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[30] J. Azzam, Poincaré inequalities and uniform rectifiability, Rev. Mat. Iberoam.
37 (2021), 2161–2190.

[31] J. Azzam, Semi-uniform domains and the A∞ property for harmonic measure,
Int. Math. Res. Not. IMRN (2021), 6717–6771.

[32] J. Azzam and D. Dabrowski, An α-number characterization of Lp spaces on
uniformly rectifiable sets, arXiv:2009.10111.

[33] J. Azzam, G. David and T. Toro, Wasserstein distance and the rectifiability of
doubling measures: Part I, Math. Ann. 364 (2016), 151–224.

[34] J. Azzam, G. David and T. Toro, Wasserstein distance and the rectifiability of
doubling measures: part II, Math. Z. 286 (2017), 861–891.

[35] J. Azzam, S. Hofmann, J. M. Martell, S. Mayboroda, M. Mourgoglou, X. Tolsa
and A. Volberg, Rectifiability of harmonic measure, Geom. Funct. Anal. 26
(2016), 703–728.

Published online by Cambridge University Press



References 151

[36] J. Azzam, S. Hofmann, J. M. Martell, M. Mourgoglou and X. Tolsa, Harmonic
measure and quantitative connectivity: geometric characterization of the Lp-
solvability of the Dirichlet problem, Invent. Math. 222 (2020), 881–993.

[37] J. Azzam and M. Hyde, The weak lower density condition and uniform rectifia-
bility, arXiv:2005.02030.

[38] J. Azzam, M. Mourgoglou and X. Tolsa, A two-phase free boundary problem
for harmonic measure and uniform rectifiability, Comm. Pure. Appl. Math. 70
(2017), 2121–2163.

[39] J. Azzam, M. Mourgoglou, X. Tolsa and A. Volberg, On a two-phase problem for
harmonic measure in general domains, Amer. J. Math. 141 (2019), 1259–1279.

[40] J. Azzam and R. Schul, Hard Sard: quantitative implicit function and extension
theorem for Lipschitz maps, Geom. Funct. Anal. 22 (2012), 1062–1123.

[41] J. Azzam and R. Schul, An analyst’s traveling salesman theorem for sets of di-
mension larger than one, Math. Ann. 370 (2018), 1389–1476.

[42] J. Azzam and X. Tolsa, Characterization of n-rectifiability in terms of Jones’
square function: Part II, Geom. Funct. Anal. 25 (2015), 1371–1412.

[43] J. Azzam, X. Tolsa and T. Toro, Characterization of rectifiable measures in terms
of α-numbers, Trans. Amer. Math. Soc. 373 (2020), 7991–8037.

[44] J. Azzam and M. Villa, Quantitative comparisons of multiscale geometric prop-
erties, Anal. PDE 14 (2021), 1873–1904.

[45] M. Badger, Generalized rectifiability of measures and the identification problem,
Complex Anal. Synerg. 5 (2019), Paper No. 2, 17 pp. Correction ibid Paper No.
11.

[46] M. Badger, S. Li and S. Zimmerman, Identifying 1-rectifiable measures in
Carnot groups, arXiv:2109.06753.

[47] M. Badger and L. Naples, Radon measures and Lipschitz graphs, Bull. Lond.
Math. Soc. 53 (2021), 921–936.

[48] M. Badger, L. Naples and V. Vellis, Hölder curves and parameterizations in the
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and Sobolev spaces, Manuscripta Math. 118 (2005), 383–397.
[70] E. Bombieri, E. De Giorgi and E. Giusti, Minimal cones and the Bernstein prob-

lem, Invent. Math. 7 (1969), 243–268.
[71] A. Bonfiglioli, E. Lanconelli and F. Uguzzoni, Stratified Lie Groups and Po-

tential Theory for Their Sub-Laplacians, Springer Monographs in Mathematics,
2007.

[72] S. V. Borodachov, D. P. Hardin and E. B. Saff, Asymptotics for discrete weighted
minimal Riesz energy problems on rectifiable sets, Trans. Am. Math. Soc. 360
(2008), 1559–1580.

[73] S. V. Borodachov, D. P. Hardin and E. B. Saff, Low complexity methods for
discretizing manifolds via Riesz energy minimization, Found. Comput. Math. 14
(2014), 1173–1208.

[74] S. V. Borodachov, D. P. Hardin and E. B. Saff, Discrete Energy on Rectifiable
Sets, Springer Monographs in Mathematics. Springer, 2019.

[75] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna Garcia and K. Nyström, Coroniza-
tions and big pieces in metric spaces, arXiv:2008.11544.

[76] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna Garcia and K. Nyström, The corona
decomposition for parabolic uniformly rectifiable sets, arXiv:2103.12497.

[77] S. Bortz, J. Hoffman, S. Hofmann, J. L. Luna Garcia and K. Nyström, Parabolic
singular integrals with nonhomogeneous kernels, arXiv:2103.12830.

[78] S. Bortz and O. Tapiola, ε-approximability of harmonic functions in Lp implies
uniform rectifiability, Proc. Amer. Math. Soc. 147 (2019), 2107–2121.

Published online by Cambridge University Press



References 153

[79] J. Bourgain, On the Hausdorff dimension of harmonic measure in higher dimen-
sion, Invent. Math. 87 (1987), 477–483.

[80] K. A. Brakke, The motion of a surface by its mean curvature, Mathematical
Notes, 20. Princeton University Press, 1978.

[81] J. E. Brothers, The (ϕ, k) rectifiable subsets of a homogeneous space, Acta Math.
122 (1969), 197–229.

[82] E. Brue, A. Naber and D. Semola, Boundary regularity and stability for spaces
with Ricci bounded below, arXiv:2011.08383.

[83] E. Brue, E. Pasqualetto and D. Semola, Rectifiability of the reduced boundary
for sets of finite perimeter over RCD(K,N) spaces, arXiv:1909.00381, to appear
in J. Eur. Math. Soc.

[84] E. Brue, E. Pasqualetto and D. Semola, Rectifiability of RCD(K,N) spaces via
δ-splitting maps, Ann. Fenn. Math. 46 (2021), 465–482.

[85] A. Calderón, Cauchy integrals on Lipschitz curves and related operators, Proc.
Nat. Acad. Sci. U.S.A. 74 (1977), 1324–1327.

[86] M. Cao, P. Hidalgo-Palencia and J. M. Martell, Carleson measure estimates,
corona decompositions, and perturbation of elliptic operators without connec-
tivity, arXiv:2202.06363.

[87] L. Capogna, D. Danielli, S. D. Pauls and J. T. Tyson, An Introduction to the
Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Birkhäuser,
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[197] K. Fässler and T. Orponen, Singular integrals on regular curves in the Heisen-
berg group, J. Math. Pures Appl. 153 (2021), 30–113.
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