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THE PERIODIC RADICAL OF GROUP RINGS
AND INCIDENCE ALGEBRAS

M. M. PARMENTER, E. SPIEGEL AND P. N. STEWART

ABSTRACT. Let R be a ring with 1 and P(R) the periodic radical of R. We obtain
necessary and sufficient conditions for P(RG) = 0 when RG is the group ring of an FC

group G and R is commutative. We also obtain a complete description of P
�

I(XÒR)
�

when I(XÒR) is the incidence algebra of a locally finite partially ordered set X and R is
commutative.

An element x in a ring R is called periodic if there exist distinct positive integers m
and n such that xm = xn, while a ring consisting entirely of periodic elements is itself
called periodic. In [2], Bell and Klein showed that periodicity is a radical property in the
sense of Kurosh and Amitsur—specifically, they showed that any ring R has a maximum
periodic ideal P(R), defined as the sum of all periodic ideals, and that RÛP(R) has no
nontrivial periodic ideals. Guo [4] continued the study of this periodic radical by showing
that P(R) is an intersection of suitable prime ideals and, consequently, that the periodic
radical is a special radical (in the sense of Andrunakievic, see Divinsky [3] for details).

In Sections 2 and 3 of this paper, we investigate periodic radicals of group rings
and incidence algebras. In the case of incidence algebras, a complete description is
obtained whenever the coefficient ring is commutative with 1. In the case of a group
ring RG, necessary and sufficient conditions for P(RG) = 0 are obtained whenever R is
commutative with 1 and G is an FC group. The group ring results are similar in spirit to
Theorem 2 of Lawrence [5], where the algebraic radical of RG is studied when R is a
field of characteristic p and G is an FC p0-group.

Section 1 contains general results about P(R) which are needed later on. However, we
feel that some of these results are of interest on their own—for example, Proposition 1.3
is an extension of Theorem 1 of Guo [4] in the case where R has 1.

For all necessary definitions, notation and background information on group rings or
incidence algebras, the reader is referred to [8] and [9]. We assume for the rest of this
paper that R has 1, although some of the observations do apply more generally.

1. Introduction. The following observations are well known (see, for example, Bell
[1]).

LEMMA 1.1. Let x belong to a ring R.
(i) x is periodic if and only if xn is an idempotent for some n ½ 1.
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(ii) If x is periodic and R has no nonzero nilpotent elements, then xn = x for some
n ½ 2.

PROOF. (i) Say xm = xn with d = m � n Ù 0. Then xn = xn+sd for all s ½ 1. Hence
xn = x2n+r for some r ½ 0, in which case xn+r is an idempotent.

(ii) Say xm = xn with m Ù n. Then xn(xm�n � 1) = 0. Hence x(xm�n � 1) is nilpotent,
and the result follows.

The next result describes an important relationship among P(R), the Jacobson radical
J(R), and the upper nil radical U(R).

PROPOSITION 1.2. P(R) \ J(R) = U(R).

PROOF. U(R) � P(R) \ J(R) is immediate. For the converse, let x 2 P(R) \ J(R).
Since x 2 P(R)Ò xn is an idempotent for some n ½ 1 by Lemma 1.1(i). But then xn 2 J(R)
forces xn = 0. Hence P(R) \ J(R) is a nil ideal and must be contained in U(R).

In Section 2, we will need the following sharper (when R has 1) version of Guo’s
Theorem 1 [4].

PROPOSITION 1.3. P(R) =
T
ã Pã, where the intersection is taken over the set of

prime ideals Pã such that RÛPã contains no nontrivial periodic ideals and such that if
an integer z is a non zero divisor in R, then it is still a non zero divisor in RÛPã.

PROOF. Go through exactly the same steps as in Guo’s proof, but in the second
paragraph change the definition of H to the following: H =

n
z
�
bn � bn+1p(b)

�
j n 2 Z+Ò

p(x) 2 Z[x]Ò z a non zero divisor in R
o
.

Let I be an index set and put Ri = R for all i 2 I. In Section 3, we will need to know
the structure of P(A) when A = Πi2IRi, the direct product of copies of R, in the case
where R is commutative. Although such a ring A can be viewed as a very special type of
incidence algebra, we will give a description of P(A) here.

