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Abstract. Katok’s special representation theorem states that any free ergodic measure-
preserving Rd -flow can be realized as a special flow over a Zd -action. It provides a
multidimensional generalization of the ‘flow under a function’ construction. We prove the
analog of Katok’s theorem in the framework of Borel dynamics and show that, likewise, all
free Borel Rd -flows emerge from Zd -actions through the special flow construction using
bi-Lipschitz cocycles.
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1. Introduction
1.1. Overview. Theorems of Ambrose and Kakutani [1, 2] established a connection
between measure-preserving Z-actions and R-flows by showing that any flow admits a
cross-section and can be represented as a ‘flow under a function’. Their construction
provides a foundation for the theory of Kakutani equivalence (also called monotone
equivalence) [7, 11] on the one hand and the study of the possible ceiling functions in
the ‘flow under a function’ representation [16, 21] on the other.

The intuitive geometric picture of a ‘flow under a function’ does not generalize to
Rd -flows for d ≥ 2. However, Katok [12] re-interpreted it in a way that can readily
be adapted to the multidimensional set-up, calling flows appearing in this construction
special flows. Despite their name, they are not so special, because, as shown in the
same paper, every free ergodic measure-preserving Rd -flow is metrically isomorphic to
a special flow. Similarly to the works of Ambrose and Kakutani, it opened up the study of
multidimensional concepts of Kakutani equivalence [5] and stimulated research on tilings
of flows[15, 22].

Borel dynamics as a separate field goes back to the work of Weiss [31] and has
blossomed into a versatile branch of dynamical systems. The phase space here is a standard
Borel space (X, B), that is, a set X with a σ -algebra B of Borel sets for some Polish
topology on X. Some of the key ergodic theoretical results have their counterparts in
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Borel dynamics, although others do not generalize. For example, the Borel version of the
Ambrose–Kakutani theorem on the existence of cross-sections in R-flows was proved by
Wagh in [30] showing that, just as in ergodic theory, all free Borel R-flows emerge as ‘flows
under a function’ over Borel Z-actions. Likewise, Rudolph’s two-valued theorem [21]
generalizes to the Borel framework [25]. The theory of Kakutani equivalence, on the other
hand, exhibits a different phenomenon. Although it is a highly non-trivial equivalence
relation among measure-preserving flows [9, 20], a descriptive set theoretical version of
Kakutani equivalence collapses entirely [19].

A considerable amount of work has been carried out to understand the Borel dynamics
of R-flows, but relatively few things are known about multidimensional actions. This
paper makes a contribution in this direction by showing that the analog of Katok’s special
representation theorem does hold for free Borel Rd -flows.

1.2. Structure of the paper. Constructions of orbit equivalent Rd -actions often rely
on (essential) hyperfiniteness and use covers of orbits of the flow by coherent and
exhaustive regions. This is the case for the aforementioned paper of Katok [12], and
related approaches have been used in the descriptive set theoretical set-up as well (for
example, [26]). Particular assumptions on such coherent regions, however, depend on
the specific application. Section 2 summarizes a general language of partial actions, in
which many of the aforementioned constructions can be formulated. As an application, we
show that the orbit equivalence relation generated by a free R-flow can also be generated
by a free action of any non-discrete and non-compact Polish group (see Theorem 2.6).
This is in striking contrast with the actions of discrete groups, where a probability
measure-preserving free Z-action can be generated only by a free action of an amenable
group.

Section 3 does the technical work of constructing Lipschitz maps that are needed for
Theorem 3.12, which shows, roughly speaking, that, up to an arbitrarily small bi-Lipschitz
perturbation, any free Rd -flow admits an integer grid—a Borel cross-section invariant
under the Zd -action.

Finally, §4 discusses the descriptive set theoretical version of Katok’s special flow
construction and shows, in Theorem 4.3, that, indeed, any free Rd -flow can be represented
as a special flow generated by a bi-Lipschitz cocycle with Lipschitz constants arbitrarily
close to 1. This provides a Borel version of Katok’s special representation theorem.

2. Sequences of partial actions
We begin by discussing the framework of partial actions suitable for constructing orbit
equivalent actions. Throughout this section, X denotes a standard Borel space.

2.1. Partial actions. Let G be a standard Borel group, that is, a group with a structure
of a standard Borel space that makes group operations Borel. A partial G-action is a pair
(E, φ), where E is a Borel equivalence relation on X and φ : X → G is a Borel map that
is injective on each E-class: φ(x) �= φ(y), whenever xEy. More precisely, we should call
such (E, φ) a partial free action. However, as we are mainly concerned with free actions
in what follows, we choose to omit the adjective ‘free’ in the definition. The map φ itself
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Katok’s representation theorem for Borel flows 3

may occasionally be referred to as a partial action when the equivalence relation is clear
from the context.

The motivation for the name comes from the following observation. Consider the set

Aφ = {(g, x, y) ∈ G×X ×X : xEy and gφ(x) = φ(y)}.
Injectivity of φ on E-classes ensures that, for each x ∈ X and g ∈ G, there is at most one
y ∈ X such that (g, x, y) ∈ Aφ . When such a y exists, we say that the action of g on x
is defined and set gx = y. Clearly, (e, x, x) ∈ Aφ for all x ∈ X, and thus ex = x; also,
g2(g1x) = (g2g1)x whenever all the terms are defined. The set Aφ is a graph of a total
action G� X if and only if, for each x ∈ X and g ∈ G, there exists some y ∈ X such
that (g, x, y) ∈ Aφ ; in this case, the orbit equivalence relation generated by the action
coincides with E.

Example 2.1. An easy way of getting a partial action is by restricting a total one. Suppose
we have a free Borel action G� X with the corresponding orbit equivalence relation EG
and suppose that a Borel equivalence sub-relation E ⊆ EG admits a Borel selector—a
Borel E-invariant map π : X → X such that xEπ(x) for all x ∈ X. If φ : X → G is the
map specified uniquely by the condition φ(x)π(x) = x, then (E, φ) is a partial G-action.

Sub-relations E as in Example 2.1 are often associated with cross-sections of actions of
locally compact second countable (lcsc) groups.

