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Pointwise Convergence of Solutions to the
Schrödinger Equation on Manifolds

Xing Wang and Chunjie Zhang

Abstract. Let (Mn , g) be a Riemannianmanifold without boundary. We study the amount of initial
regularity required so that the solution to a free Schrödinger equation converges pointwise to its
initial data. Assume the initial data is in Hα

(M). For hyperbolic space, the standard sphere, and
the two-dimensional torus, we prove that α > 1

2 is enough. For general compact manifolds, due to
the lack of a local smoothing eòect, it is hard to improve on the bound α > 1 from interpolation. We
managed to go below 1 for dimension ≤ 3. _e more interesting thing is that, for a one-dimensional
compact manifold, α > 1

3 is suõcient.

1 Introduction

In the Euclidean setting, L. Carleson [8] proposed a question regarding the amount
of regularity required on the initial data f , so that

e−i t△ f (x) = ∫
Rn
e i(⟨x ,ξ⟩+t∣ξ∣2)̂f (ξ)dξ → f (x), a.e. x ∈ Rn ,

as t goes to 0. Here e−i t△ f (x) is the solution to the free Schrödinger equation
⎧
⎪⎪
⎨
⎪⎪
⎩

i∂tu − ∆u = 0 (t, x) ∈ R ×Rn ,
u(0, x) = f (x) x ∈ Rn .

_e problem has been treated bymany authors. When n = 1, Carleson himself proved
that f ∈ H

1
4 (R) is suõcient. B. E. J. Dahlberg andC. E. Kenig [13] proved this is neces-

sary for all dimensions. For higher dimensions, M. Cowling [9] studied the problem
for a general class of self-adjoint operators and obtained α > 1 for the Schrödinger
operator. Later on, P. Sjölin [20] proved a local smoothing eòect and thus improved
the bound to α > 1

2 , which was also independently proved by L. Vega [25].
For n=2, J. Bourgain [2] showed that we can go below 1

2 a little bit. Furthermore,
continuous improvement has been made by Moyua, Vargas, Vega [18], Tao, Vargas
[23, 24] and Lee [16]. Recently, Du, Guth, and Li [12] proved that s > 1/3 is suõcient
and sharp, thus completely solving the problem.
For n ≥ 3, Bourgain[5] beat the bound α > 1

2 and showed that the solution to a free
Schrödinger equation converges pointwise to its initial data f , provided f ∈ Hα

(Rn
),
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where α >
1
2 −

1
4n . Furthermore, he also showed that when n > 4, α >

1
2 −

1
n is

necessary. Lucá and Rogers [17] reûned the necessary condition to α > 1
2 −

1
n+2 .

In this paper, we deal with a similar problem in the manifold setting. We always
take (Mn , g) to be a complete manifold endowed with a C∞ metric g. Denote by ∆
the Laplace–Beltrami operator associated with g.

_e Schrödinger equation on (Mn , g) is given by

(1.1)
⎧
⎪⎪
⎨
⎪⎪
⎩

i∂tu − ∆u = 0 (t, x) ∈ R ×M ,
u(0, x) = f (x) x ∈ M .

Speciûcally, if M is compact, it has a discrete spectrum, and there exists an or-
thonormal basis {e j} of eigenfunctions such that

∆e j(x) = λ2
j e j , e j ∈ C∞(M), ∫

M
e jek dVg = δ jk .

_e eigenvalues 0 = λ0 < λ1 ≤ λ2 ≤ λ3 , ≤ ⋅ ⋅ ⋅ are listed in ascending order and
counted by multiplicity.

We can then write the solution of (1.1) as

(1.2) e−i t△ f (x) =
∞

∑

j=0
e i tλ

2
j ̂f je j(x),

where ̂f j is the j-th Fourier coeõcient given by ̂f j = ∫M f (x)e j(x)dVg .
When M = Hn , Sn orT2, we are able to obtain the same result as in P. Sjölin’s work

for Rn [20].

_eorem 1.1 _e solution u(t, x) to equation (1.1) converges pointwise to the initial
data f , whenever f ∈ Hα

(M), α > 1
2 . Here M = Hn , Sn or T2 endowed with standard

metric.

