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A class of Hausdorff–Berezin operators on
the unit ball
Alexey Karapetyants and Adolf Mirotin

Abstract. The article introduces and studies Hausdorff–Berezin operators on the unit ball in a
complex space. These operators are a natural generalization of the Berezin transform. In addition, the
class of such operators contains, for example, the invariant Green potential, and some other operators
of complex analysis. Sufficient and necessary conditions for boundedness in the space of p – integrable
functions with Haar measure (invariant with respect to involutive automorphisms of the unit ball) are
given. We also provide results on compactness of Hausdorff–Berezin operators in Lebesgue spaces on
the unit ball. Such operators have previously been introduced and studied in the context of the unit
disc in the complex plane. Present work is a natural continuation of these studies.

1 Introduction

The Hausdorff–Berezin operators on the unit disc D of the complex plane C were
introduced in the paper [15] and then the study of such operators was continued
(see, for example, [13]). Some analogues of these operators were also studied, which
were called the Hausdorff–Zhu operators (see papers [7, 14]). The Hausdorff–Berezin
operators appear as a natural generalization of the classical Berezin transform, and in
addition to this, the class of such operators contains some other operators of complex
analysis, including a maximal operator constructed from pseudohypertrophic discs
in D, for more details, see [15].

In multidimensional complex analysis, the Berezin transform also plays an impor-
tant role. Recall that, on the unit ball, the Berezin transform is defined by (see, e.g.,
[8, 24, 25])

B f (z) = ∫
Bn

f (φz(w))dA(w) = ∫
Bn

f (w)∣kz(w)∣2 dA(w).(1)

Here, dA(z) is the volume measure, normalized so that A(Bn) = 1, φz(w) stand
for involutive automorphisms of the unit ball Bn in C

n , see (5), and kz(⋅) are the
normalized reproducing kernels of the classical Bergman space A2(Bn , dA); see
formula (8).
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2 A. Karapetyants and A. Mirotin

It is very natural to introduce analogues of such operators in a ball and continue
the study of such operators in this general setting. Given a measurable function K (an
integral kernel) on the unit ball Bn , we introduce and study the integral operators

K f (z) = ∫
Bn

K(w) f (φz(w))dH(w)(2)

= ∫
Bn

K(φz(w)) f (w)dH(w), z ∈ Bn ,

where dH stands for the φz – invariant Haar measure

dH(z) = dA(z)
(1 − ∣z∣2)n+1 , z ∈ Bn .

We call such operators Hausdorff–Berezin operators.
The multidimensional setting gives us one more interesting example of an operator

in the Hausdorff–Berezin class, namely the invariant Green potential G, which is
defined as (see [24])

G f (z) = ∫
Bn

G(φz(w)) f (w)dH(w), z ∈ Bn ,(3)

with the kernel G being the Green’s function for the invariant Laplacian Δ̃, or simply
the invariant Green’s function, and it is given by

G(z) = 1
2n ∫

1

∣z∣

(1 − t2)n−1

t2n−1 dt, z ∈ Bn .(4)

The name Hausdorff in the title also comes into play due to some operator
invariance, as can be seen from the formula (1). For the theory of Hausdorff operators,
we mention first of all the paper [20] and also papers [4, 5, 16–19]. For Hausdorff
operators in the complex analysis, we refer to [1, 2, 6].

The article is organized as follows: In Section 2, we collect some preliminary
facts. In Section 3, we provide some preliminary information about Hausdorff–
Berezin operators. Section 4 presents our main results and is devoted to establishing
sufficient and necessary boundedness conditions for Hausdorff–Berezin operators
within Lp(D, dH) spaces. Here, we dwell on the methods of the study of operators
with homogeneous kernels that was earlier developed in a real variable settings. For
operators with homogeneous kernels, we refer to the books [10, 12] and the review
paper [11], see also [3] for a general setting. In Section 5, we provide results on
compactness of Hausdorff–Berezin operators in Lp(D, dA).