2.2. Tessellations of lcsc group actions. Consider a free Borel action G� X of an lcsc
group. A cross-section of the action is a Borel set C ⊆ X that intersects every orbit in a
countable non-empty set. A cross-section C ⊆ X is:
• discrete if (Kx) ∩ C is finite for every x ∈ X and compact K ⊆ G;
• U-lacunary, where U ⊆ G is a neighborhood of the identity, if Uc ∩ C = {c} for all

c ∈ C;
• lacunary if it is U-lacunary for some neighborhood of the identity U; and
• cocompact if KC = X for some compact K ⊆ G.
Let C be a lacunary cross-section forG� X, which exists by [13, Corollary 1.2]. Any lcsc
group G admits a compatible left-invariant proper metric [28], and any left-invariant metric
d can be transferred to orbits owing to freeness of the action via dist(x, y) = d(g, e) for
the unique g ∈ G such that gx = y. One can now define the so-called Voronoi tessellation
of orbits by associating with each x ∈ X the closest point πC(x) ∈ C of the cross-section C,
as determined by dist. Properness of the metric ensures that, for a ball BR ⊆ G of radius R,
BR = {g ∈ G : d(g, e) ≤ R}, and, for any x ∈ X, the set C ∩ BRx is finite. Indeed, there
can be at most λ(BR+r )/λ(Br) points in the intersection, where λ is a Haar measure on
the group and r > 0 is so small that Brc ∩ Brc′ = ∅ whenever c, c′ ∈ C are distinct.

Some care needs to be taken to address the possibility of having several closest points.
For example, one may pick a Borel linear order on C and associated each x with the smallest
closest point in the cross-section (see [23, §4] or [17, §B.2] for the specifics). In this way,
we get a Borel equivalence relation EC ⊆ EG whose equivalence classes are the cells of
the Voronoi tessellation: xECy if and only if πC(x) = πC(y).
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Assumed freeness of the action G� X allows a natural identification of each Voronoi
cell with a subset of the acting group via the map π−1

C (c) 
 x �→ φC(x) ∈ G such that
φC(x)c = x, which is exactly what the corresponding partial action from Example 2.1
does.

Our intention is to use partial actions to define total actions, and the example above may
seem like going ‘in the wrong direction’. The point, however, is that once we have a partial
action φ : X → G, we can compose it with an arbitrary Borel injection f : G → G to get
a different partial action f ◦ φ. This pattern is typical in the sense that new partial actions
are often constructed by modifying those obtained as restrictions of total actions.

2.3. Convergent sequences of partial actions. A total action can be defined whenever
we have a sequence of partial actions that cohere in the appropriate sense. Let G be a
standard Borel group. A sequence (En, φn), n ∈ N, of partial G-actions on X is said to be
convergent if it satisfies the following properties.
• Monotonicity: equivalence relations En form an increasing sequence, that is, En ⊆

En+1 for all n.
• Coherence: for each n, the map x �→ (φn(x))

−1φn+1(x) is En-invariant.
• Exhaustiveness: for all x ∈ X and all g ∈ G, there exist n and y ∈ X such that xEny

and gφn(x) = φn(y).
With such a sequence, one can associate a free Borel (left) action G� X, called the limit
of (En, φn)n, whose graph is

⋃
n Aφn . Coherence ensures that the partial action defined by

φn+1 is an extension of the one given by φn. Indeed, if xEny are such that gφn(x) = φn(y),
then also xEn+1y by monotonicity, and, using coherence,

gφn+1(x) = gφn(x)(φn(x))
−1φn+1(x) = φn(y)(φn(y))

−1φn+1(y) = φn+1(y),

from which we get Aφn ⊆ Aφn+1 . If C is an En-class and s = (φn(x))
−1φn+1(x) for some

x ∈ C, then φn+1(C) = φn(C)s, so the image φn(C) gets shifted on the right inside
φn+1(C). If we want to build a right action of the group, then φn(C) should be shifted
on the left instead.

Finally, exhaustiveness guarantees that gx gets defined eventually: for all g ∈ G and
x ∈ X, there are n and y ∈ X such that (g, x, y) ∈ Aφn . It is straightforward to check that⋃
n Aφn is a graph of a total Borel actionG� X. It is equally easy to check that the action

is free, and that its orbits are precisely the equivalence classes of
⋃
n En.

This framework, general as it is, delegates most of the complexity to the construction of
maps φn. We illustrate these concepts on essentially hyperfinite actions of lcsc groups.

2.4. Hyperfinite tessellations of lcsc group actions. In the context of §2.2, suppose that,
furthermore, the restriction of the orbit equivalence relation EG onto the cross-section C
is hyperfinite, that is, there is an increasing sequence of finite Borel equivalence relations
Fn on C such that

⋃
n Fn = EG|C . We can use this sequence to define xEny whenever

πC(x)FnπC(y), which yields an increasing sequence of Borel equivalence relations En
such that EG = ⋃

n En.
The equivalence relations Fn admit Borel transversals, that is, there are Borel sets Cn

that pick exactly one point from each Fn-class. As in §2.2, we may define φn(x) to be
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an element g ∈ G such that gc = x for the unique c ∈ Cn satisfying xEnc. This gives
a convergent sequence of partial G-actions (En, φn)n whose limit is the original action
G� X.

2.5. Partial actions revisited. In practice, it is often more convenient to allow equiv-
alence relations En to be defined on proper subsets of X. Let Xn ⊆ X, n ∈ N, be Borel
subsets and suppose that, for each n, En is a Borel equivalence relation on Xn. We say that
the sequence (En)n is monotone if the following conditions are satisfied for all m ≤ n.
• Em|Xm∩Xn ⊆ En|Xm∩Xn .
• If x ∈ Xm ∩Xn, then the whole Em-class of x is in Xn.

Partial action maps φn : Xn → G, where, as earlier, G is a standard Borel group, need
to satisfy the appropriate versions of coherence and exhaustiveness.
• Coherence: Xm ∩Xn 
 x �→ (φm(x))

−1φn(x) is Em-invariant for each m < n.
• Exhaustiveness: for each x ∈ X and g ∈ G, there exist n and y ∈ Xn such that x ∈ Xn,

xEny and gφn(x) = φn(y).
A sequence of partial G-actions (Xn, En, φn)n will be called convergent if it satisfies the
above properties of monotonicity, coherence and exhaustiveness. Note that the condition⋃
n Xn = X follows from exhaustiveness, so sets Xn must cover all of X.
Convergent sequences (Xn, En, φn)n define total actions, which can be easily seen by

reducing this set-up to the notationally simpler one given in §2.3. To this end, extend En
to the equivalence relation Ên on all of X by

xÊny ⇐⇒ there exists m ≤ n xEmy or x = y,

and also extend φn to φ̂n : X → G by setting φ̂n(x) = φm(x) for the maximal m ≤ n such
that x ∈ Xm or φ̂n(x) = e if no such m exists. It is straightforward to check that (Ên, φ̂n)n is
a convergent sequence of partial G-actions in the sense of §2.3. By the limit of the sequence
of partial actions (Xn, En, φn)n we mean the limit of (Ên, φ̂n)n as defined earlier.

