
v . The values of our heights will be taken in the positive elements of C�v .

We then ¢x a Weierstrass equation for E=K as in (2.1) and let
o � dx=�2y� a1x� a3�. For each place w of K , we let zw be a local uniformizing
parameter for bE=Ow and bw � �o=dzw��O� 2 K�w . We consider the subgroup
Ev�K� � E�K� of ¢nite index consisting of points on the identity component E0
of E which also specialize to O on the ¢bers of places which extend v, i.e.,

Ev�K� � E0�X � \
\
wjv
bE�Ow�:

For each P 2 Ev�K� n fOg, we de¢ne an idele i�P� 2 A�K component-wise as follows:

i�P�w �
1 if w j 1 and v 6� 1;
bw if w v finite and P =2 bE �Ow�;
bwzw�P� if w v finite and P 2 bE �Ow�;
sE=Kw;o�P� if w j v:

8>><>>: �5:2�

We set i�O� � 1. We observe that if v is ¢nite then i�P� is supported away from 1.
Furthermore, we ¢nd that for w v or 1,

ordw�i�P�w� � 1
2lw�P�: �5:3�

We then de¢ne a map rKv :A�K ! C�v as follows. We take

rKv ��ew�w� � rkv
ÿ
NK

k �ew�w
�1=�K :k�

; �5:4�
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where NK
k is the norm map on ideles and

rkv ��e~v�~v� �
1
evh i

Y
~v 6�1

pord~v�e~v�
~v ;

for p~v the positive uniformizer of ~v in FvA. Note that the values of rk1 are in
pQ1 �U1�C1�, whereas for v ¢nite, rkv takes values in U1�Cv�.

By combining (5.2) and (5.4), we de¢ne a height function by

bHv � rKv � i2:Ev�K� ! C�v ;

which is a quadratic form and hence a `canonical height'. We observe that the values
of bHv are independent of the choices of formal parameters and differentials made
in (5.2). Because the image is contained in a uniquely divisible subgroup of C�v ,
we can extend the de¢nition to all of E�K�. The following proposition summarizes
the above discussion.

PROPOSITION 5.5.Let K=k be a global function ¢eld and E=K an elliptic curve with
ordinary reduction at all the places of K extending v. There is a unique quadratic formbHv:E�K� ! C�v which extends

bHv � rKv � i2:Ev�K� ! C�v :

Furthermore, the height behaves well under base-extension, and gives rise to a
symmetric, bilinear pairing

h ; iv:E�K sep� � E�K sep� ! C�v ;

with bHv�P� � hP;Piv, which is Galois equivariant, i.e., htP; tQiv � hP;Qiv for all
P, Q 2 E�K sep� and all t 2 Gal�K sep=K�.

6. Extension of the Nëron^Tate Height

In this section, we will prove the following theorem which shows that the 1-adic
height as de¢ned in the previous section actually extends the Nëron^Tate height
in a natural way.

THEOREM 6.1.Let E=K be an elliptic curve with ordinary reduction at all the in¢nite
places of K. Then for all P, Q 2 E�K sep�,

deg�hP;Qi1� � hP;QiNT;

where here deg � ÿord1.
Proof. Because the value of bH1 is independent of a chosen Weierstrass equation,

we are free to ¢x a Weierstrass equation which is minimal at all places of K
extending 1. Furthermore, it suf¢ces that the theorem holds on E1�K�. Given

304 MATTHEW A. PAPANIKOLAS

https://doi.org/10.1023/A:1002054316957 Published online by Cambridge University Press

https://doi.org/10.1023/A:1002054316957


the ways we have normalized our pairings, we need to show that

deg�bH1�P�� � 2 ĥNT�P�: �6:2�
By the de¢nition of bH1 along with (5.3) and (5.4), we have

bH1�P��K :k� �
Y
wj1

NKw
k1sE=Kw;o�P�ÿ2

D E Y
v 6�1

Y
wjv

p�Fw:Fv�lw�P�
v ;

and thus the terms from (6.2) corresponding to the ¢nite places exactly match those
from (2.2). Finally we need to show for each w j 1 that, before taking norms,
we have ordw�sE=Kw;o�P�2� � lw�P�, which follows from (3.3) and the ultrametric
inequality. &

