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A NOTE ON LONG-TERM OPTIMAL PORTFOLIOS
UNDER DRAWDOWN CONSTRAINTS

JUN SEKINE,∗ Kyoto University

Abstract

The maximization of the long-term growth rate of expected utility is considered under
drawdown constraints. In a general situation, the value and the optimal strategy
of the problem are related to those of another ‘standard’ risk-sensitive-type portfolio
optimization problem. Furthermore, an upside-chance maximization problem of a large
deviation probability is stated as a ‘dual’ optimization problem. As an example, a ‘linear-
quadratic’ model is studied in detail: the conditions to ensure the solvabilities of the
problems are discussed and explicit expressions for the solutions are presented.
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1. Introduction

Consider a financial market consisting of a bank account and n risky assets. Let S0 be the
bank account process and S := (S1, . . . , Sn)�, where ‘�’ denotes the transpose of a vector or a
matrix, the price process of the n risky assets, both of which are modelled on (�, F , P, (Ft )t≥0),
a complete probability space endowed with a filtration satisfying the usual conditions. Assume
that S0 is an adapted, continuous, nondecreasing process starting at S0

0 = 1, and that S is a
continuous semimartingale such that Si > 0 for all i, 1 ≤ i ≤ n. Now consider an investor
whose wealth process is governed by the equation

dX
α,π
t =

n∑
i=1

(X
α,π
t − αS0

t M̃
α,π
t )πi

t

dSi
t

Si
t

+
{(

1 −
n∑

i=1

πi
t

)
(X

α,π
t − αS0

t M̃
α,π
t ) + αS0

t M̃
α,π
t

}
dS0

t

S0
t

,

X
α,π
0 = x,

(1.1)

with x > 0, α ∈ [0, 1), and M̃
α,π
t := maxs∈[0,t] Xα,π

s /S0
s , which was introduced and studied

in the interesting papers [8] and [5]. Here π := (π1, . . . , πn)� is a progressively measurable
process such that

n∑
i,j=1

∫ T

0
πi

t π
j
t

d〈Si, Sj 〉t
Si

t S
j
t

< ∞ and
n∑

i=1

∫ T

0
|πi

t |
dS0

t

S0
t

< ∞,

almost surely, for any T > 0, (1.2)
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and represents the trading strategy of the investor as explained below. We denote by 〈·, ·〉 the
quadratic covariance process. Recalling that, by the product rule,

X̃
α,π
t := X

α,π
t

S0
t

and S̃i
t := Si

t

S0
t

respectively satisfy

dX̃
α,π
t = dX

α,π
t

S0
t

− X
α,π
t dS0

t

(S0
t )2

and
dS̃i

t

S̃i
t

= dSi
t

Si
t

− dS0
t

S0
t

,

we rewrite (1.1) as

dX̃
α,π
t = (X̃

α,π
t − αM̃

α,π
t )

n∑
i=1

πi
t

dS̃i
t

S̃i
t

,

X̃
α,π
0 = x.

Its unique (adapted) solution is given by

X̃
α,π
t = x

[
(1 − α) exp

{
Lπ

t − α max
s∈[0,t] L

π
s

}
+ α exp

{
(1 − α) max

s∈[0,t] L
π
s

}]
, (1.3)

where

Lπ
t :=

n∑
i=1

∫ t

0
πi

s

dS̃i
s

S̃i
s

− 1

2

n∑
i,j=1

∫ t

0
πi

sπ
j
s

d〈S̃i , S̃j 〉s
S̃i

s S̃
j
s

, (1.4)

which satisfies the relation

M̃
α,π
t = x exp

{
(1 − α) max

s∈[0,t] L
π
s

}
. (1.5)

These facts were observed in the appendix of [5], using a unique solution to the Skorokhod
equation associated with the continuous process Lπ (see Lemma 3.6.14 of [13], for example).
We thus see, from (1.3) and (1.5), that

X
α,π
t − αS0

t M̃
α,π
t = (1 − α)xS0

t exp
{
Lπ

t − α max
s∈[0,t] L

π
s

}
> 0;

in other words, the drawdown constraint

P(X
α,π
t > αS0

t M̃
α,π
t for all t ∈ [0, ∞)) = 1 (1.6)

is always satisfied. Equation (1.1) now states that the investor

• starts with the initial capital x > 0

and, at time t ,

• invests a proportion πi
t of the difference X

α,π
t − αS0

t M̃
α,π
t in the ith risky asset and

• keeps the remainder, (1 − ∑n
i=1 πi

t )(X
α,π
t − αS0

t M̃
α,π
t ) + αS0

t M̃
α,π
t , in the bank.
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Here recall that the strategy is self-financing, i.e.

n∑
i=1

πi
t (X

α,π
t − αS0

t M̃
α,π
t ) +

{(
1 −

n∑
i=1

πi
t

)
(X

α,π
t − αS0

t M̃
α,π
t ) + αS0

t M̃
α,π
t

}
= X

α,π
t ,

and that it allows short-sellings, i.e. the proportion πi
t ∈ R can take negative values.

For an investor having the wealth process (1.1) with the drawdown constraint (1.6), the
authors of [8] and [5] treated the following maximization problem for the long-term growth
rate of the expected utility of wealth:

�α(γ ) := sup
π∈A

lim
T →∞

1

T
log E(X

α,π
T )γ . (1.7)

Here γ ∈ (0, 1/(1 − α)) and A is the totality of progressively measurable processes whose
element π := (πt )t≥0 satisfies (1.2). In particular, using special models, they gave explicit
solutions to the problems considered. The authors of [8] treated the Black–Scholes economy in
which the risk-free interest rate of the bank account is a constant and the single risky asset price
process is given by a one-dimensional lognormal diffusion with one-dimensional Brownian
motion and constant coefficients. Furthermore, the authors of [5] treated a generalized situation
in which the risk-free interest rate is deterministic and the multidimensional risky asset price
processes are defined by an n-dimensional lognormal stochastic differential equation with n-
dimensional Brownian motion and deterministic coefficients.

In this paper, we aim to extend their results for more general models of the processes S0 and S.
Indeed, under the setting we have prepared, and introducing another optimization problem,

�α(γ ) := sup
π∈A

lim
T →∞

1

T
log E(S0

T e(1−α)Lπ
T )γ , (1.8)

we obtain the following theorem.

Theorem 1.1. Let α ∈ [0, 1) and γ ∈ (0, 1/(1 − α)) be given. Assume that �(·)(γ ) is upper
semicontinuous on the left at α if α > 0 and �α(γ ) < ∞. Then

�α(γ ) = �α(γ ). (1.9)

Furthermore, a strategy is optimal for the problem (1.7) if it is optimal for the problem (1.8),
and a strategy π̂ ∈ A attains the maximum for (1.7) with a limit

�α(γ ) = lim
T →∞

1

T
log E(X

α,π̂
T )γ (1.10)

if it attains the maximum for (1.8) with a limit

�α(γ ) = lim
T →∞

1

T
log E(S0

T e(1−α)Lπ̂
T )γ . (1.11)

Remark 1.1. Let α ∈ [0, 1) be given. We can consider another problem,

�α(k) := sup
π∈A

lim
T →∞

1

T
log P(X

α,π
T ≥ ekT ), (1.12)
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i.e. the maximization problem of the large deviation probability of beating the target growth
rate k ∈ R in the long run. For α = 0, such a problem was introduced in [17] and [18]
and studied via the ‘dual’ optimization problem (1.7) or (1.8). For nonzero α, we can assert
the following ‘dual’ characterization of the large deviation control problem (1.12), tracing the
proof of Theorem 3.1 of [18].

