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In this paper, we experimentally study the influence of large-scale Taylor rolls on the
small-scale statistics and the flow organization in fully turbulent Taylor—Couette flow
for Reynolds numbers up to Res=3 x 10°. The velocity field in the gap confined by
coaxial and independently rotating cylinders at a radius ratio of n=0.714 is measured
using planar particle image velocimetry in horizontal planes at different cylinder
heights. Flow regions with and without prominent Taylor vortices are compared. We
show that the local angular momentum transport (expressed in terms of a Nusselt
number) mainly takes place in the regions of the vortex in- and outflow, where
the radial and azimuthal velocity components are highly correlated. The efficient
momentum transfer is reflected in intermittent bursts, which becomes visible in the
exponential tails of the probability density functions of the local Nusselt number. In
addition, by calculating azimuthal energy co-spectra, small-scale plumes are revealed
to be the underlying structure of these bursts. These flow features are very similar
to the one observed in Rayleigh-Bénard convection, which emphasizes the analogies
of these systems. By performing a complex proper orthogonal decomposition, we
remarkably detect azimuthally travelling waves superimposed on the turbulent Taylor
vortices, not only in the classical but also in the ultimate regime. This very large-scale
flow pattern, which is most pronounced at the axial location of the vortex centre,
is similar to the well-known wavy Taylor vortex flow, which has comparable wave
speeds, but much larger azimuthal wavenumbers.
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1. Introduction

The flow in between two independently rotating cylinders, known as Taylor—Couette
(TC) flow, is a commonly used model for general rotating shear flows. It features rich
and diverse flow states, which have been explored for nearly a century (Taylor 1923;
Wendt 1933; Coles 1965; Andereck, Liu & Swinney 1986; Donnelly 1991). More
recent reviews on the hydrodynamic instabilities can be found in Fardin, Perge &
Taberlet (2014), and on fully turbulent Taylor—Couette flows in Grossmann, Lohse &
Sun (2016). The geometry of a Taylor—Couette system is defined by the gap width
d =r, — r;, where r; and r, are the inner and outer radii respectively; the radius
ratio n =ry/r,, and the aspect ratio I" =¢/d, with £ the height of the cylinders. The
external driving of the flow can be quantified by the shear Reynolds number according
to (Dubrulle et al. 2005)

2 d d
Res=&|wz—wl|=”%, (1.1)

with the cylinder angular velocities w5, v is the kinematic viscosity of the fluid and
ug is the shear velocity. A further dimensionless control parameter is the ratio of the
angular velocities
p=22 (1.2)
w1
implying u > 0 for co-rotation of the cylinders, u =0 for pure inner cylinder rotation
and u < 0 for counter-rotation. The most important response parameter of the TC
system to the cylinder driving is the angular velocity transport (Eckhardt, Grossmann
& Lohse 2007a)
Jw = r3((urw><p,z,r - var<w>tp,z,t)a (13)

where r denotes the radial coordinate, ¢ the azimuthal coordinate, ¢ the time
coordinate and (-), ., the azimuthal-axial time average. This quantity is conserved
along r and can be directly measured by the torque 7 acting on either the inner
(IC) or the outer cylinder wall (OC). Normalizing J, with its corresponding laminar
non-vortical value J“"=2vrir;(w; — w,)/(r5 —r;) yields a quasi-Nusselt number
Nu, =J,/J " (Eckhardt et al. 2007a), which is analogous to the Nusselt number Nu
in Rayleigh Bénard flow (RB) flow, i.e. the buoyancy-driven flow which is heated
from below and cooled from above. There, Nu is a measure for the amount of
transported heat flux normalized by the purely conductive heat transfer. Eckhardt,
Grossmann & Lohse (2007b) worked out the fundamental similarities between TC
and RB flow in terms of the Nusselt number and the energy dissipation rate, which
we will use in this paper.

The dependence of the Nusselt number on the shear Reynolds number, commonly
expressed in terms of an effective power law Nu, ~ Re§, and on the rotation ratio
@ has been widely investigated (Lathrop, Fineberg & Swinney 1992; Lewis &
Swinney 1999; van Gils et al. 2011; Paoletti & Lathrop 2011; van Gils et al. 2012;
Merbold, Brauckmann & Egbers 2013; Ostilla-Moénico et al. 2014¢; Brauckmann,
Salewski & Eckhardt 2016a; Grossmann et al. 2016). For pure inner cylinder rotation
(u = 0), a change in the local scaling exponent « with increasing Reg has been
found which is caused by a transition from laminar (classical regime) to turbulent
boundary layers (ultimate regime) (Ostilla-Monico et al. 2014c¢). The transition point
depends on the radius ratio 1 and is located around Res .; ~ 1.6 x 10* for n =0.714.
In the ultimate regime, the scaling exponent becomes o = (0.76 independent of n
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(Ostilla et al. 2013). When the driving (Res) is kept constant and only pu is
changed, the TC flow features a maximum in the angular momentum transport
(Nu,). For n = 0.714, the maximum is located in the counter-rotating regime at
Wmax 2 —0.36 and originates from a strengthening of the turbulent Taylor vortices
(Brauckmann & Eckhardt 2013b; Ostilla-Monico et al. 2014b). The contribution of
these rolls to the angular momentum transport has been evaluated numerically by
Brauckmann & Eckhardt (2013b) and experimentally by Froitzheim, Merbold &
Egbers (2017) by means of the decomposition of Nu, into its turbulent fluctuation
and large-scale circulation contributions. They find that the large-scale contribution
dominates the transport in the region of the torque maximum. Besides, Tokgoz
et al. (2011) could show by performing direct torque measurements and tomographic
particle image velocimetry (PIV) measurements in a TC facility at n = 0.917 and
Reg € [1.1 x 10% 2.9 x 10*] that the torque is strongly affected by the rotation ratio,
which determines whether large-scale or small-scale structures are dominant in the
flow. These findings reflect that turbulent Taylor vortices can play a prominent role
in the fully turbulent regime.

Hence, the morphology and physical mechanisms behind these roll structures
have been in the focus of different studies throughout the literature. An interesting
phenomenon regarding Taylor vortices is the reappearance of azimuthal waves in the
turbulent Taylor vortex regime. Walden & Donelly (1979) measured the point-wise
radial velocity component close to the OC boundary layer for =0 at n =0.875 and
for different aspect ratios. They find a regime of reappearance for 28 < Re/Rec < 36
and for I" > 25, based on sharp peaks in the power spectrum. Here, Rec is the critical
Reynolds number for the onset of Taylor vortex flow. Later, Takeda (1999) acquired
time-resolved axial profiles of the axial velocity component using an ultrasonic
measurement technique for n =0.904 and I" =20. The azimuthal waves are identified
based on Fourier analysis and proper orthogonal decomposition (POD) in the range
of 23 < Re/Rec < 36. Their results show good agreement with those of Walden
& Donelly (1979). In another study, Wang et al. (2005) performed planar PIV
measurements in a meridional plane for n = 0.733 and I" = 34. They capture the
reappearance of azimuthal waves for 20 < Re/Rec < 38 based on spatial correlations.
Note that the three aforementioned studies are all based on pure inner cylinder
rotation (i = 0). More recently, Merbold, Froitzheim & Egbers (2014) performed
flow visualizations in TC flow with n = 0.5 at Reg = 5000. They find an axial
oscillation of the turbulent Taylor vortices in the range of u € [—0.15, —0.3], which
includes the rotation ratio for optimum transport ., = —0.2. In summary, the
large-scale turbulent Taylor rolls seem to feature an instability mechanism similar
to the one in the laminar regime, which, however, has not yet been detected in
highly turbulent TC flows. Based on numerical simulations, Ostilla et al. (2013),
Ostilla-Moénico et al. (2014c) further showed that the large-scale rolls consist and are
driven by small-scale unmixed plumes, in analogy to RB flow. They calculated for
uw =0 and n = 0.714 the radial profiles of the angular velocity w at specific axial
positions of the large-scale Taylor vortices; namely, at the vortex inflow, vortex centre
and vortex outflow. The vortex inflow is characterized by the ejection of plumes
from the OC in conjunction with a mean radial velocity that points away from the
OC (see the sketch in figure 1a). In contrast, the outflow features plume ejections
from the IC with a mean radial velocity component directed from the IC to the
OC (see the sketch in figure 1c¢). In between the in- and outflow, the radial velocity
component becomes zero in the middle of the gap, which denotes the location of the
centre of the vortex, as shown in figure 1(b). In regions where plumes are ejected
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FIGURE 1. Sketch of the ejecting regions bounded by the inner (IC) and outer (OC)
cylinders within a Taylor roll: (a) vortex inflow, (b) vortex centre, (c¢) vortex outflow.

from the cylinder walls, i.e. in the vortex inflow at the outer wall and in the vortex
outflow at the inner wall, the radial profiles of w have a logarithmic shape in the
corresponding boundary layer (Ostilla-Moénico et al. 2016). It is worth mentioning
that in the ultimate regime, the profiles become logarithmic also in the absence
of dominant large-scale rolls (Huisman et al. 2013b). For n = 0.5 in the classical
regime, van der Veen et al. (2016b) calculated the velocity of such plumes based on
planar PIV measurements performed at different heights, which further confirms the
connection between small-scale plumes and large-scale vortices.

