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Spectral approximation theorems for
bounded linear operators

W.S. Lo

In this paper we present some approximation theorems for the
eigenvalue prablem of a compact linear operator defined on a
Banach space. In particular we examine: criteria for the
existence and convergence of approximate eigenvectors and
generalized eigenvectors; relations between the dimensions of
the eigenmanifolds and generalized eigenmanifolds of the

operator and those of the approximate operators.

1. Introduction

Let X be a real or complex Banach space and [X] the space of
bounded linear operators on X into X . For 4 in [X] 1et Al

denote the usual operator norm [4fl = sup ||Az)l , and n(4) denote the
[|ll|<1

null space of A . Let 0O(A) denote the spectrum of A , that is, the

set of numbers A for which Al - A fails to have an inverse in [X] .

In numerical solutions for the eigenvalue problem for an operator

equation
Tx = Az ,
often we are led to solve corresponding approximate equations

Tx =XAx |,
nn nn

where T, Tn belong to [X] and ”Tn_T” + 0 . It is of interest to know:
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(a) for an arbitrary eigenvalue A of T , is there a sequence

of eigenvalues An of Tn such that }\n > X ?

(b) for an arbitrary eigenvector x of T , is there a sequence

of eigenvectors z, of Tn such that z, +x ?

The first question was answered by Putnam [9] under very general
conditions. As for the second question, Pol'skii [8] showed by way of an

example that for x in n{u-T) there need not exist z, in n(un-Tn)
such that z, > x even wvhen T and Tn , n =1, are compact. Andrew

and Elton [2] established a necessary and sufficient condition for which
(b) holds when X is a Hilbert space and T, Tn s, M 21 , are compact.

This paper offers improvements and generalizations of their main result.
As a generalization it establishes, for an arbitrary but fixed generalized
eigenvector of a compact operator T on a Banach space, a necessary and
sufficient condition for the existence and convergence of generalized

eigenvectors of the approximate operators Tn . Other results compeare the

dimensions of eigenmanifolds and generalized eigenmenifolds of T with

those of Tn .

2. Eigenvectors and eigenmanifolds.
The following theorem is essential for obtaining the later results.
THEOREM 1. Assume T, T, € [X] and “Tn-T” >0. Let y in
o(Tn) be such that W, > W. Then u belongs to o(T) . Now asgume T

i8 compact, _u # 0, x, € n(un-Tn] and lenll =1 . Then there exist

\y.
sequences {Tn }, {:rn } and x in X such that z >z € n(u-T) as
7 1 7

.

i+, For n sufficiently large we have

aim (u -T,) = aim(p-T) .

Let Mcn(u-T) and M, <n(u-T,) be subspaces such that x, €M ,

x, >z implies x € M . Then dim¥ = Qimd eventually.

Proof. The first part is well known and can be proved

https://doi.org/10.1017/50004972700042520 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042520

Spectral approximation 281

contrapositively as follows: if u f o(T) then

A - Tn =TI =~ (u—T)_l(Tn—Tﬂ.l—)\) , and hence [A—Tn)_l € [X] whenever

IP=7 +u-All = —=—
I Cu=7) I
To prove the second part, let us consider the sequence {Txn} . Now

T 1is compact implies there exists a subsequence {T:z:n } and a vector
1

in X such that Tx > ux as 27 >« ., Since T 2 =1y x we have
n n,;n,; n;n;

e 2l = 2l

1

+

Txn _-ux" .
7

Hence ”u x -ux"*o as 1 +® ., Now u, # 0 eventually and

o i
B T
" By, L7 7 "
Z
implies |z -xzjl * 0 as < + o . It follows that
i
[|Tz-pxf] < “ Tx-T, x| + |T T =z + ”T x -u =z + |v =z -ux”
e oMy e My ni

But each term on the right hand side of the inequality tends to zero, so
Tx = uxr and x 1is an eigenvector of T corresponding to U .