7. Nondegeneracy of v-Adic Heights

A symmetric bilinear pairing of Abelian groups E � E ! GwithG uniquely divisible
is said to be nondegenerate if the kernel consists only of the torsion elements of E.
Theorem 6.1 assures us that the 1-adic height pairing is nondegenerate on E�K�.

On the other hand, the values of the v-adic pairing (for v a ¢nite place of k) are
1-units in Cv, and so a priori we can say little about the nondegeneracy of these
heights. In this section and the next we investigate conditions for the nondegeneracy
of the pairing h ; iv on E�K�, and we ¢nd that, for E=k de¢ned over the rational
function ¢eld, nondegeneracy on E�K� can be proven in many general cases.
Additionally, in the next section we show that the induced pairing

h ; iv: �E�K� 
Zp� � �E�K� 
Zp� ! C�v ;

is also nondegenerate under these same hypotheses.

Remark 7.1. By contrast, for analytic p-adic height pairings for elliptic curves
de¢ned over number ¢elds [8, 14], it is a dif¢cult problem to determine nondegeneracy
(see [15]), and it is not known in general when such pairings are nondegenerate.

For this section and the next we restrict ourselves to the following situation: E=k is
an elliptic curve de¢ned over the rational function ¢eld with ordinary reduction at
both v and 1. This reduction assumption is quite weak, since if E is not
supersingular, then all but ¢nitely many places will have ordinary reduction. We
will further ¢x a Weierstrass equation (2.1) which is minimal at both v and 1.

Let K=k be a global function ¢eld. If v (resp. 1) rami¢es in K , then we will also
assume that E has good reduction at v (resp. 1). This assumption ensures that
our chosen equation is minimal at all places above v and 1 in K .

For a point P 2 Ev�K� \ E1�K� and a ¢xed positive integer N, we take
VN :E�p

N � ! E to be the Verschiebung (the dual of the pN th power Frobenius
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morphism), and we de¢ne

Vÿ1N �P� � E�p
N ��ksep�

to be the inverse image of the point P under VN , which consists of pN distinct points.
Let w denote a place of K above either v or1. If P 2 Ev�K� \ E1�K�, then because

the formal group bE�pN �=Ow has height 1, there is a unique point,

Qw � Qw�P� � Qw;N�P� 2 Vÿ1N �P�; �7:2�
such that Qw 2 bE�pN ��Ow�. For different places w and w0 (either both extending v or
both extending 1), the points Qw and Qw0 are related. Indeed, if we ¢x a separable
closure ksep

v so that

kv � Kw � ksep
v ;

we see that the absolute value of w0 on K is obtained through an embedding
t:K ,! ksep

v , which induces an embedding t:Kw0 ,! ksep
v . For such an embedding

t, we then have tQw0 �P� � Qw�tP�.
We now introduce a hypothesis which will play a crucial role in the proof of

Theorem 7.4, the main theorem of this section. In Section 8 we will investigate
the generality in which this hypothesis holds.

HYPOTHESIS 7.3. Let P 2 Ev�K� \ E1�K� and NX 1. For ¢xed w j v and 1 j 1,
there exists g 2 Gal�ksep=k� so that for all embeddings t:K ,! ksep, we have
gQw�tP� � Q1�tP�.

