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We propose a simple method to identify unstable parameter regions in general inviscid
unidirectional shear flow stability problems. The theory is applicable to a wide range of
basic flows, including those that are non-monotonic. We illustrate the method using a
model of Jupiter’s alternating jet streams based on the quasi-geostrophic equation. The
main result is that the flow is unstable if there is an interval in the flow domain for which
the reciprocal Rossby Mach number (a quantity defined in terms of the zonal flow and
potential vorticity distribution), surpasses a certain threshold or ‘hurdle’. The hurdle height
approaches unity when we can take the hurdle width to greatly exceed the atmosphere’s
intrinsic deformation length, as holds on gas giants. In this case, the Kelvin–Arnol’d
sufficient condition of stability accurately detects instability. These results improve the
theoretical framework for explaining the stable maintenance of Jupiter and Saturn’s jets
over decadal time scales.
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1. Introduction

The stability of inviscid, parallel shear flows has applications in geophysical fluid
dynamics, astrophysics, plasma physics and engineering thermofluid sciences. For the
purely hydrodynamic cases, sufficient conditions for stability can be traced back to the
Rayleigh (1880) inflection-point theorem, the refinement of which by Fjørtoft (1950) was
later revealed to be one of the two conditions derived using Arnol’d’s method (Arnol’d
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1966). The existence of two distinct sufficient conditions was anticipated by Kelvin on
energetic grounds (Thomson 1880), the same year as Rayleigh’s inflection point theorem.
Today they are called the Kelvin–Arnol’d first and second shear-stability theorems (KA-I
and KA-II). KA-I corresponds to the Rayleigh–Fjørtoft condition, whereas KA-II is
relevant in planetary physics.

A breach of sufficient conditions for stability does not necessarily imply instability.
However, in applied fields, these conditions are sometimes treated as if they were sharp
stability criteria, meaning that they accurately detect the stability boundary, contributing
to potential confusion. The reason for this may be that the known necessary conditions for
stability, i.e. conditions guaranteeing the existence of instability, require rather complex
assumptions about the basic flow, U( y). Tollmien (1935) was the first to find a class
of basic flows where the KA-I condition becomes a sufficient and necessary condition
for stability. Many assumptions are required of U in his class, e.g. U is symmetric and
disappears on the wall. Howard (1964) also showed that KA-I becomes a sharp stability
condition when the flow is considered in an unbounded domain and the basic flow is
assumed to be in the class H he defined. Nevertheless the above results are only special
cases and in general KA-I is not sharp. In a bounded domain, it is in fact possible to
construct counterexamples that demonstrate that KA-I is not a necessary condition of
stability (see Tollmien 1935; Drazin & Howard 1966; Drazin & Reid 1981).

The more general the basic flow considered, the more complex the argument required to
derive necessary conditions for stability. Using the Nyquist method, Rosenbluth & Simon
(1964) derived a sharp stability condition using an integral quantity that can be calculated
from the basic flow. The assumption imposed by them on U( y) is that it is monotonic
and has only one inflection point in the domain. The latter assumption was removed
by Balmforth & Morrison (1999), who also used the Nyquist method. Hirota, Morrison
& Hattori (2014) used the variational method under almost the same assumptions and
demonstrated that the definiteness of the quadratic form introduced by Barston (1991) is
a necessary and sufficient condition for stability. In order to derive those conditions, it is
critical to assume the monotonicity of U( y). The special nature of this type of basic flow
is that all neutral modes must possess only one critical layer, where the phase speed of
the mode matches U( y), and, moreover, the position of this layer is fixed at one of the
inflection points.

Demonstrating the existence of a neutral mode first and then perturbing the wavenumber
to find unstable modes has been a common approach since Tollmien (1935) and Howard
(1964). The assumptions employed by Howard (1964) were aimed at enabling the use of
Sturm–Liouville theory for neutral modes (see also Morse & Feshbach 1953), allowing the
assertion of the existence of neutral modes for non-monotonic U. For the bounded flows,
Tung (1981) investigated how much the assumptions about U can be relaxed to demonstrate
the presence of unstable modes around neutral modes. Although his analysis had some
flaws, later, Lin (2003) independently completed a mathematically rigorous theory.

