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Pointwise Convergence of Solutions to the
Schrodinger Equation on Manifolds

Xing Wang and Chunjie Zhang

Abstract. Let (M", g) be a Riemannian manifold without boundary. We study the amount of initial
regularity required so that the solution to a free Schrodinger equation converges pointwise to its
initial data. Assume the initial data is in H* (M). For hyperbolic space, the standard sphere, and

the two-dimensional torus, we prove that o > % is enough. For general compact manifolds, due to

the lack of a local smoothing effect, it is hard to improve on the bound « > 1 from interpolation. We
managed to go below 1 for dimension < 3. The more interesting thing is that, for a one-dimensional
compact manifold, & > % is sufficient.

1 Introduction

In the Euclidean setting, L. Carleson [8] proposed a question regarding the amount
of regularity required on the initial data f, so that

e f(x) = f (DD T EAE S f(x), ae xR,
RYI
as t goes to 0. Here e™'* f(x) is the solution to the free Schrédinger equation

idju—Au=0 (t,x)eRxR",
u(0,x) = f(x) xeR"™

The problem has been treated by many authors. When n =1, Carleson himself proved
that f € H1 (R) is sufficient. B. E. J. Dahlberg and C. E. Kenig [13] proved this is neces-
sary for all dimensions. For higher dimensions, M. Cowling [9] studied the problem
for a general class of self-adjoint operators and obtained & > 1 for the Schrédinger
operator. Later on, P. §jolin [20] proved a local smoothing effect and thus improved
the bound to & > 3, which was also independently proved by L. Vega [25].

For n=2, J. Bourgain [2] showed that we can go below % a little bit. Furthermore,
continuous improvement has been made by Moyua, Vargas, Vega [18], Tao, Vargas
[23,24] and Lee [16]. Recently, Du, Guth, and Li [12] proved that s > 1/3 is sufficient
and sharp, thus completely solving the problem.

For n > 3, Bourgain[5] beat the bound « > % and showed that the solution to a free
Schrodinger equation converges pointwise to its initial data f, provided f € H*(R"),
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where o > % - ﬁ. Furthermore, he also showed that when n > 4, a > % - % is

necessary. Lucd and Rogers [17] refined the necessary condition to & > 5 — .

In this paper, we deal with a similar problem in the manifold setting. We always
take (M", g) to be a complete manifold endowed with a C* metric g. Denote by A
the Laplace-Beltrami operator associated with g.

The Schrodinger equation on (M", g) is given by

{iatu—Au =0 (tLx)eRxM,

4D u(0,x) = f(x) xeM.

Specifically, if M is compact, it has a discrete spectrum, and there exists an or-
thonormal basis {e;} of eigenfunctions such that

Aej(x):)tiej, ej e C™(M), fMejek dVy = 8jx.

The eigenvalues 0 = Ag < A; < A, < A3,< -+ are listed in ascending order and
counted by multiplicity.
We can then write the solution of (1.1) as

(1.2) e_imf(x) _ i eit}tiﬁej(x),
j=0

where E is the j-th Fourier coeflicient given byﬁ = [y f(x)ej(x)dV,.
When M = H",S" or T?, we are able to obtain the same result as in P. Sjélin’s work
for R" [20].

Theorem 1.1  The solution u(t, x) to equation (1.1) converges pointwise to the initial
data f, whenever f ¢ H*(M), a > % Here M = H",S" or T? endowed with standard
metric.

Remark 1.2 These three cases are actually proved via three different methods. We
derive the hyperbolic space by showing a local smoothing effect. For the standard
sphere, we take full advantage of the spectrum concentration. For the two-dimen-
sional torus, we apply our argument for the general manifold and combine it with
Strichartz estimates on the two-dimensional torus obtained by Bourgain [3].

For a general compact manifold, if &« > 1, there is a way to prove the pointwise
convergence quickly using a method from [26]. In fact, by (1.2) and Parseval’s formula,
we easily have

He—itAf(x)HLZ(M)LZ(O’I]) < HfHLZ(M),

—ith

He_imf(x)HLZ(M,Hl(o,l]) = (e iAe‘”A)f(x)HLZ(M,LZ(O,]]) < flle(any-

Interpolating between the two, yields

e F Gz < 1 lecany

which, when combined with the Sobolev imbedding, further leads to

_ 1
(13) | sup |~ £()llaqany 5 [ f s qanys s> 5-
0<t<1
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The pointwise convergence for e "*2 f(x) always comes from the boundedness of the
maximal operator (see [20, p. 714] for a detailed argument).