Remark 2.2. A variant of this generalized formulation, which we encounter in
Proposition 2.4 below, occurs when sets Xn are nested: that is, X0 ⊆ X1 ⊆ X2 ⊆ · · · .
Monotonicity of equivalence relations then simplifies to E0 ⊆ E1 ⊆ E2 ⊆ · · · and coher-
ence becomes equivalent to the En-invariant of maps Xn 
 x �→ (φn(x))

−1φn+1(x) ∈ G.

As was mentioned above, it is easy to create new partial actions simply by composing
a partial action φ : X → G with some Borel bijection f : G → G (or f : G → H , if we
choose to have values in a different group). However, an arbitrary bijection has no reason
to preserve coherence and extra care is necessary to maintain it.

Furthermore, in general, we need to apply different modifications f to different
En-classes, which naturally raises concern about how to ensure that construction is
performed in a Borel way. In applications, the modification f applied to an En-class C
usually depends on the ‘shape’ of C and the Em-classes it contains, but it does not depend
on other En-classes. If there are only countably many such ‘configurations’ of En-classes,
the resulting partial actions f ◦ φ will be Borel as long as we consistently apply the
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same modification whenever ‘configurations’ are the same. This idea can be formalized
as follows.

2.6. Rational sequences of partial actions. Let (En, φn)n be a convergent sequence of
partial actions on X. For an En-class C, let Em(C) denote the collection of Em-classes con-
tained in C. Given two En-classes C and C′, we denote by φn(C) ≡ φn(C

′) the existence
for each m ≤ n of a bijection Em(C) 
 D �→ D′ ∈ Em(C′) such that φn(D) = φn(D

′)
for all D ∈ Em(C). The collection of images {φn(D) : D ∈ ⋃

m≤n Em(C)} constitutes the
‘configuration’ of C referred to earlier.

We say that the sequence (En, φn)n of partial actions is rational if, for each n, there
exists a Borel En-invariant partition X = ⊔

k Yk such that, for each k, one has φn(C) ≡
φn(C

′) for all En-classes C, C′ ⊆ Yk .

Remark 2.3. This concept of rationality applies verbatim to convergent sequences of
partial actions (Xn, En, φn)n, as described in §2.5. One can check that such a sequence
is rational if and only if the sequence (Ên, φ̂n) is rational.

2.7. Generating the flow equivalence relation. As an application of the partial actions
formalism, we show that any orbit equivalence relation given by a free Borel R-flow can
also be generated by a free action of any non-discrete and non-compact Polish group. For
this, we need the following representation of an R-flow as a limit of partial R-actions.

PROPOSITION 2.4. Any free Borel R-flow on X can be represented as a limit of a
convergent rational sequence of partial R-actions (Xn, En, φn)n such that:
(1) both Xn and En are increasing: X0 ⊆ X1 ⊆ · · · and E0 ⊆ E1 ⊆ · · · (see

Remark 2.2);
(2) each En+1-class contains finitely many En-classes;
(3) each E0-class has cardinality of continuum; and
(4) for each En+1-class C, the set C \Xn has cardinality of continuum.

Proof. Any R-flow admits a rational (−4, 4)-lacunary cross-section (see [24, §2]), which
we denote by C. Rationality of the cross-section here means that the distance between any
two points of C is a rational number. More generally, rationality of a cross-section C for
an Rd -action means that r ∈ Qd whenever c + r = c′ for some c, c′ ∈ C. Let (EC , φC) be
the partial R-action as defined in §2.2. If D is an EC-class, then φC(D) is an interval. For
ε > 0, let Dε consist of those x ∈ D such that φC(x) is at least ε away from the boundary
points of φC(D). In other words, Dε is obtained by shrinking the class D by ε from each
side.

The restriction of the orbit equivalence relation onto C is hyperfinite. This fact is true in
the much wider generality of actions of locally compact Abelian groups [4]. Specifically
for R-flows, E|C is generated by the first return map—a Borel automorphism of C that
sends a point in C to the next one according to the order of the R-flow. The first return
map is well defined and is invertible, except for the orbits, where C happens to have
the maximal or the minimal point. The latter part of the space evidently admits a Borel
selector and is, therefore, smooth; hence, it won’t affect hyperfiniteness of the equivalence
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relation. It remains to recall the standard fact that orbit equivalence relations of Z-actions
are hyperfinite (see, for example, [6, Theorem 5.1]), and thus so is the restriction E|C .

In particular, we can represent the R-flow as the limit of a convergent sequence of
partial actions (E′

n, φ′
n)n, as described in §2.4. Note that (E′

n, φ′
n)n is necessarily rational

by rationality of C. Such a sequence satisfies items (2) and (3), but fails (4). We fix this
by shrinking equivalence classes to achieve proper containment. Let (εn)n be a strictly
decreasing sequence of positive reals such that 1 > ε0 and limn εn = 0. Put X′

n = ⋃
Dεn ,

where the union is taken over all EC-classes D. Note that sets X′
n fail to cover X, because

the boundary points of any EC-class do not belong to any of X′
n. Put Y = X \ ⋃

n X
′
n and

let Xn = X′
n ∪ Y . Clearly, (Xn)n is an increasing sequence of Borel sets and

⋃
n Xn = X.

Finally, set En = E′
n|Xn and φn : Xn → R to be φ′

n|Xn . The sequence (Xn, En, φn)n of
partial R-actions satisfies the conditions of the proposition.

All non-smooth orbit equivalence relations produced by free Borel R-flows are Borel
isomorphic to each other [14, Theorem 3]. Theorem 2.6 shows that this orbit equivalence
relation can also be generated by a free action of any non-compact and non-discrete Polish
group.

Let G be a group. We say that a set A ⊆ G admits infinitely many disjoint right
translates if there is a sequence (gn)n of elements of G such that Agm ∩ Agn = ∅ for
all m �= n.

LEMMA 2.5. Let G be a non-compact Polish group. There exists a neighborhood of the
identity V ⊆ G such that, for any finite F ⊆ G, the set VF admits infinitely many disjoint
right translates.

Proof. We begin with the following characterization of compactness established indepen-
dently by Solecki [27, Lemma 1.2] and Uspenskij [29]: a Polish group G is non-compact if
and only if there exists a neighborhood of the identity U ⊆ G such that F1UF2 �= G

for all finite F1, F2 ⊆ G. Let V ⊆ G be a symmetric neighborhood of the identity
such that V 2 ⊆ U . We claim that such a set V has the desired property. Pick a finite
F ⊆ G, set g0 = e and choose gn inductively as follows. Let F1 = F−1 and
F2,n = F · {gk : k < n}. The defining property of U ensures existence of gn �∈ F1UF2,n.
Translates (V Fgn)n are then pairwise disjoint, because if VFgm ∩ VFgn �= ∅ for m < n,
then gn ∈ F−1V −1VFgm ⊆ F1UF2,n, which contradicts the construction.