Remark 1.2 _ese three cases are actually proved via three diòerent methods. We
derive the hyperbolic space by showing a local smoothing eòect. For the standard
sphere, we take full advantage of the spectrum concentration. For the two-dimen-
sional torus, we apply our argument for the general manifold and combine it with
Strichartz estimates on the two-dimensional torus obtained by Bourgain [3].

For a general compact manifold, if α > 1, there is a way to prove the pointwise
convergence quickly using amethod from [26]. In fact, by (1.2) andParseval’s formula,
we easily have

∥e−i t∆ f (x)∥L2(M ,L2(0,1]) ≤ ∥ f ∥L2(M) ,

∥e−i t∆ f (x)∥L2(M ,H1(0,1]) = ∥(e−i t∆
− i∆e−i t∆

) f (x)∥L2(M ,L2(0,1]) ≤ ∥ f ∥H2(M) .
Interpolating between the two, yields

∥e−i t∆ f (x)∥L2(M ,Hs(0,1]) ≤ ∥ f ∥H2s(M) ,
which, when combined with the Sobolev imbedding, further leads to

(1.3) ∥ sup
0<t≤1

∣e−i t∆ f (x)∣∥L2(M) ≲ ∥ f ∥H2s(M) , s >
1
2
.
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Pointwise Convergence of Solutions to the Schrödinger Equation on Manifolds

_e pointwise convergence for e−i t∆ f (x) always comes from the boundedness of the
maximal operator (see [20, p. 714] for a detailed argument).

Henceforth, we will use the notation A ≲ B to mean that there is some constant C
independent of all essential variables, such that A ≤ CB. For convenience, we denote
T∗ f (x) = sup0<t≤1 ∣e

−i t∆ f (x)∣.
Inequality (1.3) says that the maximal Schrödinger operator T∗ is bounded from

Hα
(M), α > 1 to L2

(M). _us the pointwise convergence follows. From _eorem 1.1,
it is reasonable to conjecture that α > 1

2 should be suõcient, but it is hard to break the
bound α > 1. _is is due to the absence of a local smoothing eòect [10, 11], and we no
longer have scaling invariances as in Euclidean spaces. Fortunately, by utilizing the
Strichartz estimate [6], wemanage to overcome these diõculties and break the bound
α > 1 in lower dimensions.

_eorem 1.3 Let (M , g) be a connected, compact manifold without boundary of di-
mension n. _e solution u(t, x) to equation (1.1) converges pointwise to the initial data
f, whenever f ∈ Hα

(M), α > 1
3 for n = 1, α > 3

4 for n = 2, or α > 9
10 for n = 3.

We now give a brief outline of what follows. In Section 2, we provide some basic
facts about hyperbolic spaces and spheres. In Section 3, we prove the hyperbolic space
case in_eorem 1.1. In Section 4, we prove the standard sphere case that exhibits some
diòerence between the hyperbolic space and the Euclidean case. In Section 5, we prove
_eorem 1.3 for n = 2, 3. In Section 6, we apply the previous results to the torus case,
and several other examples.

2 Preliminaries

In this section, we provide some basic facts we will need in the later context.

Deûnition 2.1 Wedeûne the hyperbolic space as given by the polar parametrization:

Hn
= {(t, x) ∈ Rn+1 , (t, x) = (cosh r, sinh rω), r > 0,ω ∈ Sn−1

}.

_emetric tensor is given by g = dr2+sinh rdω2, where dω2 is the standardmetric
on the sphere. _e volume element is dV = sinh rn−1drdω. _e Laplace–Beltrami
operator is

∆Hn = ∂2
r + (n − 1)cosh r

sinh r
∂r +

1
sinh2 r

∆Sn−1 .

_e Sobolev space is deûned byHs
(Hn

) = { f ∣(1−∆Hn)
s/2 f ∈ L2

(Hn
)}. When s = m

is a positive integer, this is equivalent to the usual deûnition.

Let f be the function on Hn given by

(2.1) F =
√

1 + r2 ,

written in polar coordinates. Noticing that F ∈ C∞(Hn
), with some direct calcula-

tion, one has the following.

Proposition 2.2 Let F be as above.
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(i) HessF = 1
√

1+r2
dr ⊗ dr + r

√

1+r2
Hessr ≥ A(r)g, where

A(r) = min( 1
√

1 + r2
, r
√

1 + r2
cosh r
sinh r

) .