2 Preliminaries

Let us agree that the norm in Lp(D, dH)will be denoted by ∥ ⋅ ∥p . Let a ∈ Bn , Pa is the
orthogonal projection from C

n onto the one-dimensional subspace [a] generated by
a, and Qa is the orthogonal projection from C

n onto C
n ⊖ [a]. It is known that
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A class of Hausdorff–Berezin operators on the unit ball 3

Pa(z) = ⟨z, a⟩
∣a∣2 a, z ∈ Cn ,

Qa(z) = z − Pa(z) = z − ⟨z, a⟩
∣a∣2 a, z ∈ Cn .

The following map

φa(z) = a − Pa(z) − sa Qa(z)
1 − ⟨z, a⟩ , a, z ∈ Bn(5)

defines the class of automorphisms of the unit ball, which is usually called symmetries
or involutive automorphisms, i.e., involutions:

φa ○ φa(z) = z, z ∈ Bn .

Note that for a = 0, we assume φ0(z) = −z. We will need the following lemma
proven in [23] which is valid for a bounded symmetric domains Ω ∈ Cn , group of
automorphisms Aut(Ω) with G0 be a subgroup {ψ ∈ Aut(Ω) ∶ ψ(0) = 0}.

Lemma 1 [23, Lemma 2] For any a, b ∈ Ω, there exists a unitary U ∈ G0 such that

Uφφa(b) = φb ○ φa .(6)

Moreover, the unitary U is given by the formula

U = φb ○ φa ○ φφa(b).(7)

Recall that the function

K(z, w) = 1
(1 − ⟨w , z⟩)n+1 , z, w ∈ Bn ,

is the Bergman reproducing kernel for the unit ball, and the normalized reproducing
kernels kz(⋅), z ∈ Bn , are given by the formula

kz(w) = K(z, w)
∥K(z, ⋅)∥L2(Bn ,dA)

= (1 − ∣z∣2) n+1
2

(1 − ⟨w , z⟩)n+1 .(8)

We will use the following known result (see [24, Theorem 1.12]).

Lemma 2 [24]. Suppose c ∈ R, t > −1, and

Ic ,t(z) = ∫
Bn

(1 − ∣w∣2)t

∣1 − ⟨z, w⟩∣n+1+t+c dA(w), z ∈ Bn .

(1) If c < 0, then as a function of z, Ic ,t(z) is bounded from above and bounded from
below on B

n .
(2) If c > 0, then Ic ,t ≂ (1 − ∣z∣2)−c as ∣z∣ → 1−.
(3) If c = 0, then I0,t ≂ − ln(1 − ∣z∣2) as ∣z∣ → 1−.
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4 A. Karapetyants and A. Mirotin

3 Hausdorff–Berezin operators

For any one-variable kernel (a function) K on the unit ball Bn , the corresponding
Hausdorff–Berezin operator is defined by formula

K f (z) = ∫
Bn

K(w) f (φz(w))dH(w)

= ∫
Bn

K(φz(w)) f (w)dH(w),

if thus integral makes sense. Here, dH stands for the invariant Haar measure

dH(z) = dA(z)
(1 − ∣z∣2)n+1 , z ∈ Bn .

We will use K to denote the class of all Hausdorff–Berezin operators.
Along with the operator K, we consider the conjugate operator

K
∗ f (z) = ∫

Bn
K(φw(z)) f (w)dH(w)

= ∫
Bn

K(φφz(ξ)(z)) f (φz(ξ))dH(ξ).

Lemma 3 The class K coincides with the class of operators of the type

K f (z) ≡ ∫
Bn

K̃(z, w) f (w)dH(w),(9)

where the integral kernel K̃ is invariant in the sense that

K̃(z, w) = K̃(0,−φz(w)), z, w ∈ D.(10)

Proof If we define the two-variable integral kernel by the rule

K̃(z, w) = K(φz(w)),

then it satisfies (10), because

K̃(z, w) = K(φz(w)) = K(φ0 (−φz(w))) = K̃(0,−φz(w)).