Note that special cases of M and M,  are M =n(p-T)
M = n(un-Tn) . It remains to prove that dlmMn = dimM for n

sufficiently large. Suppose that dimMn 2m for all 7 in an infinite

set J . Then there exists Tk in Mn such that
el = 1 xnk- L e m”

for n in J , k=1, ..., m, and all choices of e Hence by the

hypotheses on M and Mn and the part of the theorem already proved there
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exists {Tni}’ {xnik} , and z s k=1, ..., m, in M with xnik -»xk

k-1
as 7 +® , n in< J . Therefore IkaH =1 and |&; - iZ:L e,z fl 21 for
k=1, ..., m , and all choices of cj , S0 that dim¥ = m . Contraposit-
ively, if dim¥ < m then dimMn <m for n sufficiently large.
LEMMA 1. Let M and Mn s n=1,2, ..., be subspaces of X , and

dimM < e , If for every x in M there existe z, in Mn such that
Il:cn-zll + 0 then there exists an integer N sguch that dimM, = dimM for
all n=zV¥N.

Proof. Without loss of generality assume dimM = m . Let

{:z:i :4=1, ..., m} be a basis for M . Suppose for each £ =1, ..., m
i i Tl > ©

there exists &« . in M such that ll:rn_L x_Lll 0 as n Let

" = {(cl, ceus cm] Py is a scalar for 1 <% <m} . Define the compact

set Dc B by D= {(cl, ey cm] : ma.xlcil = l} . Define functions f

and fn on D :

m
f(cl, ey cm) = izl cixi R
and
m
J“n(cl’ Tt cm) = izl %%

Note that f 1is continuous and, by the triangle inequality, fn > f

uniformly on D . Now it follows from the linear independence of

{xi 1 =1, ..., m} that min f > 0 . Therefore there exists an integer
D

N such that {xm: :4.=1, ..., m} is linearly independent and

dimMnZdimM for all n =N .

The next theorem gives & necessary and sufficient condition for the
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existence of z, in n(un—Tn) , nm=1,2, ... , such that xn converges

to an arbitrary but fixed element x in n(p-T) . Pol'skiT [8] showed by
way of an example that when dimn(p-7) > 1 there may be vectors in n{p-T7)
which can not be obtained as the limit of any sequence of eigenvectors of

Tn , even with Tn compact for n =1, 2,
THEQREM 2. Let T, T, € (X1, T compact, and ”Tn-TH + 0. Let

U # 0 be an eigemvalue of T , and let W, be eigemalues of T, such

that u > . Then the following are equivalent:

(a) aimn(u -T, ) = aim(u-T) eventually;

(b) for every x in n(u-T) , x|l =1, there is a sequence
{z,} -such that =z en(u-1) and = +a.
Proof. We note that, in the complex case, the existence of H, such
that W, > H was proved by Putnam [9].

To show (a) implies (b), first note that T is compact implies that
dimn(p-T) = m < » . Suppose (a) does not imply (b). Then there exist a
vector x in n(p-T) , a strictly increasing sequence of positive integers
S , and a number d > 0 such that Hxn-xH >d for all n in S , and for

ell x in n(w-7,) such thet |zl =1 . By (a) for each n

i-1
sufficiently large, »n in S , there exists wni , wni - jzl cjwnj b
for 1 =% =m , and for any choices of cj . By Theorem 1 there exists a

subsequence of positivé integers S, < § end ¥, in n(u-T) with
$; >V, & now,for 1Sism, n€S, . It follows that [yl =12

for 1 =7 =m and

Y. - Z e .l 2
175 9
for any choices of cj . Therefore VY., ..., wm are linearly independent,
and n(1-T) = span{wi, s wm} . Hence there exist a, , 1 = i<m,
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m m

such that x = i£1 aiwi . Let z, = izl aiwni for n in So . Then

x, € n(un—Tn) and Hxn-xn +0 as n+® , n in §

n o which is a

contradiction.
(b) implies (a) follows from Theorem 1 and Lemma 1.

REMARKS. 1. Theorem 2 is a generalization and an improvement of a
theorem proved by Andrew and Elton [2]. In addition to the hypothesis in
Theorem 2, they assumed that X is a Hilbert space and the operators Tn s

n=1 2, ... , are compact. As a consequence they obtained a dimensional

inequality dimn{u -T | = aimn(u-T) in (a) instead of the dimensional
'm n

equality dimn[un-lh) = dimn(p-T) for n sufficiently large.