Henceforth, we will use the notation A $ B to mean that there is some constant C
independent of all essential variables, such that A < CB. For convenience, we denote
T* £ (x) = supy. ey e 72 £ ()]

Inequality (1.3) says that the maximal Schrodinger operator T™ is bounded from
H*(M), a > 1to L*(M). Thus the pointwise convergence follows. From Theorem L.1,
it is reasonable to conjecture that & > % should be sufficient, but it is hard to break the
bound & > 1. This is due to the absence of a local smoothing effect [10,11], and we no
longer have scaling invariances as in Euclidean spaces. Fortunately, by utilizing the
Strichartz estimate [6], we manage to overcome these difficulties and break the bound
a > 1in lower dimensions.

Theorem 1.3  Let (M, g) be a connected, compact manifold without boundary of di-
mension n. The solution u(t, x) to equation (1.1) converges pointwise to the initial data
f, whenever f e H*(M), a > L forn=1,a> 2 forn=2,ora > 2 forn=3.

We now give a brief outline of what follows. In Section 2, we provide some basic
facts about hyperbolic spaces and spheres. In Section 3, we prove the hyperbolic space
case in Theorem 1.1. In Section 4, we prove the standard sphere case that exhibits some
difference between the hyperbolic space and the Euclidean case. In Section 5, we prove
Theorem 1.3 for n = 2, 3. In Section 6, we apply the previous results to the torus case,
and several other examples.

2 Preliminaries
In this section, we provide some basic facts we will need in the later context.

Definition 2.1 We define the hyperbolic space as given by the polar parametrization:
H" = {(t,x) e R"™,(t,x) = (coshr,sinhrw),r >0, w e S"'}.

The metric tensor is given by g = dr?+sinh rd w?, where d w? is the standard metric
on the sphere. The volume element is dV = sinh 7" 'drdw. The Laplace-Beltrami
operator is

h 1
Ag :af+(n_l)cos r

Agn-1
N r Sn-1.
sinhr sinh? r

The Sobolev space is defined by H* (H") = { f|(1- A )*/2f € L2(H")}. When s = m
is a positive integer, this is equivalent to the usual definition.

Let f be the function on H" given by
2.1) F=\V1+r2%,

written in polar coordinates. Noticing that F € C* (H"), with some direct calcula-
tion, one has the following.

Proposition 2.2  Let F be as above.
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(i) Hessg = ﬁdr ®dr+ \/% Hess, > A(r)g, where

+r2

r coshr).

1
V1+7r2 \/1+ 2 sinhr

(i) |VKF| e L>(H") for any integer k > 0.

A(r) = min(

Now we describe the spectrum concentration of the sphere.

Proposition 2.3  Denote py to be the k-th eigenvalue on the standard sphere without
counting multiplicity. Let Ey, be the corresponding eigenspace. Then py = k(k +n —1)
and dim Ej, ~ k"L,

In the general compact manifold case, we will use Hérmander’s oscillatory inte-
gral estimates (see [21, Theorem 2.2.1] for a detailed reference). Consider oscillatory
integrals of the form Ty, f(z) = [ e#%(®Ma(z, y) f(y) dy. Here a € C°(R™! x R"),
¢ is real and C* in a neighborhood of supp a. Then the canonical relation associated
with ¢ is defined as

Co={(2.9:(2.7),y = $5(2.3))} c T"R"' x T'R".

Lemma 2.4 LetIlr+gn: Cy — T*R” be the natural projection, and similarly I p«gn+.
Assume that

(i) rankdIlps+gn = 2n;

(ii) Sz = gz ren Cy has everywhere non-vanishing Gaussian curvature for any zo €
supp, d.

Then | Thf Lo rny S h(”“)/quHLp(Rn) ifg="2p" and1< p <2forn > 2, or

1<p<4forn=1

3 A Solution on a Hyperbolic Space

We start with the following local smoothing lemma.