Suppose, for any γ ∈ (0, γ ), γ > 0, that there exists an optimal strategy

π̂α(γ ) := (π̂α(t, γ ))t≥0 ∈ A

for (1.7), establishing (1.10) with π̂ := π̂α(γ ). Suppose also that �α ∈ C1((0, γ̄ )), where
C1(A) denotes the space of continuously differentiable functions with (generic) domain A.
Define Iα : (�′

α(0+), �′
α(γ−)) → (0, γ ) to be the inverse of �′

α(·)|(0,γ ), i.e. Iα(�′
α(d)) = d.

Here �′
α(γ ) := (d/dγ )�α(γ ). Then

�α(k) = − sup
γ∈(0,γ )

{γ k − �α(γ )} (1.13)

for all k < �′
α(γ−), and the sequence of controls (π̂ [k,n])n∈N defined by

π̂
[k,n]
t := π̂α(t, Iα((k ∨ �′

α(0+)) + 1/n)) (1.14)

is nearly optimal, i.e.

lim
n→∞ lim

T →∞
1

T
log P(X

α,π̂ [k,n]
T ≥ ekT ) = �α(k) for k < �′

α(γ−).

Here note that extra effort is required to solve (1.12): a regularity of the ‘dual’value function
�α(·) is necessary along with its solvability on a certain interval (0, γ̄ ), and, actually, to
determine the maximal interval in the effective domain, Dα := {γ > 0 : �α(γ ) < ∞}, is a
rather complicated problem (see Remark 2.3 and Theorem 2.4 and the statements immediately
before it).

Remark 1.2. Remark 1.1 states that the investor can determine the risk-averse parameter Iα(k∨
�′

α(0+)) in (1.7) by choosing the target growth rate k in (1.12) to maximize the upside-chance
probability of beating the target growth rate k in an asymptotic way.

On the other hand, the investor can control the downside-risk of the portfolio wealth
process (1.1) in (1.7) or (1.12) by choosing α ∈ [0, 1) suitably. Suppose, for example, that
at time 0 the investor monitors the future losses, (−(X

α,π
t − xS0

t ))t≥0, of the portfolio wealth
process using the risk measure

ρ0(−(Xα,π − xS0)) := sup{EQ((S0
τ )−1{−(Xα,π

τ − xS0
τ )}) : Q ∈ P }

= x − inf{EQ(X̃α,π
τ ) : Q ∈ P },

where P is a given set of probability measures on (�, F ), EQ denotes expectation with respect
to Q, and τ denotes the stopping time. Risk measures such as ρ0(·) for processes possess
important ‘coherent’ properties; see [1] or [4], for example. (Here we comment only on the
risk measurement at time 0. Conditions should be imposed on the set P when we consider a
time-consistent monitoring of the risk; see [1] and [4].) From the above expression, we see that

ρ0(−(Xα,π − xS0)) ≤ (1 − α)x,

where we use (1.6) and the fact that M̃α,π is nondecreasing. This implies that the investor can
control the upper bound of (the risk of) the future losses by selecting α ∈ [0, 1).
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As a consequence of Theorem 1.1, in solving (1.7) it is crucial to investigate the solvability
of (1.8). Furthermore, in solving (1.12) we need to check the regularity of the value function
�(·)(·). The problem (1.8), or its variation

inf
π

lim
T →∞

1

T
log E(S0

T e(1−α)Lπ
T )γ , γ < 0, (1.15)

is included in risk-sensitive-type portfolio optimization problems, which have been studied by
several authors by analysing the associated Bellman equations with Markovian models; see [2],
[12], [16], and the references therein, for example. We note that there are different difficulties
in the analyses of the respective situations in which γ < 0 and γ > 0. For the former case,
conditions to ensure the solvabilities of the Bellman equations and the optimization problems
were provided in [12] and [16] in a fairly general Markovian setting. However, these conditions
are not applicable in the latter case, and to the best of the author’s knowledge no such general
results have been obtained in that case.

In the next section, we consider an example of a model in which S0 has stochastic interest
rates and S has stochastic mean return rates which we assume to have ‘linear-quadratic’
structures in order to discuss the solvabilities. In such a situation, this reduces to discussing the
solvability of the related algebraic Riccati equation. It is sufficient to show the existence of its
stabilizing solution (see Theorem 2.1), and this existence is always ensured on a certain interval,
J ×(0, γ̄ ), in the parameter space {(α, γ ) ∈ [0, 1)×(0, 1/(1−α))}, under certain assumptions
(see (2.1)–(2.3), Theorem 2.3, and Corollary 2.1). Moreover, we can give an ‘almost’necessary
and sufficient condition for the solvability of (1.8) if the ‘stochastic factor’ is one-dimensional
(see Theorem 2.4).

All the proofs of the results of Section 1 and Section 2 are collected in Section 3, and in
Section 4 we conclude.

2. A ‘linear-quadratic’ example

In this section, we work in the following setting. Let (�, F , P, (Ft )t≥0) be a filtered
probability space with an augmented Brownian filtration generated by the (m+n)-dimensional
Brownian motion w := (w1, . . . , wm+n)

�, and suppose that S0 and S are described by

dS0
t = S0

t r(Yt )dt, S0
0 = 1,

dSt = diag(St ){µ(Yt )dt + σ(Yt )dw(t)}, S0 ∈ R
n+, (2.1)

dYt = λ(Yt )dt + η(Yt )dw(t), Y0 ∈ R
m,

using the m-dimensional stochastic factor process Y , which affects the mean return rate, µ(Yt ),
of S, the volatility, σ(Yt ), of S, and the risk-free interest rate, r(Yt ), of S0. Here diag(x) denotes
the diagonal n × n matrix whose (i, i)th element is component xi of x := (x1, . . . , xn)�. In
particular, we assume that

r(y) := r0 + r�
1 y + 1

2y�r2y,

µ(y) := r(y)1 + θ(y), θ(y) := θ0 + θ1y,

λ(y) := λ0 + λ1y,

η(y) ≡ η0,

σ (y) ≡ σ0,

(2.2)
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where 1 := (1, . . . , 1)� ∈ R
n, r0 ∈ R, r1, λ0 ∈ R

m, θ0 ∈ R
n, r2, λ1 ∈ R

m×m, θ1 ∈ R
n×m,

η0 ∈ R
m×(m+n), and σ0 ∈ R

n×(m+n). Thus,

r2 is symmetric and nonnegative definite,

λ1 is stable, and σ0σ
�
0 and η0η

�
0 are positive definite.