(ii) ∥∇
kF∥ ∈ L∞(Hn

) for any integer k > 0.

Now we describe the spectrum concentration of the sphere.

Proposition 2.3 Denote µk to be the k-th eigenvalue on the standard sphere without
counting multiplicity. Let Ek be the corresponding eigenspace. _en µk = k(k + n − 1)
and dim Ek ≈ kn−1.

In the general compact manifold case, we will use Hörmander’s oscillatory inte-
gral estimates (see [21, _eorem 2.2.1] for a detailed reference). Consider oscillatory
integrals of the form Th f (z) = ∫ e

i
h ϕ(z ,y)a(z, y) f (y) dy. Here a ∈ C∞0 (Rn+1

×Rn
),

ϕ is real and C∞ in a neighborhood of supp a. _en the canonical relation associated
with ϕ is deûned as

Cϕ = {(z, ϕz(z, y), y − ϕy(z, y))} ⊂ T∗Rn+1
× T∗Rn .

Lemma 2.4 LetΠT∗Rn ∶Cϕ → T∗Rn be the natural projection, and similarlyΠT∗Rn+1 .
Assume that
(i) rank dΠT∗Rn ≡ 2n;
(ii) Sz0 = ΠT∗z0R

n+1Cϕ has everywhere non-vanishing Gaussian curvature for any z0 ∈
suppz a.

_en ∥Th f ∥Lp(Rn+1) ≲ h(n+1)/q
∥ f ∥Lp(Rn) if q =

n+2
n p′ and 1 ≤ p ≤ 2 for n ≥ 2, or

1 ≤ p < 4 for n = 1.

3 A Solution on a Hyperbolic Space

We start with the following local smoothing lemma.

Lemma 3.1 Let u(t) = u(x , t) be the solution of (1.1) with M = Hn . Let BR denote
the geodesic ball centered at the origin. _en there exists a constant C = C(n, R) > 0
such that

(3.1) ∥u∥L2([0,1]×BR) ≤ C∥ f ∥H− 1
2 (Hn)

.

Remark 3.2 _e smoothing eòect of the Schrödinger evolution group has been
intensively studied. Here we refer readers to [10, 11]. _e proof of Lemma 3.1 follows
from [10] with some modiûcations.

Proof of Lemma 3.1 In this section, we will denote ∆Hn = ∆.
Choose ϕ ∈ C∞(Hn

) to be a cutoò function such that ϕ ≡ 1 in BR and ϕ ≡ 0
outside B2R , 0 ≤ ϕ ≤ 1 and ∣∇ϕ∣ ≲ 1

R . Let f be the function deûned by (2.1). Consider
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the self-adjoint linear diòerential operator

X =

∇F
i
+ (

∇F
i

)∗ =

2∇F
i

+

∆F
i

.

In local coordinates, ∇F = g i j ∂F
∂x i

∂
∂x j . Let N = 1 − ∆. _en P = N−1/4XN−1/4 is

a pseudodiòerential operator of order 0. Since ∥∇
kF∥ ∈ L∞(Hn

), one can see that
X∶Hs

(Hn
) → Hs−1

(Hn
) is continuous. _us, P is bounded on L2

(Hn
).

d
dt

(−Pu(t), u(t)) = (iP∆u(t), u(t)) + (Pu(t), i∆u(t))

= 2R(iP∆u(t), u(t)) = 2R(i∆N−1/4u(t), XN−1/4u(t))

= ∫
Hn

(4HessF(∇v(t),∇v(t)) − ∆2F∣v(t)∣2) dV

≥ A2R ∫
B2R

ϕ∣∇v(t)∣2 − ∫
Hn
∆2F∣v(t)∣2 dV .

(3.2)

Here v(t) = N−1/4u(t) and A2R = 4 inf0≤r≤2R A(r). Integrating (3.2) from 0 to 1, we
have

∫
[0,1]×B2R

ϕ∣∇v(t)∣2 dVdt ≲ ∥u(0)∥L2(Hn) + ∥u(1)∥L2(Hn) + ∥v(t)∥L2([0,1]×Hn)

≲ ∥ f ∥L2(Hn)

(3.3)

with a constant depending on R.
Notice that v(t) = N−1/4u(t) solves the Schrödinger equation

⎧
⎪⎪
⎨
⎪⎪
⎩

i∂tv − ∆v = 0 (t, x) ∈ R ×Hn ,
v(0, x) = N−1/4 f (x) x ∈ Hn .