Conversely, every operator K with the kernel K̃ satisfying (10) has the form of the
operator K with

K(φz(w)) = K̃(0,−φz(w))

by definition. ∎

Remark 1 Note that in one-dimensional complex case, i.e., Bn = D the more strict
invariance condition

K̃(φa(z), φa(w)) = K̃(z, w), a, z, w ∈ Bn ,

is equivalent to the case that initial one-variable kernel K is radial, see [15]. We state
the problem of finding an analog of such a condition as an open question for the case
B

n , n > 1.
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A class of Hausdorff–Berezin operators on the unit ball 5

4 Boundedness of Hausdorff–Berezin operators in Lp(Bn , dH)

In this section, we consider the boundedness of our Hausdorff–Berezin operators on
the spaces Lp(Bn , dH). We start with the case p = 1. Let

κ = sup
z∈Bn

∫
Bn
∣K (φw(z))∣ dH(w).(11)

If K is radial, then the formula (11) reads as

κ = ∫
Bn
∣K (w)∣ dH(w) = ∫

1

0

∣K(r)∣
(1 − r2)n+1 2nr2n−1dr.

We use ∥K∥ to define the operator norm of the operator K acting in Lp(Bn , dH).

Theorem 4 Assume that κ < ∞. Then the operator K is bounded on L1(Bn , dH) and
its operator norm on L1(Bn , dH) satisfies ∥K∥ ⩽ κ.

Proof The proof is immediate by Minkowski’s inequality. In fact,

∥K f ∥1 = ∫
Bn
∣∫

Bn
K(φz(w)) f (w)dH(w)∣ dH(z)

⩽ ∫
Bn
∣ f (w)∣dH(w)∫

Bn
∣K(φz(w))∣dH(z) ⩽ κ∥ f ∥1

as desired. ∎

Let us consider the case 1 < p < ∞, where 1
p +

1
q = 1. Given σ ∈ R, let us write

κ1(p, σ) = sup
z∈Bn

∫
Bn
∣kζ(z)∣

σ
p ∣K(ζ)∣dH(ζ),(12)

and

κ2(q, σ) = sup
z∈Bn

∫
Bn
∣kζ(z)∣

σ
q ∣K (φφz(ζ)(z))∣ dH(ζ).(13)

If K is radial, then due to (7), the formula in (13) reads as

κ2(q, σ) = sup
z∈Bn

∫
Bn
∣kζ(z)∣

σ
q ∣K (ζ)∣ dH(ζ).

Theorem 5 Let 1 < p < ∞. If there exists σ0 ∈ R such that

κ1(p, σ0) < ∞, κ2(q, σ0) < ∞,(14)

then the operator K is bounded in Lp(Bn , dH) and its operator norm on Lp(Bn , dH)
satisfies the estimate

∥K∥ ⩽ inf {κ1(p, σ)
1
q κ2(q, σ)

1
p } ,

where infimum is taken with respect to all those σ = σ0 for which (14) holds.
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6 A. Karapetyants and A. Mirotin

Proof Denote τσ(z) = (1 − ∣z∣2)σ , σ ∈ R. By Hölder’s inequality, we obtain

∣K f (z)∣ = ∣∫
Bn

τσ(w)
1

pq τσ(w)−
1

pq K(φz(w)) f (w)dH(w)∣

⩽ (∫
Bn

τσ(w)
1
p ∣K(φz(w))∣dH(w))

1
q

× (∫
Bn

τσ(w)−
1
q ∣K(φz(w))∣∣ f (w)∣p dH(w))

1
p

.

Note that

∫
Bn

τσ(w)
1
p ∣K(φz(w))∣dH(w) = ∫

Bn
τσ(φz(ζ))

1
p ∣K(ζ)∣dH(ζ)

= (1 − ∣z∣2)
σ
p ∫

Bn
∣kζ(z)∣

2σ
(n+1)p ∣K(ζ)∣dH(ζ)

⩽ κ1(p, 2σ/(n + 1)) (1 − ∣z∣2)
σ
p .