(2.3)

Here a matrix is called stable if all of its eigenvalues lie in the open left-hand half-plane.
With a linear Gaussian stochastic factor process and a quadratic Gaussian interest rate process

in this model, we study the solvability of problem (1.8) using a dynamic programming approach.
Start with the finite time horizon problem

V 0 := sup
π∈AT

log E(S0
T e(1−α)Lπ

T )γ , (2.4)

for a given T > 0. Here AT is a space of admissible trading strategies prescribed below. For
π ∈ AT , recall that

S0
t e(1−α)Lπ

t =
[
E

(∫
π�σ0 dw

)
t

exp

{∫ t

0

(
r(Yu)

1 − α
+ π�

u θ(Yu)

)
du

}]1−α

,

where we use the notation E(Z) := (E(Z)t )t≥0, E(Z)t := eZt−(1/2)〈Z〉t , for the stochastic
exponential of a continuous semimartingale Z. We see that

(S0
T e(1−α)Lπ

T )γ = E

(
δ

∫
π�σ0 dw

)
T

exp

{
δ

∫ T

0
�(Yt , πt ) dt

}
, (2.5)

where
δ ≡ δ(α, γ ) := (1 − α)γ, (2.6)

�(y, p) := 1

1 − α
r(y) + θ(y)�p − 1 − δ

2
|σ�

0 p|2.

So, with

AT :=
{
π = (πt )t∈[0,T ] : π is n-dimensional and progressively measurable,

∫ T

0
|πt |2 dt < ∞, and E E

(
δ

∫
π�σ0 dw

)
T

= 1

}
,

∂y(·) := (∂y1(·), . . . , ∂yn(·))�, and ∂yy(·) := (∂yiyj
(·))1≤i≤m, 1≤j≤m, we deduce the Bellman

dynamic programming equation

−∂tv = 1
2 {Tr(η0η

�
0 ∂yyv) + |η�

0 ∂yv|2} + sup
π∈Rn

{(λ(y) + δη0σ
�
0 π)�∂yv + δ�(y, π)},

v(T , y) = 0
(2.7)

for the value process

V t := ess sup
π∈At,T

log E(δπ)

(
exp

{
δ

∫ T

t

�(Yu, πu) du

} ∣∣∣∣ Ft

)
.
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Here At,T is the restriction of A to the time interval [t, T ] and E(δπ) denotes the expectation
with respect to the probability measure P(δπ) on (�, FT ) defined by

dP(δπ)

dP

∣∣∣
Ft

:= E

(
δ

∫
π�σ0dw

)
t

.

The maximizer, π̌(t, y), in (2.7) is given by

π̌(t, y) := 1

1 − δ
(σ0σ

�
0 )−1{θ(y) + σ0η

�
0 ∂yv},

so we can rewrite (2.7) as

−∂tv = 1
2 {Tr(η0η

�
0 ∂yyv) + |η�

0 ∂yv|2} + λ(y)�∂yv

+ δ

2(1 − δ)
|σ�

0 (σ0σ
�
0 )−1{θ(y) + σ0η

�
0 ∂yv}|2 + γ r(y),

v(T , y) = 0,

that is,
−∂tv = 1

2 Tr(η0η
�
0 ∂yyv) + 1

2 (∂yv)�η0R̂
−1η�

0 ∂yv + a(y)�∂yv + b(y),

v(T , y) = 0,
(2.8)

where we define functions

a(y) := λ(y) + δ

1 − δ
η0σ

�
0 (σ0σ

�
0 )−1θ(y) = d̂ + Ây,

b(y) := γ r(y) + δ

2(1 − δ)
θ(y)�(σ0σ

�
0 )−1θ(y) = f̂ + ê�y + 1

2
y�Ĉy,

and matrices, vectors, and a constant

Â ≡ Â(α, γ ) := λ1 + δ

1 − δ
η0σ

�
0 (σ0σ

�
0 )−1θ1,

R̂ ≡ R̂(α, γ ) :=
(

I + δ

1 − δ
σ�

0 (σ0σ
�
0 )−1σ0

)−1

,

Ĉ ≡ Ĉ(α, γ ) := γ r2 + δ

1 − δ
θ�

1 (σ0σ
�
0 )−1θ1,

d̂ ≡ d̂(α, γ ) := λ0 + δ

1 − δ
η0σ

�
0 (σ0σ

�
0 )−1θ0,

ê ≡ ê(α, γ ) := γ r1 + δ

1 − δ
θ�

1 (σ0σ
�
0 )−1θ0,

f̂ ≡ f̂ (α, γ ) := γ r0 + δ

1 − δ
θ�

0 (σ0σ
�
0 )−1θ0.

(2.9)

Here I denotes the identity matrix of appropriate dimension. The ergodic-type Bellman equation
associated with the infinite time horizon problem (1.8) is now deduced as the limit equation
of (2.8) as T − t → ∞, by assuming that v(t, y) ∼ χ(T − t) + ξ(y), ∂tv(t, y) → −χ ,
∂yv(t, y) → ∇ξ(y), and ∂yyv(t, y) → ∇∇ξ(y), as T − t → ∞, where χ is some constant
and ξ(·) is twice differentiable. We deduce that

χ = 1
2 Tr(η0η

�
0 ∇∇ξ) + 1

2 (∇ξ)�η0R̂
−1η�

0 ∇ξ + a(y)�∇ξ + b(y) (2.10)
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or, equivalently, that

χ = 1
2 {Tr(η0η

�
0 ∇∇ξ) + |η�

0 ∇ξ |2} + max
π∈Rn

{(λ(y) + δη0σ
�
0 π)�∇ξ + δ�(y, π)}, (2.11)

recalling that the maximizer is

π̌(t, y) := 1

1 − δ
(σ0σ

�
0 )−1{θ(y) + (σ0η

�
0 )∇ξ(y)}.

Indeed, from a suitable solution, (χ̂ , ξ̂ ) ∈ R × C2(Rm), to the ergodic-type Bellman
equation (2.10), where C2(A) denotes the space of twice-continuously differentiable functions
with (generic) domain A, we can construct a solution to problem (1.8). That is, letting

π̂t := π̄(t, Yt ), where π̄(t, y) := 1

1 − δ
(σ0σ

�
0 )−1{θ(y) + (σ0η

�
0 )∇ ξ̂ (y)}, (2.12)

we have

�α(γ ) = χ̂ < ∞ and π̂ ∈ A given by (2.12) is optimal for (1.8). (2.13)

Before stating our result, we recall some notions about matrix-valued algebraic Riccati
equations of the form

A�Q + QA + QBR−1B�Q + C = 0, (2.14)

where A, C ∈ R
m×m, B ∈ R

m×l , R ∈ R
l×l , and C and R are symmetric. A real, symmetric

solution, Q, to (2.14) is called stabilizing if A + BR−1B�Q is stable. It can be shown that the
stabilizing solution is uniquely determined if it exists. (See Theorem 5 of [20] or Theorem 23.4
of [3]. For an extensive treatment of algebraic Riccati equations, we refer the reader to [15],
for example.) We denote the stabilizing solution by

Ric

(
A BR−1B�

−C −A�
)

,

following convention, since the solution has been well studied through analysis of the associated
Hamiltonian matrix, (

A BR−1B�
−C −A�

)
.