THEOREM 2.6. Let E be an orbit equivalence relation given by a free Borel R-flow on X.
Any non-discrete, non-compact Polish group G admits a free Borel action G� X such
that EG = E.

Proof. Let (Xn, En, φn)n be a convergent sequence of partial R-actions, as in
Proposition 2.4, and let V ⊆ G be given by Lemma 2.5. Choose a countable dense (hn)n
in G so that

⋃
n V hn = G. Since the sequence of partial R-actions is rational, one may

pick, for each n, a Borel En-invariant partition Xn = ⊔
k Yn,k such that φn(C) ≡ φn(C

′)
for all En-classes C, C′ ⊆ Yn,k . We construct a convergent sequence of partial G-actions
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(Xn, En, ψn)n such that, for each n and k, there exists a finite set F ⊆ G such that
{hi : i < n} ⊆ F and ψn(C) = VF for all En-classes C ⊆ Yn,k .

For any E0-class C, both φ0(C) ⊆ R and V ⊆ G are Borel sets of the same cardinality.
Therefore, we may pick a Borel bijection fk : φ0(C) → V , whereC ⊆ Y0,k . For the base of
the inductive construction, we set ψ0|Yk = fk ◦ φ0. Suppose that ψm : Xm → G, m ≤ n,
have been constructed.

We now construct ψn+1. Let C be an En+1-class and let D1, . . . , Dl be a complete
list of En-classes contained in C. By the inductive assumption, there are finite sets
F1, . . . , Fl ⊆ G such that ψn(Di) = VFi . Let F̃ = ⋃

i≤l Fi . By the choice of V, there
are elements g1, . . . , gl ∈ G such that V F̃gi are pairwise disjoint for 1 ≤ i ≤ l. Pick a
finite F ⊆ G large enough so that F̃ gi ⊆ F , {hi : i < n+ 1} ⊆ F and VF \ ⋃

i≤l V F̃ gi
has cardinality of continuum (the latter can be achieved, for example, by ensuring that
one more disjoint translate of V F̃ is inside VF ). Note that φn+1(C \Xn) = φn+1(C) \⋃
i≤l φn+1(Di) has cardinality of continuum by the properties guaranteed by Proposition

2.4. Pick any Borel bijection

f : φn+1(C) \
⋃
i≤l

φn+1(Di) → VF \
⋃
i

ψn(Di)gi

and define ψn+1 by the conditions ψn+1|Di = ψn|Di · gi and ψn+1|C\⋃i≤l Di = f ◦ φn+1.
As in the base case, the same modification f works for all En+1-classes C, C′ such that
φn+1(C) ≡ φn+1(C

′), which ensures Borelness of the construction.
It is now easy to check that (Xn, En, ψn)n is a convergent sequence of partial G-actions,

and hence its limit is a free Borel action G� X such that EG = E.

Remark 2.7. Theorem 2.6 highlights the difference with actions of discrete groups, since
a free Borel Z-action that preserves a finite measure cannot be generated by a free
Borel action of a non-amenable group (see, for example, [32, Proposition 4.3.3] or [10,
Proposition 2.5(ii)]).

However, if we consider hyperfinite equivalence relations without any finite invariant
measures, then we do have the analog for Z-actions. There exists a unique up to iso-
morphism, non-smooth, hyperfinite Borel equivalence relation without any finite invariant
measures and it can be realized as an orbit equivalence relation of a free action of any
infinite countable group [6, Proposition 11.2].

3. Lipschitz maps
Our goal in this section is to prove Theorem 3.12, which shows that any free Borel Rd -flow
is bi-Lipschitz orbit equivalent to a flow with an integer grid. Sections 3.1–3.3 build
the necessary tools to construct such an orbit equivalence. Verification of the Lipschitz
conditions stated in the lemmas within these sections is straightforward and routine.
Therefore, we omit the arguments for brevity.

Recall that a map f : X → Y between metric spaces (X, dY ) and (Y , dY ) is K-Lipschitz
if dY (f (x1), f (x2)) ≤ KdX(x1, x2) for all x1, x2 ∈ X, and it is (K1, K2)-bi- Lipschitz if f
is injective, K2-Lipschitz and f−1 is K−1

1 -Lipschitz, which can equivalently be stated as

K1dX(x1, x2) ≤ dY (f (x1), f (x2)) ≤ K2dX(x1, x2) for all x1, x2 ∈ X.
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The Lipschitz constant of a Lipschitz map f is the smallest K with respect to which f is
K-Lipschitz.

3.1. Linked sets. Given two Lipschitz maps f : A → A′ and g : B → B ′ that agree
on the intersection A ∩ B, the map f ∪ g : A ∪ B → A′ ∪ B ′, in general, may not be
Lipschitz. The following condition is sufficient to ensure that f ∪ g is Lipschitz with the
Lipschitz constant bounded by the maximum of the constants of f and g.

Definition 3.1. Let (X, d) be a metric space and let A, B ⊆ X be its subsets. We say
that A and B are linked if, for all x ∈ A and y ∈ B, there exists z ∈ A ∩ B such that
d(x, y) = d(x, z)+ d(z, y).

LEMMA 3.2. Let (X, d) be a metric space, let f : A → A′, g : B → B ′ be K-Lipschitz
maps between subsets of X and suppose that f |A∩B = g|A∩B . If A and B are linked, then
f ∪ g : A ∪ B → A′ ∪ B ′ is K-Lipschitz.

Recall that a metric space (X, d) is geodesic if, for all points x, y ∈ X, there exists
a geodesic between them—an isometry τ : [0, d(x, y)] → X such that τ(0) = x and
τ(d(x, y)) = y. For geodesic metric spaces, closed sets A, B ⊆ X are always linked
whenever the boundary of one of them is contained in the other. The boundary of a set
A will be denoted by ∂A and int A will stand for the interior of A.

LEMMA 3.3. Suppose that (X, d) is a geodesic metric space. If A, B ⊆ X are closed and
satisfy ∂A ⊆ B, then A and B are linked.

3.2. Inductive step. The following lemma encompasses the inductive step in the con-
struction of the forthcoming Theorem 3.12.

