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Taking the consideration of two-dimensional stochastic Navier–Stokes equations with
multiplicative Lévy noises, where the noises intensities are related to the viscosity, a
large deviation principle is established by using the weak convergence method
skillfully, when the viscosity converges to 0. Due to the appearance of the jumps, it
is difficult to close the energy estimates and obtain the desired convergence. Hence,
one cannot simply use the weak convergence approach. To overcome the difficulty,
one introduces special norms for new arguments and more careful analysis.
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1. Introduction

The two-dimensional Navier–Stokes equations in D can be written as:

du(t) − νΔu(t) dt+ (u(t) · ∇)u(t) dt+ ∇p(t) dt = h(t) dt, (1.1)

whereD ⊂ R2 is an open bounded domain with smooth boundary ∂D, u, ν > 0, and
p are the fluid velocity, viscosity, and the pressure, respectively. h is a deterministic
external force. We add the incompressible condition:

∇ · u(t, x) = 0, t ∈ [0, T ], x ∈ D, (1.2)

and the boundary condition (see [8, 61]):

u(t, x) · n = 0 and curl u(t, x) = 0, x ∈ ∂D, t ∈ [0, T ], (1.3)

where n is the unit outward normal and the initial data:

u(0, x) = ς(x), ∀x ∈ D. (1.4)

Now, we can rewrite (1.1) in the following form:

du(t) + νAu(t) dt+B(u(t), u(t)) dt = h(t) dt, t ∈ [0, T ] (1.5)

with the initial data (1.4). See § 2.1 for the definition of operators A and B.
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However, the real world is more complex, and models that allow jumping, regard-
less of size, are desirable. For example, when particles are interfered or adsorbed
by other media, the phenomenon of escape, vibration or other extreme activities
can be understood as a stochastic process of jumping. This jump can be described
by Lévy noises. Therefore, it is necessary to study the mathematical problems of
stochastic Navier–Stokes equations with Lévy noises such as the large deviation
principle. Taking the random external forces into account, we consider stochastic
Navier–Stokes equations with the multiplicative Lévy noises, that is, the following
stochastic Navier–Stokes equations:⎧⎪⎨

⎪⎩
duν(t) = [−νAuν(t) −Buν(t)]dt+

√
νΥν(t, uν(t)) dW (t)

+ν
∫

Y
G(t, uν(t−), y)Ñν−1

(dy,dt),
uν(0) = ς(x),

(1.6)

with the conditions (1.2) and (1.3) for uν . Here Υν and G are measurable map-
pings and will be specified later. W (t) is a H-cylindrical Brownian motion. Nν−1

is a Poisson random measure on YT = Y × [0, T ] with intensity measure ν−1ϑT =
ν−1ϑ⊗ λT , where Y is a locally compact Polish space, ϑ is a locally finite measure
on Y, λT is the Lebesgue measure on [0, T ]. ν > 0 is the scaling parameter. Ñν−1

is the compensated Poisson random measure, i.e., for O ∈ B(Y) with ϑ(O) <∞,
Ñν−1

([0, t] ×O) = Nν−1
([0, t] ×O) − ν−1tϑ(O).

Our aim in this paper is to establish a large deviation principle (LDP) for the
stochastic 2D Navier–Stokes equations (1.6) as ν → 0 in the Freidlin–Wentzell set-
ting, that is, the exponential concentration of the distribution of the process uν(t, ·)
for a fixed t when the viscosity coefficient converges to zero. Note that Kuskin
[36] established asymptotic properties of the invariant measure to the stochastic
Navier–Stokes equations with an additive degenerate noise when the viscosity is
small.

Due to the pioneering work of Freidlin and Wentzell (cf. [30, 53]), there is a
lot of literature on the large deviation principles for small noise diffusion equa-
tions. Subsequently, many researchers relaxed the model assumptions and carried
out many extensions. For stochastic evolution equations, we refer to [23, 40, 47,
49]. Moreover, many authors considered the large deviation estimates for other
processes, for example, [1, 25, 51] for stochastic 2D Navier–Stokes equations, [28]
for stochastic 2D Bénard convection, [17] for stochastic reaction-diffusion systems,
[41] for the stochastic shell model of turbulence. We also refer to [20] for LDP of
stochastic evolution equations with non-Lipschitz coefficients and to [48] for LDP of
the stochastic tamed 3D Navier–Stokes equations and [50] for LDP of a reaction-
diffusion equation with non-Gaussian perturbations. Noted that the existence of
solutions for the stochastic Navier–Stokes equations was studied by many authors,
see, for example, [19, 29, 42, 54] and the references therein. There are not many
studies on large deviation principles for Lévy noise so far, for example, Budhiraja
et al. [15] for stochastic differential equations, Xu and Zhang [59] and Zhai and
Zhang [60] and Dong et al. [27] for the stochastic 2D Navier–Stokes equations.

Like the large deviations, many scholars studied moderate deviation principles
(MDP). For example, De Acosta [24], Chen [22] and Ledoux [39] for processes with
independent increments, Wu [55] for Markov processes, Guillin and Liptser [31]
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for stochastic diffusion processes, Wang and Zhang [57] for stochastic reaction-
diffusion equations, Wang, Zhai and Zhang [56] for the stochastic 2D Navier–Stokes
equations.

Note that all the papers mentioned above studied LDP and MDP for a fixed pos-
itive viscosity coefficient. But Bessaih and Millet [7] established a large deviation
principle for the inviscid shell model of turbulence when the viscosity coefficient
ν decays to 0, where the multiplicative noise intensity is multiplied by

√
ν. Later,

they [8] proved LDP for the stochastic 2D Navier–Stokes equations where the noise
intensity is multiplied by

√
ν when the viscosity ν converges to 0 by using a weak

convergence approach introduced by [17] for the case of the Poisson random mea-
sures (see § 2 for details) and by [16] for the case of Gaussian noises and by [14].
Currently, this approach becomes a powerful tool which has been applied by many
people to prove large deviation principles for various dynamical systems driven by
Gaussian noises, see, for example, [7, 14, 21, 28, 40, 41, 47, 48, 51]. Note that
many researchers considered a Donsker–Varadhan type large deviation principle,
see [32, 34] and the references therein.

Inspired by the above work, especially [8, 13, 17, 60], we will use the weak conver-
gence approach to establish a large deviation principle of (1.6) in a two-dimensional
bounded domain. Note that the rate function is described by the solution of the
following deterministic controlled Euler equations:

∂tu(t) = −(u(t) · ∇)u(t) −∇p(t, x) + Υ0(t, u(t))f(t)

+
∫

Y

G(t, u(t), y)(g(t, y) − 1)ϑ(dy), (1.7)

with (1.2) and (1.3). There is a bulk of literature considering the two-dimensional
Euler equations (G = 0 in (1.7)), such as [3, 4, 35, 58] and the references therein.
For getting the uniqueness of the solution to (1.7), we should work in Sobolev space
H1,q, q � 2 (see § 2.1) as [8] and require that the coefficient (Υ, G) satisfies some
additional conditions in the later such as Υ be both trace class and Radonifying
(e.g., see [45]). For more details, see § 2. Among, much studies regarding the stochas-
tic Euler equations, we refer to [5, 6, 12, 18] and the references therein. Thanks
to the appearance of the jumps when compared with [8], it was very difficult for
us to obtain the required energy estimates and the convergence of terms related to
jumps. This requires more tricks and more detailed estimates. Hence, simply using
the weak convergence approach we cannot get the desired results. To overcome the
difficulty, we apply a new argument and take a more careful analysis by introduc-
ing the norm ‖G̃(s, y)‖2

i,·, i = 0, 1 (e.g., see § 2.5) to prove the well-posedness and
establish a priori estimates of the solution to (1.7) in C([0, T ];L2) ∩ L∞(0, T ;H1,q)
for q > 2 with more regular initial data. Therefore, we can establish a LDP for
the stochastic 2D Navier–Stokes equations in L2(0, T ;H), where H is a Hilbert
interpolation space between H and V (see § 2.1), via the tightness and the
Skorohod–Jakubowski theorem. In particular, our results can be seen as a gen-
eralization of [8]. Unlike in [60], the noise intensity of our study depends on the
viscosity coefficient. The estimates of ∇u are missing when ν → 0. Hence, we can-
not directly use the method in [60]. We need to use the introduced norm to make
a careful analysis in a suitable space to overcome the obstacles.
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An outline of this paper is organized as follows. In §2, we introduce function
spaces, state some background on the Wiener process, Poisson random measure,
and recall the general criteria for a large deviation principle and list some assump-
tions. In § 3, we establish the existence and uniqueness of solution to the stochastic
controlled equation and give a priori estimates in the Hilbert spaces L2 and H1,2

with the free boundary conditions and a small viscosity ν. In § 4, we establish
the existence and uniqueness of solution for the inviscid problem in some suitable
Sobolev space. In §5, we obtain a priori estimates of the stochastic controlled equa-
tions in H1,q, which will play an important role in the following. Section 6 is devoted
to establishing a large deviation principle for the 2D stochastic Navier–Stokes equa-
tions (see theorem 6.2). In the last section, we list some classical Sobolev embedding
and some useful results.

2. Preliminaries

In this section, we will recall some Sobolev spaces and basic knowledge in stochastic
analysis including Wiener process, Poisson random measure, and a general criteria
of large deviation [17], etc. We will follow some notations in [8, 13, 17] for ease of
description.

2.1. Basic spaces

To formulate the Navier–Stokes equations in an abstract form (1.5), we introduce
the standard spaces as follows. Define the Hilbert space H by

H =
{
u(t, x) ∈ L2(D; R2) : ∇ · u(t, x) = 0 in D, u(t, x) · n = 0 on ∂D

}
.

We denote the inner product and the corresponding norm in H by (·, ·) and
| · |H , respectively. For every integer k � 0 and any p ∈ [1,∞), W k,p stands for
the completion of C∞

0 (D̄) with the norm

‖u‖W k,p =

⎛
⎝ ∑

|α|�k

∫
D

|∂αu(x)|pdx
⎞
⎠

1
p

.

To simplify the notation, ‖ · ‖p := ‖ · ‖W 0,p . We denote W−k,p∗
:= (W k,p)∗, where

p∗ = p/(p− 1) and for a multi-index α = (α1, α2), set ∂αu(x) = ∂|α|u(x)

∂x
α1
1 ∂x

α2
2
. For every

integer k � 0, let W k+r,p denote the completion of C∞
0 (D̄) with the following norm:

‖u‖p
W k+r,p = ‖u‖p

W k,p

+
∑
|α|=k

∫
D

∫
D

|∂αu(x) − ∂αu(y)|p
|x− y|2+2r

dxdy, r ∈ (0, 1), p ∈ [1,∞).

Given 0 < α < 1, let Wα,p(0, T ;H) denote the Sobolev space of all u ∈ Lp(0, T ;H)
such that ∫ T

0

∫ T

0

|u(t) − u(s)|p
|t− s|1+αp

dtds <∞.
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We define Hk,q = W k,q ∩H for any k ∈ [0,+∞) and q ∈ [2,∞) and denote the
norm by ‖ · ‖Hk,q . Let V = H1,2 (the subspace of H) be defined as

V =
{
u ∈W 1,2(D; R2) : ∇ · u = 0 in D, u · n = 0 on ∂D

}
.

The corresponding norm and the inner product on V will be defined by

‖u‖2 = ((u, u)) and ((u, v)) =
∫

D

[
u(x) · v(x) + ∇u(x) · ∇v(x)]dx, u, v ∈ V.

Denote the dual space ofH byH ′, and the dual space of V by V ′. Then V ⊂ H ⊂ V ′

with continuous dense injections. Let us denote the dual pairing between u ∈ V
and v ∈ V ′ by 〈u, v〉. Note that (u, v) = 〈u, v〉 when v ∈ H. Let b(·, ·, ·) : V × V ×
V −→ R be the trilinear operator defined as

b(u, v, z) =
∫

D

(u(x) · ∇v(x)) · z(x) dx.

There exists a bilinear operator B(·, ·) : V × V → V ′ such that 〈B(u, v), z〉 =
b(u, v, z) for all z ∈ V . By using (1.2), we obtain (see e.g. [3, 8, 38])

〈B(u, v), z〉 = −〈B(u, z), v〉 and 〈B(u, v), v〉 = 0, u, v, z ∈ V.

We also have

‖B(u, u)‖V ′ � C|u|H‖u‖, u ∈ V.

Here C is a constant.
Assuming that a(·, ·) : V × V → R is the bilinear continuous operator defined

below (see [3, 8])

a(u, v) =
∫

D

∇u · ∇v −
∫

∂D

k(r)u(r) · v(r) dr,

where k(r) is the curvature of the boundary ∂D at the point r, we infer that (see
[8, 37]) ∫

∂D

k(r)u(r) · v(r) dr � C‖u‖‖v‖,

and ∫
∂D

k(r)|u(r)|2dr � ε‖u‖2 + C(ε)|u|2H for any ε > 0. (2.1)

Let D(A) = {u ∈ H2,2 : curl u = 0 on ∂D}. Define the operator A : D(A) → H by

Au = −Δu, i.e., a(u, v) := (Au, v),

and we have (see [8])

(B(u, u), Au) = 0 for all u ∈ D(A).

For β > 0, denote the β-power of the operator A and its domain by Aβ and
D(Aβ), respectively. We also denote the dual of D(Aβ) by D(A−β). It follows from
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[12, theorem 3.1] that Hk,2 = D(Ak/2) when k < 3/4. Set H = H1/2,2 and notice
that H = D(A1/4) and V = D(A1/2). Then, V ⊂ H ⊂ H. Moreover, there exists a
constant C > 0 such that

‖u‖2
H � C|u|H‖u‖, for all u ∈ V.

Here we follow some notations in [3, 8, 38]. We deduce from H ⊂ L4(D) and
〈B(u, v), w〉 = −〈B(u,w), v〉 that

|〈B(u, v), w〉| � C‖u‖H‖v‖H‖w‖. (2.2)

Hence, B can be extended as a bilinear operator from H×H −→ V ′.

2.2. Wiener process

Assume that Q is a linear positive operator in a Hilbert space H, which is trace
class, and hence compact. Let H0 = Q

1
2H. Then, H0 is a Hilbert space with the

the inner product

(φ, ψ)0 = (Q− 1
2φ,Q− 1

2ψ), ∀φ, ψ ∈ H0,

and the induced norm | · |0 =
√

(·, ·)0. Clearly, the embedding of H0 in H is
Hilbert–Schmidt and hence compact, since Q is a trace class operator. Let
LQ := LQ(H0,H) be the space of linear operators S : H0 �→ H such that SQ

1
2

is a Hilbert–Schmidt operator from H to H. Denote the norm on LQ(H0,H) by
|S|2LQ

= tr(SQS∗), where S∗ is the adjoint operator of S. Then, for any orthonormal
basis {ψk}k�1 ∈ H, we have

|S|2LQ
= tr([SQ1/2][SQ1/2]∗) =

∑
k�1

|SQ1/2ψk|2H =
∑
k�1

|[SQ1/2]∗ψk|2H ,

Let (Ω,F , (Ft),P) be a filtered probability space. We suppose that (W (t), t � 0)
is a Wiener process taking values in H and with covariance operator Q. Let {ek}k�1

be an orthonormal basis in H consisting of eigenelements of Q, with Qek = λkek.
Then, we have

W (t) =
∑
k�1

√
λkβk(t)ek,

where {βk}k�1 is a sequence of independent standard one-dimensional Brownian
motions. For more details, we refer to [23].

2.3. Poisson random measure

Let Y denote a locally compact Polish space and let MFC(Y) denote the space of
all measures ϑ on (Y,B(Y)) such that ϑ(K) <∞ for every compact K ⊂ Y. Endow
MFC(Y) with the usual vague topology. This topology can be metrized such that
MFC(Y) is a Polish space (see [17]). Fix T ∈ (0,∞) and set YT = Y × [0, T ]. Fix
a measure ϑ ∈ MFC(Y), and let ϑT = ϑ⊗ λT , where λT is Lebesgue measure on
[0, T ].
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We know that a Poisson random measure π on YT with intensity measure ϑT is a
MFC(YT )-valued random variable such that for each B ∈ B(YT ) with ϑT (B) <∞,
π(B) is Poisson distributed with mean ϑT (B) and for disjoint B1, . . . , Bk ∈ B(YT ),
π(B1), . . . , π(Bk) are mutually independent random variables. Denote the measure
induced by π on (MFC(YT ),B(MFC(YT ))) by P. Then letting M = MFC(YT ), P

is the unique probability measure on (M,B(M)) under which the canonical map,
N : M → M, N(m) .= m, is a Poisson random measure with intensity measure ϑT .
For θ > 0, Pθ will denote a probability measure on (M,B(M)) under which N is a
Poisson random measure with intensity θϑT . E and Eθ denote the corresponding
expectation operators, respectively.