Let

Ĥ ≡ Ĥ (α, γ ) :=
(

Â η0R̂
−1η�

0
−Ĉ −Â�

)
, (2.15)

where the notation is as defined in (2.9). We obtain the following theorem.

Theorem 2.1. Assume that (2.1)–(2.3) hold and recall the definitions in (2.6) and (2.9). Let
(α, γ ) ∈ [0, 1) × (0, 1/(1 − α)) be given. Suppose that there exists a Q̂ := Ric Ĥ > 0. Let
q̂ ∈ R

m satisfy
(Â + η0R̂

−1η�
0 Q̂)�q̂ + Q̂d̂ + ê = 0

and set

χ̂ := 1
2Tr(η0η

�
0 Q̂) + 1

2 q̂�η0R̂
−1η�

0 q̂ + d̂�q̂ + f̂ ,

ξ̂ (y) := q̂�y + 1
2y�Q̂y.

(2.16)

The pair (χ̂ , ξ̂ ) ∈ R × C2(Rm) solves (2.10) and can be used to construct a solution to
problem (1.8), i.e. (2.13) holds. Furthermore, the optimal strategy, π̂ , satisfies (1.11).
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Remark 2.1. The results for Black–Scholes-type models with constant coefficients can be
recovered. Assuming that (2.1)–(2.3) hold, let r1 = 0, r2 = λ1 = 0, and θ1 = 0 (so Â = Ĉ = 0
and ê = 0). Trivially, (χ̂ , ξ̂ ) := (f̂ , 0) solves (2.10) and (2.13) follows.

The following necessary and sufficient condition to ensure the existence of

Ric

(
A BR−1B�

−C −A�
)

is useful for our study.

Theorem 2.2. (Theorem 5 of [20].) Assume that the pair (A, B) ∈ R
m×m × R

m×l is control-
lable, i.e. that rank[B, AB, . . . , Am−1B] = m. Define

F(s) := R − B�(−isI − A�)−1C(isI − A)−1B,

G(s) := B�(−isI − A�)−1(isI − A)−1B,

for s ∈ R. Then

Ric

(
A BR−1B�

−C −A�
)

exists if and only if F(s) ≥ εG(s) for all s ∈ R and some ε > 0.

With the help of the condition in Theorem 2.2, rewritten to apply in our setting, we obtain
the following result.

Theorem 2.3. Assume that (2.1)–(2.3) hold.

1. Let
R̃ ≡ R̃(α, γ ) := (η0η

�
0 )−1η0R̂η�

0 (η0η
�
0 )−1 (2.17)

and define, for s ∈ R,

N̂(s) ≡ N̂(s; α, γ ) :=
(

s2R̃ + (Â�R̃Â − Ĉ) s(Â�R̃ − R̃Â)

−s(Â�R̃ − R̃Â) s2R̃ + (Â�R̃Â − Ĉ)

)

=
(

sI Â�
−Â� sI

) (
R̃ 0
0 R̃

) (
sI −Â

Â sI

)
−

(
Ĉ 0
0 Ĉ

)
. (2.18)

Then Ric Ĥ exists if N̂(s) ≥ εI for all s ∈ R and some ε > 0, and is positive definite if Â is
stable.

2. For any given α0 ∈ [0, 1), there exist an interval J � α0 (J := (α, α) or J := [0, α),
0 ≤ α < α < 1) and a γ̄ > 0 such that Ric Ĥ (α, γ ) > 0 exists for any (α, γ ) ∈ J × [0, γ̄ ).

We can summarize Theorems 1.1, 2.1, and 2.3.2 and Remark 1.1 as follows.

Corollary 2.1. Assume that (2.1)–(2.3) hold. Let α ∈ [0, 1) be given. Then there exists a
γ̄ > 0 such that problems (1.7) and (1.8) can be solved for any γ ∈ (0, γ̄ ). In particular,
with (2.9) and (2.16), �α(γ ) = �α(γ ) = χ̂ and the strategy π̂ ∈ A is optimal for both (1.7)
and (1.8), with respective limits (1.10) and (1.11). Furthermore, problem (1.12) can be solved
for any target growth rate k < �′

α(γ̄−). The ‘duality relation’ (1.13) holds and a nearly
optimal strategy can be constructed using (1.14).
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Remark 2.2. Assertions essentially equivalent to those of Theorem 2.1 and Theorem 2.3.2 were
obtained in Theorem 4.6 of [7] (see [6] also), with a different proof, though they treat the α = 0
case and there are some minor differences in the models. The authors of [7] derived the assertions
through a detailed study of the properties of the solution to the ergodic Bellman equation (2.10)
(or (2.11)) using a constrained set of trading strategies, {π ∈ A : |πt | ≤ c for all t ≥ 0}, and
relaxing the constraint by letting c ↑ ∞. On the other hand, we directly obtained Theorem 2.3
from linear algebraic arguments (see the proof of Theorem 2.3 (in Section 3), which depends on
Theorem 2.2 (i.e. Theorem 5 of [20])). For other related calculations (with α = 0), we refer the
reader to [11] and [14]. The latter employs a model similar to ours and succeeds in providing
interesting γ -independent conditions to ensure the solvability of (1.15) for γ < 0, though they
are not applicable for γ > 0, which is our case.

Theorem 2.1 implies that showing the existence of Q̂ := Ric Ĥ > 0 is sufficient for
constructing the optimal portfolio in (1.8). Combining this with Theorem 2.3, we observe that
D̃α ⊂ Dα , where

Dα :=
{
γ ∈

(
0,

1

1 − α

)
: �α(γ ) < ∞

}
,

D̃α :=
{
γ ∈

(
0,

1

1 − α

)
: N̂(s; α, γ ) ≥ εI for all s ∈ R and some ε > 0,

and Â(α, γ ) is stable

}
.

On the other hand, it still looks unclear in general that the existence of Q̂, which is real,
symmetric, stabilizing, and positive, is necessary in solving (1.8). If we consider the m = 1
case, then the algebraic Riccati equation is nothing but a quadratic equation, allowing us to
discuss the necessity of Q̂’s existence. We obtain the following theorem.

Theorem 2.4. Assume that (2.1)–(2.3) hold and that m = 1. Let α ∈ [0, 1) be given. The set
D̃α can be written as

D̃α =
{
γ ∈

(
0,

1

1 − α

)
: D̂(α, γ ) > 0 and Â(α, γ ) < 0

}
, (2.19)

where
D̂ ≡ D̂(α, γ ) := [Â2 − (η0R̂

−1η�
0 )Ĉ](α, γ ). (2.20)

Moreover, we have D̃α ⊂ Dα ⊂ Cl(D̃α), where Cl denotes the closure of its argument in
(0, 1/(1 − α)).

