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THE PERIODIC RADICAL OF GROUP RINGS
AND INCIDENCE ALGEBRAS

M. M. PARMENTER, E. SPIEGEL AND P. N. STEWART

ABSTRACT. Let Rbearing with 1 and P(R) the periodic radical of R. We obtain
necessary and sufficient conditions for P(RG) = 0 when RG is the group ring of an FC

group G and R is commutative. We also obtain a complete description of P(I X,R)

when I (X, R) is the incidence algebra of alocally finite partially ordered set X and Ris
commutative.

An element x in aring Ris called periodic if there exist distinct positive integersm
and n such that X™ = x", while aring consisting entirely of periodic elements is itself
called periodic. In[2], Bell and Klein showed that periodicity is aradical property in the
sense of Kurosh and Amitsur—specifically, they showed that any ring R has a maximum
periodic ideal P(R), defined as the sum of all periodic ideals, and that R/P(R) has no
nontrivial periodic ideals. Guo [4] continued the study of this periodic radical by showing
that P(R) is an intersection of suitable prime ideals and, consequently, that the periodic
radical is a special radical (in the sense of Andrunakievic, see Divinsky [3] for details).

In Sections 2 and 3 of this paper, we investigate periodic radicals of group rings
and incidence algebras. In the case of incidence algebras, a complete description is
obtained whenever the coefficient ring is commutative with 1. In the case of a group
ring RG, necessary and sufficient conditions for P(RG) = 0 are obtained whenever Ris
commutative with 1 and G is an FC group. The group ring results are similar in spirit to
Theorem 2 of Lawrence [5], where the algebraic radical of RG is studied when Ris a
field of characteristic p and G is an FC p’-group.

Section 1 contains general results about P(R) which are needed later on. However, we
feel that some of these results are of interest on their own—for example, Proposition 1.3
is an extension of Theorem 1 of Guo [4] in the case where R has 1.

For all necessary definitions, notation and background information on group rings or
incidence algebras, the reader is referred to [8] and [9]. We assume for the rest of this
paper that R has 1, although some of the observations do apply more generally.

1. Introduction. Thefollowing observationsarewell known (see, for example, Bell
[1]).

LEMMA 1.1. Letxbelongtoaring R.

() xisperiodicif and only if X" is an idempotent for somen > 1.
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(i) If x is periodic and R has no nonzero nilpotent elements, then X" = x for some
n>2.

PROOF. (i) Say x™ = x" withd = m—n > 0. Then x" = x™ for al s > 1. Hence
X" = x?™" for somer > 0, in which case x™" is an idempotent.

(i) Say x™ =x"with m > n. Then xX"(x™" — 1) = 0. Hencex(x™ " — 1) is nilpotent,
and the result follows. ]

The next result describes an important relationship among P(R), the Jacobson radical
J(R), and the upper nil radical U(R).

ProrPosITION 1.2. P(R)NJ(R) = U(R).

ProoF. U(R) C P(R) N J(R) is immediate. For the converse, let x € P(R) N J(R).
Sincex € P(R), X" isan idempotent for somen > 1 by Lemma1.1(i). But thenx" € J(R)
forcesx" = 0. Hence P(R) N J(R) isanil ideal and must be contained in U(R). ]

In Section 2, we will need the following sharper (when R has 1) version of Guo's
Theorem 1 [4].

ProrPoSITION 1.3. P(R) = ), P« Where the intersection is taken over the set of
prime ideals P, such that R/P,, contains no nontrivial periodic ideals and such that if
aninteger zisanon zero divisor in R, then it is still a non zero divisor in R/P,,.

PrROOF. Go through exactly the same steps as in Guo's proof, but in the second
paragraph change the definition of H to the following: H = {z(b" — b™p(b)) | n € Z".
p(X) € Z[x].zanon zero divisor in R}. .

Let | beanindex setand put R = Rfor all i € 1. In Section 3, we will need to know
the structure of P(A) when A = i R;, the direct product of copies of R, in the case
where R is commutative. Although such aring A can be viewed as avery special type of
incidence algebra, we will give adescription of P(A) here.

Let x € P(R). For y € R, define e(y) to be the smallest positive integer such that
(xy)®W is an idempotent (see Lemma 1.1). Then define e, as follows:

_ | max{efy) | ye R} ifitexists
& = |
00 otherwise.

PropPosITION 1.4. Assume R is commutative and A = Mg R, with R >~ R for each
i. Leta = (&) belongto A. Then a € P(A) if and only if the following conditions all
hold.

() a eP(Rforalliel.

(ii) [{i | ea = o0} < oo.
(iii) Thereexistsaninteger N such that whenever e; < oo, thene; < N.
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PrROOF. Supposea € P(A). Itisclear that & € P(R) for dl i €1 (if r € R, multiply
by (r)ie1). If either (i) or (iii) failsto hold, then we can find a subset {iy. iz, ...} of | and
elements by, by,. . .. of Rsuch that

e, (b,) <es (b,) <.