Within the context of both TC and RB flow, many studies in the literature focus
on establishing a distinct connection between the transport of angular momentum (or
heat in RB flow) and the structures inherent to these flows, both for large-scale rolls
and small-scale plumes. A comparative study of the probability density functions
(PDFs) of the Nusselt number in TC and RB calculated over cylindrical surfaces
and horizontal planes respectively has been performed by Brauckmann, Eckhardt
& Schumacher (2016b). As a reference point for the comparison, they choose
Reg =2 x 10* for TC and a Rayleigh number of Ra = apgH>AT/(kv) = 10" for RB,
where the Nusselt number is identical for both flows. Here, Ra is the dimensionless
driving parameter in RB flow with «, the thermal expansion coefficient, g the
gravitational acceleration, H the height of the RB cell, AT the temperature difference
and « the thermal diffusivity. They find that the PDFs of the net transport have the
same asymmetric shape with differences in the width of the tails in the boundary
layer regions. These differences can be attributed to different shapes and detachment
frequencies of the plumes. Moreover, the PDFs of the angular momentum and
temperature fluctuations depict a cusp-like shape with pronounced exponential tails
as a consequence of the effect of intermittent bursting plumes. Similar analyses of
heat flux PDFs in RB flow have been performed by Shishkina & Wagner (2007).
They find that the instantaneous heat flux fluctuates around zero and not around
the volume-averaged Nusselt number, along with a broadening of the tails with
increasing Ra. Shang et al. (2004) revealed that the asymmetry of the PDFs of Nu,
which mainly occurs in the tails, arises from correlated temperature and velocity
signals produced by thermal plumes. These plumes lead to large but rare positive
events of heat flux. However, the results of Shang er al. (2004) are only based on
point-wise measurements. For TC flow, the statistics of Nu, were analysed for u =0
by Huisman et al. (2012) without any connection to specific flow structures.

Another approach investigating structures in TC flow is to analyse the kinetic energy
spectra. Dong (2007) performed direct numerical simulations (DNSs) for n=0.5, Re=
8000 and the OC at rest. Strikingly, he finds a small-scale peak in the axial spectra of
the radial velocity component. According to Dong (2007) the underlying structures can
be specified as herringbone streaks. The DNSs of Ostilla-Ménico et al. (2016) in the
boundary layer regions reveal a peak in the azimuthal and axial spectra of the radial
velocity component at large wavenumbers, which indicates the existence of small-scale
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plumes. Their simulations were done for 7 =0.909 and =0 at Reg > 10°. We stress
that the energy spectra in TC flow do not follow the classical Kolmogorov scaling for
homogeneous and isotropic turbulence (HIT) of —5/3 (Lewis & Swinney 1999; Dong
2007; van Hout & Katz 2011; Huisman, Lohse & Sun 2013a; Ostilla-Monico et al.
2016).

Based on this literature review, the following open questions are addressed within
this manuscript: how do turbulence-dominated and vortex-dominated flow states
differ with respect to their velocity field statistics, how important are the vortex
inflow, vortex centre and vortex outflow regions for the momentum transport, how
do small-scale structures affect this transport, what is the length scale of these
structures and do wavy-vortex-like turbulent Taylor vortices exist in the ultimate
turbulent regime? To answer these questions, we make use of PIV measurements
in horizontal planes at different cylinder heights for n = 0.714, in the range of
Reg € [9.3 x 10%, 3.5 x 10°] and pu € [0, —0.36]. We want to stress that such
quasi-three-dimensional experimental investigations of the local angular momentum
transport statistics and flow structures in the ultimate turbulent TC flow at i, are
unique, while the measurement set-up consisting of a TC apparatus with a transparent
top plate and a horizontal PIV configuration has already been used successfully by
van der Veen et al. (2016a) and Froitzheim et al. (2017).

The paper is organized as follows. In § 2, the experimental set-up, the measurement
technique and the investigated parameter space are described in detail. Thereafter,
the flow states, statistical profiles and velocity PDFs are shown and compared to
the literature to prove the quality of the measurements and discuss the influence
of large-scale turbulent Taylor vortices on the global flow statistics (§3). In §4 the
global and local angular momentum transport are analysed based on the net convective
Nusselt number and the contributions of the vortex in- and outflow to the overall
transport are worked out. To detect intermittent bursting small-scale structures which
influence this transport, the PDFs of the net convective Nusselt number are evaluated
over cylindrical surfaces as well as at the axial height of the vortex inflow, centre and
outflow in §5. The energy content and azimuthal length scale of these structures are
calculated in § 6 based on azimuthal energy co-spectra, while azimuthally travelling
waves superimposed on the turbulent Taylor vortices are extracted from the flow field
based on a complex proper orthogonal decomposition in § 7. The paper ends with a
summary and a conclusion (§ 8).

2. Experimental set-up

The PIV experiments were performed in the boiling Twente Taylor—Couette facility
(BTTC) at the University of Twente. The BTTC is an ideal facility to perform PIV
experiments due to its transparent outer cylinder and top plate. The inner and outer
radius of the set-up are r; =75 mm and r, =105 mm, respectively, and thus the radial
gap is d =r, —r; =30 mm. The height of the cylinders is £ =549 mm, which gives
an aspect ratio of I =¢/d =18.3. The radius ratio is then n=r;/r, =0.714. A more
detailed overview of the set-up can be found in Huisman er al. (2015). The flow
consists of water whose viscosity v and density p can be controlled throughout the
experiments due to the temperature control of the BTTC. We fix the temperature of
the experiments to 20°C, leading to v =1.002 mm? s~! and p =0.998 g cm™>. The
standard deviation of the temperature is 15 mK. The flow is seeded with fluorescent
polyamide particles with diameters up to 20 wm with an average particle density
of approximately 0.01 particles/pixel. These particles are coated with Rhodamine B
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FIGURE 2. (a) Sketch of the experimental apparatus (BTTC). Shown is a vertical section.
A mirror set at 45 degrees is used so the camera captures the velocity field in the r — ¢
plane. The picture shows an exaggeration of the 23 positions of the laser sheet along AZ.
(b) Temporally averaged flow field in a horizontal plane at the axial height of the vortex
centre for Res=3.51 x 10° and wu =0. Colours represent the azimuthal velocity component
and arrows the velocity field. Only each tenth vector is shown. Black solid lines indicate
the position of the inner and outer cylinder.

which has a maximum emission centred at approximately 565 nm. The illumination is
provided by a laser sheet from a double-pulsed cavity laser (Quantel Evergreen 145
laser, 532 nm). The thickness of the laser sheet is ~1 mm. The laser is mounted on
a traverse system (Dantec lightweight traverse) which allows us to precisely change
the location of the laser sheet along the vertical direction. The camera we use for the
recordings is an Imager sCMOS (2560 x 2160 px) 16 bit with a Carl Zeiss Milvus
2.0/100 lens. We capture the velocity fields with a framerate of f =15 Hz. Since the
camera is operated in double frame mode, we can have very small interframe times,
ie. At 1/f. In order to maximize the contrast of the images, we use a long-pass
filter in front of the lens (Edmund High-Performance Longpass Filter, 550 nm), which
collects only the emitted light from the fluorescent particles. In figure 2(a), we show
a sketch of the experimental set-up.

The velocity fields are calculated with commercial software (Davis 8.0) using a
multi-pass method. The algorithm uses windows of size 64 x 64 px for the first pass
and windows of 24 x 24 px for the last iteration with a 50 % overlap of the windows.
This process yields the velocity fields in Cartesian coordinates. In order to have access
to the velocity fields in polar coordinates, we map the Cartesian velocity fields onto
a polar grid using bilinear interpolation. The mapping is done such that the radial
Ar and azimuthal A¢ resolution is the same as the spatial resolution in Cartesian
coordinates Ax, i.e. Ar= Ax and rAg = Ax. In this way, the resultant velocity fields
are of the form u = u,(r, ¢, H)e, + u,(r, ¢, t)e,, where u, and u, are the radial and
azimuthal velocity components which depend on the radial coordinate r, the azimuthal
coordinate ¢ and the time coordinate #; e, and e, are the unit vectors in the radial and
azimuthal direction, respectively.

In table 1, we present a summary of the measurements we performed. In total,
eight cases were investigated which will be addressed in the following sections. Each
case contains measurements done at 23 different heights which are separated by
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Case  Regime Reg n Abbreviation Cylg,, Line style

1 Classical 9.32 x 10° 0 Cil§ 10100 ——— (blue)

2 Classical 9.30 x 10° —0.15 C2|;261X5103 —— (blue)

3 Ultimate 2.98 x 10* —0.36 C3|2_.gé;3x6104 —— (light blue)
4 Ultimate 6.68 x 10* —0.36 C4|;2£f.04 —— (green)

5 Ultimate 9.46 x 10* —0.36 C5|;263x6104 —— (yellow)

6 Ultimate  2.15 x 10° 0 Col9 15105 ——— (red)

7 Ultimate 2.14 x 10° —0.36 Cﬂ;?ffms (red)

8 Ultimate  3.51 x 10° 0 Csl9 511105 ——— (brown)

TABLE 1. Overview of investigated flow states, defined by the regime, the shear Reynolds
number Reg and the rotation ratio p. The penultimate column depicts the abbreviations for
the different flow states and the last column depicts the line styles used in the study. The
transition point from the classical to the ultimate regime is located at Res~ 1.6 x 10%.

