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Abstract. Oscillation modes of rapidly rotating stars have not yet been cal-
culated with precision, rotational effects being generally approximated by per-
turbation methods. We developed a mathematical formalism and a numerical
method which fully account for the deformation of the star by the centrifugal
force. The method has been first tested in the case of Maclaurin spheroids and
then applied to uniformly rotating polytropic stars.

The ratio of centrifugal and gravity forces being generally small in stars,
the effect of rotation on gravito-acoustic stellar oscillations has been mostly
studied with perturbation methods. Although fully justified in the context of
helioseismology, this approach might not be accurate enough for rapidly rotating
stars. We are developing a mathematical formalism and a numerical method in
order to treat the full problem. As a first step, we considered how the centrifugal
flattening of the star affects the oscillation spectrum, neglecting the action of
the Coriolis and centrifugal forces on the wave motion itself. Note that this
is justified in the high frequency limit. Perturbations are also assumed to be
adiabatic and the Cowling approximation is used.

Except in the particular cases of spheroids and spheres, the eigenvalue prob-
lem associated with acoustic resonances in an arbitrary axially symmetric cavity
is not separable. A 2-D eigenvalue problem must then be solved numerically. As
eigenfrequencies are very sensitive to the cavity shape, we expect a better numer-
ical accuracy if grid points are exactly on the stellar surface. If (r,6,¢) denote
the usual spherical coordinates and, r = S(0), the surface, we choose coordinate
systems (r = (¢, 9), 6, ¢) such that ( = (o describes the surface. The variables
are then expanded on the spherical harmonics and the governing equation are
projected on each spherical harmonic. Following a method described in Rieu-
tord & Valdettaro (1997), the coupled differential equations of the variable { are
discretized on the Gauss-Lobatto grid associated with Chebyshev polynomials
and the resulting algebraic eigenvalue problem is solved.

This method has been used to calculate the acoustic spectra of Maclau-
rin spheroids and rotating self-gravitating polytropes. For uniform spheroids,
the eigenfunctions are separable using spheroidal coordinates and the related
Hamiltonian system is integrable. According to the semi-classical quantization
performed by Arvieu & Ayant (1987), modes can be classified by the num-
ber of zero of the eigenfunctions along each spheroidal coordinates. Moreover,
modes divide in two classes depending on their internal caustics which is either a
spheroid or a hyperboloid. We also noticed that, for 10 percent flatness, the dif-
ference between frequencies calculated by a first order perturbative method and
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Figure 1.  Evolution of the (¢,n) = (1,3) mode as the rotation of a n = 3
polytrope increases; the iso-contours of the vertical kinetic energy have been
chosen to see the low levels near the centre.

the actual frequencies can be much higher than the accuracy of spatial astero-
seismology missions (Ligniéres et al. 2001). The case of rotating self-gravitating
polytropes is not as simple since their surface is not an exact spheroid so that
the eigenfunctions are no longer separable and the related Hamiltonian sys-
tem is non-integrable. This poses a problem for mode classification and so for
the study of the spectrum in general. By progressively increasing the rotation
from the non-rotating case, we used the quantum numbers defined in the non-
rotating case to classify the modes. But, as the flatness affects differentially the
eigenstates, the spectrum structure changes and modes with originally distinct
frequencies tend to reach identical frequencies. When this occurs between modes
having the same absolute value of the azimuthal number and the same parity
with respect to the equator, an avoided crossing takes place, the classification
becoming ambiguous during the crossing. As in the example shown in Figure 1,
the low degree and low order modes that we have studied are of the whispering
gallery type.

We are now investigating the acoustic spectrum structure looking for some
regular behaviours. Such regularities might be used to identify modes in ob-
served spectra of fast rotating stars. Also, the organization of the phase space
of the related Hamiltonian system should inform us about the spectrum structure
and may lead to discover manifestation of quantum chaos in stellar pulsations.
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