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Summary

Cell-free DNA (cf-DNA) is defined as DNA fragments that are released into the body fluids
from apoptosis or necrosis cells, including follicular fluid (FF), which can affect the micro-
environment of the oocyte associated with infertility. We aimed to investigate a relationship
between apoptosis of cumulus cells (CCs) and cf-DNA levels in FF and clinical outcomes of
women undergoing intracytoplasmic sperm injection (ICSI). Therefore, 82 FF samples were
collected, and the corresponding CCs were isolated for ICSI procedures. FF cf-DNA concen-
tration was quantified using ALU-quantitative polymerase chain reaction (PCR), and CCs
DNA fragmentation index (DFI) was evaluated by the terminal deoxynucleotidyl transferase
(TdT) dUTP nick-end labelling (TUNEL) method. We found that cf-DNA and DFI levels were
significantly higher in FF and CCs samples related to the age of women ≥37 years compared
with the age of women< 37 years.Moreover, in older and younger women, FF cf-DNA andCCs
DFI levels were significantly lower when the anti-Müllerian hormone (AMH) level was> 1.1
ng/ml compared with when AMH≤ 1.1 ng/ml. In addition, patients with a low number of
retrieved oocytes≤ 6 had significantly higher levels of CCs DFI and FF cf-DNA than women
with a higher number of retrieved oocytes> 6. Additionally, we observed that higher levels of
cf-DNA and DFI were associated with poor oocyte maturity and poor embryo quality. Finally,
cf-DNA andDFI levels were significantly lower in pregnant women than in non-pregnant ones.
We conclude that DFI and cf-DNA levels in the oocyte microenvironment could have potential
use in evaluating oocyte and embryo developmental competence.

Introduction

During assisted reproductive technology (ART) procedures, oocyte quality is a crucial factor
influencing embryo developmental competence and implantation rate, but the evaluation of
oocyte and embryo quality mainly depends on assessing morphological criteria. This method
has shown limitations in predicting successful pregnancy (Assou et al., 2008; Aydiner et al.,
2010). Developing new analytical techniques and assays to improve these evaluation methods
is necessary. Therefore, and given that the oocyte quality and its microenvironment affect
early embryo development (Krisher, 2004), several studies have focused on investigating new
testing and non-invasive biomarkers based on the analysis of the oocyte microenvironment
components, follicular fluid (FF) and cumulus cells (CCs) to improve the embryo selection proc-
ess (Salehi et al., 2017; Liu et al., 2019) and in vitro fertilization (IVF) clinical outcomes. The
oocytes are surrounded by somatic cells, which are the granulosa cells (GCs) and CCs, and grow
in FF which constitutes the microenvironment within which the cumulus–oocyte complex
matures, and granulosa cells differentiate. FF is produced from plasma and contains factors pro-
duced locally by the follicle cells. The CCs establish a physical connection with the oocyte
through gap junctions. As a consequence of this close molecular dialogue, CCs are thought
to play an important role in oocyte maturation and fertilization, with signalling and regulation
of physiologic function that depends on paracrine and autocrine cytokines in the ovarianmicro-
environment and reproductive hormones in peripheral blood (Hull and Harvey, 2014). It has
been reported that the reduced number of CCs and disruption in the cell–cell communication
might deprive the oocyte of nutrients and survival factors inside the preovulatory follicle
and induce apoptosis in ovulated oocytes (Tripathi et al., 2013). Apoptosis is defined as pro-
grammed cell death for homeostasis and is closely involved in most of the reproductive proc-
esses, including atresia and luteolysis, as well as decidualization and placentation during embryo
implantation (Varras et al., 2012). Moreover, the CC apoptosis could negatively affect live birth
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rates in IVF (Lee et al., 2001). It has been shown that CC apoptosis
correlates with poor oocyte and embryo fragmentation (Bosco
et al., 2015). Alternatively, the apoptotic and/or necrosis cells
are considered the principal source of circulating cell-free DNA
(cf-DNA) (Aucamp et al., 2018). The latter refers to nuclear or
mitochondrial DNA fragments and can be detected in any body
fluid, including FF (Scalici et al., 2014). cf-DNA can be released
passively in the blood from apoptotic or necrotic cells
(Schwarzenbach et al., 2011) and phagocytized by macrophages,
and its level remains low in physiological conditions (Pisetsky
and Fairhurst, 2007), whereas increased levels of cf-DNA have
been associated with many diseases, such as certain types of cancer
and inflammatory conditions and fetal anomalies (Jylhävä et al.,
2013; Cheng et al., 2017). Alternatively, various studies have asso-
ciated elevated levels of cf-DNA in FF with gynaecological and
obstetric disorders. They have considered them non-invasive bio-
markers in the early detection and/or prognosis (Traver et al.,
2014). Preliminary studies have demonstrated that cf-DNA in fol-
licles was found as a biomarker for embryo quality in IVF (Scalici
et al., 2014).