LEMMA 3.4. Let (X, d) be a geodesic metric space and let A ⊆ X be a closed set.
Suppose that (Ai)ni=1 are pairwise disjoint closed subsets of A and hi : Ai → Ai are
(K1, K2)-bi-Lipschitz maps such that hi |∂Ai is the identity map for each 1 ≤ i ≤ n. The
map g : A → A given by

g(x) =
{
hi(x) if x ∈ Ai ,
x otherwise

is (K1, K2)-bi-Lipschitz.

3.3. Lipschitz shifts. Let (X, ‖·‖) be a normed space and letA ⊆ X be a closed bounded
subset. We begin with the following elementary and well-known observation regarding
Lipschitz perturbations of the identity map.

LEMMA 3.5. If ξ : A → X is a K-Lipschitz map, K < 1, then A 
 x �→ x + ξ(x) ∈ X is
(1 −K , 1 +K)-bi-Lipschitz.
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For the rest of §3.3, we fix a vector v ∈ X and a realK > ‖v‖. Let the function fA,K ,v :
A → X be given by

fA,K ,v(x) = x + d(x, ∂A)
K

v,

where d(x, ∂A) denotes the distance from x to the boundary of A. This function (as well as
its variant, which will be introduced shortly) is (1 −K−1‖v‖, 1 +K−1‖v‖)-bi-Lipschitz.
To simplify the notation, we set α+ = 1 +K−1‖v‖ and α− = 1 −K−1‖v‖.

LEMMA 3.6. The function fA,K ,v is an (α−, α+)-bi-Lipschitz homeomorphism onto A.

Fix a real L > 0 and let AL = {x ∈ A : d(x, ∂A) ≥ L} be the set of those elements that
are at least L units of distance away from the boundary of A.

LEMMA 3.7. fA,K ,v|AL = fAL,K ,v + LK−1v and fA,K ,v(A
L) = AL + LK−1v.

A truncated shift function hA,K ,v,L : A → X is defined by

hA,K ,v,L(x) =
{
fA,K ,v(x) for x ∈ A \ AL,

x + LK−1v for x ∈ AL.

LEMMA 3.8. The function hA,K ,v,L is an (α−, α+)-bi-Lipschitz homeomorphism onto A.

3.4. Lipschitz equivalence to grid flows. The maps hA,K ,v,L can be used to show that
any free Borel Rd -flow is bi-Lipschitz equivalent to a flow admitting an integer grid.
This is the content of Theorem 3.12, but first we formulate the properties of partial
actions needed for the construction. This is an adaption of the so-called unlayered toast
construction announced in [8]. The proof given in [18, Appendix A] for Zd -actions
transfers to Rd -flows.

For the rest of the paper, we fix a norm ‖ · ‖ on Rd and let d(x, y) = ‖x − y‖ be the
corresponding metric on Rd . Recall that BR(r) ⊆ Rd denotes a closed ball of radius R
centered at r ∈ Rd .

LEMMA 3.9. Let K > 0 be a positive real. Any free Rd -flow on a standard Borel space
X is a limit of a rational convergent sequence of partial actions (Xn, En, φn)n (see §2.5)
such that, for each En-class C:
(1) φn(C) is a closed and bounded subset of Rd and BK(0) ⊆ φn(C);
(2) the set of Em-classes, m ≤ n, contained in C is finite; and
(3) d(φn(D), ∂φn(C)) ≥ K for any Em-class D such that D ⊆ C.

Before outlining the proof, we need to introduce some notation. Let E1, . . . , En
be equivalence relations on X1, . . . , Xn, respectively. By E1 ∨ · · · ∨ En we mean the
equivalence relation E on

⋃
i≤n Xi generated by Ei , that is, xEy whenever there exist

x1, . . . , xm and, for each 1 ≤ i ≤ m, there exists 1 ≤ j (i) ≤ n such that x1 = x, xm = y

and xiEj(i)xi+1 for all 1 ≤ i < m.
If E is an equivalence relation on Y ⊆ X and K > 0, we define the relation E+K

on Y+K = {x ∈ X : dist(x, y) ≤ K for some y ∈ Y } by x1E
+Kx2 if and only if there
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are y1, y2 ∈ Y such that dist(x1, y1) ≤ K , dist(x2, y2) ≤ K and y1Ey2. Note that, in
general, E+K may not be an equivalence relation if two E-classes get connected after
the ‘fattening’. However, E+K is an equivalence relation if dist(C1, C2) > 2K holds for
all distinct E-classes C1, C2.

Proof of Lemma 3.9. One starts with a sufficiently fast-growing sequence of radii an (for
example, an = K1000n+1 is fast enough) and by choosing using [3] (see also [18, Lemma
A.2]) a sequence of Borel Ban(0)-lacunary cross-sections Cn ⊆ X such that

for all x ∈ X for all ε > 0 there exists ∞n such that dist(x, Cn) < εan, (1)

where dist(x, Cn) = inf{dist(x, c) : c ∈ Cn} and there exists ∞ stands for ‘there exist
infinitely many’. We may assume, without loss of generality, that cross-sections Cn are
rational in the sense that if c1 + r = c2 for some c1, c2 ∈ ⋃

n Cn, then r ∈ Qd . This can
be achieved by moving elements of Cn by an arbitrarily small amount (see [24, Lemma
2.4]), which maintains the property given in equation (1). Rationality of cross-sections
guarantees that the sequence of partial actions constructed below is rational.

One now defines Xn and En inductively with the base X0 = C0 + Ba0/10(0) and with
xE0y if and only if there is c ∈ C0 such that x, y ∈ c + Ba0/10(0). For the inductive step,
begin with X̃n = Cn + Ban/10(0) and Ẽn being given analogously to the base case: xẼny
if and only if there is some c ∈ Cn such that dist(x, c) ≤ an/10 and dist(y, c) ≤ an/10.
Set E′

n = Ẽn ∨ E+K
n−1 ∨ · · · ∨ E+K

0 and let X′
n = X̃n ∪ ⋃n−1

i=0 X
+K
i be the domain of E′

n.
Finally, letXn be the E′

n-saturation of X̃n, that is, x ∈ Xn if and only if there exists y ∈ X̃n
such that xE′

ny. Put En = E′
n|Xn .

An alternative description of anEn-class is as follows. We start with an Ẽn-class Cn and
join it first with all E+K

n−1-classes D that intersect Cn. Let the resulting Ẽn ∨ E+K
n−1-class

be denoted by Cn−1. Next, we add all E+K
n−2-classes that intersect Cn−2 to produce an

Ẽn ∨ E+K
n−1 ∨ E+K

n−2-class Cn−2. The process terminates with an En-class C0.
It is easy to check inductively that the diameter of any En-class C satisfies diam(C) ≤

an/3 and, therefore, dist(C1, C2) ≥ an/3 � 2K for all distinct En-classes C1, C2 by the
lacunarity of Cn. The latter shows that E+K

n is an equivalence relation on X+K
n .