Lemma 3.1 Let u(t) = u(x,t) be the solution of (1.1) with M = H". Let Bg denote
the geodesic ball centered at the origin. Then there exists a constant C = C(n,R) > 0
such that

(31) HuHLZ([O,l]xBR) < CHf”H—%(Hn)

Remark 3.2 The smoothing effect of the Schrodinger evolution group has been
intensively studied. Here we refer readers to [10,11]. The proof of Lemma 3.1 follows
from [10] with some modifications.

Proof of Lemma 3.1 In this section, we will denote Ag» = A.
Choose ¢ € C*°(H") to be a cutoff function such that ¢ = 1in Bg and ¢ = 0
outside Byg, 0 < ¢ <1land [V¢| S +. Let f be the function defined by (2.1). Consider
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the self-adjoint linear differential operator

F F 2VF AF
x-TE, (SE), 2V AF
i i i i
In local coordinates, VF = g%/ ;’; o5+ Let N =1-A. Then P = NVAXN4 s

a pseudodifferential operator of order 0. Since |V¥F| € L*(H"), one can see that
X:H*(H") - H*"'(H") is continuous. Thus, P is bounded on L*(H").

(32) %(—Pu(t),u(t)) = (iPAu(t), u(t)) + (Pu(t), idu(t))
= 28(iPAu(t), u(t)) = 2R(IAN"Y*u(t), XN V4u(t))
= [, (aHessi(90(1), T(0) - A*Flv(1)P) dV
ZAZRfB 3V (1) f A2Ev(t)2 V.

Here v(t) = N"V/4u(t) and Ag = 4infoc,<og A(r). Integrating (3.2) from 0 to 1, we
have

(3.3) f |VV B dvdt 5 [u(0) |z qemy + [u() | r2my + V() |i2(go.agxmm)
$ 1 ey

with a constant depending on R.
Notice that v(t) = N™/4u(t) solves the Schrédinger equation

idyy—Av =0 (t,x) e RxH",
v(0,x) = NV f(x) xeH"
Applying (3.3), one obtains

[ GIUNT U AVt S | fl sy
[0,1]xBagr
Since
($YN"Y2u, YN"Y2y) = (¢(~A)NT2u, N"V2u) + (V- ¢V (N7V2u), NV2y)
= (Nl/zu, </>N’1/2u) - (ng’l/zu,N’l//zu)
+ (V¢ V(NT2u), NV2y)
> (u, N> (¢N"?u)) - Cullull vz gaany -
By the sharp Gérding inequality [14], we have
(u, N2 (¢N"2u)) > ($u,u) - G, ] gg-172 ramy -

Here C,, C; are constants depending on R.
Combining the estimates above, we finish the proof of the lemma. ]

As a corollary, we have the following.

Corollary 3.3  The following estimate holds:
(3.4) lAu]z2(ro,11xBr) < CAR) | f |l 5372ty -
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Proof of Theorem 1.1 for H" The proof is similar to the argument for (1.3) in the
introduction. We finish the proof by interpolation between (3.1) and (3.4). [ |

Remark 3.4 The argument above also applies to other manifolds where the local
smoothing effect holds. For example, if M is the complement of a compact, smooth
and non-trapping obstacle in R", Burq, Gérard, and Tzvetkov [7] proved a local
smoothing effect with a gain of “1/2”. Thus by our method here, one gets exactly the
same theorem as Theorem 1.1 (with the same index « > 1/2). One can also extend the
results to the variable coefficient context considered by Doi [10] as long as one has the
local smoothing theorem. Besides, if we perturb the the standard metric of Euclidean
or hyperbolic space in a finite domain such that there are no trapped geodesics, then
the local smoothing effect still holds (see [10, 11] for more examples). Thus we also
have similar pointwise theorems.

4 A Solution on the Sphere
By Proposition 2.3, we know that the k-th eigenvalue of —Agn is
pr =k(k+n-1),

and that the eigenfunctions attached to yj are the sphere harmonics of degree k that
form a linear space of dimension dy ~ k"™". Take ¢}, (x), ej,(x),..., ej, (x) tobean

L? normalized base of this linear space. Then for each f € C*(S"), we have

@ ) = 55 ().
k=0 1=1

We wish to prove | supy_,, [e %" f(x)|| 2@y If ]| e (smy» @ > 3. Tt suffices to
bound e~ ##(¥)Asn f, and for this, we have, by (4.1),