Set X = Y × [0,∞) and XT = X × [0, T ]. Let M̄ = MFC(XT ) and let P̄ be the
unique probability measure on (M̄,B(M̄)) under which the canonical map, N̄ :
M̄ → M̄, N̄(m) .= m, is a Poisson random measure with intensity measure ϑ̄T = ϑ⊗
λ∞ ⊗ λT , where λ∞ is Lebesgue measure on [0,∞). The corresponding expectation
operator will be denoted by Ē. Let Ft

.= σ{N̄((0, s] ×O) : 0 � s � t, O ∈ B(X)} be
the σ -algebra generated by N̄ , and let F̄t denote the completion under P̄. We
denote the predictable σ-field on [0, T ] × M̄ with the filtration {F̄t : 0 � t � T} on
(M̄,B(M̄)) by P̄. Let Ā+ [resp. Ā] be the class of all (B(Y) ⊗ P̄)/B[0,∞) [resp.
(B(Y) ⊗ P̄)/B(R)]-measurable maps from YT × M̄ to [0,∞) [resp. R]. For ϕ ∈ Ā+,
define a counting process Nϕ on YT by (see [17])

Nϕ((0, t] × U) =
∫

U×[0,∞)×[0,t]

1[0,ϕ(x,s)](r)N̄(dxdr ds), t ∈ [0, T ], U ∈ B(Y).

Here Nϕ can be regarded as a controlled random measure, where ϕ selects the
intensity for the points at position x and time s in a possibly random but non-
anticipating way. We denote Nϕ = Nθ when ϕ(x, s, m̄) ≡ θ ∈ (0,∞). Noted that
the distribution of Nθ with respect to P̄ is the same as that of N to Pθ.

Set W = C([0, T ],R∞), V = W × M and V̄ = W × M̄. Then let the mapping
NV : V → M be defined by NV(ω,m) = m for (ω,m) ∈ V, and let βV = (βV

i )∞i=1

by βV
i (ω,m) = ωi for (ω,m) ∈ V. The maps N̄ V̄ : V̄ → M̄ and βV̄ = (βV̄

i )∞i=1 are
defined analogously. Define the σ-filtration GV

t := σ{NV((0, s] ×O), βV
i (s) : 0 � s �

t, O ∈ B(Y), i � 1}. For every θ > 0, PV

θ denotes the unique probability measure on
(V,B(V)) such that:

(a) (βV
i )∞i=1 is an independent and identically distributed family of standard

Brownian motions,

(b) NV is a Poisson random measure with intensity measure θϑT .

(c) (βV
i )∞i=1 and NV are independent.

Analogously, we define (P̄V̄

θ , ḠV̄
t ) and denote P̄V̄

θ=1 by P̄V̄. F̄ V̄
t denotes the P̄V̄-

completion of ḠV̄
t and P̄ V̄ denotes the predictable σ-field on [0, T ] × V̄ with the fil-

tration F̄ V̄
t on (V̄,B(V̄)). Let Ā be the class of all (P̄ V̄ ⊗ B(Y))/B[0,∞)-measurable

maps ϕ : YT × V̄ → [0,∞). Define � : [0,∞) → [0,∞) by

�(r) = r log r − r + 1, r ∈ [0,∞).
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For any ϕ ∈ Ā and t ∈ [0, T ], the quantity

Lt(ϕ) =
∫

Y×[0,t]

�(ϕ(x, s, ω))ϑT (dxds)

is well defined as a [0,∞]-valued random variable.
Define

L2 :=

{
ψ : ψ is P̄ V̄/B(R∞) measurable and

∫ T

0

|ψ(s)|20ds <∞, P̄V̄ − a.s.

}
.

Set U = L2 × Ā. Define L̃T (ψ) := 1
2

∫ T

0
|ψ(s)|20ds for ψ ∈ L2 and L̄T (φ) :=

L̃T (ψ) + LT (ϕ) for φ = (ψ,ϕ) ∈ U .
We first recall some classical definitions. By convention the infimum over an

empty set is +∞. Let E be a Polish space with the Borel σ-field B(E).

Definition 2.1 (Rate function). A function I : E → [0,∞] is called a rate function
on E, if for each M <∞, the level set {Ψ ∈ E : I(Ψ) � M} is a compact subset of
E. For O ∈ B(E), we define I(O) := infΨ∈O I(Ψ).

Definition 2.2. Let I be a rate function on E. The random family {uν}ν>0 is
said to satisfy a large deviation principle on E with the good rate function I if the
following conditions hold:

(1) Large deviation upper bound. For each closed subset F of E:

lim sup
ν→0

ν log P(uν ∈ F ) � −I(F ).

(2) Large deviation lower bound. For each open subset G of E:

lim inf
ν→0

ν log P(uν ∈ G) � −I(G).

2.4. A general criteria

In this subsection, we recall a general criteria for a large deviation principle estab-
lished in [17]. Let {Gν}ν>0 be a family of measurable maps from V̄ to U, where V̄

is introduced in § 2.3 and U is some Polish space. We present below a sufficient con-
dition for a large deviation principle to hold for the family Zν = Gν(

√
νW, νNν−1

)
as ν → 0.

Define

SM = {g : YT → [0,∞) : LT (g) � M},
S̃M = {f : L2([0, T ],H0) : L̃T (f) � M}.

A function g ∈ SM can be identified with a measure ϑg
T ∈ M, defined by

ϑg
T (O) =

∫
O

g(s, x)ϑT (ds,dx), O ∈ B(YT ).

This identification induces a topology on SM under which SM is a compact
space, see the appendix of [13]. Throughout we use this topology on SM . Let
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S̄M = SM × S̃M . Define S = ∪M�1S̄
M and let

UM = {φ = (ψ,ϕ) ∈ U : φ(ω) ∈ S̄M , P̄V̄ a.e. ω},
where U is introduced in subsection 2.3.

The following condition will be sufficient for establishing a LDP for a family
{Zν}ν>0 defined by Zν = Gν(

√
νW, νNν−1

).

Condition 2.3. There exists a measurable map G0 : V̄ → U such that the following
hold.

(1) For ∀M ∈ N, let (fn, gn), (f, g) ∈ S̄M be such that (fn, gn) → (f, g) as
n→ ∞. Then

G0

(∫ ·

0

fn(s) ds, ϑgn

T

)
→ G0

(∫ ·

0

f(s) ds, ϑg
T

)
in U.

(2) For ∀M ∈ N, let φν = (ψν , ϕν), φ = (ψ,ϕ) ∈ UM be such that φν converges
in distribution to φ as ν → 0. Then

Gν

(√
νW +

∫ ·

0

ψν(s) ds, νNν−1ϕν

)
→ G0

(∫ ·

0

ψ(s) ds, ϑϕ
T

)
.

For φ ∈ U, define Sφ = {(f, g) ∈ S : φ = G0(
∫ ·
0
f(s)ds, ϑg

T )}. Let I : U → [0,∞)
be defined by

I(φ) = inf
(f,g)∈Sφ

{L̄T ((f, g))}, φ ∈ U. (2.3)

By convention, I(φ) = ∞ if Sφ = ∅. Let {Kn ⊂ Y, n = 1, 2, . . .} be an increasing
sequence of compact sets such that ∪∞

n=1Kn = Y. For each n, set

Āb,n = {ϕ ∈ Ā : for all (t, ω) ∈ [0, T ] × M̄, n � ϕ(t, x, ω) � 1/n

if x ∈ Kn and ϕ(t, x, ω) = 1 if x ∈ Kc
n},

and set Āb = ∪∞
n=1Āb,n. we define ŨM = UM ∩ {(ψ, φ) : φ ∈ Āb}.

The following criteria was established in [17] (see also [13, 60]).

Theorem 2.4. For ν > 0, let Zν be defined by Zν = Gν(
√
νW, νNν−1

) and suppose
that condition 2.3 or condition 2.3 for replacing UM with ŨM holds. Therefore, I
defined as in (2.3) is a rate function on U and the family {Zν}ν>0 satisfies a large
deviation principle with the rate function I.

2.5. Assumptions

Given a viscosity coefficient ν > 0, we study the following two-dimensional
stochastic Navier–Stokes equations:

duν(t) = −[
νAuν(t) +B(uν(t), uν(t))

]
dt+

√
νΥν(t, uν(t)) dW (t)

+ ν

∫
Y

G(t, uν(t−), y)Ñν−1
(dy,dt),

(2.4)
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where Υν : [0, T ] × V → LQ(H0,H) and G : [0, T ] × V × Y → H are given measur-
able maps. We assume that Υν and G satisfy the following growth and Lipschitz
conditions:

Condition 2.5. For Υν ∈ C([0, T ]×V ;LQ(H0,H)), G ∈ C([0, T ] × V × Lp(Y);H),
there exists K(·) ∈ L1([0, T ],R+) such that for every t ∈ [0, T ], ν > 0 and u, v ∈ V ,
it holds

(1) |Υν(t, u)|2LQ
� K(t)(1 + |u|2H), |Υν(t, u) − Υν(t, v)|2LQ

� K(t)|u− v|2H ;
(2)

∫
Y
|G(t, u, y)|pHϑ(dy) � K(t)(1 + |u|pH),

∫
Y
|G(t, u, y) −G(t, v, y)|pHϑ(dy) �

K(t)|u− v|pH for p � 2.

Let ν > 0, � := (f, g) ∈ ŨM . We consider the following stochastic equations:

duν
�(t) = −[

νAuν
�(t) +B

(
uν

�(t), uν
�(t)

)]
dt+

√
νΥν(t, uν

�(t)) dW (t)

+ Υ̃ν(t, uν
�(t))f(t) dt+ ν

∫
Y

G(t, uν
�(t−), y)Ñgν−1

(dy,dt)

+
∫

Y

G̃(t, uν
�(t), y)(g(t, y) − 1)ϑ(dy) dt (2.5)

with the initial data uν
�
(0) = ς ∈ H. Assume that ς is deterministic. In order to

define the stochastic controlled equations (2.5), we introduce a family of intensity
coefficients (Υ̃ν , G̃) for ν � 0 which act on a random element � := (f, g) ∈ ŨM . For
any ν � 0, we assume that the coefficient (Υ̃ν , G̃) satisfies the following conditions.

Condition 2.6. For Υ̃ν ∈ C([0, T ] × V ;L(H0,H)) and G̃ ∈ C([0, T ] × V × Lp(Y);
H), there exists K(·) ∈ L1([0, T ],R+) such that for every t ∈ [0, T ], ν � 0 and
u, v ∈ V :

(1) |Υ̃ν(t, u)|L(H0,H) � K(t)(1 + |u|H), |Υ̃ν(t, u) − Υ̃ν(t, v)|L(H0,H) � K(t)|u−
v|H ;

(2)
∫

Y
|G̃(t, u, y)|pHϑ(dy) � K(t)(1 + |u|pH),

∫
Y
|G̃(t, u, y) − G̃(t, v, y)|pHϑ(dy) �

K(t)|u− v|pH for p � 2.

Note that when Υν , Υ̃ν have Nemytski form (e.g., see [12]) and
G(t, u(t), y), G̃(t, u(t), y) = κ(t)u(t) + ι(t)Γ(y), where κ(t), ι(t),Γ(y) meet certain
assumptions, and (Υν , G), (Υ̃ν , G̃) satisfy conditions 2.5 and 2.6.

We define

‖G̃(t, y)‖0,H = sup
u∈H

|G̃(t, u, y)|H
1 + |u|H , (t, y) ∈ [0, T ] × Y,

‖G̃(t, y)‖1,H = sup
u,v∈H,u�=v

|G̃(t, u, y) − G̃(t, v, y)|H
|u− v|H , (t, y) ∈ [0, T ] × Y.

Similarly, we can define ‖G̃(t, y)‖0,Lq , ‖G̃(t, y)‖1,Lq , ‖G̃(t, y)‖0,V and ‖G̃(t, y)‖1,V .
In the later proof, we need the following lemmas. Here, we omit the proof. For more
details, we refer to [13, 60] and the references therein.
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Condition 2.7. For i = 0, 1, there exists δi
1 > 0 such that for all E ∈ B([0, T ] × Y)

satisfying ϑT (E) <∞, it holds that∫
E

eδi
1‖G̃(s,y)‖2

i,·ϑ(dy) ds <∞.

Here ‖G̃(s, y)‖2
i,· = ‖G̃(s, y)‖2

i,H or ‖G̃(s, y)‖2
i,V or ‖G̃(s, y)‖2

i,Lq .

Remark 2.8. Suppose condition 2.7 holds, for every δi
2 > 0 and for all E ∈

B([0, T ] × Y) satisfying ϑT (E) <∞, then∫
E

eδi
2‖G̃(s,y)‖i,·ϑ(dy) ds <∞.

Lemma 2.9. Suppose that conditions 2.6 and 2.7 hold.
(1) For i = 0, 1 and every M ∈ N, it holds that

sup
g∈SM

∫
YT

‖G̃(s, y)‖2
i,·(g(s, y) + 1)ϑ(dy) ds <∞,

sup
g∈SM

∫
YT

‖G̃(s, y)‖i,·|g(s, y) − 1|ϑ(dy) ds <∞;

(2) For every η̃ > 0, there exists δ > 0 such that for any A ⊂ [0, T ] satisfying
λT (A) < δ

sup
g∈SM

∫
A

∫
Y

‖G̃(s, y)‖i,·|g(s, y) − 1|ϑ(dy) ds � η̃.

Lemma 2.10. Let h : [0, T ] × Y → R be a measurable function such that∫
YT

|h(s, y)|2ϑ(dy) ds <∞,

and for all δ ∈ (0,∞) and E ∈ B([0, T ] × Y) satisfying ϑT (E) <∞,∫
E

exp(δ|h(s, y)|)ϑ(dy) ds <∞.

(1) Fix M ∈ N and let gn, g ∈ SM be such that gn → g as n→ ∞. Then we have

lim
n→∞

∫
YT

h(s, y)(gn(s, y) − 1)ϑ(dy) ds =
∫

YT

h(s, y)(g(s, y) − 1)ϑ(dy) ds;

(2) Fix M ∈ N and given ε > 0, there exists a compact set K ⊂ Y such that

sup
g∈SM

∫ T

0

∫
Kc

|h(s, y)||g(s, y) − 1|ϑ(dy) ds � ε;

(3) For every compact K ⊂ Y, then we have

lim
M̃→∞

sup
g∈SM

∫ T

0

∫
K

|h(s, y)|1{h�M̃}g(s, y)ϑ(dy) ds = 0.
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For fixed ν > 0, well-posedness and a priori estimates of the solution to the
equations (2.5) in D([0, T ];H) ∩ L2(0, T ;V ) are obtained when u = 0 on ∂D (see
e.g. [11, 60]). For some small ν0, we will show that the solutions are uniform
bounded in ν ∈ (0, ν0] under free boundary conditions.

Next, we introduce other useful conditions, which we will use later in this paper.

Condition 2.11. For every ν > 0, Υν ∈ C([0, T ] ×D(A);LQ(H0, V )) and G ∈
C([0, T ] ×D(A) × Lp(Y);H), there exists K(·) ∈ L1([0, T ],R+) such that for every
t ∈ [0, T ] and u, v ∈ D(A), it holds

(1) | curl Υν(u, t)|2LQ
� K(t)(1 + ‖u‖2

V ), |A1/2Υν(t, u) −A1/2Υν(t, v)|2LQ
�

K(t)‖u− v‖2
V ;

(2) for p � 2,
∫

Y
| curl G(t, u, y)|pHϑ(dy) � K(t)(1 + | curl u|pH),∫

Y
|A1/2G(t, u, y) −A1/2G(t, v, y)|2Hϑ(dy) � K(t)|u− v|2V .

Condition 2.12. For every ν � 0, Υ̃ν ∈ C([0, T ] ×D(A);L(H0, V )) and G̃ ∈
C([0, T ] ×D(A) × Lp(Y);H), there exists K(·) ∈ L1([0, T ],R+) such that for every
t ∈ [0, T ] and u, v ∈ D(A), it holds

(1) |curl Υ̃ν(t, u)|L(H0,H) �
√
K(t)(1 + ‖u‖V ), |A1/2Υ̃ν(t, u) −A1/2Υ̃ν

(t, v)|L(H0,H) �
√
K(t)‖u− v‖V .

