
J. Austral. Math. Soc. Ser. B 30(1988), 120-126

RADIATING DEMIANSKI-TYPE METRICS
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Abstract

A Demianski-type metric is investigated in connection with the Einstein-Maxwell
fields. Using complex vectorial formalism, some exact solutions of Einstein-
Maxwell field equations for source-free electromagnetic fields plus pure radiation
fields are obtained. The radiating Demianski solution, the Debney-Kerr-Schild
solution and the Brill solution are derived as particular cases.

1. Introduction

Two physically important vacuum solutions of the Einstein equations represent-
ing the gravitational fields of rotating bodies are well-known in the literature.
They are the Kerr [11] solution and the NUT [12] solution. The corresponding
charged versions of these solutions are also available now ([5], [8]).

Vaidya Patel and Bhatt [15] have obtained the non-static generalisation of the
above two vacuum solutions. They have used the field equations Rap = a€a£p,
£a€a = 0, and obtained the radiating Kerr and the radiating NUT solutions.
Bhatt and Patel [2] have extended these non-static solutions to a situation where
there is a source-free electromagnetic field.

Here it should be noted that Bonnor and Vaidya [3], [4] and Patel and Misra
[14] have also obtained some Kerr-Schild type solutions of the Einstein-Maxwell
field equations, corresponding to source-free electromagnetic field plus pure ra-
diation. Demianski [9] has obtained a new vacuum solution of the Einstein field
equations depending on four arbitrary constants, by the method of a complex
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co-ordinates transformation. This solution includes the Kerr solution and NUT
solution as particular cases. Patel [13] has obtained a radiating version of the
Demianski solution corresponding to the field equations Rap = a^a^p; £Q£Q = 0.
The present paper is an extension of the argument of the paper by Patel [13] to
a situation where there is a source-free electromagnetic field. We shall solve the
Einstein-Maxwell field equations

Ra0 = -\Ea0 + Ctatp], {a? = 0, (1)

F a % = 0, (2)

where Fag and a are respectively the electromagnetic field tensor and the density
of flowing radiation. The semicolon indicates covariant differentiation.

The line of attack will be the complex vectorial formalism developed by Cahne,
Debever and Defrise [6]. The detailed account of this formalism has been given
by Israel [10] and we shall use his notation. This formalism is briefly discussed
in the previous paper [1], and so is not repeated here. In this complex vectorial
formalism the field equations (1) and (2) become

R = 0, £„- = -2FPFQ - a6262, (3)

dF+ = 0. (4)

Here R is a scalar curvature, EPg is the Hermitian tensor corresponding to the
trace-free part of the Ricci tensor and F+ is the self-dual part of the electromag-
netic field tensor Fat,. Thus

F+ = FpZ
p (5)

where {Zp} is the basis for the 3-complex space of self-dual bivectors. We use
the conventions of our previous paper [1].

2. Metric and the Maxwell equations

Consider the metric in the form

ds2 = 2(du+gGd/3){dr+hGdP)^2L{du+gGdp)2-M2{{dy2/G2)+G2dl32} (6)

where L and M are functions of coordinates u, y and r, and h, G and g are
functions of y only. For the metric (6), the expressions for components Epq and
the scalar curvature R are given in [1].

Since E^ = 0, it follows from (3) that either (i) Fx = 0 or (ii) F2 = 0 or
(iii) Fi = F2 = 0. The last case is not possible because from (3) we find that F3

also vanishes. In this paper we discuss the case F\ — 0. Therefore we can take

F+ = <t>Z2 + tyZz (7)
where F<i = 4> and F3 = ip are functions of co-ordinates u, y and r.
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Since F\ = 0, it follows from the field equation (3) that Ex\ = 0 and Ey$ = 0.
These two relations involve only one unknown function M. They can be solved
to get

M2 = F2(X2 + Y2), F2 = fY, 2f = (gG)y (8)

with
Xu = {-Y + z)e, Xg = Yu, Xr = -1, Yr = 0. (9)

Here and in what follows 0 and z are defined by the differential relations

gdy = Gd6, hdy = Gdz (10)

and the suffixes denote partial derivatives.
Using F+ given by (7) and M2 given by (8) and (9), the Maxwell equations

(4) give us the following relations for <j> and ip:

r - i{gG)y\ = 0, (11)

hiipr + giipu - Gjpy = 0, (12)

V2M[<j>r + {MT/M)4») - Gxpy = 0, (13)

hi<t>r + gi<j)u - G<py + M(^u + LT)/y/2 + {<p/M)[giMu - (MG)y - hiMT]

+ y/2rl>[M* + LMr + i(Gh)y/M
2 - iL(gG)y/2M2] = 0. (14)

The equations (8) and (11) give us the solution for t/j as

4> = K(X-iY)-2 (15)

where K is a complex function of u and y only. Substituting the value of ip in
(12) we find

Klu = K26, Kie = -K2u, K = K1+ iK2 (16)

where K\ and K2 are real functions of co-ordinates u and y. Using the value of
ip given by (15) and (16) in (11), we find the form of the function <\> as

, gi ( K \ hi K
* V2M\X-iYju

 + J2M' {X-iYy { }

Substituting the value of 0, tp and M in (14) we find that

K = /Y (18)

where / is a complex function of y only. From (15) and (17) we can obtain the
electromagnetic field tensor Fij.