Applying (3.3), one obtains

∫
[0,1]×B2R

ϕ∣∇N−1/2u(t)∣2 dVdt ≲ ∥ f ∥H−1/2(Hn) .

Since
(ϕ∇N−1/2u,∇N−1/2u) = (ϕ(−∆)N−1/2u,N−1/2u) + (∇ ⋅ ϕ∇(N−1/2u),N−1/2u)

= (N 1/2u, ϕN−1/2u) − (ϕN−1/2u,N−1//2u)

+ (∇ϕ ⋅ ∇(N−1/2u),N−1/2u)

≥ (u,N 1/2
(ϕN−1/2u)) − C1∥u∥H−1/2(Hn) .

By the sharp Gårding inequality [14], we have

(u,N 1/2
(ϕN−1/2u)) ≥ (ϕu, u) − C2∥u∥H−1/2(Hn) .

Here C1, C2 are constants depending on R.
Combining the estimates above, we ûnish the proof of the lemma.

As a corollary, we have the following.

Corollary 3.3 _e following estimate holds:

(3.4) ∥∆u∥L2([0,1]×BR) ≤ C(R)∥ f ∥H3/2(Hn) .
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Proof of_eorem 1.1 forHn _e proof is similar to the argument for (1.3) in the
introduction. We ûnish the proof by interpolation between (3.1) and (3.4).

Remark 3.4 _e argument above also applies to other manifolds where the local
smoothing eòect holds. For example, if M is the complement of a compact, smooth
and non-trapping obstacle in Rn , Burq, Gérard, and Tzvetkov [7] proved a local
smoothing eòect with a gain of “1/2”. _us by our method here, one gets exactly the
same theorem as _eorem 1.1 (with the same index α > 1/2). One can also extend the
results to the variable coeõcient context considered by Doi [10] as long as one has the
local smoothing theorem. Besides, if we perturb the the standard metric of Euclidean
or hyperbolic space in a ûnite domain such that there are no trapped geodesics, then
the local smoothing eòect still holds (see [10, 11] for more examples). _us we also
have similar pointwise theorems.

4 A Solution on the Sphere

By Proposition 2.3, we know that the k-th eigenvalue of −∆Sn is

µk = k(k + n − 1),

and that the eigenfunctions attached to µk are the sphere harmonics of degree k that
form a linear space of dimension dk ≈ kn−1. Take e j1(x), e j2(x), . . . , e jdk (x) to be an
L2 normalized base of this linear space. _en for each f ∈ C∞(Sn

), we have

(4.1) e−i t∆Sn f (x) =
+∞

∑

k=0

dk

∑

l=1
e−i tµk ̂fk l ek l (x).

We wish to prove ∥ sup0<t≤1 ∣e
−i t∆Sn f (x)∣∥ L2(Sn))

≲ ∥ f ∥Hα(Sn) , α >
1
2 . It suõces to

bound e−i t(x)∆Sn f , and for this, we have, by (4.1),

∥e−i t(x)∆Sn f (x)∥L2 = ∥

+∞

∑

k=0
e−i t(x)µk

dk

∑

l=1

̂fk l ek l (x)∥ L2
≲

+∞

∑

k=0
∥

dk

∑

l=1

̂fk l ek l (x)∥ L2

≲

+∞

∑

k=0
(

dk

∑

l=1
∣
̂fk l ∣

2
)

1/2
≲

+∞

∑

k=0
(1 + µk)

−α/2
(

dk

∑

l=1
(1 + µk)

α
∣
̂fk l ∣

2
)

1/2

≲ (

+∞

∑

k=0
(1 + µk)

−α
)

1/2
(

+∞

∑

k=0

dk

∑

l=1
(1 + µk)

α
∣
̂fk l ∣

2
)

1/2

= (

+∞

∑

k=0
(1 + k(k + n − 1))−α)

1/2
∥ f ∥Hα(Sn)

≤ Cα∥ f ∥Hα(Sn) .