Let x 2 P(R). For y 2 R, define ex(y) to be the smallest positive integer such that
(xy)ex(y) is an idempotent (see Lemma 1.1). Then define ex as follows:

ex =
(

maxfex(y) j y 2 Rg if it exists
1 otherwise.

PROPOSITION 1.4. Assume R is commutative and A = Πi2IRi, with Ri ≤ R for each
i. Let a = (ai)i2I belong to A. Then a 2 P(A) if and only if the following conditions all
hold.

(i) ai 2 P(R) for all i 2 I.
(ii) jfi j eai = 1gj Ú 1.

(iii) There exists an integer N such that whenever eai Ú 1, then eai Ú N.
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PROOF. Suppose a 2 P(A). It is clear that ai 2 P(R) for all i 2 I (if r 2 R, multiply
by (r)i2I). If either (ii) or (iii) fails to hold, then we can find a subset fi1Ò i2Ò   g of I and
elements bi1Ò bi2 Ò    of R such that

eai1
(bi1 ) Ú eai2

(bi2 ) Ú Ð Ð Ð 

For k 2 I, let ck = bij if k = ij for some j and ck = 0 otherwise. Set c = (ci)i2I.
Since ac 2 P(A), Lemma 1.1 says that there must exist a positive integer n such that
(ac)n = (ac)2n. But this forces (aici)n = (aici)2n for all i, contradicting the fact that
eaij

(bij ) Ù n for some j.
The converse follows easily from the simple observation that if xm is an idempotent,

then so is xmn for all n ½ 1.

2. Group rings. The following was proved by Schneider and Weissglass [7].

PROPOSITION 2.1. If U(R) = 0 and jHj is a non zero divisor in R for any finite
subgroup H of a group G, then U(RG) = 0.

Our first result is a periodic radical analogue of Proposition 2.1.

PROPOSITION 2.2. Let R be commutative. If P(R) = 0 and jHj is a non zero divisor
for any finite subgroup H of G, then P(RG) = 0.

PROOF. Assume to the contrary that the conditions hold but 0 6= y 2 P(RG). Choose
a set fPãg of prime ideals of R, following the description in Proposition 1.3, such that
0 =

T
ã Pã. Then

T
ã(PãG) = 0, and hence 0 6= ȳ 2 P

�
(RÛPã)G

�
for some Pã. Since

P(RÛPã) = 0 and jHj is still a non zero divisor in RÛPã for all finite subgroups H of G,
we may assume from now on that R is an integral domain. We also know that U(RG) = 0
by Proposition 2.1, so we can assume that y is not nilpotent. Lemma 1.1 then tells us that
we can assume y is an idempotent.

Choose any 0 6= r 2 R. Since ry 2 P(RG), we must have (ry)n = (ry)2n for some
n ½ 1. Since R is an integral domain and y is an idempotent, this says that rny = y. But
again using the fact that R is an integral domain, we conclude that every nonzero element
of R is a unit of finite order, contradicting P(R) = 0.

In general, the converse to Proposition 2.2 is not true (if R = Z2 and G = haÒ b j a2 =
1Ò ab = b�1ai, then P(RG) = 0 but both conditions fail). However, the following is true
and is easy to prove.

PROPOSITION 2.3. Let R be commutative. If P(RG) = 0, then U(R) = 0 and jHj is a
non zero divisor for any finite normal subgroup H of G.

When G is an FC group, we are able to obtain necessary and sufficient conditions for
P(RG) = 0. Let T(G) denote the torsion subgroup of an FC group G (see [6] for relevant
background information).
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THEOREM 2.4. Assume that R is commutative and that G is an FC group. Then
P(RG) = 0 if and only if jHj is a non zero divisor for any finite subgroup H of G and one
of the following holds.

(i) G = T(G) and P(R) = 0.
(ii) G 6= T(G) and U(R) = 0.

PROOF. First assume P(RG) = 0. Since G is FC, any finite subgroup of G is contained
in a finite normal subgroup of G, so the condition on jHj follows from Proposition 2.3.
Proposition 2.3 also tells us that U(R) = 0, so we may assume from now on that G = T(G).
In this case, assume that P(R) 6= 0 and let

P
ãgg be a nonzero element in P(R)G. Since

U(R) = 0, Lemma 1.1 tells us that for each g there exists ng ½ 2 such that ãng
g = ãg.