THEOREM 7.4. Let E=k be an elliptic curve with ordinary reduction at v and1. Let
K=k be a global function ¢eld. If v (resp.1) is rami¢ed in K, we will further assume
that E has good reduction at v (resp. 1). Let P 2 Ev�K� \ E1�K�. Suppose that
for any N such that pN 2 �K : k�ĥNT�P�; the point P satis¢es Hypothesis 7.3. ThenbHv�P� � hP;Piv 6� 1:

We begin with a series of lemmas needed for the proof of Theorem 7.4. Our event-
ual method will be to compare the values of bHv and bH1 and to use the known
nontriviality of bH1 to prove that bHv is also nontrivial. This ¢rst lemma exhibits
one of the peculiarities of characteristic p, especially when compared to number
¢elds. Its proof is fairly standard (see ½8.2 of [5]).

LEMMA 7.5. For any place v of k, let L=k be an algebraic extension such that L � kv.
Then for every integer NX 1 the map

L�

�L��pN
! k�v
�k�v �p

N

is an injection.
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We take o � dx=�2y� a1x� a3�, a the Hasse invariant of E, and z � ÿx=y a ¢xed
formal parameter for bE.
LEMMA 7.6. Let R be the ring Fq�a1; a2; a3; a4; a6��1=a� � k. Then for all places w j v
and w j 1 of K, the following statements hold.

(a) The formal group law for bE=Ow with parameter z is de¢ned over R.
(b) For every m 2 Z, the division polynomial fm is an element of R�x; y�.
(c) The sigma function s�z� � sE=Kw;o�z� is given by the formula in (4.2) and, moreover,

s�z� 2 R��z��.

Proof. Recalling the rami¢cation hypotheses on v and1 set earlier in the section,
the equation for E will be minimal at all places of K extending them, explaining (a)
and (b). Part (c) is then a restatement of (4.2). &

LEMMA 7.7. For every P 2 bE�Ow� and integer NX 1,

sE=Kw;o�P� � fpN ��pN �ÿ1�z�P��� mod�K�w � p
N
:

Proof. Using (4.2), we ¢nd

sE=Kw;o�P� �
YN
n�1

fp��pn�ÿ1�z�P���p2nÿ2 mod�K�w � p
N
;

and then the result follows by induction on (3.2). &

For an alternate interpretation of fpN ��pN �ÿ1�z�P���, we consider that, as a function
of z, fpN �z� � gpN �zpN � is a Laurent series in zp

N
. In fact, gpN 2 k�E�pN ��, and thus forQw

as in (7.2),

fpN ��pN �ÿ1�z�P��� � gpN �Vÿ1N �z�P��� � gpN �Qw�: �7:8�

Proof of Theorem 7.4. Taking R � Fq�a1; a2; a3; a4; a6��1=a�, we note that R � Ow

for all w j v and w j 1. By (7.6) we see that

sE=Kw;o�z� � s�z�;
where s�z� is given by the product in (4.2).

By the construction of bH1 we know that bH1�P��K :k� 2 k�1. The fact that p
N does

not divide 2 �K : k�ĥNT�P� combined with (6.1) then implies that

bH1�P��K :k� 6� 1 mod�k�1�p
N
: �7:9�

Letting h iv and h i1 denote the positive parts with respect to v and1, we then have

bH1�P��K :k� � H0�P�
Y
wj1

NKw
k1s�z�P��ÿ2

D E
1
2 k�1;
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where H0�P� is the product of all the local factors at the ¢nite places. Furthermore,
from the construction of bHv we have that

bHv�P��K :k� � H0�P�
 �
v

Y
wjv

NKw
kv
s�z�P��ÿ2

D E
v
2 k�v ;

where H0�P� is the same in both equations. As we will only be interested in these
quantities up to pNth powers, it is important to note that, for all x 2 k�v ,
x � xh iv modulo �k�v �p

N
, and likewise for k�1.