5 The General Case

To prove _eorem 1.3, we ûrst do a spectrum decomposition. Take ψ̃ ∈ C∞0 (R) and
ψ ∈ C∞0 (R/{0}) such that ψ̃(λ2

) + ∑
+∞

k=1 ψ(2−2kλ2
) = 1 for all λ. _en we have

the decomposition f = ψ̃(∆2
) f + ∑ k = 1+∞ψ(2−2k∆2

) f , for any f ∈ C∞(M), and
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furthermore,

(5.1) T∗ f ≲ T∗
(ψ̃(∆2

) f ) +
+∞

∑

k=1
T∗

(ψ(2−2k∆2
) f ).

As mentioned in the introduction, we only need to show

∥T∗ f ∥Lp(M) ≲ ∥ f ∥Hα(M) , p = 2(n + 2)/n,

for α > 3/4, n = 2, or α > 9/10, n = 3.
_e low frequency part in (5.1) is easy to control, and we can prove

∥T∗
(ψ̃(∆) f )∥Lq(M) ≲ ∥ f ∥L2(M) ,

for any q ≥ 2. In fact, by making t into a function t(x), we only need to show

∥e−i t(x)∆ψ̃(∆) f ∥Lq(M) ≲ ∥ f ∥L2(M) .

By the compact support of ψ̃, we have

∥e−i t(x)∆ψ̃(∆) f ∥Lq = ∥ ∑

λ j≤c0
e−i t(x)λ2

j ψ̃(λ2
j)

̂f je j(x)∥ Lq

≲ ∑

λ j≤c0
∥e−i t(x)λ2

j ψ̃(λ2
j)

̂f je j(x)∥Lq ≲ ∑

λ j≤c0
∣
̂f j ∣∥e j(x)∥Lq

≲ ∑

λ j≤c0
λδ(q)j ∣

̂f j ∣∥e j(x)∥L2 ,

for some positive δ(q). In the last step, we applied the Lq estimate for eigenfunctions
of −∆ (see [21, _eorem 5.1.1] or [22]). If we take all the eigenfunctions to be L2

normalized, the last term above is clearly bounded by ∥ f ∥L2 , a�er using Schwartz’s
inequality.

To handle the rest of the terms in (5.1), we prove that, for 0 < h ≤ 1,

(5.2) ∥T∗
(ψ(h2∆) f )∥Lp(M) ≲ h−α∥ψ(h2∆) f ∥L2(M) ,

where α = 3/4 if n = 2 or α = 9/10 if n = 3. If we prove (5.2), then
+∞

∑

k=1
∥T∗

(ψ(2−2k∆) f )∥Lp ≲

+∞

∑

k=1
2αk∥ψ(2−2k∆) f ∥L2

=

+∞

∑

k=1
2−єk∥2(α+є)kψ(2−2k∆) f ∥L2

≲ (

+∞

∑

k=1
2−2єk

)

1/2
(

+∞

∑

k=1
∥(I − ∆)(α+є)/2ψ(2−2k∆) f ∥2

L2)

1/2

≤ Cє∥(I − ∆)(α+є)/2 f ∥L2

= Cє∥ f ∥Hα+є .

Nowwe are le� to prove (5.2). To do this, we need the following Strichartz estimate.

Lemma 5.1 Let 0 < h ≤ 1 and p = 2(n+2)
n . _en

∥e−i t∆
(ψ(h2∆) f )∥Lp((0,1]×M) ≲ h−1/p

∥ψ(h2∆) f ∥L2(M) .
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Proof _is lemma can be inferred from the general Strichartz estimate [6,_eorem
1], which was proved by applying Keel and Tao’s theorem [15] a�er they constructed
a parametrix for the frequency localized Schrödinger equation in local coordinates
and proved a very short time version of the dispersion estimate. Here, we would like
to present another proof that applies Hörmander’s oscillatory integral estimates. First
we state the frequency localized parametrix [6, Lemma 2.7].