Consequently, since zãg is in P(R) for each g and for every integer z ½ 1, we get that ãg

is of finite additive order for each g. It follows that the subring of R generated by fãgg is
a finite ring. Since G = T(G) is an FC group, the subring of RG generated by

P
ãgg must

therefore be finite, and hence periodic. We conclude that P(R)G � P(RG), contradicting
P(RG) = 0.

For the converse, assume that the condition on jHj holds and also that one of (i) and
(ii) holds. Because of Proposition 2.2, we may also assume we are in case (ii), i.e. that
G 6= T(G) and U(R) = 0. The rest of the proof is an adaptation of the argument given for
Theorem 2 in Lawrence [5].

Assume to the contrary that P(RG) 6= 0 and let 0 6= ã = x1s1 + Ð Ð Ð + xnsn be in P(RG),
where the xi 2 R

�
T(G)

�
and the si come from a complete set of coset representatives S

of T(G) in G. Since GÛT(G) is ordered, we may assume that s̄1 Ù s̄2 Ù Ð Ð Ð Ù s̄n, and
we may also choose ã so that s̄1 Ù 1. We will reach a contradiction by showing that
x1 is nilpotent (in fact, this will show that the ideal generated by x1 is nil, contradicting
Proposition 2.1).

Since the subgroup generated by the group elements in the support of x1 lies in a finite
normal subgroup of G, some power of s1, say sk

1, commutes with x1. Let å = ãsk�1
1 . Since

å 2 P(RG), we must have ål = åm for some l Ù m ½ 1. But ål = xl
1skl

1 +
P

yõsõ where
yõ 2 R

�
T(G)

�
and s̄kl

1 Ù s̄õ for all õ, and similarly åm = xm
1 skm

1 +
P

yèsè. Since s̄kl
1 Ù s̄km

1 ,
we can only conclude that xl

1 = 0.

In the first half of the above proof, we needed to show at one point that if U(R) = 0
and G is a torsion FC group, then P(R)G � P(RG). A direct argument was given for this,
using the fact that R is commutative. Alternatively, we could have applied the following
more general result.

PROPOSITION 2.5. Assume R has the property that for any element x 2 R there exists
a positive integer nx such that xnx = x, and let S be a free normalizing extension of R.
Then the ideal generated by P(R) in S is contained in P(S).

PROOF. If k is the number of elements in a normalizing basis of S over R, then S can
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be viewed in a natural way as a subring of the matrix ring Mk(R), with P(R)S contained
in Mk

�
P(R)

�
, so it is enough to prove that Mk

�
P(R)

�
� P

�
Mk(R)

�
.

Let A be in Mk

�
P(R)

�
, and let T be the subring of R generated by the entries of A. Then

T is finite ([10], Theorem 3.4) and hence A, being in the finite ring Mk(T), is periodic.

It is not hard to see that the opposite inclusion to that mentioned in the above proof,
namely P

�
Mk(R)

�
� Mk

�
P(R)

�
, always holds, so we have shown that Mk

�
P(R)

�
=

P
�
Mk(R)

�
whenever R satisfies the given conditions.

A natural question to ask is whether this equality always holds. It turns out, how-
ever, that this is yet another in a long series of ring theoretic statements which, if
correct, would imply the truth of the Koethe conjecture. To see this just observe that
since Mk

�
J(R)

�
= J

�
Mk(R)

�
, Proposition 1.2 tells us that the statement would imply

Mk

�
U(R)

�
= U

�
Mk(R)

�
. But it is well known that this last equality implies the Koethe

conjecture.

3. Incidence algebras. Following the notation in [9], we will let I(XÒR) denote the
incidence algebra of a locally finite partially ordered set X over a ring R. Recall that the
elements of I(XÒR) are functions f from XðX to R such that f (xÒ y) = 0 if x 6� y. Addition
in I(XÒR) is pointwise and multiplication is given by f g(xÒ y) =

P
x�z�y f (xÒ z)g(zÒ y). The

reader is asked to refer to [9] for more details, but it is perhaps worth noting that it is
very possible to have f (xÒ y) 6= 0 for infinitely many ordered pairs (xÒ y).