Az=4 mm, and each height contains 1500 different velocity fields. Thus, the height
of the experiments spans a length of A¢ = 22Az = 88 mm. The resolution of the
velocity fields Ax depends on the height but lies within Ax € [0.607, 0.752] mm,
where the smallest value corresponds to the height closest to the camera at
(z—1¢/2)/d=1.5 and the smallest to (z—¢/2)/d =—1.5.

We investigate flow states for pure inner cylinder rotation as a reference for
a turbulence-dominated flow and for the rotation ratio that corresponds to the
torque maximum, where pronounced large-scale Taylor rolls are present in the gap
(see table 1). Further, the measurements are classified based on the discovered
change in the local scaling exponent « by Ostilla-Moénico et al. (2014b) at
Res(n = 0.714) ~ 1.6 x 10* for u = 0, which is caused by a transition of the
boundary layers (BLs). Accordingly, flow states at Reg < 1.6 x 10* are assumed to be
in the so-called classical regime with laminar BLs, while those at Res > 1.6 x 10* are
assumed to be in the ultimate regime with turbulent BLs. Cases 1 and 2 are in the
classical regime, where, W, changes with the shear Reynolds number, which is why
Wmax = —0.15 is different to the cases in the ultimate regime (Ostilla et al. 2013).
For the flow states in the ultimate regime, the torque maximum is located around
Momar = —0.36.

3. Flow states and velocity profiles

The TC flow at w,,, is dominated by turbulent Taylor vortices, while at u =0
a featureless turbulent flow state develops inside the gap (van Gils et al. 2011;
Brauckmann & Eckhardt 2013b; Ostilla et al. 2013; Huisman et al. 2014). In
the following, this previous finding is confirmed within our measurements and
statistical profiles and velocity PDFs over cylindrical surfaces are compared to the
literature for validation. Therefore, the azimuthally and time-averaged azimuthal
velocity components for the 23 investigated heights are shown in figure 3. The
tilde symbols denote normalized quantities. The radial coordinate is normalized as
F=(r—ry)/(r, — r;), where 0 means the location of the inner cylinder (r;) and 1
the location of the outer cylinder (). Further, the azimuthal velocity is normalized
using the cylinder speeds as it, = (1, — ,2)/(tty1 — Uy ), With u, =rw. In order to
normalize the radial velocity component, the shear velocity is used i, = u,/us.
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FIGURE 3. Representation of the flow states in terms of temporal and azimuthally
averaged velocities. The contour plots depict the azimuthal velocity component for
(@) Res =9.30 x 10° and u =0 (Cy), (b) 9.30 x 10* and pu = —0.15 (C,), (¢) Res =
2.15x 10° and =0 (Cy) and (d) Res=2.14 x 10°> and u=—0.36 (C;). (e) Axial profile
of the radial velocity component for Res =2.14 x 10> and u = —0.36 (C;) at ¥=0.5 with
marked locations of vortex inflow, vortex centre and vortex outflow. Grey dots represent
data points, which are excluded for flow quantities calculated over the axial coordinate.

For both flows in the classical regime (see figure 3a,b), large-scale rolls are visible
in the mean field filling the whole gap. Apparently, the turbulent fluctuations depicted
in figure 5 are not strong enough at low shear Reynolds numbers to suppress these
large-scale rolls. Further, the rolls are more pronounced at p,,,, = —0.15, indicating
an increase in strength. In the ultimate regime at Res =2.15 x 10° and u =0 (Cy),
the turbulent Taylor rolls disappear and nearly no axial dependence of the azimuthal
velocity is visible in the mean field, just as also found numerically (see the phase
diagram, Ostilla-Ménico et al. (2014c, figure 6)). When the rotation rate is changed
t0 Wma» Taylor vortices are formed again, which are much more pronounced than
in the classical regime. The contour plot reveals a mushroom-like structure with
distinct in- and outflow regions. The axial profile of the radial velocity component
corresponding to figure 3(d) is shown in figure 3(e). This representation exemplifies
the further analysis. The recorded 23 heights capture more than one vortex pair,
which is why we exclude the grey marked data points for flow quantities calculated
over the axial coordinate. The axial length of evaluation therefore starts and ends at
a vortex centre. In between, we use the minimum of the azimuthally and temporally
averaged axial profile of the radial velocity as the location of the vortex inflow and
correspondingly, the location of the vortex outflow is obtained with its maximum.
The data point which is closest to a value of zero is defined as the axial location of
the vortex centre. In figure 4, we show the normalized radial profiles of the azimuthal
and radial velocity components averaged over space (cylindrical surfaces) and time
({-)¢.z.)- The slopes of the profiles in the bulk nearly vanish at p = pt,,, while for
pure inner cylinder rotation they show a small negative slope in good agreement with
other studies (Ostilla-Moénico et al. 2014a; Brauckmann et al. 2016a; Froitzheim
et al. 2017). With increasing shear Reynolds number, the difference of the data
points close to the wall from the wall velocity becomes larger, which is due to the
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FIGURE 4. Radial profiles of the (a) azimuthal and (b) radial velocity component,
averaged over space (cylindrical surfaces) and time. Tilde symbols denote normalized
quantities. The radial coordinate is normalized as 7 = (r — r)/(r, — r;), where 0 means
the location of the inner cylinder (r;) and 1 the location of the outer cylinder (). The
azimuthal velocity is normalized using the cylinder speeds as it, = (1, — Uy 2)/(Up,1 — Uy 2)
with u, =rw. To normalize the radial velocity component, the shear velocity usg= Regv/d
is used: i, = u,/us. Legend abbreviations represent C#|§ES.

_ 0 —-0.36 —0.36 —-0.36
G ‘9.32><103 C3|2.98x 10* C5‘9.46x10‘ C7|2.14>< 10°
—0.15 —0.36 I 0 R 0
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~
~

FIGURE 5. Radial profiles of the standard deviation of the (a) azimuthal and (b) radial
velocity component, calculated over space (cylindrical surfaces) and time. The profiles are
normalized by the shear velocity us. Legend abbreviations represent Cylg,.

steepness of the velocity gradients. The averaged radial profiles of the radial velocity
component are nearly zero all over the gap with absolute values smaller than 1%
of the shear velocity ug, as the radial velocity ideally has to vanish when averaged
over one vortex pair. The deviation results from the restricted axial resolution of the
individual heights.

Next, the radial profiles of the standard deviation of the azimuthal and radial
velocity component calculated over space (cylindrical surfaces) and time are plotted
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FIGURE 6. Probability density functions of the (a,b) azimuthal and (c,d) radial velocity
component calculated over space (cylindrical surfaces) and time at #=0.5 for Res=2.1 x
10°. Red dashed lines correspond to =0 (Cg) and red solid lines to pu = —0.36 (C;).
Dark grey, grey and bright grey lines indicate the local PDFs for the vortex inflow,
vortex centre and vortex outflow, respectively. The black dashed line represents a Gaussian
distribution with zero mean and unit variance.

in figure 5. In terms of the azimuthal velocity component, the radial profiles of the
standard deviation show a nearly constant low value in the centre of the gap and
increasing values close to the wall. This increase is more pronounced at [,,.; while
for the lowest shear Reynolds number, a peak close to the outer cylinder wall is
visible. In the case of the radial velocity component, the standard deviation depicts
a maximum in the centre of the gap and decreases towards the cylinder walls. The
maximum of o, .,(%,) for both flow cases in the classical regime is noticeably higher
than the one in the ultimate regime. The overall shape of the profiles agrees well
with the ones for pure inner cylinder rotation of Ezeta et al. (2017), measured with
PIV in the same facility at mid-height.

3.1. Probability density function of velocity components

To provide further validation of our measurements and a basis for the investigation of
the local PDFs of the angular momentum transport (§5), we first analyse the PDFs
of the azimuthal and radial velocity components. In figure 6, we show the PDFs of
the azimuthal and radial velocity components at #=0.5 and Reg=2.1 x 10° for u =
0(Cs) and u=—0.36 (C;) as representatives. In addition, the underlying PDFs at the
locations of the vortex inflow, vortex centre and vortex outflow are included.

