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THE SUBVARIETY LATTICE OF THE VARIETY
OF DISTRIBUTIVE DOUBLE p-ALGEBRAS

Wies/aw Dz1oB1AK

Let L denote the subvariety lattice of the variety of
distributive double p-algebras, that is, the lattice whose
universe consists of all varieties of distributive double
p-algebras and whose ordering is the inclusion relation. We
prove in this paper that each proper filter in L[ 1is
uncountable. Moreover, we prove that except for the trivial
variety (the zero in L ) and the variety of Boolean algebras
(the unique atom in L ) every other element of [ , generated by
a finite algebra, has infinitely many covers in L , among which
at least one is not generated by any finite algebra. The former
result strengthens a result of Urquhart who showed that the
lattice L 1is uncountable. On the other hand, both of our
results indicate a high complexity of the lattice L at least in
comparison with the subvariety lattice of the variety of
distributive p-algebras, since a result of Lee shows that the
latter lattice forms a chain of type w + 1 and every cover in
it of the variety generated by a finite algebra is itself

generated by a finite algebra.
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1. Preliminaries

An algebra (4, A, v, *, 7, 0, 1) is called a distributive double

p-algebra if (4, A, v, O, 1) is a bounded distributive lattice and *
and * are unary operations on A4 such that a A x =0 if and only if

+
x=a* ,and avx=1 if and only if a =z .

A distributive double p-algebra A 1is said to be of finite range if

* *
for each a € A there exists 7n < w such that an(+ ) = a(n+l)(+ )

o(+) LK) K0k

bl

where a and for every k = O . When

+4 " %
an( ) = a(n 1) (+#) for every a € A , the algebra A 1is said to be of

range n . A 1is said to be regular if any two congruences on A with a

class in common are equal. By a result of Varlet [11], A is regular if
. + +

and only if it satisfies the quasi-identity: x* = y* and =z =y imply

x =Y

With each distributive double p-algebra A there are associated the
- +
following sets: D(4) = {a € A; a* =0} , D(4) = {a € 4; a =1} and
+*
Cen{4) = {la€4;a=a }

A lattice filter F on a distributive double p-algebra A 1is called
*
normal if a € F implies a+ €F. If F 1is normal then
C(F) = {{a, b) €A xXA; aAhe=DbAc for some ¢ € F} is a congruence

relation on A .

For a poset P, by Min P and Max P we denote the set of all
minimal and the set of all maximal elements in P , respectively. If

X € P then by [X) we denote the set of all a € P such that z SP a

for some x € X . (X] is defined dually. Instead of [{z}) and ({x}]
we shall write [z) and (x] , respectively. We call a map f:P>Q
admissible if it is isotone and satisfies f((z] n Min P) = (f(z)] n Min @
and f(lz) n Max P) = [f(z)) n Max @ for every « € P . Recall that the
set of all increasing subsets of a poset P with respect to the set-
theoretical meet and join, and the operations #, ¥ gefined by X* = P\(X]
and X = [P\X) forms a distributive double p-algebra. This algebra will
be denoted by DP .

For a given distributive double p-algebra A 1let P(4) denote the
set of all prime filters on A4 . We have a poset (P(4), €J . The map

https://doi.org/10.1017/50004972700009345 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009345

bouble p-algebras 379

P : A~ DP(A) defined by Pla) = {X € P(4); a € X} 1is an embedding of A

into DP(A) . If A is finite then P is an isomorphism.

Throughout this paper by 2 and 3 we denote, respectively, two and
three element chains, considered as distributive double p-algebras. By
V(K) , K is a class of similar algebras, we denote the least variety

containing all algebras of K . We shall write V(4) instead of V({4})

For a fuller account concerning distributive double p-algebras we
refer to [2], [3], {71, (8]. For lattice theory and universal algebra we
refer to [4] and [5].

2. A sequence of finite simple algebras

In this section we define an infinite sequence of finite simple
distributive double p-algebras whose every proper subalgebra is isomorphic
to 2 or to 3 . This sequence will be used in proofs of our results.

For each 5 =k let Pk denote a poset with the universe

1-i; 12 =k}u{i; 1 =7 =<k}, partially ordered by the relation =%
defined as follows: for all x,y , <X Ek Yy holds if and only if x =y ,

or x=-y and 1 =y=<k ,or x=-(y-1) and 2 =<y =k , or
~(k-3) =x=-2 and y =k -1 . The diagrams of P_. and P6 look as

5
1 2 3 b 5
(o]
PS : [//////Léﬁﬁiiji::;;77i//////l
-1 -2 -3 -y -5

follows:

1 2 3 L 5 6
o]
-1 -2 -3 ~b -5 -6

LEMMA 2.1. For each k and a poset P, if f : P, > P is
admissible and not one-to-one then Im f is a 1- or 2-element chain.