For k € I, let ¢« = by if k = ij for some j and ¢ = O otherwise. Set ¢ = (Cj)ial-
Since ac € P(A), Lemma 1.1 says that there must exist a positive integer n such that
(ac)” = (ac)®. But this forces (ac;)" = (ac)? for al i, contradicting the fact that
€, (bi;) > nfor somej.

The converse follows easily from the simple observation that if xX™ is an idempotent,
thensoisx™ for al n > 1. n

2. Grouprings. Thefollowing was proved by Schneider and Weissglass[7].

ProposiTION 2.1. If U(R) = 0 and |H| is a non zero divisor in R for any finite
subgroup H of a group G, then U(RG) = 0.

Our first result is a periodic radical analogue of Proposition 2.1.

PROPOSITION 2.2. Let R be commutative. If P(R) = 0 and |H| is a non zero divisor
for any finite subgroup H of G, then P(RG) = 0.

PrOOF. Assumeto the contrary that the conditions hold but 0 # y € P(RG). Choose
aset {P,} of primeideas of R, following the description in Proposition 1.3, such that
0 = M, Pa. Then N,(P,G) = 0, and hence 0 # y € P((R/P,)G) for some P,,. Since
P(R/P,) = 0and |H| isstill anon zero divisor in R/ P, for all finite subgroupsH of G,
we may assumefrom now on that Risan integral domain. We also know that U(RG) = 0
by Proposition 2.1, so we can assumethat y is not nilpotent. Lemma 1.1 then tells usthat
we can assumey is an idempotent.

Choose any 0 # r € R. Since ry € P(RG), we must have (ry)" = (ry)*" for some
n > 1. Since Risanintegral domain and y is an idempotent, this saysthat r"y = y. But
again using thefact that Ris anintegral domain, we concludethat every nonzero element
of Risaunit of finite order, contradicting P(R) = 0. ]

In general, the converseto Proposition 2.2 isnot true (if R=7Z, and G = (a.b | & =
1, ab = b~1a), then P(RG) = 0 but both conditions fail). However, the following is true
and is easy to prove.

PrROPOSITION 2.3. Let R be commutative. If P(RG) = 0, then U(R) =0 and |H| isa
non zero divisor for any finite normal subgroup H of G.

When G is an FC group, we are able to obtain necessary and sufficient conditions for
P(RG) = 0. Let T(G) denote the torsion subgroup of an FC group G (see[6] for relevant
background information).
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THEOREM 2.4. Assume that R is commutative and that G is an FC group. Then
P(RG) = 0if and onlyif |H| isanon zero divisor for any finite subgroup H of G and one
of the following holds.

(i) G=T(G) and P(R) = 0.

(i) GZT(G)and U(R) =0.

PROCF. First assumeP(RG) = 0. SinceG isFC, any finite subgroup of Gis contained
in afinite normal subgroup of G, so the condition on |H| follows from Proposition 2.3.
Proposition 2.3 a sotellsusthat U(R) = 0, sowemay assumefrom now onthat G = T(G).
In this case, assumethat P(R) # 0 and let 3 gg be a nonzero element in P(R)G. Since
U(R) = 0, Lemma 1.1 tells us that for each g there exists ng > 2 such that o’ = .
Consequently, since zag isin P(R) for each g and for every integer z > 1, we get that oy
isof finite additive order for each g. It follows that the subring of R generated by { g} is
afinitering. SinceG = T(G) isan FC group, the subring of RG generated by ¥~ cgg must
therefore be finite, and hence periodic. We concludethat P(R)G C P(RG), contradicting
P(RG) = 0.

For the converse, assume that the condition on |H| holds and also that one of (i) and
(i) holds. Because of Proposition 2.2, we may also assume we are in case (ii), i.e. that
G # T(G) and U(R) = 0. Therest of the proof is an adaptation of the argument given for
Theorem 2 in Lawrence[5].

Assumeto the contrary that P(RG) Z 0Oand let 0 # o = 35 + - - - + XS, bein P(RG),
wherethex; € R(T(G)) and the s, come from a complete set of coset representatives S
of T(G) in G. Since G/ T(G) is ordered, we may assumethat s, > s > --- > §, and
we may also choose o so that s; > 1. We will reach a contradiction by showing that
X1 isnilpotent (in fact, this will show that the ideal generated by x; is nil, contradicting
Proposition 2.1).

Since the subgroup generated by the group elementsin the support of x; liesin afinite
normal subgroup of G, some power of s, say s, commuteswith x;. Let 3 = asi~2. Since
B € P(RG), we must have ' = g™ for somel > m > 1. But ' = X;s +>y,s, where
Yo € R(T(G)) and & > 5, for all 7, and similarly 3™ = X['S™ + 5" y.s;. Since s > ™,
we can only concludethat x; = 0. "

In the first half of the above proof, we needed to show at one point that if U(R) = 0
and Gisatorsion FC group, then P(R)\G C P(RG). A direct argument was given for this,
using the fact that R is commutative. Alternatively, we could have applied the following
more general result.

PrOPOSITION 2.5. Assume R hasthe property that for any element x € Rthere exists
a positive integer ny such that x™ = x, and let S be a free normalizing extension of R.
Then theideal generated by P(R) in Sis contained in P(S).