The local PDFs at the specific vortex locations are close to Gaussian distributions,
as already shown by Huisman et al. (2013a) for the azimuthal velocity component
measured via laser Doppler velocimetry (LDV) at mid-height and 7 =0.5. When all
data at different heights are included in the PDFs, they still follow a Gaussian shape
at u =0 for both velocity components. At (., however, the PDF of the azimuthal
velocity depicts a cusp-like form centred at the origin with approximately exponential
tails in accordance with the numerical simulations at a lower Reynolds number of
Res =2 x 10* by Brauckmann et al. (2016a). There, and in the study of Emran &
Schumacher (2008), a nearly identical shape was reported for the temperature PDF
in RB flow, which reveals yet another clear evidence of the analogies between both
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FIGURE 7. Probability density functions of the azimuthal velocity component calculated
over space (cylindrical surfaces) and time for the radial locations (@) ¥=0.1, (b) ¥=0.3
and (c) 7=0.5. Legend abbreviations represent Cylg,,.

systems, even in the small-scale statistics. In RB flow, the specific PDF shape of
the temperature is induced by a combination of bursting plumes and large-scale rolls
(Castaing et al. 1989; Yakhot 1989; Procaccia et al. 1991). By using the TC-RB
flow analogy, we can identify here a clear fingerprint of plumes transporting angular
momentum in TC flow. In addition, the vortex-dominated TC flow in the region of
the torque maximum in the fully turbulent regime shows similar behaviour to the
flow organization in RB flow. In the case of the radial velocity at .., the PDF
also deviates from the ideal Gaussian shape, which can be attributed again to the
intermittent bursting plumes.

As the PDFs of u, for flow cases at pure inner cylinder rotation depict a nearly
Gaussian shape, which is also valid for different radial locations in the bulk, we
omit the radial velocity component for the following analysis within this section. In
figure 7, we calculate the PDFs of the azimuthal velocity component for different
radial locations. When the point of evaluation approaches from the gap centre to
the direction of the inner cylinder wall for i, the right-hand tail of the initial
cusp-like PDF becomes more pronounced and its width increases with the shear
Reynolds number. This change is caused by the dominance of the vortex outflow in
the inner gap region, where the mean azimuthal velocity exhibits a large positive value.
In addition, very close to the inner wall at ¥ = 0.1, both tails become increasingly
exponential. This behaviour is even more pronounced at higher Reg, which is another
sign of the ejection of coherent plumes from the cylinder wall. Next to these local
changes, with decreasing distance to the wall, the global asymmetry of the PDFs
seem to increase.

To account for such global properties of the PDFs, we show in figure 8 the radial
profiles of skewness and kurtosis of the azimuthal velocity component for different
Reynolds numbers. When the outer cylinder is at rest and the ultimate regime is
reached, the skewness is close to zero and the kurtosis close to three, confirming
the nearly Gaussian shape. The small radius dependent deviations in skewness for
large Res may result from remnants of turbulent Taylor vortices (Lathrop et al. 1992;
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FIGURE 8. Radial profiles of the (a) skewness and (b) kurtosis of the azimuthal velocity
component, calculated over space (cylindrical surfaces) and time. Legend abbreviations
represent Cylp,.

Huisman et al. 2014; van der Veen et al. 2016a). At [, the skewness increases
from the inner cylinder wall to a maximum around 7 = 0.16, then decreases to
negative values with a minimum around 7 = 0.86 for Reg = 2.14 x 10° (C;) and
then increases again in the direction of the outer cylinder. Furthermore, the absolute
skewness increases with the shear Reynolds number. This behaviour is similar to that
of the temperature fields in RB flows reported by Emran & Schumacher (2008). The
kurtosis profiles at (., depict two maxima, one in the inner gap region at 7= 0.22
and one in the outer gap region at ¥ = 0.68 for the highest Res. This reflects that
the non-Gaussianity of the PDFs is most pronounced in the regions dominated by
the vortex in- and outflows due to coherent plumes. In summary, the global and
local velocity field statistics of our measurements agree very well with those of the
mentioned literature and exceed the state of the art especially for i, to higher
forcings.

4. Angular momentum transport

As the angular momentum transport, expressed in terms of the quasi-Nusselt number
Nu,, is strongly influenced by the local and global flow organization inside the gap, it
is an appropriate parameter to statistically investigate the existence of flow structures.
Therefore, within this section, we first analyse the global angular momentum transport
to compare its amount with the literature, and second, we analyse the axial dependent
radial profiles of Nu, to reveal the most relevant axial locations for the transport.
The subsequent results are fundamental for the small-scale statistical analysis of the
local momentum transport in the next section and enable new insights into the vortex-
dominated momentum transport. The Nusselt number is composed of a convective and
a viscous part (Eckhardt et al. 2007a),

2 Ur3

: r u
Nty = Nif (1) + N (1) = S (ittt} = =0, <i’> . (4.1)
lam lam r/ezt
While the viscous term Nu. dominates in the boundary layers, the convective
term Nu, dominates in the bulk. Since the focus of our investigation is set to
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FIGURE 9. (@) Azimuthal- and time-averaged profiles of the total Nusselt number
indicated by lines and of the net convective Nusselt number indicated by diamonds (i4,,4,)
and circles (u = 0). The evaluation is restricted to the interval 0.1 <7< 0.9 to exclude
the boundary layers and focus on the bulk flow. Legend abbreviations represent Cy|g,.
(b) Radially averaged total Nusselt number as function of Reg. Error bars represent the
standard deviation of the total Nusselt number along the radial coordinate. Data are
compared to torque measurements of Lewis & Swinney (1999) (u =0, n =0.724) and
DNS of Ostilla-Moénico et al. (2014¢) (u=-0.4, n=0.714).

the bulk region, we thus neglect the viscous part. Furthermore, as is shown in
figure 4(b), the radial velocity component nearly vanishes when averaged over
cylindrical surfaces with an axial length of one vortex pair: (u,), ., ~ 0. Therefore,
P utty) g oo & r*(Uu,), o, is valid, which means that only the fluctuations of the
azimuthal velocity component around its mean profile contribute to the net momentum
flux through these cylindrical surfaces (Brauckmann et al. 2016a). Accordingly, the
net convective flux in the bulk flow can be calculated as

2

’
c,net __ a :
Nus; _J—(uwu,)w,z,z, with
lam

u’,(r, @, 2, t) = ur(r’ @, 2, [) - (ur(r7 @, 2, t))(p,z,t’
u,(r, 9,2, 1) =uy(r, 9, 2, 1) — (Up(r, @, 2, D) 2.r-

4.2)

To avoid confusion, in the following, we will call the Nusselt number Nu, =
Nu; + Nu, shown in (4.1), the total Nusselt number. In figure 9(a), we show the
radial profiles of Nu, indicated by lines, and the net convective momentum flux
Nu$™, indicated by diamonds (i) and circles (u = 0). The analysis is restricted
to the bulk region with 7€ [0.1, 0.9]. A slight dependence of the Nu,-profiles on the
radial coordinate is observable, which differs partially for the different flow states.
The deviation from the predicted conservation of the momentum transport along the
radial direction according to Eckhardt et al. (2007a) is probably due to the finite
axial length of our experimental set-up in contrast to their theory, which is based on
cylinders of infinite length. However, the effect of the cylinder length is reduced in
our set-up by cutting the axial length of evaluation to the size of one vortex pair.
Moreover, also the vortex aspect ratio influences the value of Nu, as a function of
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FIGURE 10. Contour plot of the dimensionless (a) convective and (b) net convective local
angular momentum transport in a meridional plane for Reg=2.14 x 10° and u = —0.36
(C;). Black lines indicate the zero line of the depicted quantities. The colour codes are
given in the legends. (¢) Joint PDF of the radial and azimuthal velocity fluctuations for
the same flow state at ¥=0.5. The colours give the probability (in log scale), see legend.

Reg (Huisman er al. 2014; Martinez-Arias et al. 2014), which takes values for the
current study in the range of 2.13d-2.67d. Considering these aspects, the shape of
the Nu,-profiles is satisfactory. The net convective momentum flux dominates the
total Nusselt number and is valid to evaluate the momentum transport in the bulk
region (Huisman et al. 2012). Furthermore, in figure 9(b), we show the radially
averaged total Nusselt number as a function of Reg, which is also compared to both
torque measurements of Lewis & Swinney (1999) (u =0, n = 0.724) and DNS of
Ostilla-Moénico et al. (2014c) (u=—-0.4,n=0.714). We find a very good agreement
with these data, which enables a more detailed analysis of the momentum transport.

In order to get deeper insight into the relation between the convective and net
convective Nusselt number, we plot in figure 10(a,b) both local quantities in a
meridional plane (r — z plane) for Reg = 2.14 x 10° and pu = —0.36 (C;). The
local Nusselt number can be much larger than its average value as already noticed
by Huisman et al. (2012) and Ostilla-Moénico et al. (2014b). In the case of the
convective Nusselt number Nu; (figure 10a), the momentum transport in the area
of the vortex outflow is positive and strongly concentrated in a small axial region,
while in the area of the vortex inflow, the transport is negative and less focused.
The magnitude of positive momentum flux is twice as large as the negative one,
which yields on average a positive net transport. Alternatively, when the net transport
is plotted (figure 10b), a much clearer picture of the transport process is revealed.
While in the in- and outflow region the net transport is positive, only in the sheared
regions in between negative net transport can be detected. In order to explain this
difference, in figure 10(c) we show the joint PDF of the radial and azimuthal velocity
fluctuations at ¥ = 0.5. In the inflow region, where the fluid is transported strongly
in the negative radial direction, the azimuthal velocity depicts a high probability for
negative fluctuation values. As a consequence, the net transport has to be positive.
In the outflow region, both velocities are mainly positive, resulting also in a positive
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FIGURE 11. Radial profiles of the contribution of the net convective momentum transport
of the (a) inflow and (b) outflow to the total transport; n, represents the number of heights
included into the average over cylindrical surfaces. Legend abbreviations represent Cglg,,.

correlation. However, when the mean azimuthal velocity component is not subtracted,
the joint PDF is shifted to the right, leading to negative correlations in the inflow
region (not shown). In summary, the difference between Nu{ and Nu(" is the
transport of the mean azimuthal velocity by the turbulent Taylor vortices, which
vanishes when averaged over cylindrical surfaces. By neglecting this fraction, a much
clearer picture of the transport process is revealed. In addition, the representation of
the Nusselt number in the meridional plane demonstrates the importance of the in-
and outflow regions for the net convective transport.