€k,

—it(x)Agn - IS —it(x)pk & =
le F)z=]Ye > frex,
k=0 =1

DO f(nykr““(i(lwk)ﬂﬁlf)” 2

k=0 I=1

S(kzo:o 1+ ug)” )I/Z(Zi)jzl;(l+[4k) |fk| )

(

A\ /2
(1+k(k+n-1)) ) 1 Ntz sy
=()
Ca flbs(sn).-
5 The General Case

To prove Theorem 1.3, we first do a spectrum decomposition. Take y € Cg°(R) and
v € C(R\{0}) such that ¥(A?) + 1% w(272k)A%) = 1 for all A. Then we have
the decomposition f = Y(A?)f + Y k = 1+°°1//(2‘2kA2)f for any f € C*(M), and
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furthermore,
(5. Tf S THA)f) + 3 T (p(2 ) ).
k=1

As mentioned in the introduction, we only need to show

IT* flleeay S [ flmeanys P =2(n+2)/n,
fora >3/4, n=2,0ora>9/10, n=3.
The low frequency part in (5.1) is easy to control, and we can prove

[T @A) ) Laqmy S [ lz2ays

for any g > 2. In fact, by making ¢ into a function #(x), we only need to show

e 2G() fluacuy $ 1 £l1e2any-
By the compact support of ¥, we have

Je O s = | 3 e OTFADFes 0],

/\jSCO

$ 3 e NG fei(x) e s Y filllej(x)l1a
A]'SCO /‘jSCO

S 3 AD|Flle;(x)]

pS i Clfillei(e)llzes
/\]'SCO

for some positive §(q). In the last step, we applied the LY estimate for eigenfunctions
of —A (see [21, Theorem 5.1.1] or [22]). If we take all the eigenfunctions to be L2
normalized, the last term above is clearly bounded by | f| 12, after using Schwartz’s

inequality.
To handle the rest of the terms in (5.1), we prove that, for 0 < h <1,
(5.2) [T (w(R*A) )| e ary S B Tw (R D) 2y

where a« =3/4if n =2 or « = 9/10 if n = 3. If we prove (5.2), then

ST (W@ D) )l 5 3 2% w272 A) f 2
k=1 k=1
= S K2y 2 ) f]e
k=1

(32 (S 1u- 2y az) "

k=1

AN

< Ce|(I=2) 9P £ 12
= CEHfHHa+e.

Now we are left to prove (5.2). To do this, we need the following Strichartz estimate.

Lemma 5.1 LetO<h<landp= 2("7:2) Then

le A (w (WD) )|z opany § B2y (W2 A) fl12 .-
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Proof Thislemma can be inferred from the general Strichartz estimate [6, Theorem
1], which was proved by applying Keel and Tao’s theorem [15] after they constructed
a parametrix for the frequency localized Schrodinger equation in local coordinates
and proved a very short time version of the dispersion estimate. Here, we would like
to present another proof that applies Hormander’s oscillatory integral estimates. First
we state the frequency localized parametrix [6, Lemma 2.7].

Parametrix. Let U; be an open ball in R” endowed with a Riemannian metric g. Take
U, to be an open ball in Uy, yo € C5° (U ), and ¢ € C5°(R™). Then for every h € (0,1]
and wg € C5°(Uy) there exists an « > 0 and W (s, x) € Cg°([-y, y] x U,) that solves
iho,w — h*Agw =,
w(0,x) = xo(x)$(hD)wo(x)
with (s, x) € C5°([-y, y] x Us) satisfying
(5.3) ”r(S)x)HL“’([—y,y],LP(Uz)) S CNhN”WOHLZ(Ul)’ for all N.