Now let M � Gal�ksep=k� be a set of representatives of the embeddings of
K ,! ksep. Up to �k�v �p

N
, we know from (7.7) thatY

wjv
NKw

kv
s�z�P�� �

Y
wjv

NKw
kv
fpN ��pN �ÿ1�z�P��� mod �k�v � p

N

�
Y
t2M

gpN �Qw�tP�� mod �k�v � p
N
;

where for some ¢xed place w j v the point Qw�tP� 2 Vÿ1N �tP� is de¢ned in (7.2)
and (7.8). Likewise, we can showY

wj1
NKw

k1s�z�P�� �
Y
t2M

gpN �Q1�tP�� mod �k�1� p
N
;

for some ¢xed place1 j 1 and corresponding Q1�tP� 2 Vÿ1N �tP�. By (7.9) we then
have

bH1�P��K :k� � H0�P�
Y
t2M

gpN �Q1�tP��ÿ2 6� 1 mod �k�1� p
N
:

Likewise, we have

bHv�P��K :k� � H0�P�
Y
t2M

gpN �Qw�tP��ÿ2 mod �k�v � p
N
:

For both of these two congruences, the right-hand sides are actually elements of ksep.
Now by Hypothesis 7.3 the points Qw�tP� and Q1�tP� are simultaneously
Gal�ksep=k�-conjugates, and since bH1�P��K :k� is not a pNth power, we conclude thatbHv�P��K :k� is also not a pNth power by (7.5). In particular,

bHv�P��K :k� 6� 1;

and the theorem follows. &

8. Conditions for Nondegeneracy

The main question of this section is the generality in which Hypothesis 7.3 holds for
points in Ev�K� \ E1�K�. As in the previous section, we restrict ourselves to elliptic
curves E de¢ned over the rational function ¢eld k with ordinary reduction at
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both v and1. We will assume that K=k is Galois. We let T p�E� � lim ÿ kerVn be the
p-adic Tate module. Since E is ordinary, we have T p�E� � Zp as groups. Our main
result and an immediate corollary are as follows.

THEOREM 8.1. Let E=k be an elliptic curve with ordinary reduction at v and 1.
Let K=k be a ¢nite Galois extension. If K is rami¢ed at v (resp.1), then we further
assume that E has good reduction at v (resp. 1). Finally, we assume
that Gal�K sep=K� ! Aut�T p�E�� is surjective and that for all places w extending v
and1 the reduction is good or nonsplit and the Fw-rational p-torsion on the reduction
at w is trivial. Then

(a) bHv�P� 6� 1 for all nontorsion P 2 E�K�.
(b) For all P, Q 2 E�K�, if hP;QiNT 6� 0, then hP;Qiv 6� 1.

COROLLARY 8.2. Under the conditions of Theorem 8.1, the canonical height
pairing h ; iv:E�K� � E�K� ! C�v is nondegenerate.

The hypotheses in the above theorems are fairly weak, and thus the results hold in
some generality. For example, the surjection of the Galois representation is akin to
the classical result that an integer is a primitive root modulo pn, nX 2, if and only
if it is a primitive root modulo p2. Similarly, it is easy to show that
Gal�K sep=K� ! Aut�T p�E�� is surjective if and only if it surjects onto Aut�kerV2�.

Let M � E�K� be a free Abelian group and consider the tower of ¢eld extensions
K � KN � LN ; where KN � K�kerVN� and LN � KN �Vÿ1N �M��. If M �Pr

i�1 ZPi has rank r, there is a natural map

Gal�LN=KN� ! �kerVN �r; �8:3�
via the Kummer pairing. That is, t 7! �tQi ÿQi�, where Qi 2 Vÿ1N �Pi�.

The following proposition is a Verschiebung analogue of Bashmakov's
Theorem [1, 2], and it uses a Verschiebung descent to show that under certain con-
ditions the image of (8.3) is as large as possible. Since the Verschiebung is separable,
such descents behave much like prime-to-p descents, as opposed to the more delicate
full p-descent in characteristic p (see [4, 17, 18]). Moreover, the proof is virtually
identical to the one found in ½V.5 of [7], or see [12] for further details.

PROPOSITION 8.4. Suppose Gal�K sep=K� ! Aut�T p�E�� is surjective, and let
M � E�K� be a torsion free subgroup of rank s.