Monotonicity of the sequence (Xn, En)n is evident from the construction. Equation (1)
is crucial for establishing the fact that

⋃
n Xn = X. Indeed, for each x ∈ X, there exists

some n such that dist(x, Cn) < an/10 and thus also x ∈ X̃n ⊆ Xn.
The maps φn : Xn → Rd , needed to specify partial Rd -actions, are defined by the con-

dition φn(x)c = x for the unique c ∈ Cn such that cEnx. Note that d(φn(D), ∂φn(C)) ≥ K

for any Em-class D, m < n, that is contained in an En-class C is a consequence of the fact
that D+K ⊆ C by the construction. Therefore, the convergent sequence of partial actions
(Xn, En, φn)n satisfies the desired properties.

Let F1 and F2 be free Rd -flows on X that generate the same orbit equivalence relation,
EF1 = EF2 , and let ρ = ρF1,F2 : Rd ×X → Rd be the associated cocycle map, defined
for x ∈ X and r ∈ Rd by the condition x +2 r = x +1 ρ(r , x). We say that the cocycle ρ
is (K1, K2)-bi-Lipschitz if such is the map ρ( · , x) : Rd → Rd for all x ∈ X: that is,

K1‖r2 − r1‖ ≤ ‖ρ(r2, x)− ρ(r1, x)‖ ≤ K2‖r2 − r1‖. (2)
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Since ρ(r2, x)− ρ(r1, x) = ρ(r2 − r1, x +1 r1), Lipschitz condition (2) for a cocycle can
be equivalently and more concisely stated as

K1 ≤ ‖ρ(r , x)‖
‖r‖ ≤ K2 for all x ∈ X and r ∈ Rd \ {0}. (3)

Remark 3.10. Note that cocycles ρF1,F2 and ρF2,F1 are connected via the identities

ρF1,F2(ρF2,F1(r , x), x) = r and ρF2,F1(ρF1,F2(r , x), x) = r .

In particular, if ρF1,F2 is (K1, K2)-bi-Lipschitz, then ρF2,F1 is (K−1
2 , K−1

1 )-bi-Lipschitz.

Definition 3.11. Let F be a free Rd -flow on X. An integer grid for the flow F is a
Zd -invariant Borel subset Z ⊆ X whose intersection with each orbit of the flow is
a Zd -orbit. In other words, Z + Rd = X, Z + Zd = Z and z1 + Zd = z2 + Zd for all
z1, z2 ∈ Z such that z1EFz2.

Not every flow admits an integer grid, but, as the following theorem shows, each flow is
bi-Lipschitz equivalent to the one that does.

THEOREM 3.12. Let F1 be a free Borel Rd -flow on X. For any α > 1, there exists a free
Borel Rd -flow F2 on X that admits an integer grid, induces the same orbit equivalence as
does F1, that is,EF1 = EF2 , and whose associated cocycle ρF1,F2 is (α−1, α)-bi-Lipschitz.

Proof. Let R be so big that the ball BR(0) ⊆ Rd satisfies Zd + BR(0) = Rd . Choose
K > 0 large enough to ensure that α− = 1 −K−1R > α−1 and, therefore, also that
α+ = 1 +K−1R < α. Let (Xn, En, φn)n be a rational convergent sequence of partial
actions produced by Lemma 3.9 for the chosen value of K. For an En-class C, let C′
denote the collection of all x ∈ C that are at least K-distance away from the boundary of
C: that is,

C′ = {x ∈ C : d(φn(x), ∂φn(C)) ≥ K}.
If D is an Em-class such that D ⊆ C, then item (3) of Lemma 3.9 guarantees the
inclusion D ⊆ C′. Let X′

n = ⋃
C′, where the union is taken over all En-classes C, and

set E′
n = En|X′

n
, φ′

n = φn|X′
n
. Note that (X′

n, E′
n, φ′

n)n is a rational convergent sequence
of partial actions whose limit is the flow F1. The flow F2 will be constructed as the
limit of partial actions (X′

n, E′
n, ψn), where maps ψn will be defined inductively and

will satisfy ψn(C′) = φn(C
′) for all En-classes C. The sets Zn = ψ−1

n (Zd) will satisfy
Zm ∩X′

n ⊆ Zn for m ≤ n, and Z = ⋃
n Zn will be an integer grid for F2.

For the base of the construction, set ψ0 = φ′
0 and Z0 = ψ−1

0 (Zd). Next, consider
a typical E1-class C with D1, . . . , Dl being a complete list of E0-classes contained
in it (see Figure 1). Consider the set Z̃C′ = φ−1

1 (Zd) ∩ C′, which is the integer grid
inside C′ (marked by dots in Figure 1). Each of the Di-classes comes with the grid
Z̃D′

i
= ψ−1

0 (Zd) ∩D′
i constructed at the previous stage (depicted by crosses in Figure 1).

The coherence condition for partial actions guarantees existence of some si ∈ Rd , i ≤ l,
such that

φ1(D
′
i ) = φ0(D

′
i )+ si = ψ0(D

′
i )+ si .
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K C

C′

D1
D2

FIGURE 1. Construction of the integer grid.

In general, the grid Z̃C′ does not contain Z̃D′
i
, but, for each i ≤ l, we can find a

vector vi ∈ Rd of norm ‖vi‖ ≤ R such that Z̃D′
i
+1 vi ⊆ Z̃C′ . More precisely, we take

for vi any vector in BR(0) such that si + vi ∈ Zd , which exists by the choice of R. Let
hi : φ1(Di) → φ1(Di) be the function hφ1(Di),K ,vi ,K , which is (α−, α+)-bi-Lipschitz by
Lemma 3.8. Finally, define g1 : φ1(C

′) → φ1(C
′) to be

g1(r) =
{
hi(r) if r ∈ φ1(Di),

r otherwise.

Lemma 3.4 has been tailored specifically to show that g1 is (α−, α+)-bi-Lipschitz. We set
ψ1|C′ = g1 ◦ φ1|C′ . Note that

ψ1(D
′
i ) = g1 ◦ φ1(D

′
i ) = hi ◦ φ1(D

′
i ) = φ1(D

′
i )+KK−1vi

= φ0(D
′
i )+ si + vi = ψ0(D

′
i )+ si + vi ,

(4)

which validates coherence and, in view of si + vi ∈ Zd , gives ψ−1
1 (Zd) ∩D′

i =
ψ−1

0 (Zd) ∩D′
i for all i ≤ l.