Remark 2.3. Actually, we can obtain the exact form of the set D̃α and determine the maximal
interval (0, γ̄ ) included in it, by analysing the boundary behaviour of �′

α(γ̄−) for solving (1.12).
For this, we refer the reader to [9], [10], [17], [18], and [19], for example.

3. Proofs

3.1. Proof of Theorem 1.1

The proof is along the lines of that of Theorem 5.1 of [5], with minor generalizations. First,
recall that �α(γ ), �α(γ ) > −∞. Indeed, 0 ∈ A satisfies

lim
T →∞

1

T
log E(X

α,0
T )γ = lim

T →∞
1

T
log E(xS0

T )γ ≥ 0.
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Next we see, in the α = 0 case, that the assertion of the theorem is trivial from the expres-
sions (1.3) and (1.4). Now let α ∈ (0, 1). For a given α1 ∈ (0, α] and π := (πt )t≥0 ∈ A,
define

�
(α,α1;π)
t := (X̃

α,π
t − α1M̃

α,π
t )(M̃

α,π
t )α1/(1−α1) (3.1)

and let �
α,π
t := �

(α,α;π)
t . We deduce that

d�
(α,α1;π)
t = (M̃

α,π
t )α1/(1−α1)dX̃

α,π
t

= �
(α,α1;π)
t

n∑
i=1

(
X̃

α,π
t − αM̃

α,π
t

X̃
α,π
t − α1M̃

α,π
t

)
πi

t

dS̃i
t

S̃i
t

, (3.2)

where we use Itô’s formula and the relations (X̃
α,π
t − α1M̃

α,π
t ) dM̃

α,π
t = 0 and X̃

α,π
t −

α1M̃
α,π
t > 0. Rewrite (3.1) as

�
(α,α1;π)
t = (X̃

α,π
t )1/(1−α1)fα1

(
α1M̃

α,π
t

X̃
α,π
t

)
, (3.3)

where we define, for α ∈ (0, 1),

fα(x) := (1 − x)

(
x

α

)α/(1−α)

,

which is decreasing on (α, ∞). Here note that

α1 ≤ α1M̃
α,π
t

X̃
α,π
t

≤ α1

α
a.e. (t, ω). (3.4)

Letting α1 = α, we now see, from (3.1)–(3.4), that

(1 − α)x1/(1−α)eLπ
t = �

α,π
t ≤ (X̃

α,π
t )1/(1−α)fα(α),

where Lπ
t is as defined in (1.4). We thus deduce that

(1 − α)(1−α)γ xγ (S0
T e(1−α)Lπ

T )γ ≤ (X
α,π
T )γ {fα(α)}α, (3.5)

which implies that �α(γ ) ≤ �α(γ ). In particular, if �α(γ ) = ∞ then �α(γ ) = �α(γ ) = ∞.
We next show the reverse inequality, assuming that �α(γ ) < ∞ and that �(·)(γ ) is upper

semicontinuous on the left at α, as follows. Let α1 ∈ (0, α) be sufficiently close to α. From (3.3)
and (3.4), we see that

(�
(α,α1;π)
T )(1−α1)γ (S0

T )γ ≥ (X
α,π
T )γ

{
fα1

(
α1

α

)}(1−α1)γ

. (3.6)

Here we note that fα1(α1/α) > 0. Write

ρi
t ≡ ρi

t (α, α1; π) :=
(

X̃
α,π
t − αM̃

α,π
t

X̃
α,π
t − α1M̃

α,π
t

)
πi

t (3.7)
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for i = 1, . . . , n and ρt := (ρ1
t , . . . , ρn

t )�. Note that

n∑
i,j=1

∫ T

0
ρi

t ρ
j
t

d〈Si, Sj 〉t
Si

t S
j
t

≤
n∑

i,j=1

∫ T

0
πi

t π
j
t

d〈Si, Sj 〉t
Si

t S
j
t

< ∞ almost surely

and that
n∑

i=1

∫ T

0
|ρi

t |
dS0

t

S0
t

≤
n∑

i=1

∫ T

0
|πi

t |
dS0

t

S0
t

< ∞ almost surely;

thus, ρ ∈ A. We deduce that

sup
π∈A

lim
T →∞

1

T
log E((�

(α,α1;π)
T )(1−α1)γ (S0

T )γ ) = sup
π∈A

lim
T →∞

1

T
log E(S0

T e(1−α1)L
ρ(α,α1;π)

T )γ

≤ �α1(γ ), (3.8)

where we use (3.1), (3.2), (3.7), and the fact that ρ(α, α1; π) ∈ A for all π ∈ A. Com-
bining (3.6) and (3.8), �α1(γ ) ≥ �α(γ ) follows for any α1 ∈ (0, α). We hence obtain
�α(γ ) ≥ limα1↑α �α1(γ ) ≥ �α(γ ).

Furthermore, suppose that π̂ ∈ A is optimal for (1.9). We see that

�α(γ ) = �α(γ ) = lim
T →∞

1

T
log E(S0

T e(1−α)Lπ̂
T )γ ≤ lim

T →∞
1

T
log E(X

α,π̂
T )γ ,

where we use (3.5) with π = π̂ . Therefore, π̂ is optimal also for (1.8).
Finally, suppose that π̂ ∈ A satisfies (1.12). We then deduce that

lim
T →∞

1

T
log E(X

α,π̂
T )γ = �α(γ ) = �α(γ ) = lim

T →∞
1

T
log E(S0

T e(1−α)Lπ̂
T )γ

≤ lim
T →∞

1

T
log E(X

α,π̂
T )γ ,

where we use the optimality of π̂ for (1.8) and the relations (1.10), (1.12), and (3.5) with π = π̂ .
Therefore, (1.11) follows.

3.2. Proof of Theorem 2.1

In this subsection, we assume both that (2.1)–(2.3) always hold and the existence of Q̂ :=
Ric Ĥ (α, γ ) > 0 for a given (α, γ ) ∈ [0, 1) × (0, 1/(1 − α)), where we use (2.15).

The following result is straightforward.

Lemma 3.1. The pair (χ̂ , ξ̂ ) ∈ R × C2(Rm) given by (2.16) solves (2.8).

Proof. The proof follows from direct computations.

Remark 3.1. From the stabilizing property of Q̂ and the P̂-ergodicity of (3.12), stated below,
the following uniqueness of (χ̂ , ξ̂ ) can be established: if (χ̂ , ξ) ∈ R × C2(Rm) and ξ(0) = 0
solves (2.8), then ξ ≡ ξ̂ . See Theorem 1 of [12].

The proof of Theorem 2.1 can be completed by following that of Theorem 3.1 of [18]. We
demonstrate the proof for completeness, combining the following two lemmas.