Furthermore, we have

(5.4) [W(s: ) Lo ((pp1xva) SB 72 [Wollr2wy)-

Here we sketch the construction of w from [6]. Consider
(5.5) w(s,x)=(2rh)™ [R ei‘b(s’x’g)a(s,x, ER)wo(E/h)dE,

where a(s,x,& h) = Z;\’:o hia;(s,x,&). Here N is to be chosen large enough, a; €
Cs° ([-y>y] x Uy x R"™), with initial constraints
a0(0,%,8) = 1o ()$(E), (0,5, ) =0, j21,
and @ € C*([~to, to] x U, x B), where B is a ball containing the support of ¢, with
initial constraint ®(0, x, {) = x - & Then the equations for ¢ and a; are given by the
eikonal equation 0;® + ¥ ,; i<, §'7/0:®0;® = 0 and the transport equations
dsag +2¢(Vg®, Veag) + Ag(P)ag =0,
05aj+2g(V,®D,Vga;) + Ag(P)aj = -Ag(ajy), j>1.
By the proof of Lemma 2.7 in [6], we also know that

r(s, %) = KN (27h) ™" fR e ®CROp(s,x, & h)o (E/h) dE,

for some b € C5°([-y,y] x U, x B). This easily yields (5.3).

Next we apply Lemma 2.4 to (5.5). The existence of phase function ® on a small
interval for s is guaranteed by Hamilton-Jacoby theory. It is easy to see that the two
conditions are satisfied when s = 0. Actually, when s = 0, for each x, §(0,x) is a
parabola. Then by continuity and compactness, the two conditions are satisfied for
s < 8 for some fixed § = §(M) > 0. Thus we get

~ nil g, ntl_n
1w (s, X) | o ([=yy1xva) S B P [ Wo(E/R) [ r2@ny S B> ~2 [wo(x) |2 (vy)-

Now let us continue to prove Lemma 5.1. Denote

wi(s,x) = e_ihSAg(Xofﬁ(hD)Wo)(S)’

https://doi.org/10.4153/CJM-2018-001-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-001-4

Pointwise Convergence of Solutions to the Schrodinger Equation on Manifolds 991

which is the solution to linear equation
iho, W — h*Aw = 0,
w(0,x) = xo(x)$(hD)wo(x).
Therefore, W(s, x) = Wi(s,x) = [, e "= 8r(7,x) dr. So by (5.3), we have

(s, x) - Wl(S)x)HLP([—y,y]xUz) N hNHWO ||L2(U1)'

Thus (5.4) also holds for w; (s, x). Note ¢(hD) is a cutoff on frequencies in R". But
in order to prove the lemma, we need to show

n+l _n

(5.6) le 2 (w(R*A) )| Lo ((=poy1xan S B P 2 fllz2eans

where the cutoff y(h*A) is made on frequencies A ;. To treat this difference, we apply

[6, Corollary 2.4], which actually says that there is a pseudodifferential operator ¥ (D)

of order 0 on M, such that, in local coordinates, ¥ (&) is compactly supported and
[(1 =¥ (hD))y(h*A) f ey S Conh™ | f 2oy

holds for all h € (0,1], 0 >0, N > 0, and f € C*°(M). Combining this with (5.4) for
w; and the boundedness of e~*2 on H°(M), we then reach (5.6) by constructing
partitions of unity.

Finally, let us see how (5.6) implies Lemma 5.1. With a change of variable hs — ¢,
. _ 2(n+2) . .
since p = ==, (5.6) implies
le™ A (B> D) ) leotyhpniean S B = Flizcuy = [ Flz2cy-
It is also easy to see that we can replace f in the above L? norm by y(h*A) f so that
[ S (w (B A) )L t-yhynixm) S 1W(H*8) flizcany.-
Set Iy = [(k —=1)yh, kyh]. Then

‘ on™
le™ (B M) fl T onyenny = 2 e WD) FITs 7, any

k=1
-1

(yh) )
S Z He_lkyhAV/(th)f‘llzz(M)

k=1

-1

(yh) 5 ’
DI UV
k=1
Sh7l

MICINYI T

which proves Lemma 5.1. ]

Lemma 5.2 Let q > 2. Suppose we have the following Strichartz estimate:
[e" (w(h*8) ) |Lacoagenry S B P W (R ) flli2my-

Then for the maximal Schrédinger operator T, the following estimate holds:

IT* (W (2 8) fllacny $ WPy (R28) fliz oy + 1w (R 8) flliacan -

https://doi.org/10.4153/CJM-2018-001-4 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2018-001-4

992 X. Wang and C. Zhang
Proof We will need an inequality from [16], which states

(5.7) sup lg()] < Cp(g(@) + g7 g () Lafare) + #7118l Lafars))
tela,

for any smooth g(¢) on [a,b], y > 0,and g > 1.
Take [a,b] = [0,1] and g(t) = e**®y(h2A)f. By (5.7) and Lemma 5.1,

[T (w(R*D) flLaqay $ [W(B>A) fliaqany + 17U Sy (B> A) L a(ougean)
+ w7 (<in )y (R A) £ Lagoagean)
S [y (W) fllaqany + @0 [y(RA) f 12
+ W T (<in)y (R ) f 12
SNy (W) flloa + w1 (hF + 5 W27 F) [y (R A) f 2.