(2) |curl G̃(t, u, y)|H � C|G̃(t, curl u, y)|H and |A1/2G̃(t, u, y) −A1/2G̃
(t, v, y)|H � C|G̃(t, A1/2u, y) − G̃(t, A1/2v, y)|H .

Again, note that when Υν , Υ̃ν have Nemytski form (see [12]), G(t, u(t), y),
G̃(t, u(t), y) = κ(t)u(t) + ι(t)Γ(y) where κ(t), ι(t),Γ(y) meet certain assumptions,
and (Υν , G), (Υ̃ν , G̃) satisfy conditions 2.11 and 2.12.

3. Existence and uniqueness of the solution to equations (2.5)

In this section, we want to prove the existence and uniqueness of solutions to the
stochastic equations (2.5) with free boundary conditions (1.3) under some additional
assumptions.

Let (Ω := V̄,F := B(V̄), {Ft}t�0 := {F̄ V̄
t }t�0,P := P̄V̄,W,N) be a fixed stochas-

tic basis. First, we recall the definition of stochastic strong analytically weak
solutions (e.g. see [46]). If an Ft-progressively measurable stochastic process uν

�
(t, ω)

belongs to X P-a.s., and for all v ∈ D(A) and all t ∈ [0, T ], it holds that P-a.s.

(uν
�(t), v) − (ς, v) +

∫ t

0

[
ν(uν

�(s), Av) + 〈B(uν
�(s), v), uν

�(s)〉]ds
=

√
ν

∫ t

0

(Υν(s, uν
�(s)) dW (s), v) +

∫ t

0

(Υ̃ν(s, uν
�(s))f(s), v)ds

+ ν

∫ t

0

∫
Y

(G(s, uν
�(s−), y)Ñgν−1

(dy,ds), v)

+
∫ t

0

∫
Y

(G̃(s, uν
�(s), y)(g(s, y) − 1), v)ϑ(dy) ds,
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then uν
�
(t, ω) is called a stochastic strong analytically weak solution in X ⊂

D([0, T ];H) ∩ L2(0, T ;V ) of (2.5) with deterministic initial data ς satisfying
|ς|H <∞.

Proposition 3.1. Assume that (Υν , G) and (Υ̃ν , G̃) satisfy conditions 2.5, 2.6 and
2.7 with K(t) = C, respectively and E|ς|2p

H <∞ for some p � 2. Then, for ν0 > 0
and for any M > 0, there exists a positive constant C that depends on M, T and ν0
such that for any ν ∈ (0, ν0] and any � := (f, g) ∈ ŨM , (2.5) has a unique stochastic
strong analytically weak solution in D([0, T ];H) ∩ L2(0, T ;V ). Moveover, we have

sup
0<ν�ν0

sup
�∈ŨM

E

(
sup

0�s�T
|uν

�(s)|2p
H

)
� C(p,M, T, ν0)

(
1 + E|ς|2p

H

)
, (3.1)

and

sup
0<ν�ν0

sup
�∈ŨM

ν

∫ T

0

E
(‖uν

�(s)‖2 + ‖uν
�(s)‖4

H
)
ds � C(M,T, ν0)

(
1 + E|ς|4H

)
. (3.2)

Proof. First, by applying the Fadeo-Galerkin approximation, we can establish the
existence of approximation solution uν

�,n (for more details, see [11, 21, 28]). In order
to obtain the existence of solution to (2.5), we need to take n tend to infinity. And
then we should give a priori estimates of uν

�,n uniformly in n � 1 and in ν ∈ (0, ν0]
for some ν0 > 0 under free boundary conditions as [21]. Next, we will give the energy
estimates of uν

�,n. To simplify symbols, we replace the approximation solution uν
�,n

by uν
�
.

Let ν > 0, � = (f, g) ∈ ŨM . Define τN = inf{t � 0, |uν
�
(t)|H � N} ∧ T for every

N > 0. By using Itô’s formula to the function |uν
�
(t ∧ τN )|2p

H , we obtain from (2.5)

|uν
�(t ∧ τN )|2p

H + 2pν
∫ t∧τN

0

|uν
�(s)|2p−2

H ‖uν
�(s)‖2ds � |uν

�(0)|2p
H +

8∑
i=1

Ii(t), (3.3)

where

I1(t) = 2p
√
ν

∫ t∧τN

0

|uν
�(s)|2p−2

H (Υν(s, uν
�(s)), uν

�(s)) dW (s),

I2(t) =
∫ t∧τN

0

∫
Y

(
|uν

�(s) + νG(s, uν
�(s), y)|2p

H − |uν
�(s)|2p

H

)
Ñν−1

(dy,ds),

I3(t) = 2pν
∫ t∧τN

0

|uν
�(s)|2p−2

H

∫
∂D

k(r)|uν
�(r)|2Hdrds,

I4(t) = 2p
∫ t∧τN

0

|uν
�(s)|2p−2

H 〈B(uν
�(s), uν

�(s)), uν
�(s)〉ds,

I5(t) = 2p
∫ t∧τN

0

|uν
�(s)|2p−2

H

(
Υ̃ν(s, uν

�(s))f(s), uν
�(s)

)
ds,

I6(t) = νp(2p− 1)
∫ t∧τN

0

|uν
�(s)|2p−2

H |Υν(s, uν
�(s))|2LQ

ds,
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I7(t) =
∫ t∧τN

0

∫
Y

(
|uν

�(s) + νG(s, uν
�(s), y)|2p

H − |uν
�(s)|2p

H

− νp|uν
�(s)|2p−2(uν

�(s), G(s, uν
�(s), y))H

)
ϑ(dy) ds,

I8(t) = 2p
∫ t∧τN

0

∫
Y

|uν
�(s)|2p−2

H (G̃(s, uν
�(s), y)(g(s, y) − 1), uν

�(s))ϑ(dy) ds.

Next, we estimate the terms I1 − I8 one by one. For the term I1, the
Burkholder–Davis–Gundy inequality, condition 2.5, Cauchy–Schwarz’s and Young’s
inequalities imply

E

(
sup

s∈[0,t∧τN ]

I1(s)

)
� C

√
νpE

(∫ t∧τN

0

|uν
�(s)|4p−4

H (Υν(s, uν
�(s)), uν

�(s))2ds
)1/2

� C
√
νpE

(∫ t∧τN

0

|uν
�(s)|4p−4

H |Υν(s, uν
�(s))|2H |uν

�(s)|2Hds
)1/2

� C
√
νpE

(∫ t∧τN

0

|uν
�(s)|4p−2

H K(s)(1 + |uν
�(s)|2H) ds

)1/2

� C
√
νpE

(∫ t∧τN

0

K(s)(1 + |uν
�(s)|4p

H ) ds
)1/2

� 1
4

E

(
sup

s∈[0,t∧τN ]

|uν
�(s)|2p

H

)

+ Cνp2E

(∫ t∧τN

0

K(s)(1 + |uν
�(s)|2p

H ) ds
)

+ C.

From the Taylor formula, it follows that for every p � 2 there exists a positive
constant Cp > 0 such that for all x, h ∈ H

∣∣∣|x+ h|pH − |x|pH − p|x|(p−2)
H (x, h)H

∣∣∣ � Cp

(
|x|(p−2)

H + |h|(p−2)
H

)
|h|2H . (3.4)

Moreover, we arrive at

||x+ h|pH − |x|pH | � p

2
|x|pH +

(
Cp +

p

2

)
|x|(p−2)

H |h|2H + Cp|h|pH .

By using the Schwarz inequality, we obtain for all x, h ∈ H

(|x+ h|pH − |x|pH)2 � 2
[
p2|x|2p−2

H |h|2H + c2p

(
|x|p−2

H + |h|p−2
H

)2

|h|4H
]

� 2p2|x|2p−2
H |h|2H + 4c2p|x|2p−4

H |h|4H + 4C2
p |h|2p

H .

(3.5)
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For the term I2(t), by using the Burkholder–Davis–Gundy inequality, (3.5),
condition 2.5, Hölder’s and Young’s inequalities, we deduce that

E

(
sup

s∈[0,t∧τN ]

I2(s)

)

� E

[∫ t∧τN

0

∫
Y

(
|uν

�(s) + νG(s, uν
�(s), y)|2p

H − |uν
�(s)|2p

H

)2

ϑ(dy) ds
] 1

2

� C(ν)E
(∫ t∧τN

0

∫
Y

|uν
�(s)|4p−2

H |G(s, uν
�(s), y)|2H

+ |uν
�(s)|4p−4

H |G(s, uν
�(s), y)|4H + |G(s, uν

�(s), y)|4p
H

) 1
2

� C(ν)E
(∫ t∧τN

0

K(s)|uν
�(s)|4p

H ds
) 1

2

+ C(ν)E
(∫ t∧τN

0

K(s) ds
) 1

2

� 1
4

E

(
sup

s∈[0,t∧τN ]

|uν
�(s)|2p

H

)
+ C(ν)E

∫ t∧τN

0

K(s)|uν
�(s)|2p

H ds+ C(ν).

Using (2.1) and Young’s inequality, for any ε > 0, we bound the term I3(t) by

EI3(t) � 2νpεE
∫ t∧τN

0

|uν
�(s)|2p−2

H ‖uν
�(s)‖2ds+ 2νpC(ε)E

∫ t∧τN

0

|uν
�(s)|2p

H ds.

For the term I4(t), using (1.2) implies that EI4(t) = 0 for any t ∈ [0, T ]. For the term
I5(t), since (f, g) ∈ ŨM , the growth condition 2.6, Cauchy–Schwarz’s and Hölder’s
inequalities yield that

EI5(t) � 2pE
∫ t∧τN

0

|uν
�(s)|2p−2

H |Υ̃ν(s, uν
�(s))|L(H0,H)|uν

�(s)|H |f(s)|0ds

� 2pE
∫ t∧τN

0

|uν
�(s)|2p−2

H

√
K(t)(1 + |uν

�(s)|2H)|f(s)|0ds

� 2pE
∫ t∧τN

0

(1 + |uν
�(s)|2p

H )(K(t) + |f(s)|20) ds

� 2pE
∫ t∧τN

0

(K(s) + |f(s)|20)|uν
�(s)|2p

H ds+ 2pE
∫ t∧τN

0

(K(s) + |f(s)|20) ds.

For the term I6, using the growth condition 2.5, we get

EI6(t) � νp(2p− 1)E
∫ t∧τN

0

K(s) ds

+ νp(2p− 1)E
∫ t∧τN

0

K(s)|uν
�(s)|2p

H ds, for ν ∈ (0, ν0].
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For the term I7(t), by using (3.4) and condition 2.5, we have

EI7(t) � CE

[∫ t∧τN

0

∫
Y

(
|uν

�(s)|2p−2
H + |νG(s, uν

�(s), y)|2p−2
H

)
×|νG(s, uν

�(s), y)|2Hϑ(dy) ds
]

� C(ν)E
(∫ t∧τN

0

|uν
�(s)|2p−2

H

∫
Y

|G(s, uν
�(s), y)|2Hϑ(dy) ds

+
∫ t∧τN

0

∫
Y

|G(s, uν
�(s), y)|2p

H ϑ(dy) ds
)

� C(ν)E
∫ t∧τN

0

K(s)|uν
�(s)|2p

H ds+ C(ν)E
∫ t∧τN

0

K(s) ds.

For the term I8(t), by using Hölder’s and Young’s inequalities, one has

E

∫ t∧τN

0

∫
Y

|uν
�(s)|2p−2

H (G̃(s, uν
�(s), y)(g(s, y) − 1), uν

�(s))ϑ(dy) ds

� E

∫ t∧τN

0

∫
Y

|uν
�(s)|2p−2

H |G̃(s, uν
�(s), y)|H |g(s, y) − 1||uν

�(s)|Hϑ(dy) ds

� E

∫ t∧τN

0

∫
Y

|uν
�(s)|2p−2

H

|G̃(s, uν
�
(s), y)|H

1 + |uν
�
(s)|H |g(s, y) − 1|(1 + |uν

�(s)|2H)ϑ(dy) ds

� E

∫ t∧τN

0

∫
Y

|G̃(s, uν
�
(s), y)|H

1 + |uν
�
(s)|H |g(s, y) − 1|(|uν

�(s)|2p−2
H + |uν

�(s)|2p
H )ϑ(dy) ds

� CE

∫ t∧τN

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ CE

∫ t∧τN

0

|uν
�(s)|2p

H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds.

Thus, for any t ∈ [0, T ], ε ∈ (0, 1), (3.3) and the estimates of I1 − I8 imply that

E|uν
�(t ∧ τN )|2p

H + 2νp
(
1 − ε

)
E

∫ t∧τN

0

|uν
�(s)|2p−2

H ‖uν
�(s)‖2ds

� C(ν)E
∫ t∧τN

0

(K(s) + |f(s)|20)|uν
�(s)|2p

H ds+ C(ν)E
∫ t∧τN

0

(K(s) + |f(s)|20) ds

+ CE

∫ t∧τN

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds+ C + E|ς|2p
H

+ CE

∫ t∧τN

0

|uν
�(s)|2p

H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds.

Applying Gronwall’s inequality, condition 2.7 and lemma 2.9, we obtain

E|uν
�(t ∧ τN )|2p

H + 2νp
(
1 − ε

)
E

∫ t∧τN

0

|uν
�(s)|2p−2

H ‖uν
�(s)‖2ds � C

(
1 + E|ς|2p

H

)
.
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Due to the estimates of the right-hand side of (3.3) does not depend on N ,
taking N → ∞, we can infer that τN → T P-a.s. Hence, there exists a constant
C := C(E|ς|2p

H , ν0,M, T, p) such that

sup
n

E

(
sup

0�t�T
|uν

�,n(t)|2p
H + ν

∫ T

0

[‖uν
�,n(t)‖4

H + ‖uν
�,n(s)‖2

]
ds

)
� C,

for any n, ν ∈ (0, ν0] and (f, g) ∈ ŨM . Letting n→ ∞ and using the classical argu-
ment as [11], we obtain the existence of solution to (2.5). Taking n→ ∞ and
combining the above estimates and the weakly lower semi-continuity of the norm,
we can get (3.1) and (3.2).

Next, we begin to prove the uniqueness. When condition 2.5 with K(·) =
C holds, we know that equations (2.4) has a unique strong solution
uν ∈ D([0, T ];H) ∩ L2(0, T ;V ) by [11] for any T > 0. Set φν = (ψν , ϕν) ∈
ŨM and ϑν = 1

ϕν
. We conclude from lemma 2.3 in [17] that Eν

t (ϑν) :=
exp{∫

[0,t]×Y×[0,ν−1]
log(ϑν(s, x))N̄(dsdxdr) +

∫
[0,t]×Y×[0,ν−1]

(−ϑν(s, x) + 1)ϑ̄T

(dsdxdr)}, Ẽν
t (ψν) := exp{ 1

ν

∫ t

0
ψν(s)dβ(s) − 1

2ν

∫ t

0
‖ψν(s)‖2ds} are {F̄ V̄

t }-marting-
ales and Qν

t (G) =
∫

G
Ēν

t (ψν , ϑν)dP̄V̄ defines a probability measure on V̄, where
G ∈ B(V̄) and Qν

t (G) = Ẽν
t (ψν)Eν

t (ϑν). Then, we get the uniqueness from the
fact that (2.4) has a unique stochastic analytically strong solution. Therefore, we
complete the proof of proposition 3.1. �

Proposition 3.2. Suppose the assumptions of proposition 3.1 are satisfied for p = 1
or some p ∈ [2,∞). Furthermore, we assume that E‖ς‖2p <∞, and (Υν , G) and
(Υ̃ν , G̃) satisfy conditions 2.7, 2.11 and 2.12, respectively. Hence, for any fixed M >
0, � := (f, g) ∈ ŨM , and for ν ∈ (0, ν0], there is a positive constant C(p,M, T ) such
that the solution uν

�
of (2.5) satisfies:

E

(
sup

0�t�T
‖uν

�(t)‖2p + ν

∫ T

0

|Auν
�(s)|2Hds

)
� C(p,M, T )

(
1 + E‖ς‖2p

)
. (3.6)

Proof. Denote ξν
�

= curl uν
�
. We know that uν

�
is a solution of the following elliptic

problem (for details, see [6] and the references therein):

{
−Δuν

�
= ∇⊥ξν

�
in D,

uν
�
· n = ξν

�
= 0 on ∂D,

(3.7)

where ∇⊥ = (∂2,−∂1). By (3.7), we have

−(Δuν
�,Δu

ν
�) = (∇⊥ξν

� , Δuν
�) = −(∇⊥ξν

� , ∇⊥ξν
�).