Proof. Since P, is connected and f is admissible, it suffices to

k
show that [|Im f| <2 .
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CLAIM 1. If 1<i#j =<k and f(i) = f{-§j) then |Im f|] =1 .

Let 1=71#j<k and f(Z)= f(~j) . Then f(Z) € Min P since
~j € Min Pk . But f(Z) € Max P because 7 € Max P, . Hence f(£) is

both minimal and maximal in P . Therefore f(Z) = f(x) for all x € Pk ,
proving the claim.

For 1 <7 =k denote by N({) the set of all 1 = J < k such that
2 #J and f(2) = f(§) imply |Im fl =2 . By induction one can verify
the following

CLAIM 2. w(Z) = {1, 2, ..., k}\{2} for every 1 =1 <k .

The lemma follows from Claims 1 and 2 and the observation that if
f(~2) = f(~j) for some 1 <171 # J <K then there exist 1 <m#n =<k
with f(m) = f(n) .

LEMMA 2.2 (see [31). For finite posets P and § , DP 1is
embeddable into DQ <if and only if there exists an admissible map from @

onto P .

Proof. The "if" part is a particular case of Proposition 2.2 from
Davey [3]. For the "only if" part let f : DP » D@ be an embedding. Then

the map g(X) = frl(

observation that @ = (P(DQ), <) and P = (P(DP), <} concludes the proof.

X) for all X , is onto and admissible. Hence the

LEMMA 2.3 (see [3]). For a finite poset P ,

(i) DP 1is simple if and only if P is connected and
P=Min Pu Max P,

(i1) DP <is subidrectly irreducible but not simple if and only
if |P| >1, P <is commected and there exists a unique x
of P with P = (Min Pu Max P) v {z} .

COROLLARY 2.4. Each P, is simple and of range U4 . Moreover, the

only, up to isomorphism, proper subalgebras of Dp, are 2 and 3.

Proof. The range of DPk is verified easily. The rest follows from

Lemmas 2.1, 2.2 and 2.3.

https://doi.org/10.1017/50004972700009345 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009345

Doubie p-algebras 381

3. Cardinality of a proper filter in L

R
We prove here that each proper filter in L is of cardinality 2

We begin with the following lemma.

LEMMA 3.1. Let K be a variety of distributive double p-algebras,
all being of the same finite range. Then both the class Ksi of sub-

directly irreducible algebras in K and the class Ksim of simple
algebras in K form wniversal classes.
Proof. That KSi is a universal class follows directly from a result

of Katrindk [8] which says that a distributive double p-algebra A of
finite range and with ID(A)[ 2 2 is subdirectly irreducible if and only
if |D(A) 0 D(4)| =2 and Cen(4) = {0, 1} , and from the observation that
A is a Boolean algebra if and only if |D(4)| =1 . That KSim forms a

universal class is obvious since, by a result of Beazer [1]}, a nontrivial
distributive double p-algebra A of range Xk is simple if and only if A4
K(+%)

is regular and satisfies x = 0 for every x € A\{1} .

N
THEOREM 3.2. Each proper filter in L 1is of cardinality 2 0.

Proof. It suffices to show that the principal filter in L generated

by a proper subvariety K of the variety of distributive double

N

p-algebras is of cardinality 2 0 . As the variety of distributive double

p-algebras is generated by its finite members, there exists a finite poset
P having at least two elements and whose distributive double p-algebra
is subdirectly irreducible and does not belong to K . For each n =5 ,

let P + Pn denote a poset with universe P u Pn (we assume here that P

and Ph are disjoint] and whose ordering is given by
ssus,u{l@, y); s eMnP ,y P, aS,yeandatyl
v {(z, y); = € P, y € Max P, % =pband x # b} ,

where a and b are fixed elements of P such that g € Min P ,
b € Max P and a =p
|Pl > 2 and DP is subdirectly irreducible. We claim that »P is

b ; of course, such elements exist in P since
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embeddable into D(P+Pn) for every n . Indeed, in view of Lemma 2.2, it
suffices to consider amap f : Pu Ph + P defined by f(x) = a when

x € Min E% , f(x) =x when x € P and f(x) = b otherwise.

Now we select inductively a sequence QO, Ql’ ... of finite posets as
: 1= + = +
follows QO P P5 and Qn+1 P Plin for every
n=0,1,2, ... , and, for every @ # I C w , we define

K(r) := K v HSP({DQn; n € I}) . Obviously, K< K(I) for every Icw .