2. If in Theorem 2 we assume in addition that X is a complex Banach
space, then results in [6] state that for x« in n(u-T) , |[lzll = 1 , there

exist z, in n(un—Ih) such thet x - x , and some sort of error

estimate is &lso given there. Andrew [!] proved the same result by
assuming, in addition to the assumptions in Theorem 2, that X is a real

or complex Hilbert space, 1% is compact for each 7 , and M 1is a simple

eigenvalue of 7T (that is, dimn(u-T) =1 ).

3. Generalized eigenvectors and generalized eigenmanifolds

Assume T 1is compact, and M is a non-zero eigenvalue of T . Let
D(u, €) be a disc (or interval in the real case) centered at u with
radius € . Choose €& so small that D(u, €) nD(p', €) = ¢ for u'

any eigenvalue of T other than u . For kn <o | let unj in

D(u, €) , for g=1, ..., kn » be eigenvalues of T . We note that for a
fixed 7 there may be an infinite number of eigenvalues of Tn in

D(u, €) . It is shown in [6] that when X is a complex Banach space and

for n sufficiently large, the set of eigenvalues of Tn in D(u, €) 1is

a non-empty finite set, {unj =1, coe, kn} , such that
max Iu—unjl +0 .

-
l_JSkn

https://doi.org/10.1017/50004972700042520 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700042520

Spectral approximation 285

The following theorem compares the dimensions of the generalized

eigenmasnifolds of T with those of Tn .

LEMMA 2. ZLet 7T, T, € (X}, n=1, 2, ... . Assume HTn-TH +0,

T compact, and u a non-zero eigenvalue of T . Suppose for each n ,

Kok is an eigenvalue of Tn for k=1, ..., kn ,» and

max |u-u| > 0. Choose amy non-negative integers Y and Yk
likikn
k

n
k=1, ..., k_, such that )} Y, <Y . Then for all n sufficiently
n =1 nk

k
n Y

large kz dimn[(unk-Tn) nk] = dimn [(H—T)Y] .
=1

k
n

Proof. Without loss of generality, Z Ynk =Y forall n . It
k=1

follows from [10, p. 317] that

rk . k
”.-I:I (”nk'Tn)Ynk | - ;E)l n[(unk'Tn)Ynk:l ’
and
'kn Y | kn Y
dimn '}I;I (h,5-T,,) "kJ = Zl dimn[(unk—Tn) "k}

Define M , Tn and T by

k k
n Y. ~ n Y
nk _ _ nk Y - Y n
[T ) =, =T, ow = [T (e) s (p=m)t =l -7
k=1 k=1
Then i’n d Zf' and un hd uY . Since &' is compact, Lemma 1 implies that

aimn (un—f’n) < aimn(p'-T) eventually. The assertion Dllows.

An immediate consequence of Theorem 2 and Lemma 2 is the following

generalized version of Theorem 2.
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THEOREM 3. Let T, T, € (¥}, n=1,2, ... . Assume HTn—T” >0,
T compact and Y a non-zero eigenvalue of T . For k=1, ..., kn , let
Mo be eigenvalues of T, such that max Iunk-ul + 0 . Choose any
1<k=k
non-negative integers vy and Yok » k=1, ..., kn satisfying
k
n
Iy % Y - Then the following are equivalent:
k=1 "
kn Y.
(a) ) daimn(u s ) nk _ dimn(p-7)Y eventually;
k=1 nk “n

(b) for every =z in n(w1)Y , |zl = 1, there exists a sequence

K
n Y.

{xn} such that z,  in [T (unk-Tn) ") gnd z, >z .
k=1

Applying Theorem 3 to the case in which un >y, Tnxn =y and

x
nn
Tx = px with U # 0 . We then obtain a necessary and sufficient condition

for the existence of a sequence of generalized eigenvectors {xn} of {Tn}
converging to an arbitrary but fixed generalized eigenvector x of T .

COROLLARY. Let u and oo 71,2, 0o, be eigenvalues of T
and T, respectively, such that w # 0 and M, > W . Then for any

positive integer Y the following are equivalent:

(a) dimn (un—Tn)Y = dimn(u-T)Y eventually;

(b) for every =z in n(u-7)7 > llzlt = 1, there exists a sequence

{z,} such that =, ¢ n[(un-Tn)Y} and z, >z .
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