Then, by direct calculations, we can get

|Δuν
�|2H = |∇⊥ξν

� |2H = ‖∂2ξ
ν
�‖2

L2(D) + ‖∂1ξ
ν
�‖2

L2(D) = |∇ξν
� |2H .
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In order to prove (3.6), by using (A.3), we only need to prove that there exists a
constant C(M,T ) := C such that for any ν ∈ (0, ν0] and � = (f, g) ∈ ŨM ,

E

(
sup

0�t�T
|ξν

�(t)|2p
H + ν

∫ T

0

|∇ξν
�(s)|2Hds

)
� C(1 + E| curl ς|2p

H ). (3.8)

Let τ̄N = inf{t � 0 : |ξν
�
(t)|H � N} ∧ T for fixed N > 0. Applying the curl operator

to (2.5), we obtain ξν
�
(0) = curl ς and

dξν
�(t) = νAξν

�(t) dt+ curlB(uν
�(t), uν

�(t)) dt

+
√
ν curl Υν(s, uν

�(t))dW (t) + curl Υ̃ν(s, uν
�(t))f(t) dt

+ ν

∫
Y

curlG(t, uν
�(t−), y)Ñν−1

(dy,dt)

+
∫

Y

curl G̃(t, uν
�(t), y)(g(t, y) − 1)ϑ(dy) dt. (3.9)

We note that for u ∈ D(A), ( curl B(uν
�
, uν

�
), ξν

�
) = 0 by using (A.7) when q = 2.

Employing Itô’s formula to the function |ξν
�
(s ∧ τ̄N )|2p

H , p ∈ [2,∞), for t ∈ [0, T ], we
obtain from (3.9)

|ξν
�(s ∧ τ̄N )|2p

H + 2pν
∫ t∧τ̄N

0

|∇ξν
�(s)|2H |ξν

�(s)|2p−2
H ds = | curlς|2p

H +
7∑

i=1

Ji(t),

where

J1(t) = 2p
√
ν

∫ t∧τ̄N

0

|ξν
�(s)|2p−2

H

(
curl Υν(s, uν

�(s)), ξν
�(s)

)
dW (s),

J2(t) =
∫ t∧τ̄N

0

∫
Y

(
|ξν

�(s) + νcurlG(s, uν
�(s), y)|2p

H − |ξν
�(s)|2p

H

)
Ñν−1

(dy,ds),

J3(t) = 2p
∫ t∧τ̄N

0

|ξν
�(s)|2p−2

H

(
curl Υ̃ν(s, uν

�(s))f(s), ξν
�(s)

)
ds,

J4(t) = νp(2p− 1)
∫ t∧τ̄N

0

|ξν
�(s)|2p−2

H | curl Υν(s, uν
�(s))|2LQ

ds,

J5(t) =
∫ t∧τ̄N

0

∫
Y

(
|ξν

�(s) + νcurl G(s, uν
�(s), y)|2p

H − |ξν
�(s)|2p

H

− νp|ξν
�(s)|2p−2

H (ξν
�(s), curl G(s, uν

�(s), y))H

)
ϑ(dy) ds,

J6(t) = 2p
∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H (curl G̃(s, uν
�(s), y)(g(s, y) − 1), ξν

�(s))ϑ(dy) ds.

For the term J1(t), it follows from the Burkholder–Davis–Gundy inequality,
condition 2.11, (A.3) (q = 2), Cauchy–Schwarz’s, Hölder’s and Young’s inequalities
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that

E

(
sup

s∈[0,t∧τ̄N ]

J1(s)

)

� 2p
√
νE

(∫ t∧τ̄N

0

|ξν
�(s)|4p−2

H | curl Υν(uν
�(s)|2LQ

ds
) 1

2

� 2p
√
νE

(∫ t∧τ̄N

0

|ξν
�(s)|4p−2

H K(s)(1 + ‖uν
�(s)‖2

V ) ds
) 1

2

� 2p
√
νE

(∫ t∧τ̄N

0

|ξν
�(s)|4p−2

H K(s)(1 + |uν
�(s)|2H + C|ξν

�(s)|2Hds
) 1

2

� 1
4

E

(
sup

s∈[0,t∧τN ]

|ξν
�(s)|2p

H

)
+ 2p

√
νCE

(∫ t∧τ̄N

0

|ξν
�(s)|2p

HK(s) ds
)

+ 2p
√
νCE

(
1 + sup

s∈[0,T ]

|uν
�(s)|2p

H

)(∫ t∧τ̄N

0

K(s) ds
) 1

2

.

For the term J2(t), by applying the Burkholder–Davis–Gundy inequality, condition
2.11, Hölder’s and Young’s inequalities, we obtain

E

(
sup

s∈[0,t∧τ̄N ]

J2(s)

)

� E

[∫ t∧τ̄N

0

∫
Y

(
|ξν

�(s) + νcurl G(s, uν
�(s), y)|2p

H − |ξν
�(s)|2p

H

)2

ϑ(dy) ds
] 1

2

� C(ν)E

(∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|4p−2

H |curl G(s, uν
�(s), y)|2H

+ |ξν
�(s)|4p−4

H |curl G(s, uν
�(s), y)|4H + |curl G(s, uν

�(s), y)|4p
H ϑ(dy) ds

) 1
2

� C(ν)E
(∫ t∧τ̄N

0

K(s)|ξν
�(s)|4p

H ds
) 1

2

+ C(ν)E
(∫ t∧τ̄N

0

K(s) ds
) 1

2

� 1
4

E

(
sup

s∈[0,t∧τ̄N ]

|ξν
�(s)|2p

H

)
+ C(ν)E

∫ t∧τN

0

K(s)|ξν
�(s)|2p

H ds

+ C(ν)E
(∫ t∧τ̄N

0

K(s) ds
) 1

2

.
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For the term J3(t), we use Cauchy-Schwarz’s inequality, condition 2.12, (A.3) with
q = 2, Hölder’s and Young’s inequalities to get

EJ3(t) � 2pE
∫ t∧τ̄N

0

|ξν
�(s)|2p−1

H | curl Υ̃ν(s, uν
�(s))|L(H0,H)|f(s)|0ds

� 2pE
∫ t∧τ̄N

0

(√
K(s) + C

√
K(s)|ξν(s)|2p

H +
√
K(s)|uν

�(s)|H |ξν
�(s)|2p−1

H

)

× |f(s)|0ds

� 2pE
∫ t∧τ̄N

0

(
1 + |ξν

�(s)|2p
H + |uν

�(s)|H |ξν
�(s)|2p−1

H

)(
K(s) + |f(s)|20

)
ds

� 2pCE

∫ t∧τ̄N

0

(
K(s) + |f(s)|20

)(
1 + sup

s∈[0,T ]

|uν
�(s)|2p

H + |ξν
�(s)|2p

H

)
ds.

For the term J4(t), condition 2.11, (A.3) with q = 2, Hölder’s and Young’s
inequalities yield that for ν ∈ (0, ν0]

EJ4(t) � νp(2p− 1)E
∫ t∧τ̄N

0

|ξν
�(s)|2p−2

H K(s)
(
1 + |uν

�(s)|2H + C|ξν
�(s)|2H

)
ds

� ν(2p− 1)E
∫ t∧τ̄N

0

K(s)
(
1 + sup

s∈[0,T ]

|uν
�(s)|2p

H + |ξν
�(s)|2p

H

)
ds.

For the term J5(t), it follows from condition 2.11 and Hölder’s inequality that

EJ5(t) � CE

[∫ t∧τ̄N

0

∫
Y

(
|ξν

�(s)|2p−2
H + |νcurl G(s, uν

�(s), y)|2p−2
H

)

× |curl G(s, uν
�(s), y)|2Hϑ(dy) ds

]
� C(ν)E

(∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H |curlG(s, uν
�(s), y)|2H

+ |curl G(s, uν
�(s), y)|2p

H ϑ(dy) ds
)

� C(ν)E
∫ t∧τ̄N

0

K(s)|ξν
�(s)|2p

H ds+ C(ν)E
∫ t∧τ̄N

0

K(s) ds.
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For the term J6(t), condition 2.12, Hölder’s and Young’s inequalities imply that

E

∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H (curlG̃(s, uν
�(s), y)(g(s, y) − 1), ξν

�(s))ϑ(dy) ds

� CE

∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H |curlG̃(s, uν
�(s), y)|H |g(s, y) − 1||ξν

�(s)|Hϑ(dy) ds

� CE

∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H

|curlG̃(s, uν
�
(s), y)|H

1 + |ξν
�
(s)|H

× |g(s, y) − 1|(1 + |ξν
�(s)|2H)ϑ(dy) ds

� CE

∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H

|G̃(s, ξν
�
(s), y)|H

1 + |ξν
�
(s)|H |g(s, y) − 1|(1 + |ξν

�(s)|2H)ϑ(dy) ds

� CE

∫ t∧τ̄N

0

∫
Y

|ξν
�(s)|2p−2

H |G̃(s, y)|0,H |g(s, y) − 1|(1 + |ξν
�(s)|2H)ϑ(dy) ds

� CE

∫ t∧τ̄N

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ CE

∫ t∧τ̄N

0

|ξν
�(s)|2p

H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds.

Then, combining the estimates of J1 − J6, we obtain

E

(
sup

s∈[0,t]

|ξν
�(s ∧ τ̄N )|2p

H

)
+ 2pνE

∫ t∧τ̄N

0

|∇ξν
�(s)|2H |ξν

�(s)|2p−2
H ds

� E

(
| curlς|2p

H

)
+ C(ν)E

∫ t∧τ̄N

0

(
K(s) + |f(s)|20

)
|ξν

�(s)|2p

+ C(ν)E
(∫ t∧τ̄N

0

K(s) ds
) 1

2

+ C(ν)E
∫ t∧τ̄N

0

(
K(s) + |f(s)|20

)(
1 + sup

s∈[0,T ]

|uν
�(s)|2p

H

)
ds

+ CE

∫ t∧τ̄N

0

|ξν
�(s)|2p

H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ CE

∫ t∧τ̄N

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ C(ν)E
(
1 + sup

s∈[0,T ]

|uν
�(s)|2p

H

)(∫ t∧τ̄N

0

K(s) ds

) 1
2

.
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By using Gronwall’s inequality, lemma 2.9 and proposition 3.1, we can infer that

E

(
sup

s∈[0,t∧τ̄N )]

|ξν
�(s|2p

H

)
+ 2pνE

∫ t∧τ̄N

0

|∇ξν
�(s)|2H |ξν

�(s)|2p−2
H ds (3.1)

� C(1 + E| curl ς|2p
H ). (3.10)

From the fact that estimate (3.10) is uniform in N , we can deduce that τ̄N → T as
N → ∞. This together with the monotone convergence theorem yields that (3.8).
Then, the proof of proposition 3.2 is completed. �

Combining propositions 3.1 and 3.2, we obtain the following well-posedeness
result for the stochastic equations (2.5).

Theorem 3.3. Let p ∈ [2,∞) be such that E(‖ς‖2p) <∞. Assume that (Υν , G)
satisfies conditions 2.5, 2.11 and (Υ̃ν , G̃) satisfies conditions 2.6, 2.7 and 2.12.
For every M > 0, � := (f, g) ∈ ŨM and ν ∈ (0, ν0], there exists a unique stochastic
strong analytically weak solution uν

�
∈ D([0, T ];H) ∩ L2(0, T ;V ) to (2.5) with deter-

ministic initial data uν
�
(0) = ς ∈ V . Moreover, uν

�
∈ D([0, T ];V ) P-a.s. and satisfies

inequalities (3.1), (3.2) and (3.6).

4. Existence and uniqueness of solutions for the inviscid problem

In this section, we study the inviscid problem when ν = 0. More precisely, we
consider the following Euler equations in [0, T ] ×D:⎧⎪⎪⎨

⎪⎪⎩
du0

�
(t) +B(u0

�
(t), u0

�
(t)) dt = Υ̃0(t, u0

�
(t))f(t) dt

+
∫

Y

G̃(t, u0
�(t), y)(g(t, y) − 1)ϑ(dy) dt,

u0
�
(0) = ς.

(4.1)

We have the following theorem.

Theorem 4.1. Suppose that ς ∈ V and that (Υ̃0, G̃) satisfies conditions 2.6, 2.7
and 2.12. For all M > 0, � = (f, g) ∈ S̄M and T > 0, there exists a weak solution
u0

�
∈ C([0, T ];H) ∩ L∞(0, T ;V ) for (4.1) such that for t ∈ [0, T ] and all ϕ ∈ V, it

holds that

(
u0

�(t), ϕ
)

=
∫ t

0

〈B(u0
�(s), u0

�(s)), ϕ〉ds+
∫ t

0

(
Υ̃0(s, u0

�(s))f(s), ϕ
)
ds

+
∫ t

0

∫
Y

(G̃(t, u0
�(s), y)(g(s, y) − 1), ϕ)ϑ(dy) ds.

Furthermore, there is a positive constant C(M,T ) such that for every � = (f, g) ∈
S̄M , it holds that

sup
0�t�T

‖u0
�(t)‖ � C(M,T )(1 + ‖ς‖). (4.2)
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Proof. We consider the following Navier–Stokes equations:

du0ν
� (t) = −[

νAu0ν
� (t) +B(u0ν

� (t), u0ν
� (t))

]
dt+ Υ̃0(t, u0ν

� (t))f(t) dt

+
∫

Y

G̃(t, u0ν
� (t), y)(g(t, y) − 1)ϑ(dy) dt

(4.3)

with ν > 0, the initial data u0ν
�

(0) = ς, ∇ · u0ν
�

= 0 and (1.3). When ς ∈ H, (Υ̃0, G̃)
satisfies conditions 2.6, 2.7 and � = (f, g) ∈ S̄M with M > 0, similar to the proof
of proposition 3.1, we can conclude that (4.3) has a unique weak solution u0ν

�
∈

C([0, T ];H) ∩ L2(0, T ;V ). Furthermore, when ς ∈ V and (Υ̃0, G̃) satisfies condi-
tions 2.7 and 2.12, similar to the proof of proposition 3.2, we can infer that
u0ν

�
∈ C([0, T ];V ).

By taking ν → 0, we need to get some uniform estimates of u0ν
�

about ν > 0
for proving the existence of solutions to (4.1). Similar to the proof of proposition
3.1, multiplying (4.3) by 2u0ν

�
and integrating over [0, t] ×D and applying (A.5),

Hölder’s and Young’s inequalities, condition 2.6, we obtain for every ν > 0

|u0ν
� (t)|2H + 2ν

∫ t

0

‖u0ν
� (s)‖2ds

� |ς|2H + 2
∫ t

0

(
Υ̃0(s, u0ν

� (s))f(s), u0ν
� (s)

)
ds

+ 2
∫ t

0

∫
Y

(G̃(t, u0ν
� (s), y)(g(s, y) − 1), u0ν

� (s))ϑ(dy) ds

� |ς|2H + 2
∫ t

0

K(s) ds+ 2
∫ t

0

(
K(s) + |f(s)|20

)
|u0ν

� (s)|2Hds

+ C

∫ t

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ C

∫ t

0

|u0ν
� (s)|2H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds.

Then, using condition 2.7, remark 2.8, lemma 2.9 and Gronwall’s inequality, we
deduce that there exists a constant C such that

sup
ν>0

sup
0�t�T

|u0ν
� (t)|2H � C(M,T )(1 + |ς|2H). (4.4)

Denote ξ0ν
�

(t) := curl u0ν
�

(t). Similar to the proof of proposition 3.2, employing the
curl operator to (4.3) and applying (A.6), we get

dξ0ν
� (t) = −νAξ0ν

� (t) −B(u0ν
� (t), ξ0ν

� (t)) dt+ curl Υ̃0(t, u0ν
� (t))f(t) dt

+
∫

Y

curl G̃(t, u0ν
� (t), y)(g(t, y) − 1)ϑ(dy) dt

(4.5)

with the initial data ξ0ν
�

(0) = curl ς.

https://doi.org/10.1017/prm.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.67


42 H. Wang

Multiplying (4.5) by 2ξ0ν
�

and integrating over [0, T ] ×D and using condition
2.12, (A.7) (q = 2), (A.3), Hölder’s and Young’s inequalities, one deduces that

|ξ0ν
� (t)|2H + 2ν

∫ t

0

‖ξ0ν
� (s)‖2ds

� | curl ς|2H + 2
∫ t

0

| curl Υ̃0(s, u0ν
� (s))|L(H0,H)|f(s)|0|ξ0ν

� (s)|Hds

+ 2
∫ t

0

∫
Y

| curl G̃(s, u0ν
� (s), y)|H |g(s, y) − 1||ξ0ν

� (s)|Hϑ(dy) ds

� ‖ς‖2 +
(
1 + sup

s∈[0,T ]

|u0ν
� (s)|2H

)∫ t

0

(
K(s) + |f(s)|20

)
ds

+ 2
∫ t

0

(
K(s) + |f(s)|20

) |ξ0ν
� (s)|2Hds

+ C

∫ t

0

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds

+ C

∫ t

0

|ξ0ν
� (s)|2H

∫
Y

‖G̃(s, y)‖0,H |g(s, y) − 1|ϑ(dy) ds.