The contribution of the vortex in- and outflow as a function of the radial location
and Reg is depicted in figure 11. As a global feature, the contribution of the vortex
inflow to the total net convective momentum transport is especially pronounced in
the outer gap region (¥ > 0.5) while the opposite is true for the outflow. For the two
flow states in the classical regime, where the values of the total Nusselt numbers are
comparable (see figure 9), the contributions of the in- and outflow are much more
dominant at . This reflects the strong correlation of the enhanced momentum
flux at W, and the turbulent Taylor vortices. Further, in the ultimate regime at
w = 0, again the effect of remnants of these large vortices becomes visible in the
slight dependence of the Nusselt number on 7. When the ultimate regime is reached
at Res = 2.98 x 10* at . (C3), the contributions of the vortex in- and outflow
are small and become significant again at Res = 6.68 x 10* (C,). For even higher
shear Reynolds numbers, the contribution of the inflow stays nearly constant with a
fraction slightly above 30 % in the outer gap region; while the outflow contribution
continuously increases up to approximately 60% in the inner gap region. This
value is strikingly high and demonstrates that at very high Reynolds numbers, the net
convective transport shrinks to very small axial regions, where most of the momentum
transport takes place. We would like to encourage further numerical or experimental
studies, to confirm this finding.
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5. Probability density function of the net convective angular momentum flux

With the knowledge of the total net convective transport and the relative contri-
butions of the in- and outflow, we analyse now the PDFs of Nul" to identify
statistical footprints of small-scale plume structures. To properly normalize these
PDFs and provide an idealized shape for comparison, we firstly introduce the Gaussian
distribution. According to figure 6, the PDFs of the radial and azimuthal velocity
components are nearly Gaussian for pure inner cylinder rotation. In that case, the
PDF of their product can be described according to Thoroddsen & van Atta (1992)
and Chu et al. (1996) based on a Gaussian distribution. The PDF of two jointly
Gaussian random variables x and y is given by

1 1 X 2xypp | Y
Px,y) =———F———=exp | ——5 | = — +=11, (5.1)
noxoym 2(1 —p}) \ o2 0.0, 0}

with the individual standard deviations o, and o, and the correlation coefficient
pr = (xy)/(0,0,). Equation (5.1) represents an inclined elliptic shape for the joint
PDF in contrast to the one shown in figure 10(c). Furthermore, the PDF of the
product z=uxy is (Thoroddsen & van Atta 1992; Chu et al. 1996)

1 pPpZ |z
P(2) = Ko | 75— |- 5.2
® no0,\/ 1 — p} P ((1 — p}) axay> ‘ <(1 — pp) o-xay> (52)

with K, the modified Bessel function of the second kind. The prefactor of the
exponential function in (5.2) is used to normalize the different PDFs of the angular
momentum flux, i.e. to standardize the width of their tails. It is worth mentioning
that the correlation coefficient pp cannot be normalized in a proper way, which
leads to different slopes of the exponential tails of the prediction depending on pp.
Therefore, in our calculation, we use the prediction according to (5.2) for the case
Res =3.51 x 10° and =0 (Cy).

In figure 12, we show the PDFs of Nu("', which are normalized with the factor

0,04,/ 1 — p} in order to compare their shapes, at 7 =0.5. For pure inner cylinder

rotation, the PDFs of the net convective momentum transport agree very well with
the proposed jointly Gaussian prediction. However, at w,,,. the PDFs become highly
skewed due to a change of shape in the positive tails. This deviation results in
an increasing but still small number of positive extreme events of momentum flux,
which becomes more pronounced with increasing Regs. According to figure 12(c), these
rare and extreme events can be almost completely attributed to the vortex in- and
especially the vortex outflow due to changes in the azimuthal velocity component (see
also figure 6). Here, a strong correlation between the radial and azimuthal velocity
component exists due to the coherence of the plumes (see also figure 10c). In addition,
all PDFs have in common that zero is the value with the highest probability instead
of the average value of the Nusselt number. The overall shape of the PDFs at .,
is in good agreement with the findings of Brauckmann er al. (2016b), whose analysis
was however restricted to low Reynolds numbers (Res =2 x 10*) and PDFs along
cylinder surfaces. Furthermore, our PDFs are comparable to the corresponding PDFs
of the heat flux in the RB flow. Shang et al. (2004) reported similar PDF shapes in
the case of RB convection. They argue that such large rare events are footprints of
heat flux fluctuations induced by thermal plumes. This feature is obviously shared
with TC flows and supports the origin of large-scale turbulent vortices as the result
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FIGURE 13. (a) Probability density functions of the local net convective angular
momentum transport calculated over space (cylindrical surfaces) and time for Reg =2.14 x
10° at u=—0.36 at different radial positions (C;). (b,c) Same PDFs at #=0.3 and 7=0.7,
respectively, with the corresponding PDFs related to the vortex inflow, vortex centre and
vortex outflow.

of small-scale unmixed plumes. Even more, slight counter-rotating cylinders at p,.
instead of pure inner cylinder rotation seems to be the right kinematic boundary
condition of TC flows for comparisons with the RB flow concerning Nu, PDFs.

In figure 13, we show the PDFs of Nu’" for various different radii r for the case
of Reg=2.14 x 10° at u = —0.36 (C;). The negative tails of the PDFs are largely
identical for all investigated radial positions, while the right tails strongly depend on 7.
From the inner to the outer cylinder wall, the width of the positive tail and therefore
the asymmetry decreases coinciding with degeneration of the exponential tails in the
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u, PDFs in figure 7. As was shown in figure 11(b), the maximum of the outflow
contribution to the overall momentum transport is close to #=0.3. At this location, the
right tail of the PDF reflects extreme positive events due to the emission of plumes
and is nearly covered by the PDF of the outflow (see figure 13b). However, in the
outer gap region at ¥ =0.7, the asymmetric right tail of the PDF is comparably formed
by both the in- and outflow region. From our point of view, our findings demonstrate
that the comparative evaluation of axially global and local PDFs of Nu(", which has
not been done in TC flow before, is crucial for deeper insights into the statistics of
the momentum transport.

6. Azimuthal energy co-spectra and correlations
6.1. Azimuthal energy co-spectra

As shown in the previous section, the net convective Nusselt numbers suggest the
presence of small-scale plumes concentrated especially in the in- and outflow regions
of the turbulent Taylor vortices, which dominate the transport. Hence, we analyse
the spatial energy co-spectra to detect the presence and length scale of small-scale
structures in the gap. We assume velocity fluctuations at a constant radial r. and axial
Z. position in the homogeneous ¢-direction with a total number of azimuthal points
of n,=0,1,..., N —1 equidistantly spaced by As= Agr, i.e.

Mj(rc, (/), ey t) = ur(rca (,0, ey t) - (ur(rc, (0, ey t))ta (61)
u;(rcs (p, ch t) = u(p(rca (p7 ch t) - <u(ﬁ(rcv QD, ZC! t))t (62)

The discrete spatial Fourier transform U, , of both fluctuation components u; , is given
by

— 2mikn
Upynp) = 17, (k) exp (_ & w) , 6.3)

k=0

where for simplicity we have not written out the dependences on r., z. and ¢. Thus,
the spatial energy co-spectrum E,, can be calculated as

|, N
— U - Uy, for n, = {0, ] ,
N2 )
Eyk) =14, N (6.4)
Ny Ny N‘"«J N_nw
ﬁ('Ur U(p|+|Ur 'U(p |), fOr n(p=|:1;’2_1:| ,
with the wavenumber vector k,’ = (As)"'n,/N. The co-spectra are determined

for each time step ¢ and afterwards ensemble averaged over 1500 snapshots for
every case. To enable a comparison of the co-spectra for different Res and radial
positions, we normalize all co-spectra with the area under the corresponding graph
Ap ~ (2As)™! Zflvw/igl[Ew(kZ‘”) + Ew(kzwﬂ)] based on the trapezoidal integration
method.