Based on the fact that FF composition affects oocyte develop-
ment and consequently has a strong influence on embryo quality
(Baka and Malamitsi-Puchner, 2006). We believe there is an asso-
ciation between CC apoptosis and oocyte development and that
high cf-DNA levels in FF may lead to the apoptosis of CCs, which
in turn affects the dialogue with the oocyte necessary for its normal
development. Therefore, cf-DNA quantification in FF samples
could represent a non-invasive biomarker approach complemen-
tary to morphological criteria for embryo selection.

In this paper, we report a prospective cohort study to investigate
if apoptosis in CCs and cf-DNA levels in FF samples from women
undergoing intracytoplasmic sperm injection (ICSI) could be
related to their age, AMH level, number of oocytes retrieved,
oocyte maturity, embryo quality and pregnancy outcomes.

Material and methods

Patients’ characteristics

This prospective study included 82 women undergoing ICSI pro-
cedures at the Fertilization Center IRIFIV in Casablanca, Morocco.
Written informed consent was obtained for using FF and CCs sam-
ples during oocyte collection. The women’s age ranged from 23 to
43 years. Infertility duration was between 1 and 5 years. In this
study, female infertility was the cause of the consultation for
28 couples; male factors for 19 (include only oligospermia ‘fewer
than 15 million/ml of semen, or fewer than 39 million in total
ejaculate’ with DFI fewer than 30%), mixed infertility for 12,
and unexplained infertility for 23. Enrolled patients met the follow-
ing inclusion criteria: (i) no endocrine disorders and or history of
ovarian surgery affecting the ovaries or gonadotropin secretion,
and (ii) no current hormone therapy, no metabolic syndrome,
no polycystic ovary syndrome, no pelvic surgery, no ovarian
tumours, nomorbid obesity and no autoimmune disease. The sam-
ples with high DNA fragmentation (>30%) and abnormal mor-
phology and motility (based on WHO criteria) were excluded
from the study.

Ovarian stimulation procedure

All patients were stimulated with antagonist protocol using the
follicle-stimulating hormone (FSH) (Orgalutran 0.25 IU and

Gonal-F). FSH was administered (Gonal-F; Serono Laboratories,
Saint Cloud, France) by daily subcutaneous injection (150–225
IU/day) or (¼ 300 IU/day). The FSH dose was based on the
woman’s age, antral follicle count (AFC) on days 2–3 of the cycles
and AMH concentration was maintained constant for 5 days
and adjusted according to usual follicle growth parameters deter-
mined using ultrasound monitoring. A potent, third-generation
gonadotrophin-releasing hormone (GnRH) antagonist, Ganirelix
(Orgalutran VR, MSD Schering-Plough, France), was injected sub-
cutaneously once daily starting on day 6 of FSH administration. A
subcutaneous injection of human chorionic gonadotrophin (HCG;
chorionic gonadotrophins, Ovitrelle VR, Merck Serono) was per-
formed when triggering criteria reached ≥ 3 follicles of 17 mm.