ProOOF. If kisthe number of elementsin anormalizing basis of Sover R, then Scan
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be viewed in a natural way as a subring of the matrix ring M(R), with P(R)S contained
in M(P(R)), so it is enough to prove that M (P(R)) € P(M(R)).

Let Abein M(P(R)), and let T bethe subring of Rgenerated by the entriesof A. Then
T isfinite ([10], Theorem 3.4) and hence A, being in the finite ring My (T), is periodic. =

It is not hard to see that the opposite inclusion to that mentioned in the above proof,
namely P(M(R)) € M(P(R)), always holds, so we have shown that M(P(R)) =
P(M(R)) whenever R satisfiesthe given conditions.

A natural question to ask is whether this equality aways holds. It turns out, how-
ever, that this is yet another in a long series of ring theoretic statements which, if
correct, would imply the truth of the Koethe conjecture. To see this just observe that
since Mi(J(R)) = J(M(R)), Proposition 1.2 tells us that the statement would imply
Mc(U(R)) = U(Mk(R)). But it is well known that this last equality implies the Koethe
conjecture.

3. Incidencealgebras. Following the notation in [9], we will let | (X, R) denote the
incidence algebra of alocally finite partially ordered set X over aring R. Recall that the
elementsof I (X, R) arefunctionsf from X x Xto Rsuchthat f(x, y) = 0if x £ y. Addition
in (X, R) is pointwise and multiplication is given by fg(X. y) = Zx<z<y f(X. 29(z.y). The
reader is asked to refer to [9] for more details, but it is perhaps worth noting that it is
very possibleto have f(x, y) # O for infinitely many ordered pairs (x. y).

We will need to recall the following results concerning the Jacobson and upper nil
radicalsof 1(X. R).

THEOREM 3.1([9], P. 170). If Riscommutative, then the Jacobsonradical J(1(X. R))
istheset of all functionsf € I(X, R) suchthat f(x, x) € J(R) for eachx € X.

If Ris commutative, afunctionf € I(X,R) is said to be fully nilpotent ([9], p. 174)
if there is a positive integer n with the property that given any chain of the form
Xt <Y1 <X <Y <o <X S yninX then ML, f(x. yi) = 0.

THEOREM 3.2 ([9], PP. 183 AND 185). If Riscommutative, then the upper nil radical
U(I (X, R)) is precisely the set of fully nilpotent functionsin (X, R). Moreover the prime
radical of I(X. R) isequal to U(I(X. R)).

We now proceed to describe P(I (X, R)). First, some new notation is required.

If f € I(X,R), then we can decomposef uniquely asf = fp + fg wherefp(x,y) = O if
x Zyandfz(x,y) = 0if x=y. Note that fp can be conveniently thought of as an element
of MyexR.

DEFINITION 3.3. Let R be commutative. An element f € I(X,R) is called fully
periodic if
(i) fo € P(MyexR) and
(i) there existsapositiveinteger nsuchthatif x; <y; <% <ys <+ <X < ynhin
X, then TT{L,f(xi, yi) = 0.
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Recall that necessary and sufficient conditionsfor (i) to hold were obtained in Propo-
sition 1.4. In particular, fully nilpotent elements are fully periodic. It is also clear from
the definition that if f isfully periodic, then fg is fully nilpotent.

Our main result isas follows.

THEOREM 3.4. If R is commutative, then P(I(X,R)) is precisely the set of fully
periodic elements of I (X, R).

PrOOF. First notethat if welet K denote the set of fully periodic elementsof I (X, R),
then K is an ideal of I(X,R). Let f € K. Condition (i) of Definition 3.3 tells us that
there exist distinct positive integers m, n such that f™ — f" = (f™ — fMge. Since f™ — "
is fully periodic, it follows that f™ — f" is fully nilpotent and therefore in U(I(X. R))

(Theorem 3.2). Hence K C P(I(X. R)/U(I(X. R))) = PUXR) and soK C P(I(X. R).

Conversely, assumef € P(I(X. R)) isnot fully periodic. Since condition (i) of Defi-
nition 3.3 is clearly satisfied, we conclude that for each positive integer n there exists a
chain

Xn,1 S Yn1 < Xp2 S Yn.2 << Xan S Ynn
such that
I_linzlf (Xn,i s yn.i) # 0.

Local finiteness allows us also to assume that the intervals [Xn 1, Ynn] and [Xm1. Ymm]
are disjoint whenever m # n.

Let h € I(X,R) be defined by h(yni.Xnj+1) = 1 fori =1,2,....n— 1 and for al
n > 2. Also set h(x,y) = 0 in all other cases. Then (fh)p = 0, so Theorem 3.1 and
Proposition 1.2 say that fh € J(1(X,R)) NP(I(X,R)) = U(I(X,R)), and therefore fhis
fully nilpotent by Theorem 3.2. However, applying fh to the chains

Xn1 < Xn.2 S Xn2 < Xn3 S Xn3- - < Xnn-1 S Xnn—1 < Xnn
gives a contradiction. ]
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