(a) Let M � ZP. If P =2V �E�p��K��, then Gal�LN=KN� � kerVN.
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(b) If M \ V �E�p��K�� � pM, then Gal�LN=KN� � �kerVN �s.
(c) In general, the Kummer pairing induces an isomorphism

Gal�LN=KN� � Hom
M

M \ VN�E�pN ��K��
; kerVN

� �
:

Proof of Theorem 8.1. It suf¢ces to prove the theorem for points P, Q in
Ev�K� \ E1�K�. For (a), choosing an N so that

pN 2 �K : k�ĥNT�P�;
we need to show that P satis¢es Hypothesis 7.3. Fixing places w j v and 1 j 1, we
need to show that for all embeddings t:K ,! ksep, the points Qw�tP� and Q1�tP�
are simultaneously Gal�ksep=k�-conjugate.

Let M �PZtP, which is torsion-free by the hypotheses on P. By the elementary
divisors theorem there is a Z-basis fRig for M so that

M
M \ VN�E�pN ��K��

�
M ZRi

pNÿkiZRi
for 0W ki WN:

Note that as pNÿkiRi 2M \ VN�E�pN ��K��, our hypothesis that the pk-torsion
E�p

k��K��pk� � fOg for all k implies that Ri 2 Vki �E�p
ki ��K��. Thus via the Kummer

pairing with chosen basis M �PZRi, (8.4c) becomes

Gal�LN=KN� �
Y

kerVN;ki ; �8:5�

where VN;k is the kernel of the Verschiebung E�p
N � ! E�p

k�.
By expressing each tP as a linear combination of theRi, we need to show that there

is a g 2 Gal�ksep=k� so that

gQw�Ri� � Q1�Ri�; for all i: �8:6�

First, if M \ V �E�p��K�� � pM, we apply (8.4b). Then there is an element
g 2 Gal�ksep=KN� accommodating Hypothesis 7.3, which we lift back to Gal�ksep=k�.

Second, if M \ VN�E�pN ��K�� �M, then for each i we set Q�Ri� to be the unique
element of E�p

N ��K� \ Vÿ1N �Ri�. Indeed, because the pN -torsion E�p
N ��K��pN � �

fOg by assumption, these two sets meet at only one point. Using the assumptions
on the p-torsion on the reductions, we have that Q�Ri� � Qw�Ri� � Q1�Ri� for
each i.

Finally, in the general case we proceed by combining the above two arguments.
For each i, ki is a largest integer k for which Ri 2 Vk�E�pk��K��. As in the preceding
paragraph we have VN;ki �Qw�Ri�� � VN;ki �Q1�Ri��. Thus from (8.5) we ¢nd that
there is then an automorphism g 2 Gal�ksep=k� which satis¢es (8.6).

For (b), the proof is much the same as in part (a). By taking N so that
pN 2 �K : k�hP;QiNT, an argument similar to the proof of (7.4) shows that we need
to have P and Q satisfy Hypothesis 7.3 simultaneously. That is, we require that
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there exist g 2 Gal�ksep=k� so that

gQw�tP� � Q1�tP� and gQw�tQ� � Q1�tQ�
for all t:K ,! ksep. This is achieved by applying the arguments of part (a) to
M �PZtP �PZtQ. &

Remark 8.7. It should be noted that in (7.4) and (8.1) we have actually proven
more than nontriviality. We have shown, under the hypotheses of these theorems,
that for P, Q 2 Ev�K� \ E1�K�, if pN 2 �K : k�hP;QiNT, then

hP;Qi�K :k�
v 6� 1 mod �k�v �p

N
:

As pointed out by the referees, the nondegeneracy statement in (8.2) is not strong
enough for most conceivable applications. Certainly, what would be better is a state-
ment about the nontriviality of a determinant for the pairing, a dif¢cult question to
formulate since the values are taken in the multiplicative group of Cv. However,
we prove the following corollary, which shows that, under the hypotheses
of (8.1), the pairing h ; iv is nondegenerate on E�K� 
Zp. This can be used to show
the nonexistence of universal norms coming from a certain pro-p-extension of K
(see [11, 12]).