The oocytematurity rate was calculated based on the ratio of the
number of metaphase II oocytes to the total oocyte number. A
pregnancy test was performed 2 weeks after the embryo transfer,
and pregnancy was confirmed when fetal heart activity was
detected on transvaginal ultrasound 4 weeks after embryo trans-
fer. The oocyte maturation rates were divided into two groups,
group I had an oocyte maturity rate of < 60% and group II con-
tained the FF with an oocyte maturity rate of ≥ 60%. Anti-
Müllerian hormone (AMH) was assessed for each patient on
the third day of the menstrual cycle. Levels of AMH < 1.1 ng/
ml are considered to reflect a reduced ovarian reserve, and levels
≥1.1 ng/ml are normal ovarian reserve (Gnoth et al., 2008).
Three days after oocyte retrieval, embryo quality was graded
from A to D according to the following morphological criteria:
(i) number of blastomeres, (ii) blastomere regularity and (iii)
fragmentation rate. An embryo was considered of top quality
(grades A and B) if 6–8 blastomeres of regular size with< 25% frag-
mentation were observed.

Follicular fluid samples

Collection and preparation
Follicular fluid samples were collected, and the corresponding CCs
were isolated for ICSI procedures. FF samples were obtained from
mature follicles at the time of oocyte retrieval. To avoid any blood
contamination, only clear FF samples were included and purified
using a Ficoll-based protocol (3 ml), as described by Ferrero et al.,
2012, and then immediately stored at −20°C.

DNA extraction and quantification using ALU-qPCR
Free DNA was extracted from the purified FF using the
SaMag™ STD DNA Extraction Kit according to the manufac-
turer’s instructions. The total free DNA was quantified using
qPCR, and ALU 115 primers (Umetani et al., 2006). Each
ALU-qPCR reaction included 2 μl extract of FF and added to
the reaction mixture was 0.25 μl of each ALU 115-5´-CCTGAG-
GTCAGGAGTTCGAG-3´ (forward) and -5´-CCCGAGTAGCTG-
GGATTACA-3´ (reverse) and 5 μl of Luna Universal QPCR Mix
(containing the enzyme Taq DNA polymerase, nucleotides and
free SYBRGreen™ fluorescence intercalator). Cycling conditions
were as follows: 95°C for 60 s, then 40 cycles of 95°C for 15 s,
58°C for 20 s and 60°C for 30 s. All reactions were performed in
duplicate by Sacace biotechnologies. Cell-free DNA concentration
in FF pools was determined using a standard curve obtained by
successive dilutions of genomic DNA (Umetani et al., 2006). A
negative control (without the template) was integrated into each
qPCR plate.
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Cumulus cell samples

Collection and preparation
After oocyte pick-up, the CCs were mechanically released by gently
pipetting with a 100-micron denuding pipette, then put in a buf-
fered culture medium GYNEMED© at pH 7. Cumulus cell samples
were collected in a test tube containing hyaluronidase enzyme
GYNEMED 80 IU/ml with HEPES (20 mM) followed by two cen-
trifugations for 7 min at 800 rpm, and then fixed in 3.7% parafor-
maldehyde for 1 h for apoptosis analysis.

Fluorescence in situ TUNEL assay
The TUNEL technique was performed using the In Situ Cell Death
Detection Kit, Fluorescein (Roche®, Germany), according to the
manufacturer’s instructions. After fixation, CCs were permeabi-
lized on ice in 0.1% Triton X-100 and 0.1% sodium citrate in phos-
phate-buffered saline (PBS), then washed three times in PBS at
room temperature. CCs were then incubated for 45 min at 37°C
in 5 μl of terminal transferase (TdT) enzyme. CCs were observed
under a microscope (EUROStar Germany) equipped with a
reflected light fluorescence attachment in a ×20/0.40 objective
(Figure 1).

Statistical analysis

The results are expressed as the mean ± standard deviation (SD).
Differences between groups were compared using the Mann–
Whitney U-test (Statistical Package for the Social Sciences) soft-
ware; statistical significance was defined as P≤ 0.05.