Lemma 3.2. We have �α(γ ) ≤ χ̂ .

https://doi.org/10.1239/aap/1158684997 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1158684997


Optimal portfolios under drawdown constraints 685

Proof. Take an arbitrary π ∈ A and define

Gπ
t := exp

{
−χ̂ t + ξ̂ (Yt ) − ξ̂ (Y0) + δ

∫ t

0
�(Yu, πu) du

}
. (3.9)

Using Itô’s formula, we deduce that

Gπ
t E

(
δ

∫
π�σ0 dw

)
t

= E

(∫
{δσ�

0 π + η�
0 ∇ ξ̂ (Y )}� dw

)
t

exp

{
−

∫ t

0
hu du

}

for some nonnegative process h ≥ 0, since

d{Gπ
t E(δ

∫
π�σ0dw)t }

Gπ
t E(δ

∫
π�σ0dw)t

= dGπ
t

Gπ
t

+ dE(δ
∫

π�σ0dw)t

E(δ
∫

π�σ0dw)t
+ d〈Gπ, E(δ

∫
π�σ0dw)〉t

Gπ
t E(δ

∫
π�σ0dw)t

= {δσ�
0 πt + η�

0 ∇ ξ̂ (Yt )}�dwt

+ [ 1
2 {Tr(η0η

�
0 ∇∇ ξ̂ (Yt )) + |η�

0 ∇ ξ̂ (Yt )|2}
+ (λ(Yt ) + δη0σ

�
0 πt )

�∇ ξ̂ (Yt ) + δ�(Yt , πt ) − χ̂ ] dt, (3.10)

recalling Lemma 3.1. This implies, from (2.5), that

log E(S0
T e(1−α)Lπ

T )γ = log E E

(
δ

∫
π�σ0dw

)
T

exp

{
δ

∫ T

0
�(Yt , πt )dt

}

≤ χ̂T + ξ̂ (Y0) + log E E

(∫
{δσ�

0 π + η�
0 ∇ ξ̂ (Y )}�dw

)
T

e−ξ̂ (YT ).

The assertion of the lemma now follows since ξ̂ is bounded from below.

Lemma 3.3. We have

�α(γ ) = lim
T →∞

1

T
log E(S0

T e(1−α)Lπ̂
T )γ = χ̂ .

Proof. Recalling that π̄(y) in (2.12) attains the maximum in (2.11) with ξ = ξ̂ , we deduce
that

Gπ̂
t E

(
δ

∫
π̂σ0 dw

)
t

= E

(∫
{δσ�

0 π̂ + η�
0 ∇ ξ̂ (Y )}� dw

)
t

,

where we use (3.9) and (3.10). Define the probability measure P̂ on (�, FT ) by

dP̂

dP

∣∣∣
Ft

:= E

(∫
{δσ�

0 π̂ + η�
0 ∇ ξ̂ (Y )}� dw

)
t

,

which is well defined since the integrand in the stochastic exponential on the right-hand side is
linear with respect to Y . We now see that

log E(S0
T e(1−α)Lπ̂

T )γ = log E(δπ̂) exp

{
δ

∫ T

0
�(Yt , π̂t ) dt

}

= χ̂T + ξ̂ (Y0) + log Êe−ξ̂ (YT ), (3.11)
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where we use (2.5) and Ê denotes expectation with respect to P̂. Note here that the dynamics
of Y under P̂ is described by

dYt = {(d̂ + η0R̂
−1η�

0 q̂) + (Â + η0R̂
−1η�

0 Q̂)Yt } dt + η0 dŵt , (3.12)

where, by the Cameron–Martin–Maruyama–Girsanov theorem,

ŵt := wt −
∫ t

0
{δσ�

0 π̄(Yu) + η�
0 ∇ ξ̂ (Yu)} du

is P̂-Brownian motion, recalling that

λ(y) + η0{δσ�
0 π̄(y) + η�

0 ∇ ξ̂ (y)} = λ(y) + δ

1 − δ
η0σ

�
0 (σ0σ

�
0 )−1θ(y)

+ η0

{
I + δ

1 − δ
σ�

0 (σ0σ
�
0 )−1σ0

}
η�

0 ∇ ξ̂ (y)

= (d̂ + η0R̂
−1η�

0 q̂) + (Â + η0R̂
−1η�

0 Q̂)y.

Note further that Y is P̂-ergodic, since in (3.12) Â + η0R̂
−1η�

0 Q̂ is a stable matrix. Therefore,
limT →∞(1/T ) log Êe−ξ̂ (YT ) = 0, since, from Jensen’s inequality and the lower-boundedness
of ξ̂ ,

− 1

T
Êξ̂ (YT ) ≤ 1

T
log Êe−ξ̂ (YT ) ≤ C1

T
.

This, together with (3.11), completes the proof.

3.3. Proof of Theorem 2.3

Define

F̂ (s) ≡ F̂ (s; α, γ ) := R̂ − η�
0 (−isI − Â�)−1Ĉ(isI − Â)−1η0,

Ĝ(s) ≡ Ĝ(s; α, γ ) := η�
0 (−isI − Â�)−1(isI − Â)−1η0,

for s ∈ R. Furthermore, let

F̃ (s; α, γ ) := (−isI − Â�)(η0η
�
0 )−1η0F̂ (s)η�

0 (η0η
�
0 )−1(isI − Â)

= (−isI − Â�)(η0η
�
0 )−1η0R̂η�

0 (η0η
�
0 )−1(isI − Â) − Ĉ

= (−isI − Â�)R̃(isI − Â) − Ĉ,

where R̃ is as defined in (2.17), and define the quadratic form

U(x, y; s) ≡ U(x, y; s, α, γ ) := (x − iy)�F̃ (s; α, γ )(x + iy)

= (x�, y�)N̂(s; α, γ )

(
x

y

)

on C
m ≈ R

m × R
m, for (x, y) ∈ R

m × R
m, using (2.18). Recalling that the controllability of

(Â, η0) is always satisfied due to the nondegeneracy of η0η
�
0 > 0, application of Theorem 2.2

shows the existence of Q̂ := Ric Ĥ . Moreover, we can deduce that Q̂ > 0 in the following
way. Note that if Q̂ exists then, for each τ ∈ [0, 1], there exists

Q̂(τ ) := Ric

(
Â η0R̂

−1η�
0

−τ Ĉ −Â�
)

.
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Recall that Q̂(0) = 0 since Â is stable, and that Ĉ > 0. We observe that (d/dτ)Q̂(τ ) satisfies

{Â + η0R̂
−1η�

0 Q̂(τ )}� d

dτ
Q̂(τ ) + d

dτ
Q̂�(τ ){Â + η0R̂

−1η�
0 Q̂(τ )} + Ĉ = 0,

i.e.

d

dτ
Q̂(τ ) =

∫ ∞

0
exp{(Â + η0R̂

−1η�
0 Q̂(τ ))�t}Ĉ exp{(Â + η0R̂

−1η�
0 Q̂(τ ))t} dt,

which implies that Q̂(·) is monotone increasing in a matrix sense. Therefore, the first assertion
is established.