First of all, we show the temporally and axially averaged azimuthal energy co-
spectra at 7 =0.5 in figure 14(a) to illustrate the scaling of our spectra and compare
it with other studies. The kinetic energy co-spectra show that most of the energy lies
within the large scales, corresponding to small wavenumbers. The co-spectra depict a
noticeable drop for k,d ~ 20. It is worth mentioning that we do not see any peak in
the large-scale regime, because of the limited range of the azimuthal coordinate in the
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curves and by the gap width d. (b) Local scaling exponent y of the co-spectra for
E,, ~ kI calculated with a bin size of log,(k,) = 0.5. Legend abbreviations represent

C#'%Gs'

experiments. Moreover, we cannot resolve the energy content of axisymmetric Taylor
rolls, as they correspond to an azimuthal wavenumber of k, = 0.

In the case of Reg being in the classical regime, the spectra show, compared to the
other flow states, a stronger decrease of the spectral energy at mid scales and a kink
in the region of 10 < k,d < 20. When Rey is increased into the ultimate regime (with
n fixed at @ = W), this kink continuously diminishes and energy is redistributed
from the large to the small scales. Based on the power-law ansatz E,, ~ k7, the
local scaling exponent y corresponding to the co-spectra is shown in figure 14(b);
y is calculated with a bin size of log,(k,) =0.5. It is worth mentioning that y is
sensitive to the data processing and the accompanying error propagation; y is given
here for this choice of bin size and to show the trend of y with d. We observe that
the spectra neither show —1 nor —5/3 scaling, which is consistent with the results of
Lewis & Swinney (1999), Ostilla-Moénico et al. (2016) and Huisman et al. (2013a). In
the ultimate regime (with u fixed at @ = W,.4.), the exponent decreases with increasing
k, before it strongly drops down in the viscous regime beyond k,d ~ 20. This decrease
becomes smaller with increasing Res.

However, in the case of the highest investigated shear Reynolds number at Reg =
3.51 x 10° and =0 (Cy), the local exponent is nearly constant for k,d <10 with a
value of y ~ —1.52, which is slightly above —5/3.

Next, we focus on the local pre-multiplied energy co-spectra at the axial height
of the vortex inflow, vortex centre and vortex outflow, respectively, where the
PDF analysis of Nul" suggests the occurrence of small-scale intermittent plumes.
Pre-multiplied means that the co-spectra are multiplied with the wavenumber vector k,,
such that the area under its graph corresponds to the kinetic energy (Smits, McKeon
& Marusic 2011). In figure 15, we show the pre-multiplied energy co-spectra in the
classical regime for Res =9.32 x 10° and = —0.15 (C,) at the three vortex positions.
Firstly, we address the peak that corresponds to the large scales. For the vortex inflow
in figure 15(a), the large-scale peak is located around k,d ~ 1.1 within the bulk for
0.2 <7< 0.8, while close to the outer cylinder at ¥ = 0.9, the peak lies outside of
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FIGURE 15. Temporally averaged pre-multiplied azimuthal kinetic energy co-spectra in the
classical regime for Reg =9.30 x 10° and u = —0.15 (C,) at different radial positions at
the axial height of (a) vortex inflow, (b) vortex centre and (c) vortex outflow. The region
of k,d €[10, 20] with enhanced plume emission is marked in light blue. Sketches above
the co-spectra for the different vortex regions are added for clarity.

our resolvable scales. Close to the IC wall, the peak shifts to k,d ~2.2 at 7=0.1. In
figure 15(c), at the location of the vortex outflow, the opposite behaviour is observed.
Here, the large-scale peak shifts to smaller wavenumbers when the radial position
increases from the IC to the OC. At the vortex centre in figure 15(b), the large-scale
peak is shifted from smaller wavenumbers in the centre of the gap (r = 0.5) to
larger ones at both cylinder walls, in an almost symmetric manner. This suggests
that the formation of this large-scale peak is connected to the mean radial velocity
field, which is in itself caused by the large-scale turbulent Taylor rolls. When fluid
impacts on the cylinder walls due to these rolls, structures of the size k,d ~2.2 are
formed. Since the axisymmetric flow has a wavenumber of k, = 0, the existence of
a large-scale peak may be an indication of modified turbulent Taylor vortices. This
point will be discussed in more detail in §7.

With respect to the small-scale peak, we observe that it is located at wavenumbers
around k,d € [10, 20] for all three depicted heights, independent of the radial
coordinate. However, its amplitude strongly varies with 7 and the height z. In the
region of the vortex inflow shown in figure 15(a), the small-scale peak is most
pronounced near the OC and its amplitude decreases monotonically with decreasing 7.
On the contrary, at the height of the vortex outflow in figure 15(c), the small-scale
peak amplitude is largest close to the IC and decreases in amplitude towards the OC.
In the region of the vortex centre in figure 15¢), we find the highest amplitude of
the small-scale peak in the centre of the gap. This is due to the emission of coherent
plumes from the cylinder walls which give rise to the formation of Taylor rolls, as
was already mentioned before. Thus, this peak should indeed be most pronounced
in the ejecting regions, i.e. in the outflow region at the IC and in the inflow region
at the OC, respectively. At the height of the vortex centre — where no predominant
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FIGURE 16. (a—c) Temporally averaged pre-multiplied azimuthal kinetic energy co-spectra
for Reg =2.15 x 10° and =0 (Cg) at different radial positions at the axial height of
(a) vortex inflow, (b) vortex centre and (c) vortex outflow. Region of k,d € [10, 20] is
marked in light blue. (d—f) Same spectra for Reg=2.14 x 10> and u=—0.36 (C;) at the
axial height of (d) vortex inflow, (e) vortex centre and (f) vortex outflow.

flow direction concerning the radial velocity component is present — the behaviour
is different: plumes rise from both cylinder walls and travel towards the bulk flow,
which results in the highest peak amplitude at ¥ = 0.5. Considering the fact that the
contribution of the vortex centre to extreme and strong events of momentum flux is
almost negligible (see figures 12 and 13), these detected plumes seem to compensate
their total radial momentum transport.

The pre-multiplied energy co-spectra in the ultimate regime at Reg=2.1 x 10° for
the three vortex locations are depicted in figure 16 for uw =0 (Cq, a—c) and Wy
(C4, d=f). For =0, no large-scale peak can be seen in any of the co-spectra at the
investigated heights. This is consistent with the finding shown in figure 3(c), where
we observed that the Taylor rolls have faded away. Accordingly, the shape of the
co-spectra is less dependent on both the axial coordinate and on 7. However, the
co-spectra show a prominent change in the slope around k,d ~ 20: In figure 16(a)
(vortex inflow), a small-scale peak is formed around k,d € [10, 20] close to the OC at
¥=0.9. This is comparable to the previous case in the classical regime. Also in the
region of the vortex outflow (figure 16c), we observe a peak within the same range
of scales at #¥=0.1. For the vortex centre however (figure 16b), no peak is visible.

Also when p is changed to w,... (see figure 16d,e), we identify a similar behaviour
as in the classical regime, although the energy is more homogeneously distributed over
all scales. At the height of the vortex inflow as seen in figure 16(d), a large-scale peak
is present which shifts to k,d ~3.9 at 7 =0.1. At the vortex outflow in figure 16(f),
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this shift appears close to the OC wall at ¥ = 0.9 for the same wavenumber. In the
region of the vortex centre (figure 16¢), the large-scale peak is most pronounced at
7 = 0.5, a smaller wavenumber. For all the heights explored, the co-spectra do not
reveal a peak in the small-scale regime. However, at the vortex inflow the energy is
redistributed continuously from large to small scales when 7 is varied from 0.1 to 0.9,
as it is clearly visible in the marked regime of k,d € [10, 20]. We also observe that
the energy contained in the small scales increases in the vortex outflow region with
decreasing radial position.

In summary, should prominent turbulent Taylor rolls exist in the flow, a peak at
large scales exists and small-scale structures are present throughout the gap, but most
prominently in the vortex ejecting regions. However, when the Taylor rolls have faded,
the peak at large scales vanishes and small-scale structures are only detectable close to
the cylinder walls. These findings reveal yet another clear evidence of the existence
of turbulent non-axisymmetric Taylor rolls and support the idea that the large-scale
rolls consist of small-scale unmixed plumes. Furthermore, the azimuthal length scale
of these plumes is of the order of k,d € [10, 20].

6.2. Spatial correlation coefficients

As was shown in the previous section, the pre-multiplied energy co-spectra demon-
strate the existence of small-scale structures (coherent plumes) and large-scale
azimuthal structures, which are both connected thanks to the presence of turbulent
Taylor vortices. For the sake of clarity, the investigation was confined to three specific
cases. Within this section, however, we extend the analysis of the large-scale peak
based on the azimuthal two-point autocorrelation coefficient. More specifically, the
shift of the large-scale peak close to the cylinder walls as well as its characteristic
in the centre of the gap are worked out in more detail. The spatial two-point
autocorrelation coefficient of the velocity fluctuations between two points separated
by Ag in the azimuthal direction is given by

(wr(r,o,z,)u; (r, o +A@,2,0)
(W (r, 0,2, 1))

(uy, (ry @, z, ) uy, (r, @ + Ap, 2, 1)) g

W2(r, @, 2, D)y, '

R, (r,z, Ap) = , (6.5)

(6.6)

R(pgo (l", < A§0) =

In figure 17(a), we show the spatial two-point autocorrelation function of u, at
7= 0.1 in the ultimate regime for three different flow cases at .., and for both
the vortex inflow and outflow. We observe that, independently of the flow case,
the autocorrelation function at the vortex inflow shows a minimum at r¢/d ~ 0.13,
which indicates the existence of azimuthal structures of that size. In contrast, for
the outflow, we observe a monotonic decrease of the autocorrelation function. Close
to the outer cylinder wall (see figure 17b), the opposite behaviour is observed with
a pronounced minimum of the autocorrelation function for the vortex outflow at
ro/d ~ 0.15. This suggests that when the large-scale Taylor rolls transport fluid
against the cylinder walls, azimuthal structures seem to be stimulated close to these
walls in good agreement with the findings of the spectral analysis shown in §6.1.