Results

This study included 82 infertile women under ICSI treatment
whose age was between 23 and 43 years. The outcomes of
age, infertility length, maturity rate, embryos quality, the num-
ber of oocytes, age combined with AMH and pregnancy were
divided into lower and higher groups based on the statistical
analysis data with cell-free DNA (cf-DNA) and DNA fragmen-
tation index (DFI) in oocyte microenvironment composed to FF
and CCs.

As shown in Table 1, FF cf-DNA and CCs DFI levels were
significantly lower in patients whose age was less than 37 years
compared with those whose age was equal to or greater than 37
years (respectively P = 0.05; P = 0.02). While, in older and younger
women, FF cf-DNA and CCs DFI levels when AMH rate was > 1.1
ng/ml were significantly less than in those with AMH ≤ 1.1 ng/ml.

Figure 1. DNA fragmentation detection using the TUNEL
assay in cumulus cells observed under a microscope (EUROStar
Germany) equipped with a reflected light fluorescence attach-
ment in a×20/0.40 objective. Cumulus cells with DNA fragmented
show intense yellow fluorescence (red arrow), whereas normal
cells appear with no colour (green arrow).

Table 1. Relationship of cell-free DNA and DNA fragmentation levels in human follicular fluid and cumulus cells with age and anti-Müllerian hormone (AMH) combined
with age

Age (years) AMH (ng/ml)

< 37; N = 50 ≥ 37; N = 32

< 37 (years) ≥ 37 (years)

> 1.1; N = 33 ≤ 1.1; N = 17 > 1.1; N = 12 ≤ 1.1; N = 20

FF cf-DNA; mean ± SD (pg ×10–5) 0.74 ± 0.15 2.26 ± 1.33 0.37 ± 0.16 1.55 ± 1.49 0.32 ± 0.27 3.42 ± 2.93

P-values 0.05 S 0.005 S 0.04 S

CCs DFI%; mean ± SD 67.90 ± 12.22 73.06 ± 11.15 65.54 ± 11.00 72.31 ± 13.85 67.91 ± 9.60 74.15 ± 12.01

P-values 0.02 S 0.04 S 0.05 S

Values are in mean ± standard deviation (SD).
CCs: cumulus cells; cf-DNA: cell-free DNA; DFI: DNA fragmentation index; FF: follicular fluid.
Statistical significance was defined as P< 0.05; S: significant.
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According to the data presented in Table 2, we observed that
cf-DNA and DFI levels were significantly higher in FF and CCs
patients who had been trying to conceive for more than 5 years
compared with women who had tried only for≤ 5 years
(P = 0.02 and P = 0.01, respectively). In addition, CCs and FF pools
from patients with a low number of retrieved oocytes (≤6) had sig-
nificantly higher levels of DFI and cf-DNA than those fromwomen
with a higher number of retrieved oocytes (>6). Indeed, we also
noted a higher level of cf-DNA and DFI in the group with a matu-
rity rate < 60% compared with the group with a maturity rate≥
60% (P = 0.02 and P = 0.02, respectively)

Furthermore, we noticed significantly higher cf-DNA and DFI
levels in FF and CCs samples related to oocytes that generated
poor-quality embryos (grades C and D) compared with those
related to top embryos (grades A and B). Finally, cf-DNA and
DFI levels were significantly higher in women who had not been
pregnant compared with women who had been pregnant (P = 0.02
and P = 0.02, respectively; Table 2).

Discussion

The oocyte microenvironment is considered to directly affect the
differential oocyte developmental capacity. Therefore, FF compo-
sition strongly influences oocyte quality, its developmental compe-
tence, and subsequent embryo quality (Baka and Malamitsi-
Puchner, 2006). Therefore, many studies have considered them
potential non-invasive biomarkers for oocyte and embryo quality
prediction (Baka and Malamitsi-Puchner, 2006; Borowiecka et al.,
2012). In fact, CCs play a physiological role in antral follicles con-
tributing to metabolic support and maintaining meiotic arrest in
the growing oocyte (Coticchio et al., 2015; Monniaux, 2016).
However, there has been mounting evidence that, under certain
circumstances, the higher incidence of apoptosis in CCs is associ-
ated with an increased rate of empty follicles and fewer oocytes
retrieved, poor oocyte and embryo quality and low conception
and pregnancy rate (Nakahara et al., 1997; Saito et al., 2002).