It remains then to show that K(I) and K(J) are different for different
I and J . To this end we suppose K(I) = K(J) and consider a fixed

m € I . We have DQm € K(J) which, in conjunction with Jénsson's Lemma
(see [6]), Corollary 2.4 and the above claim, yields that DQm is a

homomorphic image of a subalgebra A of an ultraproduct of some family of

algebras from among DQn's , where n € J . We claim that DQm is
isomorphic to 4 which would yield that DQm is embeddable into some

DQn , where n € J . Since every DPi is of range 4 and P is finite,
then due to the definition of P + Pi it follows that all algebras of the
form DQn have the same finite range k . If DP is simple then, by
Lemma 2.3, every algebra DQn is simple which, together with Lemma 3.1,
implies that A 1is simple as well, and thus DQm is isomorphic to 4

So assume that DP 1is not simple. Then, by Lemma 2.3, DQm is not simple

either. Evidently, A 1is of range Xk and, by Lemma 3.1, it is sub-
directly irreducible which, by Corollary 9 from [Z2], implies that the
lattice of congruence relations on A is a 2- or 3-element chain. From

this, since DQm is not simple, it follows that DQm is isomorphic to

A , completing the proof of the claim. As DQm is finite, then by the
claim we conclude that DQm is embeddable into some DQn , where n € J .
Hence, by Lemma 2.2, there exists an admissible map f from Qn onto

qﬂ . We show m=n . To the contrary suppose m #n . Then m< n ,
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since f 1is onto, and hence IQmI < |P Therefore, the map

lo, Il

P is not one-to-one which, together with Lemma 2.1, yields

le, ;!

IIm f?Pl <=2 . So, we have

Qn_l|| -

lle = IIm fAP u Im f+Pl || = |p| +2,

%1

n

a contradiction. Thus m=n , and so m € J which proves I CJ .

Similarly, we show J €I . Thus I = J , concluding the proof.

4. On the bottom part of L

In this section we will be concerned with the bottom part of L . For

our efforts the following two lemmas are crucial.

LEMMA 4.1. Let A be a subdirectly irreductible distributive double

p-algebra with |A| = 3 . Then there exist a set I and a congruence
relation B8 # 1 on AI such that D(AI/S) n EIAI/G) # 0.

Proof. Since A is subdirectly irreducible, then by Theorem 4 from
Katrinak [8], cen(4) = {0, 1} . This yields =z Vv x* € D{(4)\{1} for every
xz € AN{0, 1} . Hence D(A)\{L} # 4 . On the other hand, by Lemma 7 from

~ o *
Katrindk [§], A(xn(+ ); n < w] =0 for all x € D(A)\{1} . Therefore, in

n(+*
x (+*) = 0 for some

the case when A4 is of finite range, we have
x € D(A) and an integer »n . But this, in view of the corollary
succeeding Theorem T from Katrindk [8], implies that D(4) n D(A) is non-
empty. So, in the case when A is of finite range, it suffices to take

I ={0} and 0 = ig .

Let A Dbe not of finite range. Then, for a certain element a of

*
A , the sequence an(+ ) , n <w , is strictly descending. Put
A) 4 j(+* i(+%)+ .
bn = a A a2(n+1)(+ ) and e, = V(a‘j( ) A aJ( ) y J =< 2(n+1)) where
n<w.

CLAIM 1. bn A c; =0 for every n < W .
Proof. It suffices to prove that P(bn) n P(c;) =@ . But each prime

filter on A 1is contained in some maximal prime filter, so in fact it is

https://doi.org/10.1017/50004972700009345 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700009345

384 Wiesfaw Dziobiak

enough to prove that for each maximal prime filter X on A the following

condition holds: X € P(b,) if and only if X € P(e,) . The "if" part
directly follows from the observation that e, = bn . For the "only if"
part, let X € P(bn) be maximal. Then X € P(a) and

(o e 4] 2(ne1) (+4)+ , (2(n+1)41) (+%)

X § P (+*)] because a =0 .

*
Hence, there exists a greatest Kk < w such that X € P(ak(+ )) and

2 b @RV since x PRV Ly k(XN
(

Hence X € (P(dk(+*)+)] and, therefore, X € Pﬂzk +*)+) because X 1is

x € P A FUIH

maximal. Thus which, by k = 2(n+l) , implies

x €ple)

CLAIM 2. b Ac' =b for every n < w .
n n n

J(+%) A azj(+*)+ € D(4) Hence

Proof. D(A) is an ideal on A and d

- +
e, € D(A) , and so bn Ae, = bn .

n(+%*)

CLAIM 3, bn #0 for every n < w .