It follows from condition 2.7, remark 2.8, lemma 2.9, (4.4) and Gronwall’s inequality
that there exists a constant C such that for every � = (f, g) ∈ S̄M , it holds that

sup
ν>0

sup
0�t�T

|ξ0ν
� (t)|2H � C(M,T )(1 + ‖ς‖2). (4.6)

This together with (4.4) and (A.3) yields that

sup
ν>0

sup
0�t�T

‖u0ν
� ‖ � C(M,T )(1 + ‖ς‖). (4.7)

Moreover, for every ν > 0, we can infer that u0ν
�

∈ C([0, T ];H) ∩ L∞(0, T ;V ) and
it holds that

u0ν
� (t) = ς − ν

∫ t

0

Au0ν
� (s) −

∫ t

0

B(u0ν
� (s), u0ν

� (s)) ds+
∫ t

0

Υ̃0(s, u0ν
� (s))f(s) ds

+
∫ t

0

∫
Y

G̃(s, u0ν
� (s), y)(g(s, y) − 1)ϑ(dy) ds.

By applying (4.4), (4.7), conditions 2.6, 2.7 and 2.12 on (Υ̃0, G̃) and (A.4) when
q = 2 and r = 1, remark 2.8, lemma 2.9, one deduces that for any ν ∈ (0, 1] and
� = (f, g) ∈ S̄M :

‖u0ν
� ‖W 1,2(0,T ;V ′) � C(1 + ‖ς‖).
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Then, there exists a function v ∈W 1,2(0, T ;V ′) ∩ L∞(0, T ;V ) such that

u0ν
� → v weakly in L2

(
0, T ;V

) ∩W 1,2
(
0, T ;V ′),

u0ν
� → v strongly in L2

(
0, T ;H

)
,

u0ν
� → v weak star in L∞(

0, T ;V
)
,

as ν → 0. Taking ν → 0 in (4.3), we conclude that u0
�

:= v is a solution of (4.1)
as [52, theorem 3.1] (see also [60]). Moreover, since (4.7) is uniformly bounded in
ν > 0, taking ν → 0 in (4.7), we can get (4.2). �

As far as we know, it is difficult to prove the uniqueness of solution to the
Euler equations in Hilbert–Sobolev spaces. But scholars get the uniqueness of solu-
tion in the non-Hilbert–Sobolev spaces H1,q, q ∈ [2,+∞) for the deterministic case.
Inspired by them such as [8], for proving uniqueness, then we require the coefficient
(Υ̃ν , G̃) to meet some conditions (see conditions 4.2 and 4.3).

For k � 0, q ∈ [2,∞), we denote R(H0,W
k,q) by the space of all γ-radonifying

mappings from H0 into W k,q. We note that R(H0,W
k,q) are analogues of

Hilbert–Schmidt operators when W k,2 is replaced by the general Banach spaces
W k,q. We refer to [10, 12, 26, 43, 44] for the definitions and some basic properties
of stochastic calculus in the Banach spaces.

Condition 4.2. Let q ∈ [2,∞); Υν ∈ C([0, T ] ×H2,q;R(H0,H
1,q)) for ν > 0 and

G ∈ C([0, T ] ×H2,q × Lq(Y);H1,q), there exists K(t) ∈ L1([0, T ],R+) such that for
every u ∈ H ∩H2,q and ν > 0, if ξ = curl u, it holds

‖curl Υν(t, u)‖2
R(H0,Lq) � K(t)(1 + ‖u‖2

q + ‖ξ‖2
q),∫

Y

‖curl G(t, u(t), y)‖q
Lqϑ(dy) �

∫
Y

‖G(t, curl u(t), y)‖q
Lqϑ(dy)

� K(t)(1 + ‖curl u‖q
q).

Condition 4.3. Let q ∈ [2,∞); Υ̃ν ∈ C([0, T ] ×H1,q;L(H0,H
1,q)) for ν � 0, G̃ ∈

C([0, T ] ×H1,q × L1(Y);H1,q), and there exists K(t) ∈ L1([0, T ],R+) such that for
every u ∈ H1,q and ν > 0 (resp. u ∈ H2,q for ν = 0) if ξ = curl u, it holds

‖ curl Υ̃ν(t, u)‖L(H0,Lq) �
√
K(t)(1 + ‖u‖q + ‖ξ‖q),∫

Y

‖curl G̃(t, u(t), y)‖qϑ(dy) �
∫

Y

‖G̃(t, curl u(t), y)‖qϑ(dy).

Note that examples of Nemytski operators in [12] for Υν , Υ̃ν and
G(t, u(t), y), G̃(t, u(t), y) = κ(t)u(t) + ι(t)Γ(y), where κ(t), ι(t) ∈ L1([0, T ],R+),
Γ(y) ∈ Lq(Y),

∫
Y
ϑ(dy) < C, satisfy the above conditions. If curl ς is bounded, we

have the following theorem.

Theorem 4.4. Suppose the hypotheses of theorem 4.1 are satisfied. Moreover, we
assume that curl ς ∈ (L∞(D))2 and that condition 4.3 holds. For every M > 0
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and � = (f, g) ∈ S̄M , then the weak solution of (4.1) is unique in C([0, T ];H) ∩
L∞(0, T ;H1,q), q ∈ [2,∞). Moreover, we have

sup
0�t�T

‖ curl u0
�(t‖q � C(1 + ‖ς‖ + ‖ curl ς‖q), (4.8)

sup
0�t�T

‖∇u0
�(t)‖q � Cq(1 + ‖ς‖ + ‖ curl ς‖q). (4.9)

Here C > 0 is a constant, which depends on M, T, and ‖ς‖L∞(D;R2).

Proof. First, we verify the estimates (4.8) and (4.9). Thanks to (A.3), we only need
to check the Lq(D) upper bounds of curl u0

�
(t). Now, we establish the a priori

estimates of the Galerkin approximation solution u0
�,n, and assume that u0

�,n ∈ H2,q.
To simplify the notation, we drop the index n.

Denote ξ0
�
(t) := curl u0

�
(t). Applying the curl operator to (4.1) and using (A.6),

we have

dξ0�(t) = −B(
u0

�(t), ξ0�(t)
)
dt+ curl Υ̃0(t, u0

�(t))f(t) dt

+
∫

Y

curl G̃(t, u0
�(t), y)(g(t, y) − 1)ϑ(dy) dt, ξ0�(0) = curl ς.

(4.10)

Multiplying (4.10) by q|ξ0
�
(t)|q−2ξ0

�
(t) and integrating over [0, t] ×D, we obtain

‖ξ0�(t)‖q
q + q

∫ t

0

∫
D

(u0
�(s) · ∇)ξ0�(s)|ξ0�(s)|q−2ξ0�(s)dxds

= ‖ curl ς‖q
q + q

∫ t

0

∫
D

curl Υ̃0(s, u0
�(s))f(s)|ξ0�(s)|q−2ξ0�(s)dxds

+ q

∫ t

0

∫
D

∫
Y

curl G̃(t, u0
�(t), y)(g(t, y) − 1)|ξ0�(t)|q−2ξ0�(t)ϑ(dy)dxds.

We note that for every s,
∫

D
(u0

�
(s) · ∇)ξ0

�
(s)|ξ0

�
(s)|q−2ξ0

�
(s)dx = 0 by using the fact

that ξ0
�
(t) = curl u0

�
(t), and (A.7). Then, by using Hölder’s and Young’s inequalities

and condition 4.3, one has

‖ξ0�(t)‖q
q � ‖ curl ς‖q

q + q

∫ t

0

‖ curl Υ̃ν(s, u0
�(s))‖L(H0,Lq)|f(s)|0‖ξ0�(s)‖q−1

q ds

+ q

∫ t

0

∫
D

∫
Y

curl G̃(t, u0
�(t), y)(g(t, y) − 1)|ξ0�(t)|q−2ξ0�(t)ϑ(dy)dxds

� ‖ curl ς‖q
q + q

(
1 + sup

0�s�T
‖u0

�(s)‖q
q

)∫ t

0

(
K(s) + |f(s)|20

)
ds

+ q

∫ t

0

(
K(s) + |f(s)|20

) ‖ξ0�(s)‖q
qds

+ C

∫ t

0

∫
Y

‖G̃(s, y)‖0,q|g(s, y) − 1|ϑ(dy) ds

+ C

∫ t

0

‖ξ0�(s)‖q
q

∫
Y

‖G̃(s, y)‖0,q|g(s, y) − 1|ϑ(dy) ds.
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From the fact that H1,2 ↪→ Lq(D), (4.2), lemma 2.9 and Gronwall’s inequality, we
conclude that for any n � 1 and � = (f, g) ∈ S̄M

sup
0�t�T

‖ξ0�,n(t)‖q
q � C

(
‖ curl ς‖q

q + 1 + ‖ς‖q
)
. (4.11)

Note that the upper bounds of inequality 4.11 do not depend on n. We can take
n→ ∞ in (4.11) and use classical arguments to get (4.9). For more details, see
e.g. [8].

Next, we prove the uniqueness of the solution u0
�
. By using (4.9) for some q > 2

and (A.2), we can infer that any solution u0
�

to (4.1) belongs to L∞((0, T ) ×D).
Let u0

�
and v0

�
be two solutions of (4.1) with the same initial data. Denote � :=

u0
�
− v0

�
. Then � is a weak solution of the following equations:

d�(s) = − [
B(u0

�(s), u0
�(s)) −B(v0

�(s), v0
�(s))

]
ds

+
[
Υ̃0(s, u0

�(s)) − Υ̃0(s, v0
�(s))

]
f(s) ds

+
∫

Y

[
G̃(s, u0

�(s), y) − G̃(s, v0
�(s), y)

]
(g(s, y) − 1)ϑ(dy) ds, �(0) = 0.

Multiplying the above equations by �(t) and integrating on D, and using condition
2.6 on (Υ̃0, G̃), Schwarz’s and Hölder’s inequalities and (4.9), we obtain for any
q ∈ (1,∞)

1
2
d

dt
|�(t)|2H

= −(B(�(t), u0
�(t)),�(t)) +

( [
Υ̃0(t, u0

�(t)) − Υ̃0(t, v0
�(t))

]
f(t),�(t)

)
+

∫
Y

(
[
G̃(t, u0

�(t), y) − G̃(t, v0
�(t), y)

]
(g(t, y) − 1),�(t))ϑ(dy)

�
∫

D

|�(t)|2(x)|∇u0
�(t)|(x) dx

+ |
(
Υ̃0(t, u0

�(t)) − Υ̃0(t, v0
�(t))

)
|L(H0,H)|f(t)|0|�(t)|H

+ C|�(t)|2H
∫

Y

‖G̃(t, y)‖1,H |g(t, y) − 1|ϑ(dy)

� ‖∇u0
�(t)‖q‖�(t)‖

2
q

L∞(D)|�(t)|
2(q−1)

q

H +
√
K(t)|u0

�(t) − v0
�(t)|H |f(t)|0|�(t)|H

+ C|�(t)|2H
∫

Y

‖G̃(t, y)‖1,H |g(t, y) − 1|ϑ(dy).

Applying the fact that ‖ curl ς‖q � C‖ curl ς‖∞, q ∈ [2,∞), C � 1, �(0) = 0 and
(4.9), we obtain for t ∈ [0, T ]

W ′(t) � 2qC(M)(1 + ‖ς‖ + ‖ curl ς‖L∞(D))W̄
2
q W(t)1−

1
q + 2(K(t) + |f(t)|20)W(t)

+ W(t)
∫

Y

‖G̃(t, y)‖1,H |g(t, y) − 1|ϑ(dy),
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where W̄ := sup0�t�T ‖�(t)‖L∞(D) and W(t) := |�(t)|2H . Then

W(t)1/q � 2Cq C̄4(M)[1 + ‖ς‖ + ‖ curl ς‖L∞(D)]W̄
2
q t

+
∫ t

0

2(K(s) + |f(s)|20)W(s)1/qds

+ C

∫ t

0

W(s)1/q

∫
Y

‖G(s, y)‖1,H |g(s, y) − 1|ϑ(dy) ds.

Hence, by using Gronwall’s inequality, for q ∈ [2,∞) and any T ∗ ∈ [0, T ], we deduce
that

sup
0�t�T∗

|�(t)|2H

� C

(
2C(M)[1 + ‖ς‖ + ‖ curl ς‖L∞(D)]W̄2T ∗

× exp

{∫ T∗

0

[
(K(t) + |f(t)|20) +

∫
Y

‖G̃(t, y)‖1,H |g(t, y) − 1|ϑ(dy)
]
dt

})q

.

Choosing T ∗
1 > 0 small enough and taking q → ∞, for every t ∈ [0, T ∗

1 ], we can infer
that |�(t)|2H = 0. Repeating this process by using the value at time T ∗

1 as the initial
data and employing (A.2), (4.9) and (4.2), one concludes that there is a T ∗ > 0 such
that for every integer k = 0, 1, · · · and any t ∈ [T ∗

1 + kT ∗, T ∗
1 + (k + 1)T ∗] ∩ [0, T ],

it holds that |�(t)|2H = 0. This yields the uniqueness. We complete the proof of
theorem 4.4. �

5. A priori estimates

In this section, we should give an a priori estimate and more regularity of the
solution uν

�
in H1,q, q ∈ [2,+∞) to the stochastic controlled equations (2.5) for

establishing a large deviation principle of the solution uν to equations (1.6).

Proposition 5.1. We assume that E|ς|2p
H <∞ for some p ∈ [2,∞), and

E‖ς‖q
H1,q <∞ for q ∈ [2,∞). Furthermore, suppose that (Υν , G) and (Υ̃ν , G̃) sat-

isfy conditions 2.5–4.3, respectively. For M > 0, � = (f, g) ∈ ŨM and ν ∈ (0, ν0],
then the stochastic strong analytically weak solution uν

�
of (2.5) belongs to

L∞(0, T ;H1,q) P-a.s.. Moreover, we have

sup
0<ν�ν0

sup
�∈ŨM

E

(
sup

0�t�T
‖uν

�(t)‖q
H1,q

)
� C(M, q)

(
1 + E‖ς‖q

H1,q

)
. (5.1)

Proof. Now, we study the energy estimation of the approximation solution uν
h,n

in H1,q. To simplify the notation, we drop the index n. It follows from (A.1) and
proposition 3.2 that for 0 < ν � ν0 and � = (f, g) ∈ ŨM , E(sup0�t�T ‖uν

�
(t)‖q

q) �
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C(q,M)(1 + E‖ς‖q). Denote ξν
�

:= curl uν
�
. By using (A.3), we have ‖∇uν

�
‖q �

‖curl uν
�
‖q. Then, for getting (5.1), we only need to prove

sup
0<ν�ν0

sup
�∈ŨM

E

(
sup

0�t�T
‖ξν

�(t)‖q
q

)
� C(M, q)

(
1 + E‖ curl ς‖q

q

)
. (5.2)

Denote 〈·, ·〉 by the duality between Lq(D) and Lq∗
(D), where 1

q + 1
q∗ = 1. For

fixed N > 0, set τN = inf{t � 0 : ‖ξν
�
(t)‖q � N} ∧ T . By using Itô’s formula, we

obtain

‖ξν
�(t ∧ τN )‖q

q � ‖curlς‖q
q +

8∑
i=1

Ki(t),

where

K1(t) = q
√
ν

∫ t∧τN

0

〈|ξν
�(s)|q−2ξν

�(s), curl Υν(s, uν
�(s))〉dW (s),

K2(t) =
∫ t∧τN

0

∫
Y

(‖ξν
�(s) + νcurl G(s, uν

�(s), y)‖q
q − ‖ξν

�(s)‖q
q

)
Ñν−1

(dy,ds),

K3(t) = −qν
∫ t∧τN

0

〈|ξν
�(s)|q−2ξν

�(s), Aξν
�(s)〉ds,

K4(t) = −q
∫ t∧τN

0

〈|ξν
�(s)|q−2ξν

�(s), curl B(uν
�(s), uν

�(s))〉ds,

K5(t) = q

∫ t∧τN

0

〈|ξν
�(s)|q−2ξν

�(s), curl Υ̃ν(s, uν
�(s))f(s)〉ds,

K6(t) =
q

2
(q − 1)ν

∫ t∧τN

0

‖curl Υν(s, uν
�(s))‖2

R(H0,Lq)‖ξν
�(s)‖q−2

q ds,

K7(t) = ν

∫ t∧τN

0

∫
Y

(
‖ξν

�(s) + νcurl G(s, uν
�(s), y)‖q

q − ‖ξν
�(s)‖q

q

− νq|ξν
�(s)|q−2〈ξν

�(s), curl G(s, uν
�(s), y)〉

)
ϑ(dy) ds,

K8(t) = q

∫ t∧τN

0

∫
Y

|ξν
�(s)|q−2(curl G̃(s, uν

�(s), y)(g(s, y) − 1), ξν
�(s))ϑ(dy) ds.