In the follicular microenvironment, the cf-DNA levels reflect
the proportion of apoptotic and necrotic cell damage (Snyder
et al., 2016). Furthermore, Scalici et al., 2014 showed that ~85%
of FF cf-DNA is derived from cell apoptosis. Alternatively, data
from Traver et al., 2015 have indicated that FF cf-DNA could
be used to predict the clinical pregnancy outcome.

In the current study, we report a prospective cohort study to
assess apoptosis in CCs and cf-DNA levels in FF and relate these
findings to clinical parameters and pregnancy outcomes of women
undergoing ICSI.

Our study has shown that cell-free DNA (cf-DNA) andDFI lev-
els were significantly lower in FF and CCs of patients whose age
was< 37 years compared with those whose age was≥ 37 years.
This finding is consistent with research that has noted increased
levels of CC apoptosis with advanced age (Fujino et al., 1996;
Tesarik et al., 2021). The shortened telomeres in human oocytes
are associated with reproductive age (Kalmbach et al., 2013).
Several studies have been interested in evaluating CC telomere
length as a function of advanced age. They have shown that the
short telomeres fail to protect the chromosomal ends from being
recognized as DNA double-stranded breaks, lead to genomic insta-
bility, and activate DNA repair pathways, which finally generate
cellular senescence or apoptosis (Wellinger, 2014). Moreover, in
our previous study, we showed that 37 years of reproductive ageing
was accompanied by a change in redox status imbalance in FF that
impaired reactive oxygen species (ROS) scavenging efficiency Ta
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(Debbarh et al., 2021). ROS overproduction can damage mito-
chondrial DNA (mtDNA). It can reduce ATP production, which
increases vulnerability to apoptotic signalling (Ventura-Clapier
et al., 2017), therefore causing a decrease in oocyte quality and
interfering with embryonic development (Wang et al., 2021).
The apoptosis of CCs with reproductive ageing may induce unfav-
ourable environments for follicular oocyte development. This
could cause the significant release of cf-DNA related to advanced
age, which results in the deterioration of oocyte quality, thereby
reducing fertilization rates and embryo development (Chaube
et al., 2014).

Age-dependent AMH production in antral follicles starts in
females in the 36th week of gestation. It reaches a peak in puberty,
after which there is a continuous decrease until the AMH serum
level reaches undetectable levels with menopause. Therefore,
AMH is a marker for predicting ovarian reserve (Gnoth et al.,
2008). Our data showed that, in young women, cf-DNA content
in FF and DFI of CCs were significantly lower when AMH was
> 1.1 ng/ml than when the AMH≤ 1.1 ng/ml. These observations
agreed with those of Ebner et al. (2014) providing evidence that
patients with lower AMH levels produce CCs of reduced quality
showing strand breaks in their DNA. This result can be explained
by the ovarian reserve decline via the apoptosis of the GCs respon-
sible for the secretion of AMH, therefore promoting a significant
release of the fragment-free DNA in FF (Jayaprakasan et al., 2010).
Furthermore, patients with low AMH rates and diminished ovar-
ian reserve have shown a subexpression in tropomyosin-related
kinase, thought to mediate a survival signal that maintains viable
CCs (Buyuk et al., 2011), therefore promoting apoptosis in these
patients.

We also noted that cf-DNA and DFI levels were significantly
higher in patients who had been trying to conceive for> 5 years
compared with those who tried only for≤ 5 years. Various studies
have suggested that a long period of infertility is associated with
increased psychological stress in infertile couples (Chiba
et al.,1997; Lynch et al., 2014), which could lead to follicular cell
apoptotic events and the release of cf-DNA (Czamanski-Cohen
et al., 2014).