Although we have provided the definition of ψ1 on a single E1-class C, the same
construction can be done in a Borel way across all E1-classes C using rationality of
the sequence of partial actions in the same way as we did in Theorem 2.6. If we let
Z1 = ψ−1

1 (Zd), then Z0 ∩X1 ⊆ Z1 by equation (4).
The general inductive step is analogous. Suppose that we have constructed maps ψk for

k ≤ n. An En+1-class C contains finitely many subclasses D1, . . . , Dl , where Di is an
Emi -class, mi < n and no Di is contained in a bigger Em-class for some mi < m < n. By
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coherence and the inductive assumption, there exist si ∈ Rd , i ≤ l, such that

φn+1(D
′
i ) = φmi (D

′
i )+ si = ψmi (D

′
i )+ si .

Choose vectors vi ∈ BR(0) to satisfy si + vi ∈ Zd , set hi : φn+1(Di) → φn+1(Di) to be
hφn+1(Di),K ,vi ,K and define an (α−, α+)-bi-Lipschitz function gn+1 by

gn+1(r) =
{
hi(r) if r ∈ φn+1(Di),

r otherwise.

Finally, set ψn+1|C′ = gn+1 ◦ φn+1|C′ and extend this definition to a Borel map ψn+1 :
X′
n+1 → Rd using the rationality of the sequence of partial actions. Coherence of the maps

(ψk)k≤n+1 and the inclusion Zm ∩X′
n+1 ⊆ Zn+1 form ≤ n+ 1 follow from the analog of

equation (4).
It remains to check the bi-Lipschitz condition for the resulting cocycle ρF1,F2 . It is easier

to work with the cocycle ρF2,F1 , which, for x, x + r ∈ X′
n, satisfies

ρF2,F1(r , x) = gn(φn(x)+ r)− gn(φn(x)),

and is therefore (α−, α+)-bi-Lipschitz, because so is gn. Hence, ρF2,F1 is also
(α−1, α)-bi-Lipschitz, because α−1 < α− < α+ < α by the choice of K. Finally, we
apply Remark 3.10 to conclude that ρF1,F2 is also (α−1, α)-bi-Lipschitz.

By restricting the action of F2 onto the integer grid Z, we get the following corollary.

COROLLARY 3.13. Let F be a free Borel Rd -flow on X. For any α > 1, there exist
a cross-section Z ⊆ X and a free Zd -action T on Z such that the cocycle ρ = ρF,T :
Zd ×X → Rd given by Tnx = x + ρ(n, x) is (α−1, α)-bi-Lipschitz.

4. Special representation theorem
The main goal of this section is to formulate and prove a Borel version of Katok’s special
representation theorem [12] that connects free Rd -flows with free Zd -actions. We have
already done most of the work in proving Theorem 3.12, and it is now a matter of defining
special representations in the Borel context and connecting them to our earlier set-up.

4.1. Cocycles. Given a Borel actionG� X, a (Borel) cocycle with values in a group H
is a (Borel) map ρ : G×X → H that satisfies the cocycle identity: that is,

ρ(g2g1, x) = ρ(g2, g1x)ρ(g1, x) for all g1, g2 ∈ G and x ∈ X.

We are primarily concerned with the Abelian groups Zd and Rd in this section, so
the cocycle identity will be written additively. A cocycle ρ : G×X → H is said to be
injective if ρ(g, x) �= eH for all g �= eG and all x ∈ X, where eG and eH are the identity
elements of the corresponding groups. Furthermore, suppose that the groups G and H are
locally compact. We say that ρ escapes to infinity if, for all x ∈ X, limg→∞ ρ(g, x) = +∞
in the sense that, for any compact KH ⊆ H , there exists a compact KG ⊆ G such that
ρ(g, x) �∈ KH whenever g �∈ KG.
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Example 4.1. Suppose that aH : H � X and aG : G� Y , Y ⊆ X, are free actions of
groups G and H on standard Borel spaces, and suppose that we have containment
of orbit equivalence relations EG ⊆ EH . For each y ∈ Y and g ∈ G, there exists a
unique ρaH ,aG(g, y) ∈ H such that aH (ρaH ,aG(g, y), y) = aG(g, y). The map (g, y) �→
ρaH ,aG(g, y) is an injective Borel cocycle. We have already encountered two instances of
this idea in §3.4.

4.2. Flow under a function. Borel R-flows and Z-actions are tightly connected through
the ‘flow under a function’ construction. Let T : Z → Z be a free Borel automorphism
of a standard Borel space and let f : Z → R>0 be a positive Borel function. There is a
natural definition of a flow F : R � X on the space X = {(z, t) : z ∈ Z, 0 ≤ t < f (z)}
under the graph of f . The action (z, t)+ r for a positive r is defined by shifting the point
(z, t) by r units upwards until the graph of f is reached, jumping to the point (T z, 0) and
then continuing to flow upwards until the graph of f at T z is reached, etc. More formally,

(z, t)+ r =
(
T kz, t + r −

k−1∑
i=0

f (T iz)

)

for the unique k ≥ 0 such that
∑k−1
i=0 f (T

iz) ≤ t + r <
∑k
i=0 f (T

iz). For r ≤ 0, the
action is defined by ‘flowing backward’, that is,

(z, t)+ r =
(
T −kz, t + r +

k∑
i=1

f (T −iz)
)

for k ≥ 0 such that 0 ≤ t + r + ∑k
i=1 f (T

−iz) < f (T −kz). The action is well defined
provided that the fibers within the orbits of T have infinite cumulative lengths: that is,

∞∑
i=0

f (T iz) = +∞ and
∞∑
i=0

f (T −iz) = +∞ for all z ∈ Z. (5)

The appealing geometric picture of the ‘flow under a function’ does not generalize to
higher dimensions, but it admits an interpretation as the so-called special flow construction
suggested in [12].

4.3. Special flows. Let T be a free Zd -action on a standard Borel space Z and let ρ :
Zd × Z → Rd be a Borel cocycle. One can construct a Zd -action T̂ , the so-called principal
Rd -extension, defined on Z × Rd via T̂n(z, r) = (Tnz, r + ρ(n, z)). An easy application
of the cocycle identity verifies axioms of the action. Although the action T will, typically,
have complicated dynamics, the action T̂ admits a Borel transversal as long as the cocycle
ρ escapes to infinity.

LEMMA 4.2. If the cocycle ρ satisfies limn→∞ ‖ρ(n, z)‖ = +∞ for all z ∈ Z, then the
action T̂ has a Borel transversal.