Parametrix. LetU1 be an open ball inRn endowed with a Riemannianmetric g. Take
U2 to be an open ball inU1, χ0 ∈ C∞0 (U2), and ϕ ∈ C∞0 (Rn

). _en for every h ∈ (0, 1]
and w0 ∈ C∞0 (U1) there exists an α > 0 and w̃(s, x) ∈ C∞0 ([−γ, γ] ×U2) that solves

{
ih∂tw̃ − h2∆gw̃ = r,
w̃(0, x) = χ0(x)ϕ(hD)w0(x)

with r(s, x) ∈ C∞0 ([−γ, γ] ×U2) satisfying

(5.3) ∥r(s, x)∥L∞([−γ ,γ],Lp(U2)) ≲ CNhN
∥w0∥L2(U1) , for all N .

Furthermore, we have

(5.4) ∥w̃(s, x)∥Lp([−γ ,γ]×U2) ≲ h
n+1
p −

n
2 ∥w0∥L2(U1) .

Here we sketch the construction of w̃ from [6]. Consider

(5.5) w̃(s, x) = (2πh)−n
∫
Rn
e

i
h Φ(s ,x ,ξ)a(s, x , ξ, h)ŵ0(ξ/h) dξ,

where a(s, x , ξ, h) = ∑
N
j=0 h ja j(s, x , ξ). Here N is to be chosen large enough, a j ∈

C∞0 ([−γ, γ] ×U2 ×Rn
), with initial constraints

a0(0, x , ξ) = χ0(x)ϕ(ξ), a j(0, x , ξ) = 0, j ≥ 1,

and Φ ∈ C∞([−t0 , t0] ×U2 × B), where B is a ball containing the support of ϕ, with
initial constraint Φ(0, x , ξ) = x ⋅ ξ. _en the equations for ϕ and a j are given by the
eikonal equation ∂sΦ +∑1≤i , j≤n g i j∂ iΦ∂ jΦ = 0 and the transport equations

∂sa0 + 2g(∇gΦ,∇ga0) + ∆g(Φ)a0 = 0,
∂sa j + 2g(∇gΦ,∇ga j) + ∆g(Φ)a j = −∆g(a j−1), j ≥ 1.

By the proof of Lemma 2.7 in [6], we also know that

r(s, x) = hN+2
(2πh)−n

∫
Rn
e

i
h Φ(s ,x ,ξ)b(s, x , ξ, h)ŵ0(ξ/h) dξ,

for some b ∈ C∞0 ([−γ, γ] ×U2 × B). _is easily yields (5.3).
Next we apply Lemma 2.4 to (5.5). _e existence of phase function Φ on a small

interval for s is guaranteed by Hamilton–Jacoby theory. It is easy to see that the two
conditions are satisûed when s = 0. Actually, when s = 0, for each x, S(0, x) is a
parabola. _en by continuity and compactness, the two conditions are satisûed for
s < δ for some ûxed δ = δ(M) > 0. _us we get

∥w̃(s, x)∥Lp([−γ ,γ]×U2) ≲ h
n+1
p −n

∥ŵ0(ξ/h)∥L2(Rn) ≲ h
n+1
p −

n
2 ∥w0(x)∥L2(U1) .

Now let us continue to prove Lemma 5.1. Denote

w̃ l(s, x) = e−ihs∆g
(χ0ϕ(hD)w0)(s),

990

https://doi.org/10.4153/CJM-2018-001-4 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2018-001-4


Pointwise Convergence of Solutions to the Schrödinger Equation on Manifolds

which is the solution to linear equation

{
ih∂tw̃ − h2∆w̃ = 0,
w̃(0, x) = χ0(x)ϕ(hD)w0(x).

_erefore, w̃(s, x) − w̃ l(s, x) = ∫
s
0 e

−ih(s−τ)∆g r(τ, x) dτ. So by (5.3), we have

∥w̃(s, x) − w̃ l(s, x)∥Lp([−γ ,γ]×U2) ≲ hN
∥w0∥L2(U1) .