We also observed that CCs and FF pools from patients with a
low number of retrieved oocytes ≤ 6 had significantly higher levels
of DFI and cf-DNA than those from women with a higher number
of retrieved oocytes > 6. It is largely recognized that, during the
process of ovarian stimulation, the apoptotic pathway can be acti-
vated in many recruited oocytes (Tilly, 1997). The higher the free
DNA in the FF, the greater the apoptotic cascade, resulting in either
apoptotic oocytes or a limited number of oocytes (Dimopoulou
et al., 2014).

Furthermore, in our study, a higher level of FF cf-DNA and CCs
DFI was noted in the group of women with a maturity rate of<
60% compared with those with a maturity rate≥ 60%. This obser-
vation confirms that increased levels of DNA fragmentation of CCs
are associated with a higher number of immature oocytes (Ruvolo
et al., 2007; Bosco et al., 2017). Therefore, we can assume that the
apoptosis of CCs can reduce cAMP levels and steroid hormone
biosynthesis (Chaube et al., 2006), thereby generating hypoes-
trogenic conditions in the ovary and reducing the oocyte quality
(Duffy et al., 2005). Furthermore, the apoptotic cells release not
only nuclear DNA but also mitochondrial DNA, and the oocytes
with good quality have optimal mitochondrial numbers and
adequate ATP levels (Van Blerkom et al., 1995). ATP-generat-
ing capability is critical for the successful maturation of the

cytoplasm and nucleus in preparation for fertilization and com-
pletion of meiosis II (St John et al., 2010). It has been suggested
that FF cf-DNA level is related to both retrieved oocyte quantity
and quality, two key features for embryo production (Traver
et al., 2015).

In addition, we observed that CCs DFI and FF cf-DNA levels
were significantly higher in samples related to oocytes that gen-
erated poor-quality embryos (grades C and D) compared with
those related to top embryos (grades A and B). This result is con-
sistent with other research that has reported a high level of DNA
fragmentation of CCs that have generated poor-quality embryos
(Salehi et al., 2017; Emanuelli et al., 2019). Indeed, the apoptosis
of the GCs reduces the communication between these CCs and
the oocytes, depriving oocytes of nutrients, cell signalling mol-
ecules and survival factors (Eppig et al., 1982) which risks influ-
encing oocyte and embryo quality. Furthermore, apoptosis
is a fundamental process in releasing cell-free DNA (Aucamp
et al., 2018). The origin of cell-free mtDNA might be mitochon-
drial dysfunction. Indeed, the mature (MII) oocytes, fertilized
oocytes, and early cleavage stage embryos depend on the func-
tion of the mitochondrial pool present at ovulation (Spikings
et al., 2006). Consequently, any adverse influence on mitochon-
drial function via accumulation of the mtDNA resulting from
apoptosis will negatively affect the development of the preim-
plantation embryo. Various studies have suggested that a high
level of cf-DNA generates a poor-quality embryo (Scalici
et al., 2014; Traver et al., 2015).

We found that FF cf-DNA and CCs DFI levels were signifi-
cantly higher in women who had not been pregnant compared
with women who had been pregnant. These results are consis-
tent with various reports suggesting that DNA fragments could
come from massive apoptotic events that occur in the ovaries
and that contribute to increasing cf-DNA levels in FF samples
(Czamanski-Cohen et al., 2013).

Furthermore, it has been reported that CCs are important in all
processes of oocyte development, from maturation to embryo
development. The CCs can prevent premature exocytosis of cort-
ical granules and the hardening of the zona pellucida to avoid fail-
ure of sperm–oocyte recognition, allowing fertilization (Van Soom
et al., 2002).

All of the observations suggest that oocytes that develop in a cf-
DNA-rich environment could have accumulated 'negative signals’
causing harmful consequences on embryo quality and develop-
ment, or a lack certain ‘positive signals’ normally transmitted by
viable CCs.

In conclusion, the current study showed that DFI and cell-free
DNA levels in the oocyte microenvironment could have potential
use in assessing and predicting oocyte and embryo quality and
clinical pregnancy outcomes complementary to the morphological
embryo criteria.
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