To show the second assertion, let an α0 ∈ [0, 1) be given. Recall that Â(α0, 0) = λ1. Choose
an interval J̃ � α0 (J̃ := (α1, α2) or J̃ := [0, α2), 0 ≤ α1 < α2 < 1) and a γ̃ > 0 such that
Â(α, γ ) is stable for any (α, γ ) ∈ J̃ × (0, γ̃ ). Denote by r̄ ≡ r̄(α, γ ) the maximal eigenvalue
of R̃(α, γ ) > 0. From (2.18), we now observe that

Ũ (x, y; s, α, γ ) := U(x, y; s, α, γ ) + (x�, y�)

(
Ĉ(α, γ ) 0

0 Ĉ(α, γ )

) (
x

y

)

≥ 1

r̄
|sZ1 + Z2|2

≥ 1

r̄|Z1|2 {|Z1|2|Z2|2 − (Z1|Z2)
2}

> 0 (3.13)

for all nonzero (x, y) ∈ R
m × R

m, s ∈ R, and (α, γ ) ∈ J̃ × (0, γ̃ ). Here we define

Z1 :=
(

x

y

)
and Z2 ≡ Z2(α, γ ) :=

(
Â(α, γ )y

−Â(α, γ )x

)

and use the notation ( · | · ) for the standard inner product on R
2m. The final (strict) inequality

above has been deduced as follows: if kZ1 = Z2 for some k ∈ R, then Â2x = −k2x

and Â2y = −k2y. This implies that x = y = 0, since Â2 does not have nonnegative real
eigenvalues, from the stability of Â(α, γ ) on J̃ × (0, γ̃ ). Furthermore, note the following.
Suppose that sequences

Z1,n :=
(

xn

yn

)
∈ R

m × R
m and Z2,n :=

(
Âyn

−Âxn

)
, n ∈ N,

satisfy limn→∞{|Z1,n|2|Z2,n|2 − (Z1,n|Z2,n)
2} = 0. Then there exists a sequence (kn)n∈N

such that limn→∞ |knZ1,n −Z2,n| = 0, whence limn→∞(Â2 + k2
nI )xn = 0 and limn→∞(Â2 +

k2
nI )yn = 0 follow. This implies that limn→∞ Z1,n = 0, by the reasoning above. Therefore,

we can see that

inf{Ũ (x, y; s, α, γ ) : (x, y, s) ∈ S
m × S

m × R}
≥ 1

r̄(α, γ )
min{|Z2(α, γ )|2 − (Z1|Z2(α, γ )) : (x, y) ∈ S

m × S
m}

=: ε(α, γ )

> 0 (3.14)
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for all (α, γ ) ∈ J̃ × (0, γ̃ ), where S
m := {x ∈ R

m : |x| = 1}. Here note that ε(α, γ ) is
continuous with respect to α and γ .

We finish the proof as follows. Let c̄(α, γ ) be the maximal eigenvalue of Ĉ(α, γ ) ≥ 0. Recall
that c̄(α, 0) = 0 since Ĉ(α, 0) = 0. From (2.18), (3.13), and (3.14), we have N̂(s; α0, 0) ≥
(ε(α, γ ) − c̄(α, γ ))I for all s ∈ R and (α, γ ) ∈ J̃ × (0, γ̃ ). Since ε(α, 0) − c̄(α, 0) > 0,
we can choose an interval J × (0, γ̄ ) ⊂ J̃ × (0, γ̃ ) such that ε(α, γ ) − c̄(α, γ ) > 0 for all
(α, γ ) ∈ J ×(0, γ̄ ). The first assertion of the theorem can then be applied to deduce the second,
completing the proof.

3.4. Proof of Theorem 2.4

Throughout this subsection we assume that (2.1)–(2.3) hold and that m = 1, and let a fixed
α ∈ [0, 1) be given.

We begin by noting expression (2.19) for the set D̃α . Indeed, for the matrix N̂(s) :=
N̂(s; α, γ ) given by (2.18), we have

N̂(s) = s2
(

R̃ 0
0 R̃

)
+

(
Â�R̃Â − Ĉ 0

0 Â�R̃Â − Ĉ

)
.

Thus, the condition that N̂(s) ≥ εI for all s ∈ R and some ε > 0 is replaced by the condition
that Â�R̃Â − Ĉ > 0, which is nothing but the condition that D̂ > 0, where we use (2.17)
and (2.20). We also recall, for γ ∈ D̃α , that the stabilizing solution to the algebraic Riccati
equation (i.e. the quadratic equation)

(η0R̂
−1η�

0 )Q2 + 2ÂQ + Ĉ = 0

is expressed as

Q̂ := Ric Ĥ = (η0R̂
−1η�

0 )−1(−Â −
√

D̂), (3.15)

and that it actually satisfies Q̂ > 0 if Â < 0.
Now, to prove the theorem, it suffices to show that Dα ⊂ Cl(D̃α), since we have already

observed that D̃α ⊂ Dα . We prepare three lemmas, as follows.

Lemma 3.4. Assume that γ ∈ D̃α . For any given T > 0, the function

v̂(T )(t, y) := χ̂(T − t) + ξ̂ (y) + L̂(T − t, y),

where (χ̂ , ξ̂ ) is given by (2.16) and

L̂(t, y) := 1

k̂
log Ê(e−k̂ξ̂ (Yt ) | Y0 = y),

k̂ ≡ k̂(α, γ ) := η0R̂
−1η�

0

η0η
�
0

,

(3.16)

solves the Bellman equation (2.7) or, equivalently, (2.8), with the time horizon T .

Proof. Recall that L̂ satisfies

∂t L̂ = 1
2 {η0η

�
0 ∂yyĜ + η0R̂

−1η�
0 (∂yĜ)2} + λ̂(y)∂yĜ, t ∈ (0, T ],

L̂(0, y) = −ξ̂ (y),
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where

λ̂(y) := (d̂ + η0R̂
−1η�

0 q̂) + (Â + η0R̂
−1η�

0 Q̂)y = a(y) + (η0R̂
−1η�

0 )
d

dy
ξ̂ (y),

and that the pair (χ̂ , ξ̂ ) solves (2.10) or, equivalently, (2.11), by Lemma 3.1. The current lemma
now follows from direct computation.

Now write

L̂(t, y) = 1

k̂

[
−1

2
log(1 + k̂Q̂�2

t ) + {mt(y) − k̂Q̂�2
t }2

2�2
t (1 + k̂Q̂�2

t )
− mt(y)2

2�2
t

]

=: ĝ0(t) + ĝ1(t)y + 1
2 ĝ2(t)y

2, (3.17)

recalling that, under P̂, Yt is a Gaussian variable with mean mt(y) and variance �2
t , where

mt(y) := e−
√

D̂t y + d̂ + η0R̂
−1η�

0 q̂√
D̂

(1 − e−
√

D̂t ),

�2
t := η0η

�
0

2
√

D̂
(1 − e−2

√
D̂t ).