_us (5.4) also holds for w̃ l(s, x). Note ϕ(hD) is a cutoò on frequencies in Rn . But
in order to prove the lemma, we need to show

(5.6) ∥e−ihs∆
(ψ(h2∆) f )∥Lp([−γ ,γ]×M) ≲ h

n+1
p −

n
2 ∥ f ∥L2(M) ,

where the cutoò ψ(h2∆) is made on frequencies λ j . To treat this diòerence, we apply
[6, Corollary 2.4], which actually says that there is a pseudodiòerential operator Ψ(D)

of order 0 on M, such that, in local coordinates, Ψ(ξ) is compactly supported and

∥(I −Ψ(hD))ψ(h2∆) f ∥Hσ(M) ≲ Cσ ,NhN
∥ f ∥L2(M)

holds for all h ∈ (0, 1], σ > 0, N > 0, and f ∈ C∞(M). Combining this with (5.4) for
w̃ l and the boundedness of e−ihs∆ on Hσ

(M), we then reach (5.6) by constructing
partitions of unity.
Finally, let us see how (5.6) implies Lemma 5.1. With a change of variable hs → t,

since p = 2(n+2)
n , (5.6) implies

∥e−i t∆
(ψ(h2∆) f )∥Lp([−γh ,γh]×M) ≲ h

n+2
p −

n
2 ∥ f ∥L2(M) = ∥ f ∥L2(M) .

It is also easy to see that we can replace f in the above L2 norm by ψ(h2∆) f so that

∥e−i t∆
(ψ(h2∆) f )∥Lp([−γh ,γh]×M) ≲ ∥ψ(h2∆) f ∥L2(M) .

Set Ik = [(k − 1)γh, kγh]. _en

∥e−i t∆
(ψ(h2∆) f ∥p

Lp((0,1]×M)
=

(γh)−1

∑

k=1
∥e−i t∆ψ(h2∆) f ∥p

Lp(Ik×M)

≲

(γh)−1

∑

k=1
∥e−ikγh∆ψ(h2∆) f ∥p

L2(M)

≲

(γh)−1

∑

k=1
∥ψ(h2∆) f ∥p

L2(M)

≲ h−1
∥ψ(h2∆) f ∥p

L2(M)
,

which proves Lemma 5.1.

Lemma 5.2 Let q ≥ 2. Suppose we have the following Strichartz estimate:

∥e−i t∆
(ψ(h2∆) f )∥Lq((0,1]×M) ≲ h−β∥ψ(h2∆) f ∥L2(M) .

_en for the maximal Schrödinger operator T∗, the following estimate holds:

∥T∗
(ψ(h2∆) f ∥Lq(M) ≲ h−2/q−β

∥ψ(h2∆) f ∥L2(M) + ∥ψ(h2∆) f ∥Lq(M) .
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Proof We will need an inequality from [16], which states

(5.7) sup
t∈[a ,b]

∣g(t)∣ ≤ Cp(∣g(a)∣ + µ1/q−1
∥g′(t)∥Lq[a ,b] + µ1/q

∥g∥Lq[a ,b])

for any smooth g(t) on [a, b], µ > 0, and q ≥ 1.
Take [a, b] = [0, 1] and g(t) = e−i tδψ(h2∆) f . By (5.7) and Lemma 5.1,

∥T∗
(ψ(h2∆) f ∥Lq(M) ≲ ∥ψ(h2∆) f ∥Lq(M) + µ1/q

∥e−i t∆ψ(h2∆) f ∥Lq((0,1]×M)

+ µ1/q−1
∥e−i t∆

(−i∆)ψ(h2∆) f ∥Lq((0,1]×M)

≲ ∥ψ(h2∆) f ∥Lq(M) + µ1/qh−β∥ψ(h2∆) f ∥L2

+ µ1/q−1h−β∥(−i∆)ψ(h2∆) f ∥L2

≲ ∥ψ(h2∆) f ∥Lq + µ1/q
(h−β + µ−1h−2−β

)∥ψ(h2∆) f ∥L2 .

By taking µ = h−2, we ûnish the proof of Lemma 5.2.

Nowwe are in a position to ûnish the proof of inequality (5.2), and hence the main
theorem. Let us combine Lemmas 5.1 and 5.2 to get

∥T∗
(ψ(h2∆) f )∥Lp(M) ≲ h−3/p

∥ψ(h2∆) f ∥L2(M) + ∥ψ(h2∆) f ∥Lp(M) .

By the Sobolev imbedding, the last term above is no larger than

∥ψ(h2∆) f ∥Hn/2−n/p(M)
≃ h−(n/2−n/p)

∥ψ(h2∆) f ∥L2(M) .