We will need to recall the following results concerning the Jacobson and upper nil
radicals of I(XÒR).

THEOREM 3.1 ([9], P. 170). If R is commutative, then the Jacobson radical J
�
I(XÒR)

�
is the set of all functions f 2 I(XÒR) such that f (xÒ x) 2 J(R) for each x 2 X.

If R is commutative, a function f 2 I(XÒR) is said to be fully nilpotent ([9], p. 174)
if there is a positive integer n with the property that given any chain of the form
x1 � y1 � x2 � y2 � Ð Ð Ð � xn � yn in X, then Πn

i=1f (xiÒ yi) = 0.

THEOREM 3.2 ([9], PP. 183 AND 185). If R is commutative, then the upper nil radical
U
�
I(XÒR)

�
is precisely the set of fully nilpotent functions in I(XÒR). Moreover the prime

radical of I(XÒR) is equal to U
�
I(XÒR)

�
.

We now proceed to describe P
�
I(XÒR)

�
. First, some new notation is required.

If f 2 I(XÒR), then we can decompose f uniquely as f = fD + fE where fD(xÒ y) = 0 if
x 6= y and fE(xÒ y) = 0 if x = y. Note that fD can be conveniently thought of as an element
of Πx2XR.

DEFINITION 3.3. Let R be commutative. An element f 2 I(XÒR) is called fully
periodic if

(i) fD 2 P(Πx2XR) and
(ii) there exists a positive integer n such that if x1 � y1 Ú x2 � y2 Ú Ð Ð Ð Ú xn � yn in

X, then Πn
i=1f (xiÒ yi) = 0.
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Recall that necessary and sufficient conditions for (i) to hold were obtained in Propo-
sition 1.4. In particular, fully nilpotent elements are fully periodic. It is also clear from
the definition that if f is fully periodic, then fE is fully nilpotent.

Our main result is as follows.

THEOREM 3.4. If R is commutative, then P
�
I(XÒR)

�
is precisely the set of fully

periodic elements of I(XÒR).

PROOF. First note that if we let K denote the set of fully periodic elements of I(XÒR),
then K is an ideal of I(XÒR). Let f 2 K. Condition (i) of Definition 3.3 tells us that
there exist distinct positive integers m, n such that f m � f n = (f m � f n)E. Since f m � f n

is fully periodic, it follows that f m � f n is fully nilpotent and therefore in U
�
I(XÒR)

�
(Theorem 3.2). Hence K̄ � P

�
I(XÒR)ÛU

�
I(XÒR)

��
= P(I(XÒR))

U(I(XÒR)) , and so K � P
�
I(XÒR)

�
.

Conversely, assume f 2 P
�
I(XÒR)

�
is not fully periodic. Since condition (i) of Defi-

nition 3.3 is clearly satisfied, we conclude that for each positive integer n there exists a
chain

xnÒ1 � ynÒ1 Ú xnÒ2 � ynÒ2 Ú Ð Ð Ð Ú xnÒn � ynÒn

such that

Πn
i=1f (xnÒiÒ ynÒi) 6= 0

Local finiteness allows us also to assume that the intervals [xnÒ1Ò ynÒn] and [xmÒ1Ò ymÒm]
are disjoint whenever m 6= n.

Let h 2 I(XÒR) be defined by h(ynÒiÒ xnÒi+1) = 1 for i = 1Ò 2Ò    Ò n � 1 and for all
n ½ 2. Also set h(xÒ y) = 0 in all other cases. Then (f h)D = 0, so Theorem 3.1 and
Proposition 1.2 say that f h 2 J

�
I(XÒR)

�
\ P

�
I(XÒR)

�
= U

�
I(XÒR)

�
, and therefore f h is

fully nilpotent by Theorem 3.2. However, applying f h to the chains

xnÒ1 Ú xnÒ2 � xnÒ2 Ú xnÒ3 � xnÒ3 Ð Ð Ð Ú xnÒn�1 � xnÒn�1 Ú xnÒn

gives a contradiction.
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