For the term K1(t), by applying the Burkholder–Davies–Gundy inequality, condi-
tion 4.2, Hölder’s and Young’s inequalities, we deduce that

E

(
sup

s∈[0,t∧τN ]

K1(s)

)

�
√
νCqE

(∫ t∧τN

0

‖ curl Υν(s, uν
�(s))‖2

R(H0,Lq)‖ξν
�(s)‖2(q−1)

q ds

) 1
2
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�
√
νCqE

(
sup

0�s�t
‖ξν

�(s ∧ τN )‖
q
2
q

[∫ t∧τN

0

‖ξν(s)‖q−2
q K(s)

×
(
1 + ‖uν

�(s)‖2
q + ‖ξν

�(s)‖2
q

)
ds

] 1
2
)

� 1
2

E

(
sup

0�s�t
‖ξν

�(s ∧ τN )‖q
q

)
+ νCq2E

∫ t∧τN

0

K(s)‖ξν
�(s)‖q

qds

+ νCq2

(
1 + E

(
sup

0�t�T
‖uν

�(t)‖q
q

))∫ t∧τN

0

K(s) ds.

For the term K2(t), we use the Burkholder–Davis–Gundy inequality, condition 4.2,
Hölder’s and Young’s inequalities again to obtain

E

(
sup

s∈[0,t∧τN ]

K2(s)

)

� E

[∫ t∧τN

0

∫
Y

(‖ξν
�(s) + νcurl G(s, uν

�(s), y)‖q
q − ‖ξν

�(s)‖q
q

)2
ϑ(dy) ds

] 1
2

� C(ν)E
(∫ t∧τN

0

∫
Y

‖ξν
�(s)‖2q−2

q ‖curlG(s, uν
�(s), y)‖2

q

+ ‖ξν
�(s)‖2q−4

q ‖curl G(s, uν
�(s), y)‖4

q + ‖curl G(s, uν
�(s), y)‖2q

q ϑ(dy) ds
) 1

2

� C(ν)E
(∫ t∧τN

0

K(s)‖ξν
�(s)‖2q

q ds
) 1

2

+ C(ν)E
(∫ t∧τN

0

K(s) ds
) 1

2

� 1
2

E

(
sup

s∈[0,t∧τN ]

‖ξν
�(s)‖q

q

)
+ C(ν)E

∫ t∧τN

0

K(s)‖ξν
�(s)‖q

qds

+ C(ν)E
(∫ t∧τN

0

K(s) ds
) 1

2

.

By using the facts that ξν
�

= 0 on ∂D and A = −Δ, one deduces that

EK3(t) = −qνE

∫ t∧τN

0

∫
D

〈∇(|ξν
�(s)|q−2ξν

�(s)
)
,∇ξν

�(s)〉dxds

= −q(q − 1)νE

∫ t∧τN

0

∫
D

|ξν
�(s)|q−2|∇ξν

�(s)|2dxds.
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It follows from ξν
�

= curl uν
�

and (A.7) that EK4(t) = 0. For the term K5(t), we
employ Hölder’s and Young’s inequalities and condition 4.3 to bound

EK5(t) � qE

∫ t∧τN

0

‖|ξν
�(s)|q−1‖q∗‖ curl Υ̃ν(s, uν

�(s))f(s)‖qds

� E

[(
1 + sup

s∈[0,T ]

‖uν
�(s)‖q

q

)∫ t∧τN

0

(
K(s) + |f(s)|20

)
ds

+ q

∫ t∧τN

0

‖ξν
�(s)‖q

q

(
K(s) + |f(s)|20

)
ds

]
.

Condition 4.2, Hölder’s and Young’s inequalities imply that for any ν ∈ (0, ν0]

EK6(t) � q(q − 1)
2

νE

∫ t∧τN

0

‖ξν
�(s)‖q−2

q K(s)
(
1 + ‖uν

�(s)‖2
q + ‖ξν

�(s)‖2
q

)
ds

� q(q − 1)
2

νE

(
1 +

2
q

sup
s∈[0,T ]

‖uν
�(s)‖q

q

)∫ t∧τN

0

K(s) ds

+ ν(q − 1)2E

∫ t∧τN

0

K(s)‖ξν
�(s)‖q

qds.

For the term K7(t), by using condition 4.2, Hölder’s and Young’s inequalities, we
have

EK7(t) � CE

[∫ t∧τN

0

∫
Y

(‖ξν
�(s)‖q−2

q + ‖νcurl G(s, uν
�(s), y)‖q−2

q

) ‖
×νcurl G(s, uν

�(s), y)‖2
qϑ(dy) ds

]

� C(ν)E
(∫ t∧τN

0

∫
Y

(‖ξν
�(s)‖q−2

q ‖curl G(s, uν
�(s), y)‖2

q

+ ‖curl G(s, uν
�(s), y)‖q

q)ϑ(dy) ds
)

� C(ν)E
∫ t∧τN

0

K(s)‖ξν
�(s)‖q

qds+ C(ν)E
∫ t∧τN

0

K(s) ds.

For the term K8(t), applying condition 4.3, Hölder’s and Young’s inequalities, one
has

E

∫ t∧τN

0

∫
Y

‖ξν
�(s)‖q−2

q (curl G̃(s, uν
�(s), y)(g(s, y) − 1), ξν

�(s))ϑ(dy) ds

� CE

∫ t∧τN

0

∫
Y

‖ξν
�(s)‖q−2

q ‖curl G̃(s, uν
�(s), y)‖q|g(s, y) − 1|‖ξν

�(s)‖qϑ(dy) ds

� CE

∫ t∧τN

0

∫
Y

‖ξν
�(s)‖q−2

q

‖curl G̃(s, uν
�
(s), y)‖q

1 + ‖ξν
�
(s)‖q

× |g(s, y) − 1|(1 + ‖ξν
�(s)‖2

q)ϑ(dy) ds
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� CE

∫ t∧τN

0

∫
Y

‖ξν
�(s)‖q−2

q

‖G̃(s, ξν
�
(s), y)‖q

1 + ‖ξν
�
(s)‖q

|g(s, y) − 1|(1 + ‖ξν
�(s)‖2

q)ϑ(dy) ds

� CE

∫ t∧τN

0

∫
Y

‖ξν
�(s)‖q−2

q |G̃(s, y)|0,q|g(s, y) − 1|(1 + ‖ξν
�(s)‖2

q)ϑ(dy) ds

� CE

∫ t∧τN

0

∫
Y

|G̃(s, y)|0,q|g(s, y) − 1|ϑ(dy) ds

+ CE

∫ t∧τN

0

‖ξν
�(s)‖q

q

∫
Y

|G̃(s, y)|0,q|g(s, y) − 1|ϑ(dy) ds.

Then, we obtain

E‖ξν
�(t ∧ τN )‖q

q

� E‖curl ς‖q
q + C(ν, q)E

[(
1 + sup

s∈[0,T ]

‖uν
�(s)‖q

q

)∫ t∧τN

0

(
K(s) + |f(s)|20

)
ds

]

+ C(ν, q)E
∫ t∧τN

0

‖ξν
�(s)‖q

q

(
K(s) + |f(s)|20

)
ds+ C(ν)E

∫ t∧τN

0

K(s) ds

+ CE

∫ t∧τN

0

∫
Y

|G̃(s, y)|0,q|g(s, y) − 1|ϑ(dy) ds+ C(ν)E
(∫ t∧τN

0

K(s) ds
) 1

2

+ CE

∫ t∧τN

0

‖ξν(s)‖q
q

∫
Y

|G̃(s, y)|0,q|g(s, y) − 1|ϑ(dy) ds.

Using Grownall’s inequality and lemma 2.9, we have

sup
0<ν�ν0

sup
�∈ŨM

E

(
sup

0�t�T
‖ξν

�(t)‖q
q

)
� C(M, q)

(
1 + E‖ curl ς‖q

q

)
.

Then, one deduces that (5.2) holds for the approximation sequence ξν
�,n. We notice

that the constant C(M, q) does not depend on n. Hence, letting n→ ∞, we can
obtain (5.1) by using the weak convergence discussion. Therefore, we complete the
proof. �

6. Large deviations principle

In this section, we establish a large deviation principle of (2.4) by using a weak
convergence approach in [13, 15]. First, for every ν > 0 and for every q ∈ [2,+∞),
we assume that Υν = Υ̃ν , G = G̃ satisfy conditions 2.6, 2.7, 2.12 and 4.3. Moreover,
we assume that (Υ0, G) satisfies the following condition:

Condition 6.1. For every q ∈ [2,+∞), we assume that (Υ0, G) satisfies conditions
2.5, 2.7, 2.11 and 4.2 and Υ0 satisfies

sup
0�t�T

∣∣Υν(t, u) − Υ0(t, u)
∣∣
L(H0,H)

� Cν

(
1 + |u|H

)
, for u ∈ H and ν > 0,

where Cν ∈ [0,+∞) and it converges to 0 as ν → 0.
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Here, we notice that ‖Ψ‖L(H0,Lq) � C‖Ψ‖R(H0,Lq). Then, for ν � 0, (Υν , G) also
satisfies conditions 2.6, 2.7, 2.12 and 4.3 with appropriate coefficients.

Let B be the Borel σ−field of the following Polish space:

X = D
(
[0, T ];H

) ∩ L∞(
0, T ;H1,q ∩ V ) ∩ L2

(
0, T ;H)

with the norm ‖u‖2
X :=

∫ T

0
‖u(t)‖2

Hdt and define

Y = {ς ∈ V, such that curl ς ∈ L∞(D)}
with the norm ‖ς‖2

Y := ‖ς‖2 + ‖ curl ς‖2
L∞ .

By using (A.3) and (A.1), for any q ∈ [2,∞), we obtain Y ⊂ H1,q. Next, we
establish a large deviation principle of equations (2.4) with deterministic initial
data uν(0) = ς ∈ Y.

Now, we state our main result in this section.

Theorem 6.2. Assume that ς ∈ Y, and for ν > 0, (Υν , G) satisfies conditions 2.5,
2.7, 2.11 and 4.2 for any q ∈ [2,+∞), K(t) = C and condition 6.1 is satisfied.
Then, the stochastic strong analytically weak solution uν of equations (2.4) with
deterministic initial data ς satisfies a large deviation principle in X with the good
rate function I defined in definition 2.1.

Notice that inspired by [20], we will study the construction of the rate function I
in the further work. For fixed q, p ∈ [4,∞), M > 0 and ν0 > 0, let �ν = (fν , gν), 0 <
ν � ν0 be a family of random elements taking values in ŨM . Suppose that uν

�ν
is the

stochastic strong analytically weak solution of the following stochastic controlled
equations:

duν
�ν

(t) = −[
νAuν

�ν
(t) +B(uν

�ν
(t), uν

�ν
(t))

]
dt+

√
νΥ(t, uν

�ν
(t)) dW (t)

+ Υ(t, uν
�ν

(t))fν(t) dt,

+ ν

∫
Y

G(t, uν
�ν

(t−), y)Ñν−1gν (dy,dt)

+
∫

Y

G(t, uν
�ν

(t), y)(gν(t, y) − 1)ϑ(dy) dt (6.1)

with deterministic initial data uν
�ν

(0) = ς ∈ Y. Due to the uniqueness of the
solution, we can conclude that for (fν , gν) ∈ ŨM , uν

�ν
(s) = Gν

ς (
√
ν(W (s) +

1√
ν

∫ ·
0
fν(s)ds), νNν−1gν ). Recall that u0

h = G0
ς (
∫ ·
0
f(s)ds, ϑg).

Now, we proceed to verify the second part of condition 2.3.

Proposition 6.3. Assume that for ν > 0 the coefficients Υν , G satisfy conditions
2.5, 2.7, 2.11 and 4.2 for all q ∈ [2,+∞) and that condition 6.1 holds. Further-
more, we suppose that for every p ∈ [2,∞), E(|ς|pH + ‖ς‖p

Y) < +∞, and (fν , gν)
converges in distribution to (f, g) in ŨM . Therefore, the process Gν

ς (
√
ν(W (·) +

1√
ν

∫ ·
0
fν(s)ds), νNν−1gν ) converges in distribution to G0

ς (
∫ ·
0
f(s)ds, ϑg) in X as

ν → 0.
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Proof. We divide the following four steps to prove the proposition.
Step 1: We note that uν

�ν
= ς +

∑6
i=1Hi, where

H1 = −ν
∫ t

0

Auν
�ν

(s) ds, H2 = −
∫ t

0

B(uν
�ν

(s), uν
�ν

(s)) ds,

H3 =
√
ν

∫ t

0

Υν(s, uν
�ν

(s)) dW (s), H4 =
∫ t

0

Υν(s, uν
�ν

(s))fν(s) ds,

H5 = ν

∫ t

0

∫
Y

G(t, uν
�ν

(t−), y)Ñν−1gν (dy,dt),

H6 =
∫ t

0

∫
Y

G(t, uν
�ν

(t), y)(gν(t, y) − 1)ϑ(dy) dt.

For ν ∈ (0, ν0], by using Minkowski’s and Cauchy-Schwarz’s inequalities, we obtain

‖H1‖2
W 1,2(0,T ;H) = ν

∫ T

0

∣∣∣ ∫ t

0

Auν
�ν

(s) ds
∣∣∣2
H

dt+ ν

∫ T

0

|Auν
�ν

(t)|2Hdt

� C(T, p)ν
∫ T

0

|Auν
�ν

(s)|2Hds.

Hence, for ν ∈ (0, ν0], by virtue of (3.6), one deduces

E
(‖H1‖2

W 1,2(0,T ;H)

)
� C(M,T, ν0)

(
1 + E‖ς‖4

)
.

Similarly, it follows from (3.6) that for all p ∈ [2,∞) and ν ∈ (0, ν0]

E‖H1‖p
W 1,p(0,T ;V ′) � νC(T )E

∫ T

0

‖Auν
�ν

(s)‖p
V ′ds � νC(T )E

∫ T

0

‖uν
�ν

(s)‖pds

� C(T, p, ν0)(1 + E‖ς‖p).

Minkowski’s and Hölder’s inequalities and (A.8) imply that for p, q ∈ [4,∞) and
ν ∈ (0, ν0]

‖H2‖p
W 1,p(0,T ;H) � C(T, p, ν0)

∫ T

0

‖uν
�ν

(t)‖p
H1,q‖uν

�ν
(t)‖pdt.

Then, for ν ∈ (0, ν0], by using Hölder’s inequality, (3.6) and (5.1), we have

E
(‖H2‖p

W 1,p(0,T ;H)

)
� C(T,M, p, q)

(
1 + E‖ς‖pq/(q−p)

)1−p/q (
1 + E‖ς‖q

H1,q

)p/q
.