Proof., For J, m we have

L) | ) (#0)  _(GH(0) (me1) (+4) 44

: * *) # : * * * S 4% * %
= GG e o () () m(e )t F () gyt
P4 # T
aJ(+ ) A aJ(+ )+ # 0 for every Jj < W because the sequence

. . . . n(+*)
J €W, is strictly descending. Hence bn

Moreover,
aj(+*) £ 0 for every
n<w.

Let b = (bn; n < w) and ¢ = (cn; n < m) . By Claim 3, the normal
filter F on A° generated by b is proper. So C(F) # 1 . But, by
Claims 1 and 2, ([e]C(F) € DLAN/C(F)) n BTAw/C(F)) , proving the lemma.

LEMMA 4.2. [L[et U be a non-principal ultrafilter on
w\{0, 1, 2, 3, b} . Then 2 and 3 are, up to isomorphism, the only
finite subdirectly irreducible algebras in V(HU(DPk; Sk <uw).
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Proof. That 2 and 3 are subdirectly irreducible and belong to
V[HU[DPk; 5 <k <w)) is obvious. Let A € V(HU(DPk; 5 <k <w) be
finite and subdirectly irreducible. Then, by Jdnsson's Lemma,

A € HSPU({HU(DPk; 5 <k <w)}) . By Corollary 2.4 and Lemma 3.1, each
algebra belonging to SPU({HU(DPk; 5=k < w)}) is simple. From this we

get that A 1is simple and, by the assumption that 4 is finite, we
conclude that A is embedded into some direct power of

HU(DPk-, 5 <k <w . This yields that A is embeddable into
HU(DPk; 5 <k <w . Therefore there exists I € U such that 4 is
isomorphic to a subalgebra of H(DPk; k ¢ I) ; here we used again the

assumption that A 1is finite. Since U 1is non-principal and A4 is
simple, then by Corollary 2.4 we get that A is isomorphic to 3 or to
2 .

THEOREM 4.3. (i) v(3) <s a unique cover of V(2) in I .

(Z1) V(3) has infinitely many covers in L , among which at least

one is not generated by any finite algebra.

Proof. (i) That V(3) covers V(2) is obvious. That V(3) is

unique follows from Lemma 4.1.

(1) By Corollary 2.4, every variety V(DPk) , where 5 <k <w,
covers V(3) . To prove the rest, let U be a fixed non-principal ultra-
filter on w\{0, 1, 2, 3, 4} . Ve have V(3) g v, (op,; 5 =k < w)) .

So, as V(3) is finitely based, there exists a cover K of V(3)
contained in V(HU(DPk; 5 =k < w)) . By Lemma 4.2, K is not generated
by any finite algebra.

THEOREM 4.4. For a variety K generated by a finite distributive
double p-algebra the following conditions are equivalent:

(i) every variety that covers K in L 1is generated by a

finite algebra;
(1) K has finitely many covers in L ;

(121) K 1is the trivial variety or the variety of Boolean

algebras.
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Proof. By Theorem 4.3, (71%1) implies (%) and (iZ). It remains then

to show that both (Z) and (4%Z) imply (Z4Z).

(i) = (ii1). Suppose that K is a nontrivial variety and K # V(2)
Then, by Theorem 4.3, V(3) € K. Let L ©be a fixed variety not generated
by any finite algebra that covers V(3) in L ; by Theorem 4.3, such a
cover really exists. We claim that V(K u L) covers K in [ , and that
V(K u L) 1is not generated by any finite algebra. The latter claim is
immediate since otherwise, by Jénsson's Lemma, L would be generated by a
finite algebra. To prove the former one, let Kc Mc V(Ku L) . Then, by

Jénsson's Lemima, K. M. cK_ ul . . when M nlL kB c<r({2, 3},
s1 — s1 — S1 81 Sl s1 —

then M ., =K . , and so M=K . Otherwise, 4 €M . nL . for some
si si si si
A%2 and A%3. But L covers ¥(3) , so L =v({3, 4}) . Hence

M=7vKulLl). Obviously, K# V(Kul) . Thus V(Ku L) covers K in
L .

(i1) = (ii7). Suppose that K is nontrivial and K # V{(2) . Then
V(3) € K by Theorem 4.3. Let 7 be a least natural number such that
IAl < n for every subdirectly irreducible algebra 4 from K . Clearly,
such a number exists because K is generated by a finite algebra and, by
Jonsson's Lemma, every subdirectly irreducible algebra in K is finite and
there are, up to isomorphism, only finitely many of them. Notice that

K # V(K v {DPk}] for every n =k . Moreover, by Corollary 2.k,
v(K u {DPk}) covers K in L, and V(Ku {oP}) # V(Ku {0P }] rfor an1

n =k #m , proving that (Z%) implies (iiZ).
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