Note p = 2(n+2)
n . So n

2 −
n
p =

n
n+2 ,

3
p =

3n
2(n+2) . A simple calculation then yields

∥T∗
(ψ(h2∆) f )∥Lp(M) ≲ h−3/4

∥ψ(h2∆) f ∥L2(M) ,

when n = 2 and ∥T∗
(ψ(h2∆) f )∥Lp(M) ≲ h−9/10

∥ψ(h2∆) f ∥L2(M), when n = 3. _e
case of n = 1 will be dealt with in the next section.

6 A Solution on the Flat Torus and Other Special Manifolds

We may be able to improve our result if we could get a better Strichartz estimate
than in Lemma 5.1. _e argument in Section 5 comes from a trial to improve the
Strichartz estimates on general manifolds [6]. Although for general manifolds we still
get the same index and same loss, in some special manifolds we do have more precise
Strichartz type inequalities that enable us to get improved theorems.

To continue with the two-dimensional �at Torus case, we will need the following
Strichartz estimate on Tn . It can be inferred from Bourgain [3, Proposition 3.6].

Lemma 6.1 For n ≥ 2, the following Strichartz estimate holds:

∥e−i t∆ f ∥L4((0,1]×Tn) ≲ ∥ f ∥Hs(Tn) , s >
n
4
−

1
2
.

_us, by Lemma 5.2, we have

∥T∗
(ψ(h2∆) f )∥L4(T2) ≲ h−1/2−s

∥ψ(h2∆) f ∥L2(T2) + ∥ψ(h2∆) f ∥L4(T2) .
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By the Sobolev embedding

∥ψ(h2∆) f ∥L4(T2) ≲ h−1/2
∥ψ(h2∆) f ∥L2(T2) .

_en ∥T∗
(ψ(h2∆) f )∥L4(T2) ≲ h−1/2−s

∥ψ(h2∆) f ∥L2(T2), for any s > 0. By a similar
argument as in Section 5, we ûnish the proof of the two-dimensional �at Torus case.
For the n = 1 case of _eorem 1.3, we ûrst notice that all connected, compact one-

dimensional manifolds are isometric to circles. So we only need to consider T1. We
have the following Strichartz estimate [3, Proposition 2.36].

Lemma 6.2 _e following Strichartz estimate holds:

∥e−i t∆ f ∥L6((0,1]×T1) ≲ ∥ f ∥Hs(T1) , s > 0.

As above, we conclude ∥T∗
(ψ(h2∆) f )∥L6(T1) ≲ h−1/3−s

∥ψ(h2∆) f ∥L2(T1). _us we
ûnish the proof of _eorem 1.3 for n = 1.

Now let us consider the higher dimensional �at torus Tn , n ≥ 3. By applying the
stronger Strichartz estimate in the following lemma and the argument above, we can
reduce the amount of regularity requirement to some number less than 1 for �at tori
of all dimensions.

Lemma 6.3 _e following Strichartz estimate holds:

∥e−i t∆ f ∥Lq((0,1]×Tn) ≲ ∥ f ∥Hs(Tn) , s > 0, q ≤ 2(n + 1)
n

.

_e proof of this lemma can be found in [4]. As a consequence, we have the fol-
lowing theorem.

_eorem 6.4 Let e−i t∆ be the Schrödinger operator deûned on Tn . _en e−i t∆ f
converges pointwise to f if f ∈ Hα

(Tn
), where α > n

n+1 and n ≥ 3.

Finally let us consider one type ofmanifoldwhose geodesics are closedwith a com-
mon period. For the geometric properties of such manifolds, see [1]. Here we only
apply the Strichartz estimate [6, _eorem 4] for the Schrödinger operator on such
manifolds,

∥e−i t∆ f ∥L4((0,1]×M) ≲ ∥ f ∥Hs(M) , s > s0(n),

where s0(2) = 1/8, s0(n) = n/4 − 1/2 for n ≥ 3. Note the n sphere Sn is one of the
above manifolds. Furthermore, the loss s0(n) has been proved to be sharp for Sn .
Similarly, we have the following.

_eorem 6.5 Let M be the manifold described above. _en e−i t∆ f converges point-
wise to f if
(i) n = 2 and f ∈ Hα

(M2
), α > 5/8, or

(ii) n = 3 and f ∈ Hα
(M3

), α > 3/4.
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