Proof. Let Yk = {(z, r) ∈ Z × Rd : ‖r‖ ≤ k}. We claim that each orbit of T̂ intersects
Yk in a finite (possibly empty) set. Indeed, cocycle values escaping to infinity yield, for
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any (z, r) ∈ Z × Rd , a number N so large that ‖r + ρ(n, z)‖ > k whenever ‖n‖ ≥ N .
In particular, ‖n‖ ≥ N implies that T̂n(z, r) = (Tnz, r + ρ(n, z)) �∈ Yk . Hence, the inter-
section of the orbit of (z, r) with Yk is finite.

Set Y = ⊔
k∈N(Yk \ ⋃

n∈Zd T̂nYk−1). Each orbit of T̂ intersects Y in a finite and
necessarily non-empty set, so E

T̂
|Y is a finite Borel equivalence relation. A Borel

transversal for E
T̂
|Y is also a transversal for the action of T̂ .

Now, we assume that the cocycle ρ satisfies the assumptions of Lemma 4.2 and X =
(Z × Rd)/E

T̂
, therefore, carries the structure of a standard Borel space as a push-forward

of the factor map π : Z × Rd → X, which sends a point to its E
T̂

-equivalence class.
There is a natural Rd -flow F̂ on Z × Rd , which acts by shifting the second coordinate:

(z, r)+F̂ s = (z, r + s). This flow commutes with the Zd -action T̂ and, therefore, projects
onto the flow F on X given by the condition π((z, r)+F̂ s) = π(z, r)+F s. We say that F
is the special flow over T generated by the cocycle ρ. Freeness of T implies freeness of F.

The construction outlined above works just as well in the context of ergodic theory,
where the space Z would be endowed with a finite measure ν preserved by the action T.
The product of ν with the Lebesgue measure on Rd induces a measure μ on X, which is
preserved by the flow F. Furthermore, μ is finite provided the cocycle ρ is integrable in
the sense of [12, Condition (J), pp. 122]. Katok’s special representation theorem asserts
that, up to a null set, any free ergodic measure-preserving flow can be obtained via this
process. Furthermore, the cocycle can be picked to be bi-Lipschitz with Lipschitz constants
arbitrarily close to 1.

As will be shown shortly, such a representation result continues to hold in the framework
of descriptive set theory, and every free Borel Rd -flow is Borel isomorphic to a special flow
over some free Borel Zd -action. Moreover, just as in Katok’s original work, Theorem 4.3
provides some significant control on the cocycle that generates the flow, tightly coupling
the dynamics of the Zd -action with the dynamics of the flow it produces. But, first, we
re-interpret the construction in different terms.

4.4. Flows generated by admissible cocycles. Let the mapZ 
 z �→ (z, 0) ∈ Z × {0} be
denoted by ι. If the cocycle ρ is injective, then π ◦ ι : Z → π(Z × {0}) = Y is a bijection
and Y intersects every orbit of F in a non-empty countable set. The Zd -action T on Z
can be transferred via π ◦ ι to give a free Zd -action T ′ = π ◦ ι ◦ T ◦ ι−1 ◦ π−1 on Y. Let
ρ′ = ρT ′,F : Zd × Y → Rd be the cocycle of the action π ◦ ι ◦ T ◦ ι−1 ◦ π−1: that is,

T ′
n(y) = (π ◦ ι ◦ Tn ◦ ι−1 ◦ π−1)(y) = y +F ρ

′(n, y) for all n ∈ Zd and y ∈ Y . (6)

If y = (π ◦ ι)(z) for z ∈ Z, then equation (6) translates into

π(Tnz, 0) = π(z, ρ′(n, y)).

Since π(Tnz, 0) = π(z, ρ(−n, Tnz)) = π(z, −ρ(n, z)), we conclude that ρ′(n, y) =
−ρ(n, z), where y = (π ◦ ι)(z). In particular, Y is a discrete cross-section for the flow
F precisely because ρ escapes to infinity.
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Conversely, if F is any free Rd -flow on a standard Borel space X and if Z ⊆ X is a
discrete cross-section with a Zd -action T on it, then F is isomorphic to the special flow
over T generated by the (necessarily injective) cocycle −ρT ,F.

We say that a cocycle ρ is admissible if it is both injective and escapes to infinity.
The discussion of the above two paragraphs can be summarized by saying that, up to
a change of sign in the cocycles, representing a flow as a special flow generated by an
admissible cocycle is the same thing as finding a free Zd -action on a discrete cross-section
of the flow.

For instance, given any free Zd -action T on Z, we may consider the admissible cocycle
ρ(n, z) = −n for all z ∈ Z and n ∈ Zd . The set Y = π(Z × {0}) is then an integer grid
for the flow F (in the sense of Definition 3.11). Conversely, any flow that admits an integer
grid is isomorphic to a special flow generated by such a cocycle.

4.5. Special representation theorem. Restriction of the orbit equivalence relation of any
Rd -flow onto a cross-section gives a hyperfinite equivalence relation [10, Theorem 1.16],
and therefore can be realized as an orbit equivalence relation by a free Borel Zd -action
(as long as the restricted equivalence relation is aperiodic). Since any free flow admits a
discrete (in fact, lacunary) aperiodic cross-section, it is isomorphic to a special flow over
some action generated by some cocycle. In general, however, the structure of the Zd -orbit
and the corresponding orbit of the flow have little to do with each other. Theorem 3.12 and
Corollary 3.13 allow us to improve on this and find a special representation generated by a
bi-Lipschitz cocycle.

For comparison, Katok’s theorem [12] can be formulated in the parlance of this section
as follows.

THEOREM. (Katok) Pick some α > 1. Any free ergodic measure-preserving Rd -flow
on a standard Lebesgue space is isomorphic to a special flow over a free ergodic
measure-preserving Zd -action generated by an (α−1, α)-bi-Lipschitz cocycle.

As is the case with all ergodic theoretical results, isomorphism is understood to hold up
to a set of measure zero. We conclude with a Borel version of Katok’s special representa-
tion theorem, which holds for all free Borel Rd -flows and establishes isomorphism on all
orbits.

THEOREM 4.3. Pick some α > 1. Any free Borel Rd -flow is isomorphic to a special flow
over a free Borel Zd -action generated by an (α−1, α)-bi-Lipschitz cocycle.

Proof. Let F be a free Borel Rd -flow on X. Corollary 3.13 gives a cross-sectionZ ⊆ X and
a Zd -action T on it such that the cocycle ρF,T : Zd ×X → Rd is (α−1, α)-bi-Lipschitz.
By the discussion in §4.4, this gives a representation of the flow as a special flow over T
generated by the cocycle −ρF,T , which is also (α−1, α)-bi-Lipschitz.
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