Therefore, we have

κ1(p, 2σ/(n + 1))−
p
q ∥K f ∥p

p

≤ ∫
Bn
(1 − ∣z∣2)

σ
q dH(z)∫

Bn
τσ(w)−

1
q ∣K(φz(w))∣∣ f (w)∣p dH(w)

= ∫
Bn
∣ f (w)∣p dH(w)∫

Bn
(1 − ∣z∣2)

σ
q τσ(w)−

1
q ∣K(φz(w))∣dH(z)

= ∫
Bn
∣ f (w)∣p dH(w)∫

Bn
(1 − ∣φw(ζ)∣2)

σ
q τσ(w)−

1
q ∣K (φφw(ζ)(w))∣ dH(ζ)

= ∫
Bn
∣ f (w)∣p dH(w)∫

Bn
∣kζ(w)∣

2σ
(n+1)q ∣K (φφw(ζ)(w))∣ dH(ζ)

⩽ κ2(q, 2σ/(n + 1))∥ f ∥p
p .

Here, to justify the change of the order of integration, we used Fubini’s theorem.
Finally, collecting the above estimates, we obtain

∥K f ∥p ≤ κ1(p, 2σ/(n + 1))
1
q κ2(q, 2σ/(n + 1))

1
p ∥ f ∥p .

This finishes the proof. ∎

As a corollary, we formulate below the corresponding boundedness result for the
conjugate operator K∗ (we will need it to prove Theorem 7).

Corollary 6 Let 1 < q < ∞. If there exist σ ∈ R such that (14) holds, then the operator
K
∗ is bounded on Lq(Bn , dH) and its norm on Lq(Bn , dH) satisfies

∥K∗∥ ⩽ inf{κ1(p, σ)
1
q κ2(q, σ)

1
p },

where infimum is taken with respect to all those σ for which (14) holds.
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A class of Hausdorff–Berezin operators on the unit ball 7

For a nonnegative kernel (function) K, let us write

κ = inf
z∈Bn ∫

Bn
K (φζ(z)) dH(ζ),

κ1(p, σ) = inf
z∈Bn ∫

Bn
∣kζ(z)∣

σ
p K(ζ)dH(ζ),

κ2(q, σ) = inf
z∈Bn ∫

Bn
∣kζ(z)∣

σ
q K (φφz(ζ)(z)) dH(ζ).

If K is also radial, then

κ2(q, σ) = inf
z∈Bn ∫

Bn
∣kζ(z)∣

σ
q K (ζ) dH(ζ).

Theorem 7 Let the kernel K be nonnegative. Suppose that the operator K is bounded
on Lp(D, dH) with 1 ⩽ p < ∞. Then the following statements hold:
(1) If p = 1, then κ < ∞.
(2) If 1 < p < ∞, then κ1(p, σ) < ∞ and κ2(q, σ) < ∞ for any σ > 2n

n+1 .

Proof First, suppose that the operator K is bounded in L1(D, dH). Then for
ϕ(z) = (1 − ∣z∣2)n+1, we have

∥Kϕ∥1 = ∫
Bn ∫Bn

K(φz(w))dA(w)dH(z)

= ∫
Bn

dA(w)∫
Bn

K(φz(w))dH(z) ⩾ κ.

Suppose that the operator K is bounded in Lp(Bn , dH) for some 1 < p < ∞. Then
for all ϕ ∈ Lp(Bn , dH) and ψ ∈ Lq(D, dH), we have

∣∫
Bn
(Kϕ)(z)ψ(z)dH(z)∣ ⩽ ∥K∥∥ϕ∥p∥ψ∥q .

Let

ϕ(z) = (1 − ∣z∣2)
σ
p , ψ(z) = (1 − ∣z∣2)

σ
q , σ > n.

We obtain

∫
Bn
(Kϕ)(z)ψ(z)dH(z)

= ∫
Bn
(1 − ∣z∣2)

σ
q dH(z)∫

Bn
(1 − ∣φz(w)∣)

σ
p K(w)dH(w)

= ∫
Bn
(1 − ∣z∣2)σ dH(z)∫

Bn
∣kw(z)∣

2σ
(n+1)p K(w)dH(w)

⩾ κ1(p, 2σ/(n + 1))∫
Bn
(1 − ∣z∣2)σ dH(z).