Next, in figure 17(c,d), we show both the azimuthal and radial two-point
autocorrelation function for the centre of the vortex evaluated at 7 = 0.5. At this
position, the large-scale peak in the co-spectra is most pronounced as it was shown
in figures 15 and 16. Here, we compare three flow states in the classical and ultimate
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FIGURE 17. (a,b) Azimuthal two-point autocorrelation function of the fluctuation radial
velocity component at the axial height of vortex in- and outflow at (¢) ¥=0.1 and (b) 7=
0.9. (c,d) Azimuthal two-point autocorrelation function of the fluctuation (¢) azimuthal
and (d) radial velocity component at the axial height of vortex centre at ¥ =0.5. Legend
abbreviations represent Cy|g,.

regime where turbulent Taylor vortices are present and a case where they are absent
(Ce). These figures reveal that in all vortex dominated cases, a large-scale oscillating
behaviour is developed, while in the absence of rolls, the autocorrelation simply
decreases towards zero over the whole azimuthal measurement length. We thus
conclude, that the large-scale peak in the spectra apparently results from a wavy
azimuthal pattern connected to the Taylor rolls.

7. Complex proper orthogonal decomposition (CPOD)
7.1. CPOD method

In order to reveal the flow structure connected to the large-scale oscillation within the
flow found in figures 15-17, we perform a proper orthogonal decomposition (POD) of
the velocity fluctuations field. The POD, also known as empirical orthogonal function
analysis (EOF), is a technique to extract modes like coherent structures from a flow
field that contribute most to the energy of the flow (Taira er al. 2017). It can be
further used to identify the most relevant degrees of freedom in a dynamical system.
For additional information, we refer the reader to the review of Berkooz, Holmes &
Lumley (1993). As a classical POD mode cannot capture propagating structures, we
perform a complex POD using the Hilbert transform (see Pfeffer et al. 1990), where
a mode is split into two patterns namely its real and its imaginary part with a phase
difference of w/2, based on the algorithm described by Marple (1999). We further use
a combined analysis of both velocity components u, and u, for the POD analysis. The
applied algorithm is based on three steps (Harlander et al. 2011). At first we use the
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Hilbert transform 7, to make the velocity fluctuations complex
uy  =u; +iHuy) (7.1)
w, = uy, + iH (uy). (7.2)

Secondly, the imaginary, transformed velocity fluctuations (u; ., uy .) are arranged in a

r,c’

data matrix D, where columns are assigned to the spatial grid points (1:M) and rows
to the time signals (1:N), while M > N

'ujfx(xl, ) - uf,c(xl, tn) T
D— uy o, t) - uy (o, ty) (1.3)
u:;,c(xla tl) e u;,c(x]’ tN) ’ ‘
L} o 1) -l (g, ty) )

At the end, a singular value decomposition (SVD) of the data matrix is performed
as D=®XW¥" The columns of the matrix @ contain the left singular vectors of D
and therefore the N complex modes CPOD(r, ¢). The diagonal elements of X hold
the singular values, whose square is a measure of the kinetic energy captured by the
individual modes. Note that the singular values are sorted in descending order together
with the complex modes, meaning that the first mode represents a larger fraction of
kinetic fluctuation energy of the full field than the second one and so forth. Next, the
velocity fluctuations at a specific axial location z can be reconstructed by

N
w(r.g. )= a(t)CPOD(r, ). (7.4)

i=1

The time-dependent coefficients a;(¢) result from a projection of the complex modes
onto the data matrix, i.e. a; = D'CPOD);. In the following, we will present the CPOD
results for two flow states at the height of the vortex centre, where the azimuthal two-
point correlation showed a large-scale oscillating behaviour. The first case is in the
classical regime at =0 and the second one in the ultimate regime at p,uq,.

7.2. CPOD in the classical regime

The first CPOD mode for Reg =9.32 x 10° and 1 =0 (C)) is depicted in figure 18
for both velocity components. With the first temporal coefficient a;(f) and the
first mode CPOD,, the corresponding velocity fluctuation field is reconstructed by
ui(r, ¢, t) =a;(t)CPOD,(r, ¢). In figure 18(a), the real part of CPOD,, representing
the radial velocity component, shows nearly circular regions of positive and negative
velocity, alternating in the azimuthal coordinate direction. This azimuthal wave pattern
becomes azimuthally shifted in the corresponding imaginary part in figure 18(c),
indicating an azimuthally travelling wave. The real part of the azimuthal velocity
of CPOD, in figure 18(b), depicts diagonal bands with pointy edges close to the
cylinder walls. These regions again show alternating positive and negative velocities.
The corresponding imaginary part in figure 18(d) is also azimuthally shifted, showing
the same pattern. As a result, it is revealed that the velocity field consists of
counter-rotating vortices in the horizontal plane, whose vorticity axes are co-axial to
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FIGURE 18. Value of CPOD; for Res =9.32 x 10° and =0 (C,) at the axial height
of the vortex centre for both velocity components. (a) Real and (¢) imaginary parts of
CPOD, for the radial velocity component. (b) Real and (d) imaginary parts of CPOD;,
for the azimuthal velocity component. Black arrows represent the resulting velocity field
of CPOD,.

the rotation axis of the system. The pattern appears similar to that of the well-known
wavy Taylor vortices (WTV) at lower Reynolds number TC flow. Thus, here we
show that in the classical turbulent regime, turbulent Taylor vortices can also feature
azimuthal waves.

In figure 19(a), we show the energy fraction captured by the CPOD modes for
Res=9.32 x 10° and =0 (C;). The first mode captures approximately 17 % of the
total energy fluctuation and we observe a strong drop to the second mode down to
6.7 %. Accordingly, the first CPOD mode is dominant and is, therefore, the only one
discussed. The temporal energy spectrum of the real part of the first mode’s temporal
coefficient a,(¢) is pictured in figure 19(b), together with the temporal energy spectrum
of the full field radial velocity component, calculated at ¥ =0.5 and averaged over ¢.
The dominant frequency of CPOD; is f/(fi —f,) =3.03, identical to that of the radial
velocity component. Thus we can assume that the first mode captures the temporal
behaviour of the full field quite accurately. The frequencies f; and f, represent the
rotation frequencies of the inner and outer cylinder, respectively.

To illustrate the spatio-temporal character of the first mode, we depict in
figure 20(a) its reconstructed radial velocity component as well as the corresponding
full field at ¥ = 0.5 as a function of the azimuthal coordinate ¢ and time fr. The
space—time plot of CPOD; depicts diagonal bands of alternating positive and negative
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FIGURE 19. (a) Turbulent energy fraction captured by the CPOD modes for the case
Reg=9.32 x 10° and u =0 (C)) at the axial height of the vortex centre. Only the first
20 of the total 1500 modes are plotted. (b) Temporal power spectrum of the real part of
the temporal coefficient a;(#) of CPOD; and of the radial velocity component of the full
field at ¥ =0.5, averaged over ¢. The frequency f is normalized by the difference of the
cylinder frequencies f; — f>.
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FIGURE 20. Space-time diagram of (a) the reconstructed radial velocity component based
on the first CPOD mode and (b) the full field radial velocity component for Reg=9.32 x
10° and u =0 (C,) at the axial height of the vortex centre as a function of ¢ and t. The
radial coordinate is fixed at ¥=0.5.

velocity, representing azimuthally propagating waves into the direction of the mean
flow. Furthermore, the same diagonal bands — superimposed by turbulent fluctuations
— are observed in the full field. A reappearance of azimuthal waves for pure inner
cylinder rotation at a similar radius ratio of n = 0.733 has already been found by
Wang et al. (2005) in the Reynolds number regime of 20 < Re/Rec < 38. In our
study in the classical regime for © =0 at n =0.714, we find Reg/Res c ~ 99, where
the critical shear Reynolds number is located around Resc ~ 94.5 (Ostilla-Ménico
et al. 2014c). This provides evidence of the reappearance of an azimuthal wave in
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the classical turbulent regime for a much larger turbulence intensity. Moreover, we
can extract the corresponding wave frequency f,,, wavelength 4,, and phase speed c,
of CPOD,. The temporal phase function ¢; is defined as

Im(a;(1))
Re(a;i(1)) ) '

Its temporal derivative is equal to the angular frequency of the CPOD mode (Suanto,
Zheng & Yan 1998), leading to a wave frequency of f,,; = 0,¢;(¢#)/(2mn) =1.80 Hz. In
addition, the spatial phase function &;(x) is defined as