3. Remaining Einstein-Maxwell equations and their solutions

In this case we shall solve the remaining equations of (3) for a comparatively
simple case in which f = Y. The fact that / = Y implies that Y is a function

https://doi.org/10.1017/S0334270000006081 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000006081


[4] Metrics and Einstein-Maxwell fields 123

of y only. From the equation (9) we have

X = au-r, Y = z-ad + b, (19)

where a and b are constants of integration. We shall use the variable a instead
of y, defined by the equation G{y) = sin a. From the results (16) and (18) it is
easy to see that K = constant.

Now the equations which have to be satisfied in this case are

= -2F3F3, E23 = -2F2F3. (20)

Using the expressions for R, E33 and E23 given by [1] in (20), we obtain the
following form of the function 2L:

+ Y2) (21)

where
E* + KK/ilY) = -kO + n, F* = m + ku (22)

and
N* = (o - \)Y -ke + n (23)

Here fc, n and m are constants of integration and N* stands for (hsina)y/2.
The functions g and h can be determined from Y = z — a9 + b and the result
(23).

From (8), (19), (23) and the fact that f = Y and G = sina, one can obtain
the following differential equations for the functions Y and N*:

(1 - p2)Ypp - 2pYp = 2N* - 2aY, (24)

(1 - P
2)N;p - 2pN; = - 2kY + (a - 1)(2JV* - 2a) (25)

where p = cos a.
If we set q > 0 (q = VI - 4fc) then it can be easily seen that the equations

(24) and (25) are equivalent to

(1 - V
2)Z'PV - 2pZ'p + n(n + \)Z' = 0 (26)

(1 - p2)Zpp - 2pZp + /{/ + l)Z = 0 (27)

with

1 - q = n{n + 1), l + q

Z' = N* + (q - 2o + l)Y/2, Z = N* -{q + 2a- l)Y/2. (28)

The solutions for (26) and (27) are, from [7]:

(29)

(30)
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where oi, 02,&i and 62 are constants and Pn(p) and Qn(p) are Legendre functions
of the first and second kind respectively. The series expressions of Pn(p) and
Qn(p) are

+ (n - l)(n + 2)(n - 3)(n - 4)/(5!)p5 - • • • , (31)

Qn(p) = 1 - n(n + l)/(2!)p2 + n(n + l)(n - 2)(n - 3)/(4!)p4 - • • • . (32)

The series for Pn(p) and Qn{p) are convergent for q2 < 1 and are continuous
in the interval (-1,1). Knowing Z and £ ' from (29) and (30), the result (28)
gives us

qY = Z - Z', 2qN* = (q - 1 - 2a)Z + (2a - 1 + q)Z'. (33)

Then the unknown functions g and ft are obtained as

<7sina = — / 2Y sin ada, hs'ma = — I 2N* sin a da. (34)

These integrals can be evaluated in the interval (—1,1). The density of the
flowing radiation is given by

v = -2k/{X2 + Y2). (35)

Now we are ready with the forms of all unknown functions L, M, g, h and G.
The metric (6) then can be written as

ds2 = 2\du- ( f 2Ysinadaj d/?| \dr - ( f 2N* sin a da j d/?|

- (X2 + Y2) {da2 + sin2 a dp2)- 2L \du ( f 2Y sin a do) d/?l (36)

with

X = au-r, E* = -KK/(4Y) + N* + (a

2L = 2a-l + [2E*Y + 2X(-ku + m)]/(X2 + Y2).

The functions Y and iV* are given by (33).
The metric (36) is the charged version of the radiating Demianski-type metric.

However if the electromagnetic field is switched off, we are back to the radiating
Demianski-type metric given by Patel [13] (taking a,i =0) . The relation q > 0 is
equivalent to k > 1/4. If we choose k < 0, it is clear from (35) that the radiation
density is positive.

To obtain the charged version of the Demianski metric, let us choose ai = 0
in (29), and if we choose k = 0 then q = 1 and consequently n = 0 and / = 1 in
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(28). In this case we get the electromagnetic field only, and we have

X = au-r, -Y = bi cosa -at +62coso;log ftan-J ,

g sin a = b\ sin2 a — 2a,2 cos a + 262 cos a — 62 sin2 a log(tan a);

hsina = 2aa,2s\na +(a —l)gsina. (37)

Using the results (37), the metric (36) can be written as

ds2 = 2(du + g sin a d/3) [(2aa2 sin a + g sin a)df3 — df]

- {f2 + y2){da2 + sin2 ad/32)

+ [l-{2mf + 2YE*)/{f2 + Y2)){du + g sin ad/3)2 (38)

with X = au-r = f;E* =
The Brill [5] metric can be obtained from (38) by taking b\ = 62 = 0. Then

the final form of the metric (38) is

ds2 = 2{du + g sin a d/3) [(2aa2 sin a - g sin a)d/? — df]

+ [1 - (2mf-2a2£*)/(f2 + al)]{du + gsmad/3)2

-{f2+al){da2+sin2 ad/32) (39)

with

X = au-r = f, gsina = —2a2cosa, E* = n —

To obtain the Debney, Kerr and Schild [8] metric we put 62 = 0-2 = 0 in (38);
then (38) can be written as

ds2 = 2{du + g sin a dj3) (df + g sin a d/3)

+ [1 - (2mf - 26i cosa£*)/(f2 + b\ cos2 a)]{du + gs\nad/3)2

- (f2 + b\ cos2 a){da2 + sin2 ad/32) (40)

with

X = au — r, g sin a = 61 sin2 a, E* = n — KK/4b\ cos a.

The metric (40) is the Debney-Kerr-Schild metric.
The case f ^Y and the other mathematical details regarding the metric (6)

will be reported elsewhere.
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