The integral ∫Bn(1 − ∣z∣2)σ dH(z) is finite if and only if σ > n. This implies that
κ1(p, σ) < ∞ for any σ > 2n

n+1 . By the same arguments applied to the conjugate
operator K∗, we obtain that κ2(q, σ) < ∞ for any σ > 2n

n+1 . ∎
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8 A. Karapetyants and A. Mirotin

At the conclusion of this section, let us consider the important example of the
kernel K given by the formula K(z) = (1 − ∣z∣2)α . First, we prove the following
technical lemma.

Lemma 8 Suppose K(z) = (1 − ∣z∣2)α , α ∈ R, and 1 < p < ∞ with 1/p + 1/q = 1.
Suppose that κ,κ1(p, σ) and κ2(q, σ) are the corresponding to K numbers, as defined
above. Then:
(a) κ < ∞ if and only if α > n.
(b) κ1(p, σ) < ∞ if and only if

α > max{n + 1
2

σ
p

, n − n + 1
2

σ
p
} .

(c) κ2(q, σ) < ∞ if and only if

α > max{n + 1
2

σ
q

, n − n + 1
2

σ
q
} .

Proof The proof is straightforward: one needs to substitute the kernel K(z) = (1 −
∣z∣2)α into (11), (12), and (13), and then apply Lemma 2. ∎

As a corollary of Lemma 8, we obtain the following result on the boundedness of
the operator K induced by the positive kernel K(z) = (1 − ∣z∣2)α on Lp(D, dH). This
result shows that for this kernel, the sufficient condition κ < ∞ in Theorem 4 and the
sufficient conditions (14) with σ = 2n

n+1 stated in Theorem 5 turn out to be necessary.

Theorem 9 Let 1 ⩽ p < ∞ and K be the Hausdorff–Berezin operator with kernel
K(z) = (1 − ∣z∣2)α . Then K is bounded in Lp(Bn , dH) if and only if

α > n max{ 1
p

, 1 − 1
p
} .(15)

Proof The sufficiency of (15) follows from Theorems 4 and 5 and Lemma 8 under
the choice σ = 2n

n+1 .
To prove necessity, we choose the minimizing function

fβ(z) = (1 − ∣z∣2)
β
p , β ∈ R.

It is obvious that fβ ∈ Lp(Bn , dH) if and only if β > n, and

K fβ(z) = ∫
Bn
(1 − ∣φz(w)∣2)α(1 − ∣w∣2)

β
p dH(w)

= (1 − ∣z∣2)α ∫
Bn

(1 − ∣w∣2)α+ β
p

∣1 − ⟨w , z⟩∣2α dH(w).

It is clear that there should be α > n − β
p . Otherwise, the integral on the right side of

the above equality is infinite for any z ∈ Bn . From Lemma 2, we see that

K fβ(z) ≂ (1 − ∣z∣2)
β
p , ∣z∣ → 1−,
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A class of Hausdorff–Berezin operators on the unit ball 9

if and only if α > β/p. Since β > n can be chosen arbitrarily close to n, this implies that
α ⩾ n/p. The case α = n/p is excluded since in that case from Lemma 2, we obtain

K fβ(z) ≂ (1 − ∣z∣2)
n
p , ∣z∣ → 1− .

Now the rest of the proof follows by Lemma 8. ∎

5 Compactness of Hausdorff–Berezin operators

Before we formulate the next theorem, recall the definition of a positive-definite
kernel. Let X be a nonempty set, and let K be a function on X × X such that

N
∑
j=1

N
∑
k=1

K(x j , xk)ξ j ξk ≥ 0 for any x1 , . . . , xN ∈ X , ξ j ∈ C, and any N .

Then K is called a positive-definite kernel on X. In this case, K(x , x) ≥ 0 for all x.
Let, in addition, X be a locally compact space which is equipped with regular Borel
measure μ, and let K be continuous. The well-known sufficient condition for an
integral operator B on L2(μ) (the space of μ – measurable quadratically summable
functions with respect to the measure μ) with a kernel K to be in a trace class states
that this is the case if K is a positive-definite kernel on X and

I ∶= ∫
X

K(x , x)dμ(x) < ∞.