By taking u = h™2, we finish the proof of Lemma 5.2. ]

Now we are in a position to finish the proof of inequality (5.2), and hence the main
theorem. Let us combine Lemmas 5.1 and 5.2 to get

IT* (W 8) Hlwscany S B2y (2 8) fllizany + 1y (B A) fllusany-

By the Sobolev imbedding, the last term above is no larger than
[w (B> 8) f L gnin agy = B2 |y (B2 ) fl1a(any-

Note p = @ So 3 -5 = mm % = 2(2722) A simple calculation then yields

1T (p(R?8) ) |eeany S B> [y (B2 8) fll12 ),

when n = 2 and | T*(y(h*A) f)| Lo (ar) S w90 ly(h*A) £ 12(ary> when n = 3. The
case of n = 1 will be dealt with in the next section.

6 A Solution on the Flat Torus and Other Special Manifolds

We may be able to improve our result if we could get a better Strichartz estimate
than in Lemma 5.1. The argument in Section 5 comes from a trial to improve the
Strichartz estimates on general manifolds [6]. Although for general manifolds we still
get the same index and same loss, in some special manifolds we do have more precise
Strichartz type inequalities that enable us to get improved theorems.

To continue with the two-dimensional flat Torus case, we will need the following
Strichartz estimate on T". It can be inferred from Bourgain [3, Proposition 3.6].

Lemma 6.1 For n > 2, the following Strichartz estimate holds:
n 1

He_itAfHL“((O,l]x'Jl‘”) S f e crnys s> 1 7

Thus, by Lemma 5.2, we have
IT* ((h*8) )iy S B2 [w (B A) flraery + |y (B2D) f s ().
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By the Sobolev embedding

[w(R>8) fliacry S B2 1w (2 8) fllia o).

Then | T*(y(h*A) f) |acr2y § W27 |w(h*A) f| 1212y, for any s > 0. By a similar
argument as in Section 5, we finish the proof of the two-dimensional flat Torus case.

For the n = 1 case of Theorem 1.3, we first notice that all connected, compact one-
dimensional manifolds are isometric to circles. So we only need to consider T'. We
have the following Strichartz estimate [3, Proposition 2.36].

Lemma 6.2 The following Strichartz estimate holds:
[e™® fllscogey S Iflmscmys s> 0.

As above, we conclude | T* (y(h*A) f) | smy § B35 [y(h2A) £ 12 (py. Thus we
finish the proof of Theorem 1.3 for n = 1.

Now let us consider the higher dimensional flat torus T", # > 3. By applying the
stronger Strichartz estimate in the following lemma and the argument above, we can
reduce the amount of regularity requirement to some number less than 1 for flat tori
of all dimensions.

Lemma 6.3 The following Strichartz estimate holds:

2(n+1)

Hefimf||Lq((0,1]x1rn) S Iflascrnys >0, g < "

The proof of this lemma can be found in [4]. As a consequence, we have the fol-
lowing theorem.

Theorem 6.4 Let e™''* be the Schrodinger operator defined on T". Then e™ "' f
converges pointwise to f if f € H*(T"), where « > -5 and n > 3.

Finally let us consider one type of manifold whose geodesics are closed with a com-
mon period. For the geometric properties of such manifolds, see [1]. Here we only
apply the Strichartz estimate [6, Theorem 4] for the Schrédinger operator on such
manifolds,

le™™ fllzacomgemny S 1f manys s> so(n),

where s0(2) = 1/8, so(n) = n/4 —1/2 for n > 3. Note the n sphere S" is one of the
above manifolds. Furthermore, the loss so(#) has been proved to be sharp for S”.
Similarly, we have the following.

Theorem 6.5 Let M be the manifold described above. Then e™''* f converges point-
wise to f if

(i) n=2and f e H*(M?), a >5/8, or

(i) n=3and fe H*(M?), a > 3/4.
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