(3.18)

Furthermore, let
v̂(T )(t, y) = v̂

(T )
0 (t) + v̂

(T )
1 (t)y + 1

2 v̂
(T )
2 (t)y2,

where

v̂
(T )
0 (t) := χ̂(T − t) + ĝ0(T − t),

v̂
(T )
1 (t) := q̂ + ĝ1(T − t),

v̂
(T )
2 (t) := Q̂ + ĝ2(T − t).

Note that the triplet (v̂
(T )
2 , v̂

(T )
1 , v̂

(T )
0 ) satisfies the ordinary differential equations

− d

dt
v2 = 2Âv2 + (η0R̂

−1η�
0 )v2

2 + Ĉ, v2(T ) = 0,

− d

dt
v1 = (Â + η0R̂

−1η�
0 v2)v1 + v2d̂ + ê, v1(T ) = 0, (3.19)

− d

dt
v0 = 1

2
(η0η

�
0 )v2 + 1

2
(η0R̂

−1η�
0 )v2

1 + d̂v1 + f̂ , v0(T ) = 0,

since v̂(T ) solves the Bellman equation (2.8).
We now extend the definition of v̂(T ) for each given T > 0. Deducing the expression

v̂
(T )
2 (t) := Q̂ + ĝ2(T − t)

= Q̂ + e−2
√

D̂(T −t)

�2
T −t (1 + k̂Q̂�2

T −t )
− e−2

√
D̂(T −t)

�2
T −t

= Ĉ√
D̂ coth(

√
D̂(T − t)) − Â

,
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where we use (2.20) and (3.15)–(3.18), we define

v̄
(T )
2 (t) := Ĉ√

D̂ coth(
√

D̂(T − t)) − Â
, t ∈ [0, T ), (3.20)

satisfying v̄
(T )
2 (T ) := limt↑T v̄

(T )
2 (t) = 0 as long as γ ∈ D

(T )

α , where

D
(T )

α :=
{
γ ∈

(
0,

1

1 − α

)
: D̂ > −π2

T 2 and
√

D̂ coth(

√
D̂T ) > Â

}
.

We adopt the convention that 0 coth(0t) = 1/t = limx→0 x coth(xt). Furthermore, we define
the function v̄

(T )
1 on [0, T ] using the second equation in (3.19), letting v2 := v̄

(T )
2 , and we define

the function v̄
(T )
0 on [0, T ] using the third equation in (3.19), letting vi := v̄

(T )
i for i = 1, 2.

We then have the following result.

Lemma 3.5. Let T > 0 be given. For γ ∈ D
(T )

α , define

v̄(T )(t, y) := v̄
(T )
0 (t) + v̄

(T )
1 (t)y + 1

2 v̄
(T )
2 (t)y2.

This solves the Bellman equation (2.7) or, equivalently, (2.8). In addition, v̂(T ) ≡ v̄(T ) for
γ ∈ D̃α .

Using the solution v̄(T ) to the Bellman equation (2.7), we can construct the solution to the
optimization problem (2.4) with the finite time horizon T > 0, as follows, via a standard
argument in stochastic control theory.

Lemma 3.6. Let T > 0 and γ ∈ D
(T )

α be given. Define π̂ (T ) := (π̂
(T )
t )t∈[0,T ] by

π̂
(T )
t := π̄ (T )(t, Yt ),

π̄ (T )(t, y) := 1

1 − δ
(σ0σ

�
0 )−1{θ(y) + σ0η

�
0 ∂yv̄

(T )(t, y)}.

For problem (2.4) with AT := L2
T , the totality of progressively measurable processes on [0, T ]

which are locally square integrable, we have V 0 = v̄(T )(0, y) and the optimality of π̂ (T ) holds.
On the other hand, V 0 = ∞ if γ �∈ D

(T )

α .

Proof. For an arbitrary π ∈ AT , define

Hπ
t := exp

{
v̄(T )(t, Yt ) + δ

∫ t

0
�(Yu, πu) du

}
. (3.21)

Using Itô’s formula and the fact that v̄(T ) solves (2.7), we can check that

Hπ
t E

(
δ

∫
π�σ0 dw

)
t

= E

(∫
{δσ�

0 π + η�
0 ∂yv̄

(T )(·, Y(·))}� dw

)
t

exp

{
−

∫ t

0
hu du

}

for some nonnegative process h ≥ 0. This implies that the left-hand side of the above is a
supermartingale, and we see that

ev̄(T )(0,Y0) ≥ E Hπ
T E

(
δ

∫
π�σ0 dw

)
T

= E(S0
T e(1−α)Lπ

T )γ ,
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where we use (2.5) and (3.21). Similarly, we can check that

Hπ̂(T )

t E

(
δ

∫
(π̂ (T ))�σ0 dw

)
t

= E

(∫
{δσ�

0 π̂ (T ) + η�
0 ∂yv̄

(T )(·, Y(·))}� dw

)
t

.

This implies that the left-hand side of the above is a martingale, since the integrand on the
right-hand side has a linear form with respect to Y . Therefore,

ev̄(T )(t,Yt ) = E

(
Hπ̂(T )

T E

(
δ

∫
(π̂ (T ))�σ0 dw

)
T

∣∣∣∣ Ft

)

= E((S0
t,T exp{(1 − α)Lπ̂(T )

t,T })γ | Ft ) (3.22)

for any t ∈ [0, T ], where we define S0
t,T := S0

T /S0
t and Lπ

t,T := Lπ
T − Lπ

t . Letting t = 0, the
optimality of π̂ (T ) ∈ AT follows.

On the other hand, suppose that γ �∈ D
(T )

α . Then v̄
(T )
2 (t0) = ∞ and V t0 = ∞ for some t0,

0 < t0 < T , from (3.20) and (3.22), so we deduce that V 0 = ∞.

We are now in a position to show the relation Dα ⊂ Cl(D̃α). Note that

Cl(D̃α) =
{
γ ∈

(
0,

1

1 − α

)
: D̂(α, γ ) ≥ 0 and Â(α, γ ) ≤ 0

}
=

⋂
T >0

D
(T )

α , (3.23)

recalling that
√

D̂ ≥ Â if and only if Â ≤ 0 with D̂ ≥ 0. Let γ �∈ Cl(D̃α). From (3.23),
there exists a T0 > 0 such that γ �∈ D

(T )

α for all T > T0. This implies that γ �∈ Dα , from
Lemma 3.6.

4. Conclusion

In the present paper, the maximization of the long-term growth rate of expected utility and
the maximization of the large deviation probability of beating the target growth rate in the long
run have been treated under drawdown constraints. In a general situation, the values and the
optimal strategies of the problems have been related to those of another ‘standard’risk-sensitive-
type portfolio optimization problem. The risk-aversion parameter of utility was related to the
target growth rate, and the drawdown ratio parameter was related to the upper bound of the
risk of portfolio loss process. As an example, a model which has a ‘linear-quadratic’ structure
was studied in detail, and explicit expressions of the solutions to the problems presented.
In particular, a sufficient condition to ensure the solvability was provided by discussing the
existence of the stabilizing solution to a matrix-valued algebraic Riccati equation. A necessary
condition for the solvability was also discussed for the one-dimensional Riccati equation.
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