COROLLARY 8.8. Under the conditions of Theorem 8.1, the pairing

h ; iv: �E�K� 
Zp� � �E�K� 
Zp� ! C�v

is nondegenerate.
Proof. Because the determinant of the Nëron^Tate height is non-zero, we know
h ; iNT is nondegenerate on E�K� 
Zp. Thus we suppose hP;QiNT 6� 0 for some
P, Q 2 E�K� 
Zp. By taking suitable multiples of P and Q we can assume that both
are in �Ev�K� \ E1�K�� 
Zp, and then pN 2 �K : k�hP;QiNT for all N large enough.
We write

P � P1 � pNP2 and Q � Q1 � pNQ2;

where P1, Q1 2 Ev�K� \ E1�K�. Then pN 2 �K : k�hP1;Q1iNT, and by (8.7), we have
that hP1;Q1i�K :k�

v is not a pN th power in k�v . Moreover,

hP;Qiv � hP1;Q1ivhP2;Q1ipNv hP1;Q2ipNv hP2;Q2ip2Nv ;

and we are done. &

9. An Example

TheMazur^Tate sigma function is effectively computable using (4.2). It is thus poss-
ible to compute values of bHv for a given elliptic curve and rational point. For
example, suppose E=k is de¢ned over the rational function ¢eld and has ordinary
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reduction at a ¢nite place v. Then on a Weierstrass equation minimal at all ¢nite
places, the height of a point P 2 Ev�k� is given by

bHv�P� � den�x�P��
sE=kv;o�P�2
* +

v

;

where den�x�P�� is the denominator of the x-coordinate of P. Thus the v-adic height
of P can be obtained by computing values of sE=kv;o.

Consider the elliptic curve E=F3�t� given by the equation

y2 � x3 � �t2 ÿ 1�x2 � �tÿ 1�2�t2 ÿ tÿ 1�2;
which has discriminant D � �t� 1�3�tÿ 1�5�t2 ÿ tÿ 1�2 and Hasse invariant
a � t2 ÿ 1. In particular, E has ordinary reduction at t. By inspection E has two
(linearly independent) k-rational points

P � �0; �tÿ 1��t2 ÿ tÿ 1��; Q � �t2 ÿ t; t2 ÿ 1�;
neither of which is an element of Et�k�. However, calculations will show that 30P,
30Q 2 Et�k�. For z � ÿx=y and o � dx=2y, the ¢rst few terms of sE;o�z� are

sE;o�z� � zÿ �t2 ÿ 1�z3 � �tÿ 1�2�t2 ÿ tÿ 1�2
t2 ÿ 1

z5ÿ

ÿ t11 � t9 � t5 ÿ t2 ÿ 1
�t� 1�6 z7 �O�z9�

in F3�t���z��. Accordingly,

bHt�30P� � 1ÿ t3 ÿ t9 � t12 � t27 ÿ t30 ÿ t45 �O�t48�
and

bHt�30Q� � 1ÿ t3 � t18 ÿ t21 � t27 �O�t30�:

The curve E also has ordinary reduction at1, and we can calculate bH1 similarly.
We ¢nd that 6P, 6Q 2 E1�k�, and (with tÿ1 the chosen uniformizer at 1)

bH1�6P� � t12 ÿ t11 � t10 � t8 � t7 � t6 � t5 �O�t4�
and

bH1�6Q� � t30 ÿ t27 ÿ t21 � t18 ÿ t3 � 1�O�tÿ3�:
In terms of Hypothesis 7.3, it is worth noting that 30Q satis¢es the hypothesis,
whereas 30P does not, although in both cases the t-adic height is nontrivial.
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