By the Burkholder–Davis–Gundy inequality and Hölder’s inequality, it holds that

E

∫ T

0

|H3(t)|pHdt � Cpν
p/2

∫ T

0

E

(∫ T

0

|Υν(s, uν
�ν

(s))|2LQ
ds

)p/2

dt

� Cpν
p/2

(
1 + E sup

s∈[0,T ]

|uν
�ν

(s)|H
)∫ T

0

(∫ T

0

K(t) dt
) p

2
dt

� C(T, p, ν0)(1 + E|ς|pH).
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Let p ∈ [4,∞), α ∈ (0, 1
2 ). By virtue of the Burkholder–Davis–Gundy inequality

and Hölder’s inequality, one deduces that

E

∫ T

0

∫ T

0

|H3(t) −H3(s)|pH
|t− s|1+αp

dtds

= νp/2

∫ T

0

∫ T

0

E| ∫ s∨t

s∧t
Υν(r, uν

�ν
(r)) dW (r)|pH

|t− s|1+αp
dsdt

� C(T, p, ν0)(1 + E|ς|pH)
∫ T

0

∫ T

0

|t− s|−(1+αp) dsdt

� C(T, p, ν0)(1 + E|ς|pH).

Then, we obtain

E
(‖H3‖p

W α,p(0,T ;H)

)
� C(p, T )νp/2

0 (1 + E|ς|pH) .

Furthermore, we use Hölder’s inequality and condition 2.5 to infer that for ν ∈
(0, ν0] and p ∈ [4,∞)

∫ T

0

|H4(t)|pHdt � C
(
1 + sup

s∈[0,T ]

|uν
�ν

(s)|pH
)∫ T

0

(∫ T

0

K(t) dt
)p

dt.

Let α ∈ (0, 1
2 ). By using Minkowski’s and Hölder’s inequalities, condition 2.5 and

Fubini’s theorem, we deduce that for ν ∈ (0, ν0]

∫ T

0

∫ T

0

|H4(t) −H4(s)|pH
(t− s)1+αp

dsdt

� 2
∫ T

0

∫ T

0

(t− s)−1−αp
∣∣∣ ∫ t

s

|Υν(r, uν
�ν

(r))|LQ
|fν(r)|0dr

∣∣∣p dsdt

� C
(
1 + sup

r∈[0,T ]

|uν
�ν

(r)|pH
)∫ T

0

∫ T

0

(t− s)−1−αp dsdt.

Using the two above estimates and (3.1), for α ∈ (0, 1
2 ), p ∈ [4,∞) and ν ∈ (0, ν0],

we get

E
(‖H4‖p

W α,p(0,T ;H)

)
� C(p, α, T,M) (1 + E|ς|pH) .
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For the term H5, by the Burkholder–Davis–Gundy inequality and Hölder’s inequal-
ity, and proposition 3.1, we obtain

E

∫ T

0

|H5(t)|pHdt � Cpν
p/2

∫ T

0

E

(∫ T

0

∫
Y

|G(t, uν
�ν

(t), y)|2Hϑ(dy) dt

)p/2

dt

� Cpν
p/2

∫ T

0

E

(∫ T

0

|uν
�ν
|2Hdt

)p/2

dt

+ C(p, T )νp/2

(∫ T

0

K(t) dt

) p
2

� C(p, T )νp/2

(
1 + sup

0�t�T
E|uν

�ν
(t)|pH

)
+ C(p, T )νp/2

� C(p, T )νp/2
0 (1 + E|ς|pH) .

Let p ∈ [4,∞), α ∈ (0, 1
2 ). The Burkholder–Davis–Gundy and Hölder’s inequalities,

conditions 2.5 and proposition 3.1 imply that

E

∫ T

0

∫ T

0

|H5(t) −H5(s)|pH
|t− s|1+αp

dsdt

= νp/2

∫ T

0

∫ T

0

E| ∫ s∨t

s∧t

∫
Y
G(r, uν

�ν
(r), y)Ñν−1

(dy,dr)|pH
|t− s|1+αp

dsdt

� Cpν
p/2

∫ T

0

∫ T

0

E

∣∣∣∣
∫ s∨t

s∧t

|G(r, uν
�ν

(r−), y)|2Hdr
∣∣∣∣
p/2

|t− s|−(1+αp) dsdt

� Cpν
p/2

(
1 + sup

0�t�T
E|uν

�ν
(t)|pH

)∫ T

0

∫ T

0

|t− s|−(1+αp) dsdt

� C(p, T )νp/2
0 (1 + E|ς|pH) .

For the term H6, by using conditions 2.5, 2.7, lemma 2.9 and proposition 3.1, we
obtain

E

∫ T

0

∫ T

0

|H6(t) −H6(s)|pH
|t− s|1+αp

dsdt

=
∫ T

0

∫ T

0

E| ∫ s∨t

s∧t

∫
Y
G(r, uν

�ν
(r), y)(gν(r, y) − 1)ϑ(dy) dr|pH
|t− s|1+αp

dsdt
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� Cp

∫ T

0

∫ T

0

E

∣∣∣∣
∫ s∨t

s∧t

∫
Y

|G(r, uν
�ν

(r−), y)|H |gν(r, y) − 1|ϑ(dy) dr
∣∣∣∣
p

× |t− s|−(1+αp) dsdt

� Cp

∫ T

0

∫ T

0

E

∣∣∣∣
∫ s∨t

s∧t

∫
Y

|G(r, y)|0,H |gν(r, y) − 1|(1 + |uν
�ν
|H)ϑ(dy) dr

∣∣∣∣
p

× |t− s|−(1+αp) dsdt

� Cp

(
1 + sup

0�t�T
E|uν

�ν
(t)|pH

)∫ T

0

∫ T

0

|t− s|−(1+αp) dsdt

� Cp (1 + E|ς|pH) .

Combining the estimates of H1 −H6, we can infer that for p ∈ [4,∞), α ∈ (0, 1/2),
there is a constant C(p,M, T ) > 0 such that for any ν ∈ (0, ν0], it holds that

E
(‖uν

�ν
‖2

W α,2(0,T ;H)

)
+ E

(‖uν
�ν
‖p

W α,p(0,T ;V ′)

)
� C(p,M, T ). (6.2)

Step 2: Using lemmas 4.3 and 4.4 in [60], we deduce uν
�ν

is tight in
D([0, T ];D(A−β), β > 1/2. It follows from (3.6) and (6.2) that the process
{uν

�ν
}ν∈(0,ν0] is bounded in probability in

Wα,2(0, T ;H) ∩ L2(0, T ;V ) ∩Wα,p(0, T ;V ′).

Using theorem 2.1 in [29] (see also [12] and the references therein), we can infer that
the space Wα,2(0, T ;H) ∩ L2(0, T ;V ) (Wα,2(0, T ;V ′) ∩ L2(0, T ;V )) is compactly
embedded in L2([0, T ];H) (L2([0, T ];H)).

Therefore, for ν ∈ (0, ν0], using the Prokhorov theorem, we know that the
distribution L((fν , gν), uν

�ν
) of the process ((fν , gν), uν

�ν
) is tight in

Z := ŨM × L2([0, T ];H)(or L2([0, T ];H)) ∩ D([0, T ];D(A−β)).

Let {νn}n�0 be a sequence in (0, ν0] such that νn → 0. Thus, we can choose a
subsequence, still denoted by ((fνn

, gνn
), uνn

�νn
), that converges in distribution to

((f, g), u) in Z as n→ ∞.
Step 3: Applying the Jakubowski–Skorohod Theorem in [33], we infer that

there exists a stochastic basis (Ω̃, F̃ , {F̃t}t�0, P̃) and on this basis, Z-valued ran-
dom variables ((f̃ , g̃), ũ) and {((f̃νn

, g̃νn
), ũνn

�νn
)}n�0 such that ((f̃νn

, g̃νn
), ũνn

�νn
)

and ((fνn
, gνn

), uνn

�νn
) have the same distribution on Z, and as n→ ∞,

((f̃νn
, g̃νn

), ũνn

�νn
) → ((f̃ , g̃), ũ) in Z P̃-a.s. For simplicity, we drop the tilde and the

index n. Denote ς := uν
�ν

(0). Notice that here the corresponding solution is the
stochastic weak solution.

Applying (3.1), (3.6) and (5.1), for ν ∈ (0, ν0], α ∈ (0, 1/2) and q ∈ [2,∞), we get
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Ẽ

(
sup

0�t�T
|uν

�ν
(t)|2H

)
� C, Ẽ

(∫ T

0

‖uν
�ν

(t)‖2dt

)
� C,

Ẽ

(
sup

0�t�T
‖uν

�ν
(t)‖q

H1,q(D)

)
� C.

Then, there is a subsequence which converges weakly to u in L2(Ω̃ × (0, T );V ) ∩
Lq(Ω̃ × (0, T );H1,q) as n→ ∞. Hence,

u ∈ L2(0, T ;V ) ∩ L∞(
0, T ;H ∩H1,q

)
P̃ − a.s.

Step 4: We want to check that u is a weak solution of the following equations:

du(t) +B(u(t), u(t)) dt = Υ0(t, u(t))f(t) dt

+
∫

Y

G(t, u(t), y)(g(t, y) − 1)ϑ(dy) dt, u(0) = ς.

Taking ϕ ∈ D(Aβ) with β > 1/2, then we have

(uν
�ν

(t) − ς, ϕ) +
∫ t

0

(
B(uν

�ν
(s), uν

�ν
(s)) − Υ0(s, uν

�ν
(s))f(s), ϕ

)
ds =

8∑
i=1

Li,

where

L1 = −ν
∫ t

0

(
Auν

�ν
(s), ϕ

)
ds, L2 =

√
ν

∫ t

0

(
Υ(s, uν

�ν
(s)), ϕ

)
dW (s),

L3 = ν

∫ t

0

∫
Y

(G(s, uν
�ν

(s−), y)Ñν−1
(dy,ds), ϕ),

L4 = −
∫ t

0

[ 〈
B(uν

�ν
(s) − u(s), uν

�ν
(s)), ϕ

〉
+

〈
B(u(s), uν

�ν
(s) − u(s)), ϕ

〉 ]
ds,

L5 =
∫ t

0

([
Υν(s, uν

�ν
(s) − Υ0(s, uν

�ν
(s))

]
fν(s), ϕ

)
ds,

L6 =
∫ t

0

([
Υ0(s, uν

�ν
(s)) − Υ0(s, u(s))

]
fν(s), ϕ

)
ds,

L7 =
∫ t

0

(Υ0(s, u(s)) [fν(s) − f(s)] , ϕ) ds,

L8 =
∫ t

0

∫
Y

[
(G(s, uν

�ν
(s), y)(gν(s, y) − 1), ϕ)

− (G(s, u(s), y)(g(s, y) − 1), ϕ)]ϑ(dy) ds.
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For the term L1, the fact that D(Aβ) ⊂ V, β > 1/2, Cauchy–Schwarz’s inequality
and (3.6) imply that for t ∈ [0, T ] and ν ∈ (0, ν0]

Ẽ|L1| � νẼ

∫ t

0

‖uν
�ν

(s)‖‖ϕ‖ds � ν
√
t‖ϕ‖

(
Ẽ

∫ t

0

‖uν
�ν

(s)‖2ds
)1/2

� νC(T,M)‖ϕ‖
(
1 + Ẽ‖ς‖4

)1/2

→ 0 as ν → 0.

For the term L2, by using the Burkholder–Davis–Gundy inequality, Cauchy–
Schwarz’s inequality, condition 2.5 and (3.1), we have

Ẽ|L2| �
√
νẼ

(∫ t

0

|Υ(s, uν
�ν

(s))|2LQ
‖ϕ‖2

)1/2

�
√
ν‖ϕ‖C(T,M)

(
1 + Ẽ|ς|4H

)1/2

→ 0 as ν → 0.

For the term L3, we use the Burkholder–Davis–Gundy inequality, Hölder’s inequal-
ity and condition 2.5 to deduce

Ẽ|L3| � νẼ

(
sup

t∈[0,T ]

∫ t

0

∫
Y

(G(s, uν
�ν

(s−), y)Ñν−1
(dy,ds), ϕ)

)

� νẼ

(∫ T

0

∫
Y

(G(s, uν
�ν

(s−), y), ϕ)2ϑ(dy) dt

) 1
2

� ν‖ϕ‖C(T,M)
(
1 + Ẽ|ς|4H

)1/2

→ 0 as ν → 0.

For the term L4, using (2.2), Hölder’s inequality and (3.6), the fact that uν
�ν

− u→ 0
in L2(0, T ;H) P̃-a.s. as ν → 0, (3.6), (4.2), the Vitali convergence theorem, we
obtain

Ẽ|L4| � CẼ

∫ t

0

‖uν
�ν

(s) − u(s)‖H
(‖uν

�ν
(s)‖H + ‖u(s)‖H

) ‖ϕ‖ds
� C‖ϕ‖

(
Ẽ

∫ t

0

‖uν
�ν

(s) − u(s)‖2
Hds

)1/2 (
Ẽ

∫ t

0

[‖uν
�ν

(s)‖2
V + ‖u(s)‖2

V

]
ds

)1/2

� C(T,M)‖ϕ‖
(
1 + Ẽ‖ς‖4

)1/2
(

Ẽ

∫ t

0

‖uν
�ν

(s) − u(s)‖2
Hds

)1/2

→ 0.

For the term L5, condition 6.1, Cauchy–Schwarz’s inequality and (3.1) yield that

Ẽ|L5| � Ẽ

∫ t

0

∣∣Υν(s, uν
�ν

(s)) − Υ0(s, uν
�ν

(s))
∣∣
L(H0,H)

|fν(s)|0|ϕ|Hds

� |ϕ|H
√
MT Ẽ

(∫ t

0

∣∣Υν(s, uν
�ν

(s)) − Υ0(, uν
�ν

(s))
∣∣2
L(H0,H)

ds
)1/2

https://doi.org/10.1017/prm.2021.67 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2021.67


58 H. Wang

� Cν |ϕ|H
√
MT Ẽ

(∫ t

0

[
1 + |uν

�ν
(s)|2H

]
ds

)1/2

� Cν |ϕ|HC(T,M)
(
1 + Ẽ|ς|2H

)1/2

→ 0 as ν → 0.

For ν ∈ (0, ν0], by condition 2.5 and Hölder’s inequality, we obtain

Ẽ|L6| � Ẽ

∫ t

0

∣∣Υ0(s, uν
�ν

) − Υ0(s, u(s))
∣∣
LQ(H0,H)

|fν(s)|0|ϕ|Hds

� C|ϕ|H Ẽ

(∫ t

0

√
K(s)|uν

�ν
(s) − u(s)|H |fν(s)|0ds

)
.

For any ε > 0, let Aν,ε = {t ∈ [0, T ] : |uν
�ν

(s) − u(s)|H > ε}, then we have

lim
ν→0

λT (Aν,ε) � lim
ν→0

Ẽ
∫ T

0
|uν

�ν
(t) − u(t)|2Hdt
ε2

= 0.

Set M̃ = supν∈(0,ν0] Ẽ(supt∈[0,T ] |uν
�ν

(t)|H) ∨ Ẽ(supt∈[0,T ] |u(t)|H) <∞. Then, one
gets

Ẽ|L6| � 2M̃ |ϕ|H
√∫

Aν,ε

K(t) dt

√∫ T

0

|f(t)|20dt+ ε|ϕ|H
∫

Ac
ν,ε

√
K(t)|f(t)|0dt

� 2M̃ |ϕ|H
√∫

Aν,ε

K(t) dt

√∫ T

0

|f(t)|20dt

+ ε|ϕ|H
(∫ T

0

K(t) dt+
∫ T

0

|f(t)|20dt
)

→ 0 as ν → 0.

For the term L7, we have

Ẽ|L7| = Ẽ

∣∣∣∣
∫ t

0

(
fν(s) − f(s),Υ∗

0(s, u(s))ϕ
)

ds
∣∣∣∣ .

It follows from condition 2.5 that∫ T

0

|Υ∗
0(s, u(s))ϕ|20ds � |ϕ|2H

∫ T

0

K(s)
(
1 + |u(s)|2H

)
ds � C.

We note that fν − f → 0 in L2(0, T ;H0) for the weak topology P̃-a.s. as ν → 0.
Hence,

∫ t

0
(fν(s) − f(s),Υ∗

0(s, u(s))ϕ)ds→ 0 P̃-a.s. as ν → 0. On the other hand,
(4.2) implies that Ẽ(

∫ t

0
(fν(s) − f(s),Υ∗

0(s, u(s))ϕ)ds)2 � C. Applying the Vitali
convergence theorem and (6), we can infer that Ẽ|L7| → 0 as ν → 0.
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Finally, by condition 2.6, lemma 2.9 and the fact that uν
�ν

→ u in L2(0, T ;H)
P̃-a.s. as ν → 0, we get for fixed ω̃ ∈ Ω̃∫ t

0

∫
Y

[(G(s, uν
�ν

(s), y)(g(s, y) − 1), ϕ)

− (G(s, u(s), y)(g(s, y) − 1), ϕ)]ϑ(dy) ds→ 0.