In such a case, the trace equals to: trB = I (see, e.g., Theorem 2.12 in [22] or arguments
before Theorem XI.31 in [21]).

Theorem 10 The following statements hod true.
(i) Assume that 1 ≤ p < ∞, and there are real numbers σ and r such that

σ < p, (1 − σ/p)p′ < r, (1/p + 1/p′ = 1),

and that the following conditions are satisfied:

∫
Bn

∣K(φz(w))∣r
(1 − ∣w∣2)r(n+1) dA(w) < c1 < ∞ for a.e. z ∈ Bn ;(16)

∫
Bn
∣K(φz(w))∣σ dA(z) < c2 < ∞ for a.e. w ∈ Bn ,(17)

with some constants c1 , c2 . Then K is a compact operator in Lp(Bn , dA).
(ii) The operator K is a Hilbert–Schmidt operator in L2(Bn , dA) if and only if

K(φz(w))
(1 − ∣w∣2)n+1 ∈ L2(dA⊗ dA).

(iii) Let K(φz(w))/(1 − ∣w∣2)n+1 be a positive-definite kernel on B
n and K(0) = 0.

Then K is a trace class operator in L2(Bn , dA) and trK = 0.

https://doi.org/10.4153/S000843952400050X Published online by Cambridge University Press

https://doi.org/10.4153/S000843952400050X


10 A. Karapetyants and A. Mirotin

Proof To prove statement (i), we are going to apply [9, Chapter XI, Theorem 3] to
the operator K in the form

K f (z) = ∫
Bn

K(φz(w)) f (w)dH(w) = ∫
Bn

K(φz(w))
(1 − ∣w∣2)n+1 f (w)dA(w).

To this end, we identify the space C
n with R

2n and B
n with the unit ball D of

R
2n . Then the point z = s1 + ıs2 ∈ Bn corresponds to the point s = (s1 , s2) ∈ R2n and

the point w = t1 + ıt2 ∈ Bn corresponds to the point t = (t1 , t2) ∈ R2n . Moreover, let
the function K(φz(w))/(1 − ∣w∣2)n+1 corresponds to K(s, t) in the aforementioned
theorem. Further, we put D′ = D and q = p in this theorem. Since dt = ∣Bn ∣dA(w)
(∣Bn ∣ stands for the Euclidean volume of Bn), the condition (16) implies the validity
of the condition 1) from [9, Chapter XI, Theorem 1] because

∫
Bn
∣K(s, t)∣rdt = ∣Bn ∣ ∫

Bn

∣K(φz(w))∣r
(1 − ∣w∣2)r(n+1) dA(w) < ∞ for a.e. z ∈ Bn .

Similarly, the condition (17) implies the validity of the condition 2) from
[9, Chapter XI, Theorem 1]. The remaining condition of this theorem is also satisfied
due to our assumptions.

The statement (ii) is a corollary of the well-known result (see, e.g., [22,
Theorem 2.11]).

Now, to prove (iii), we use the mentioned above sufficient condition for an integral
operator to be in a trace class. Since K(s, t) is a positive-definite kernel, it suffices
to note that the second condition holds, since K(s, s) = K(0) = 0. This completes the
proof. ∎

Since dH is invariant, choosing r = 1, we get the following corollary.

Corollary 11 Let K ∈ L1(dH). If 1 < σ < p and (17) holds, then K is compact in
Lp(Bn , dA).

Proof The condition (16) is valid for r = 1, since for all z ∈ Bn ,

∫
Bn

∣K(φz(w))∣
(1 − ∣w∣2)n+1 dA(w) = ∫

Bn
∣K(φz(w))∣dH(w)

= ∫
Bn
∣K(w)∣dH(w) =∶ c1 < ∞.

It remains to note that in our case (1 − σ/p)p′ < 1. ∎

Example 12 The Hausdorff–Berezin operator with kernel

K(z) = (1 − ∣z∣2)α

is a Hilbert–Schmidt operator in L2(Bn , dA) if and only if α > n + 1/2.
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