Im(CPOD;(r, (p)))

¢;(t) = arctan ( (7.5)

(7.6)

435(”7 (,0) = arctan (RE(CPOD’(F’ @))

whose azimuthal derivative is a measure for the local wavenumber k,,. Note that
the CPOD analysis yields only one temporal coefficient a,(f), but two spatial modes
concerning the radial and azimuthal velocity components. Therefore we can extract
two wavelengths, which are however nearly identical. The averaged wavelength,
evaluated for 7 = 0.5, is given by A,,; =2n/(9,P,(r=0.5, ¢)) =0.68rad, leading
to an azimuthal wavenumber of approximately k,, ; =2mn/4,;~9. In this way, the
phase speed becomes ¢, = A, 1f,.1 =1.22rad s7' = 0.35w,. As the detected wave
pattern reminds us of wavy Taylor vortices, we compare our result with the wave
speeds for WTV measured by King et al. (1984), although one should keep in mind
the large Reynolds number difference. King et al. (1984) find for the case of pure
inner cylinder rotation at n = 0.73, R/R. ~ 14, and an average axial wavelength of
Ay/d = 2.4 a wave speed of c, = 0.2w;, while the corresponding pattern features
k,, = 2. Additionally, they show for a slightly larger radius ratio of n = 0.84, that
the wave speed increases when Re/Re. > 18. Thus, we can conclude that the wave
speeds superimposed on the Taylor vortices in the wavy Taylor vortex regime and in
the turbulent Taylor vortex regime are of the same order. Moreover, the wave speed
seems to increase with the forcing Reg, as the wave speed in our case is noticeably
higher than the one reported by King et al. (1984).

7.3. CPOD in the ultimate regime

We now turn our attention to the ultimate regime at the torque maximum rotation rate.
In figure 21(a—d), the first CPOD mode, representing the real and imaginary parts of
the radial and azimuthal velocity component, for Res = 6.68 x 10* and u = —0.36
(C4) at the axial height of the vortex centre is depicted. The flow in the ultimate
regime features nearly the same pattern as already shown in figure 18 with alternating
regions of positive and negative velocity. In case of the radial and azimuthal velocity
component, these regions form circular patches and diagonal bands with pointy edges,
respectively. In addition, the patterns of the imaginary part are azimuthally shifted
relative to the real parts.

Similar to the previous case in the classical regime, the turbulent energy fraction
decreases from the first to the second mode from approximately 12 % to 5 %. Further,
the temporal power spectrum of the temporal coefficient Re(a;(¢)) depicts a prominent
peak at f/(fi —f2) =0.92 (figures are not shown). By use of the temporal and spatial
phase functions (see (7.5) and (7.6)), the azimuthally travelling wave can be described
by a wave frequency of f,; = 3.67Hz, a wavelength of A, ; =0.74rad and a phase
speed of ¢, = 2.72 rad s' = 0.11Aw. Remarkably, the turbulent Taylor vortices
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FIGURE 21. Value of CPOD, for Res=6.68 x 10* and = —0.36 (C,) at the axial height
of the vortex centre for both velocity components. (a) Real and (¢) imaginary parts of
CPOD, for the radial velocity component. (b) Real and (d) imaginary parts of CPOD,
for the azimuthal velocity component. Black arrows represent the resulting velocity field
of CPOD;.

n ReS 2 kgo,w,l Cw,l (rad Sil)
Classical regime (C;) 0.714 9.32 x 10° 0 ~9 0.35Aw
Ultimate regime (C;) 0.714 6.68 x 10* —0.36 ~9 0.11Aw
King et al. (1984) 0.730 1.05 x 10° 0 2 0.21Aw

TABLE 2. Overview of detected azimuthally travelling waves in the classical and
ultimate regime in comparison to the findings of King et al. (1984).

feature azimuthal waves also in the ultimate turbulent regime at ... To the best
of our knowledge, this is the first study reporting such a wave pattern in that highly
turbulent regime. It is further worth to mention that a CPOD analysis in the ultimate
regime for Res =2.15 x 10° and u =0 (Cg), where the large Taylor rolls disappear
in the mean field, does not yield any sign of travelling waves. As a comparison tool,
we show in table 2 the results concerning the azimuthally travelling waves found in
this study and the findings of King et al. (1984) for n =0.73.

To what extent the detection of azimuthal travelling waves is dependent on the
turbulence level (Res) and the geometry of the system (n, I') is not known. We note


https://doi.org/10.1017/jfm.2019.552

https://doi.org/10.1017/jfm.2019.552 Published online by Cambridge University Press

Statistics, plumes and waves in ultimate TC turbulent vortices 761

that further experimental as well as numerical investigations would be required to
address this issue and reveal whether it is an intrinsic property of the flow or not.

8. Summary and conclusions

By means of planar PIV measurements performed in horizontal planes at different
axial heights, we showed the dependence of the small-scale statistics and flow
organization on the presence of large-scale Taylor rolls in high Reynolds number TC
flow. The ratio of angular velocities p is the appropriate parameter to control whether
or not the Taylor rolls within the gap are prominent and stable in a statistical sense.
While in the classical turbulent regime Taylor rolls are observed for both =0 and
u < 0, they fade out when the ultimate regime is reached for pu = 0, but can be
formed again when sufficient counter-rotation (u < 0) is introduced, in particular at
Umax Where the flux of angular momentum is maximum. This turbulent state can then
be used to compare the flow — for the same Res — with and without the presence of
these large-scale rolls.

To uncover the interplay between large-scale rolls and small-scales plumes in a
statistical manner, PDFs of both velocity components and the net convective Nusselt
number have been evaluated over cylindrical surfaces and at specific axial positions.
The PDFs of the radial and azimuthal velocity component are close to Gaussian, when
evaluated at a fixed height, in accordance with the results of Huisman et al. (2013a).
However, when all heights covering one vortex pair are included, the Gaussian shape
is only preserved for © = 0 for both velocity components but changes drastically
for 4. There, the PDFs of u, feature a cusp-like shape with exponential tails,
which is a fingerprint of intermittent small-scale plumes and can also be found in
RB flow concerning the temperature (Emran & Schumacher 2008; Brauckmann et al.
2016b). The PDFs of Nu’ " fluctuate around zero and not the averaged value of the
Nusselt number and can be described (for © = 0) by the shape of a distribution of
the product of two Gaussian variables. At i, however, the right-hand tail broadens
with increasing Reg, which can be attributed to an increasing number of rare and
strong events of momentum flux at the axial location of the vortex in- and outflow.
These axially dependent events originate from the ejection of coherent plumes from
the cylinder walls into the gap and lead to a dominant contribution of the vortex in-
and outflow to the overall momentum transport. While the contribution of the vortex
inflow reaches a nearly fixed value in the ultimate regime of ~30% at . in the
outer gap region, the contribution of the outflow increases monotonically with Reg.
Here, we find a strikingly large value of the angular momentum transport of ~ 60%
in the inner gap region at Reg=2.14 x 10°.

The energy content and azimuthal length scale of these small-scale flow structures
in the presence of large-scale rolls are calculated based on azimuthal energy co-spectra.
The small-scale plumes show an azimuthal extent of k,d € [10, 20] and contribute most
to the overall fluctuation energy in regions where the large-scale rolls transport fluid
away from the wall, i.e. the so-called ejection regions (Ostilla-Moénico et al. 2014c).
In addition, the energy spectra combined with a correlation analysis revealed that the
large-scale Taylor rolls feature an azimuthally oscillating behaviour instead of being
axisymmetric and stimulate mid-scale azimuthal structures of sizes r¢/d=~0.13 —0.15,
where fluid transported by these rolls impact on the cylinder walls.

In order to finally capture the underlying flow structure of non-axisymmetric Taylor
rolls, we performed a complex POD analysis at the height of the vortex centre.
The large-scale azimuthally travelling waves are superimposed on turbulent Taylor
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vortices, not only in the classical regime at p = 0, but also in the ultimate regime
at .- These waves propagate into the direction of the mean flow and are similar
to the well-known wavy Taylor vortices. While the wave speeds of 0.35Aw in the
classical, and 0.11Aw in the ultimate regime are of the same order as the one for
the wavy Taylor vortices measured by King et al. (1984), the azimuthal wavenumber
found, of k,,, 1 =9, is much higher than in the laminar regime.

Our findings reveal the intrinsic statistical relation between structures of different
scales: large-scale Taylor rolls and small-scale plumes in high Reynolds number TC
flow. Their interplay strongly relies on the specific locations along the vortex (inflow,
centre or outflow) and since they play a prominent role for the flow organization and
the momentum transport, our study underlines the importance of an axial exploration
when studying the statistics of turbulent TC flows.

We finally note that we believe that our results are much more general than only
holding for turbulent TC flow. Clearly, they will generalize to turbulent RB flow with
its organization on very large scales (Pandey, Scheel & Schumacher 2018; Stevens
et al. 2018), but also to pipe and channel flow with highly organized structures in
spanwise direction(Smits er al. 2011; Jimenez 2012; Marusic & Monty 2019). What
mechanism, however, sets the length scale of the organization of such superstructures
in the spanwise direction remains unclear.
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