In fact, we have∫ t

0

∫
Y

|(G(s, uν
�ν

(s), y)(g(s, y) − 1), ϕ) − (G(s, u(s), y)(g(s, y) − 1), ϕ)|ϑ(dy) ds

� C

∫ t

0

∫
Y

‖G(s, y)‖1,H |uν
�ν

(s) − u(s)|H |g(s, y) − 1|ϑ(dy) ds

� CM̃

∫
Aν,ε

∫
Y

‖G(s, y)‖1,H |g(s, y) − 1|ϑ(dy) ds

+ ε

∫
Ac

ν,ε

∫
Y

‖G(s, y)‖1,H |g(s, y) − 1|ϑ(dy) ds

� CM̃η̃ + Cε→ 0,

since η̃ and ε are arbitrary. Moreover, condition 2.5, lemmas 2.9 and 2.10 yields
that as ν → 0, it holds∫ t

0

∫
Y

(G(s, uν
�ν

(s), y)(gν(s, y) − 1), ϕ)ϑ(dy) ds

→
∫ t

0

∫
Y

(G(s, uν
�ν

(s), y)(g(s, y) − 1), ϕ)ϑ(dy) ds.

For the completeness, we give the details of the proof. First, from lemma 2.10, we
know that for every ε > 0, there exists a compact set K ⊂ Y so that∫ t

0

∫
Kc

(G(s, uν
�ν

(s), y)(g·(s, y) − 1), ϕ)ϑ(dy) ds

� C sup
∫

[0,T ]×Kc

‖G(s, uν
�ν

(s), y)‖0,H |g·(s, y) − 1)|ϑ(dy) ds � ε.

Here g·(s, y) = gν(s, y) or g(s, y). Then, to prove the above convergence, we need
to prove that for every compact K ⊂ Y, it holds that∫

KT

(G(s, uν
�ν

(s), y)(gν(s, y) − 1), ϕ)ϑ(dy) ds

→
∫

KT

(G(s, uν
�ν

(s), y)(g(s, y) − 1), ϕ)ϑ(dy) ds.

Here KT := [0, T ] × K. If G(s, ·, y) is bounded, then
∫

YT
(G(s, ·, y), ϕ)ϑ(dy)ds <∞,

and we just need to prove that∫
KT

(G(s, uν
�ν

(s), y)gν(s, y), ϕ)ϑ(dy) ds→
∫

KT

(G(s, uν
�ν

(s), y)g(s, y), ϕ)ϑ(dy) ds.
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For this, we introduce θ(·) = ϑ(·∩[0,T ]×K)
ϑ([0,T ]×K) as appendix in [13]. Hence, we know that

θ is a probability measure on [0, T ] × K. By Hölder’s inequality and lemma 2.9, we
have

∫
KT

|(G(s, uν
�ν

(s), y) −G(s, u(s), y), ϕ)|θ(dy) ds

� C
ϑ(K)

ϑ([0, T ] × K)

(∫
KT

‖G(s, u(s), y), ϕ)‖2
1,Hϑ(dy) ds

) 1
2

×
(∫ T

0

‖uν
�ν

(s) − u(s)‖2
Hds

) 1
2

→ 0.

Then, we deduce that (G(s, uν
�ν

(s), y), ϕ) → G(s, u(s), y), ϕ) θ-a.s. Setting ϑ̃ν =
ϑgν

(·∩K)∫
K

gνϑ(dy)ds
and ϑ̃ = ϑg(·∩K)∫

K
gϑ(dy)ds

, we know that ϑ̃ν converges weakly to ϑ̃. By lemma

2.8 in [9] and the fact that
∫

K
gνϑ(dy)ds→ ∫

K
gϑ(dy)ds, we get

∫
KT

(G(s, uν
�ν

(s), y)gν(s, y), ϕ)ϑ(dy) ds→
∫

KT

(G(s, u(s), y)g(s, y), ϕ)ϑ(dy) ds,

and

∫
KT

(G(s, uν
�ν

(s), y)g(s, y), ϕ)ϑ(dy) ds→
∫

KT

(G(s, u(s), y)g(s, y), ϕ)ϑ(dy) ds.

For general G(s, ·, y), it is enough to get

Γ̃ = sup
∫

KT

‖G(s, ·, y)‖0,H1{‖G(s,·,y)‖0,H>M}g·(s, y)ϑ(dy) ds→ 0.

Since ab � eLa + 1
L l(b) for a, b ∈ (0,∞), L ∈ [1,∞), where l(b) = b ln b− b+ 1 (see

remark 3.3 in [13]) and using the definition of SM , we have

|Γ| � sup
∫

KT ∩{‖G‖0,H>M}
eL‖G(s,·,y)‖0,Hϑ(dy) ds+

1
L

sup
ν

∫
YT

l(g·(s, y))ϑ(dy) ds

� sup
∫

KT ∩{‖G‖0,H>M}
eL‖G(s,·,y)‖0,Hϑ(dy) ds+

M

L
.

For any ε > 0, we can choose a sufficiently large L such that M
L < ε and take M0

large enough so that
∫
([0,T ]×K)∩{‖G‖0,H>M} e

L‖G(s,·,y)‖0,Hϑ(dy)ds � ε for M >M0

(see remark 2.8). Since ε is arbitrary, we have Γ̃ → 0 as M → ∞. Hence, for fixed
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ω̃ ∈ Ω̃, combining the above arguments, we arrive at

∫ t

0

∫
Y

(G(s, uν
�ν

(s), y)(gν(s, y) − 1), ϕ)ϑ(dy) ds

→
∫ t

0

∫
Y

(G(s, u(s), y)(g(s, y) − 1), ϕ)ϑ(dy) ds.

Therefore, as ν → 0, for any t ∈ [0, T ] and ϕ ∈ D(Aβ) with β > 1/2

Ẽ

(
(uν

�ν
(t), ϕ) −

∫ t

0

〈−B(u(s), u(s)) + σ0(s, u(s))f(s), ϕ
〉
ds

+
∫ t

0

∫
Y

(G(s, u(s), y)(g(s, y) − 1), ϕ)ϑ(dy) ds

)
→ 0.

On the other hand, taking ϕ ∈ D(Aβ), we deduce that

sup
t∈[0,T ]

|(uν
�ν

(t) − u(t), ϕ)| → 0, P̃ -a.s. as ν → 0.

By (3.6), (4.2) and the Vitali convergence theorem, we can infer that

Ẽ

(
sup

t∈[0,T ]

|(uν
�ν

(t) − u(t), ϕ)|
)

→ 0 as ν → 0.

Then, u is a solution of (4.1). By applying theorem 4.4, we obtain u = u0
�
. It follows

from theorems 4.1 and 4.4 that u0
�

belongs to C([0, T ];H) ∩ L∞(0, T ;V ∩H1,q).
Note that ũνn

�νn
and uνn

�νn
has the same law. Hence, when νn → 0, we can chose

a subsequence {νnk
}k�0 such that u

νnk

�νnk

converges to u0
�

in distribution in X .

Then, uν
�ν

converges in distribution to u0
�
. By applying the facts that uν

�ν
(s) =

Gν
ξ (
√
ν(W (s) + 1√

ν

∫ ·
0
fν(s)ds), νNν−1gν ) and u0

h = G0
ς (
∫ ·
0
f(s)ds, ϑg), we get the

desired result. Therefore, we complete the proof. �

Next, we verify the first part of condition 2.3.

Proposition 6.4. For all q ∈ [2,+∞), we assume that (Υ̃0, G̃) satisfies condition
2.6, 2.7, 2.12, 4.3. For fixed M > 0, deterministic initial data ς ∈ Y and let (f, g) ∈
S̄M be such that (fn, gn) → (f, g) as n→ 0. Then

G0

(∫ ·

0

fn(s) ds, ϑgn

T

)
→ G0

(∫ ·

0

f(s) ds, ϑg
T

)
.
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Proof. Let {un}n�1 be a sequence corresponding to the solutions of (4.1) with
control {(fn, gn)}n�1 in S̄M :

dun(t) +B(un(t), un(t)) dt

= Υ̃0(t, un(t))fn(t) dt+
∫

Y

G̃(t, un(t), y)(gn(t, y) − 1)ϑ(dy) dt

with the initial data un(0) = ς. First, for any p, q > 2 and α < 1
2 , we will prove that

un is bounded in W 1,2(0, T ;Lq) ∩Wα,p(0, T ;Lq) ∩ L2(0, T ;H1,q). In fact, we can
rewrite the above equality as un(t) = ς +W1(t) +W2(t) +W3(t), where

W1(t) = −
∫ t

0

B(un(s), un(s)) ds,W2(t) =
∫ t

0

Υ̃0(s, un(s))fn(s) ds,

W3(t) =
∫ t

0

∫
Y

G̃(s, un(s), y)(gn(s, y) − 1)ϑ(dy) ds.

For the term W1, by using Hölder’s inequality, (A.8), and (4.9), we have

‖W1‖q
W 1,q(0,T ;Lq) � C(T ) sup

t∈[0,T ]

‖un(t)‖2q
H1,q � C(q, T,M) (1 + ‖ς‖ + ‖ curl ς‖q)

2q
.

For the term W2, it follows from Minkowski’s inequality, (A.1), (A.3), condition 2.6
and (4.2) that

‖W2‖2
Lq � C(T, q)

(∫ T

0

‖Υ̃0(t, un(t))fn(t)‖qdt

)2

� C(T, q)

(∫ T

0

‖Υ̃0(t, un(t))fn(t)‖dt
)2

� C(T, q)

(∫ T

0

| curl Υ̃0(t, un(t))|L(H0,H)|fn(t)|0dt
)2

� C(T, q)

(
1 + sup

t∈[0,T ]

‖un(t)‖2

)∫ T

0

K(t) dt
∫ T

0

|f(t)|20dt

� C(T, q,M)
(
1 + ‖ς‖2

)
.

Applying Minkowski’s and Hölder’s inequalities, the Sobolev embedding theorem,
(A.3), conditions 2.6 and 2.12, (4.2) and (A.1), we obtain∫ T

0

‖W2(t)‖p
qdt

�
∫ T

0

∣∣∣ ∫ t

0

‖Υ̃0(s, un(s))fn(s)‖qds
∣∣∣pdt

� C(q)
∫ T

0

∣∣∣ ∫ t

0

‖Υ̃0(s, un(s))fn(s)‖ds
∣∣∣pdt
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� C(q) sup
t∈[0,T ]

|Υ̃0(t, un(t))|pL(H0,V )

∫ T

0

∣∣∣ ∫ t

0

(
K(s) + |fn(s)|20

)
ds

∣∣∣pdt
� C(p, q, T,M)

(
1 + sup

t∈[0,T ]

‖u(t)‖p

)

� C(p, q, T,M) (1 + ‖ς‖p) .

Moreover, for α ∈ (0, 1
2 ), we use conditions 2.6 and 2.12 to get∫ T

0

∫ T

0

‖W2(t) −W2(s)‖p
q

(t− s)1+αp
dsdt

� 2C(q)
∫ T

0

∫ T

0

(t− s)−1−αp
∣∣∣ ∫ t

s

‖Υ̃0(r, un(r))fn(r)‖dr
∣∣∣p dsdt

� 2C(q)C

(
1 + sup

r∈[0,T ]

‖un(r)‖p

)∫ T

0

∫ T

0

(t− s)−1−αp dsdt

� C(q, T,M) (1 + ‖ς‖p) .

For the term W3, by using condition 2.6, 2.7 and lemma 2.9, one deduces that

‖W3(t)‖2
L2(0,T ;Lq)

� C(T, q)
∫ T

0

∥∥∥∥∥
∫ T

0

∫
Y

G̃(t, un(t), y)(gn(t, y) − 1)ϑ(dy) dt

∥∥∥∥∥
2

q

dt

� C
(
1 + sup

t∈[0,T ]

‖un(t)‖2
)∫ T

0

(∫ T

0

∫
Y

‖G̃(t, y)‖0,q(gn(t, y) − 1)ϑ(dy) dt

)2

dt

� C(T, q,M)
(
1 + ‖ς‖2

)
.

Then, for α ∈ (0, 1
2 ), we have∫ T

0

∫ T

0

‖W3(t) −W3(s)‖p
q

(t− s)1+αp
dsdt

� 2C(q)
∫ T

0

∫ t

0

(t− s)−1−αp

×
∣∣∣ ∫ t

s

∫
Y

‖G̃(r, un(r), y)(gn(r, y) − 1)‖ϑ(dy) dr
∣∣∣p dsdt

� 2C(q)C

(
1 + sup

r∈[0,T ]

‖un(r)‖p

)∫ T

0

∫ t

0

(t− s)−1−αp dsdt

� C(q, T ) (1 + ‖ς‖p) .

From the above estimates of W1 −W3, we can infer that {un}n�1 is relatively
compact in C([0, T ];D(A−β)) ∩ L2(0, T ;H) with β > 1/2 by using Aubin-Lions
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Lemma (see also [8, 38]). Then, there exists a subsequence, still denoted {un},
which converges to some element u in C([0, T ];D(A−β)) ∩ L2(0, T ;H). Finally, it
remains to check that u is a solution to the following equations:

du(t) +B(u(t), u(t)) dt = Υ̃0(t, u(t))f(t) dt

+
∫

Y

G̃(t, u(t), y)(g(t, y) − 1)ϑ(dy) dt, u(0) = ς.

Similar to the proof of step 4 in proposition 6.3, we can prove the desired result. �

Proof of theorem 6.2.. According to theorem 2.4, using propositions 6.3 and 6.4,
we can get the desired result of theorem 6.2. Then, we complete the proof. �

Appendix A.

In this section, we first recall the following classical Sobolev embeddings. Let D
be a bounded domain in R2 and satisfy the cone condition. Then, we have (see
e.g. [2, 8]):

‖u‖q � C(q)‖u‖W 1,2 for u ∈W 1,2 and 1 � q < +∞, (A.1)

W 2,1 ⊂ C0
B(D), W 1,q ⊂ C0

B(D) for q ∈ (2,∞). (A.2)

Next, we recall the following result in [35] (see also [8, 12, 58]. For a given q ∈
[2,∞), there exists a constant C such that for every u ∈ H1,q, it holds that

‖∇u‖q � Cq‖ curl u‖q for q ∈ [2,∞). (A.3)

Moreover, for a given q ∈ [2,∞) and r > 0, the operator B has a unique extension
to a continuous bilinear operator from H1,q ×H1,q to H−r,q and for all u, v ∈ H1,q

resp. ϕ,ψ ∈ D(A), it holds that

‖B(u, v)‖H−r,q � C‖u‖H1,q‖v‖H1,q , (A.4)

〈B(u, v), v〉 = 0, (A.5)

〈curl B(ϕ,ϕ), ψ〉 = 〈ϕ · ∇( curl ϕ), ψ〉 = 〈B(ϕ, curl ϕ), ψ〉, (A.6)

〈curl B(u, v), curl v|curl v|q−2〉 = 0 for all u, v ∈ H2,q ∩D(A). (A.7)

Finally, if q > 2, for all u, v ∈ H1,q, it holds that

|B(u, v)|H � C‖u‖H1,q‖v‖H1,2 and ‖B(u, v)‖q � C‖u‖H1,q‖v‖H1,q . (A.8)

Here C > 0 is a constant.
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20 S. Cerrai and M. Röckner. Large deviations for stochastic reaction-diffusion systems with
multiplicative noise and non-Lipschitz reaction terms. Ann. Probab. 32 (2004), 1100–1139.

21 I. Chueshov and A. Millet. Stochastic 2D hydrodynamical type systems: Well posedness
and large deviations. Appl. Math. Optim. 61 (2010), 379–420.

22 X. Chen. The moderate deviations of independent random vectors in a Banach space.
Chinese J. Appl. Probab. Statist. 7 (1991), 24–33.

23 G. Da Prato and J. Zabczyk. Stochastic Equations in Infinite Dimensions (Cambridge
University Press, Cambridge, 1992).

24 A. De Acosta. Moderate deviations and associated Laplace approximations for sums of
independent random vectors. Trans. Amer. Math. Soc. 329 (1992), 357–375.

25 A. Dembo and O. Zeitouni. Large Deviations Techniques and Applications (Springer-Verlag,
New York, 2000).

26 E. Dettweiler. Stochastic integration relative to Brownian motion on a general Banach
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