One notable example where the non-monotonicity of the basic velocity field becomes
crucial is the alternating jet streams of Jupiter and Saturn. Their evolution is governed
by the behaviour of Rossby waves, which are analogous to drift waves in plasma
physics and arise when there is a gradient in the potential vorticity (PV), a conserved
fluid-dynamical quantity formed by the combination of conservation of mass, momentum
and thermal energy (Vallis 2017). Following standard practice, this article works within
the quasi-geostrophic framework, which admits Rossby waves but filters out sound waves
and inertia-gravity waves. The non-rotating, non-stratified KA-I result by Rayleigh and
Fjørtoft was followed by extensions to rotating, non-stratified flow (Kuo 1949) and to
rotating, stratified flow (Charney & Stern 1962). The latter result, widely known as the
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Charney–Stern stability criterion, established that a sufficient condition for stability is the
absence of a point where the PV gradient changes sign, which we refer to as PV extremum.
Note that in geophysics, a PV extremum is sometimes referred to as a critical latitude
because the observed phase speed of the mode often matches U( y) there. In this paper,
however, a clear distinction is made between the two.

In terms of the basic state streamfunction, Ψ , defined by U = −dΨ/dy, and the
associated PV, Q, the KA-I and KA-II conditions can be expressed as −dQ/dΨ ≤ 0
and 0 ≤ −dQ/dΨ ≤ l−2, respectively, when perturbations have the largest length scale
l (McIntyre & Shepherd 1987). Non-dimensionalising those conditions for the planetary
atmosphere problem uncovers the role played by the Rossby Mach number defined by

M = κ2
0 (U − α)

Q′ , (1.1)

where κ0 is a constant determined by the length scale of the eddies and α is a suitable
Galilean shift. Dowling (2014, 2020) introduced M based on physical intuition applied to
the net propagation of the fastest Rossby waves relative to the flow, which are the longest
waves. In brief, KA-I and KA-II can be interpreted as establishing that unstable flows
must become ‘subsonic’ (i.e. 0 < M < 1) somewhere, but with respect to Rossby waves
rather than sound waves. Getting KA-I and KA-II to concatenate together via M−1 ≤ 1 is
a compact way to look at the stability condition. The above simple stability condition can
only be applied for basic flows belonging to a certain class where the sign of M−1( y) does
not change for all y. This class, in fact, closely resembles that defined by Howard (1964)
and Lin (2003), and we base our analysis on this ground.

Dowling (1993) discovered that Jupiter’s atmosphere has U and Q′ profiles strongly
correlated. This analysis, based on Voyager observations of the cloud-top vorticity field
(Dowling & Ingersoll 1989), was expanded for Jupiter and Saturn by Read et al. (2006),
Read et al. (2009b) and Read, Dowling & Schubert (2009a), as illustrated in figure 1. The
correlation implies that the M−1( y) profile is almost constant. If the profile is neutrally
stable and the KA-II condition is sharp, this constant must be unity. However, as already
noted, the stability condition based on the reciprocal Rossby Mach number is only a
sufficient condition for stability, and the significance of it regarding necessary conditions
for stability remains not well understood. Moreover, the observed M−1( y) profiles are not
precisely constant, as can be seen from the fact that the correlation in figure 1 is not perfect.
The neutrally stable hypothesis for Jupiter’s jets has been studied in the KA-II context for
more than 30 years, as summarised in the most recent review article by Read (2024), but a
conclusive resolution has yet to be reached.

Particularly intriguing from a planetary atmospheric physics perspective is thus when
KA-II gives sharp stability boundaries. There are interesting numerical results in this
regard: Stamp & Dowling (1993) set up a sinusoidal model basic flow such that M
becomes a constant, and numerically found that the instability disappears at the KA-II
stability boundary, M = 1. Motivated by these empirical results, our mathematical goals
are twofold: (i) to derive simple conditions that guarantee the presence of instability, and
(ii) to determine under what conditions KA-II achieves sharp stability boundaries. We
also attempt to emphasise the simplicity of the theoretical results, because the pursuit
of sharpness of the conditions often makes them difficult to use. For example, from a
practical standpoint, the condition proposed by Balmforth & Morrison (1999) is not easily
applicable due to the requirement of solving a Fredholm integral equation. In addition, to
demonstrate the existence of instability using the quadratic form in Hirota et al. (2014) or
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Figure 1. Example Jupiter profiles with respect to latitude of zonal wind, U (solid line), and PV gradient, Q′ =
dQ/dy = Qy (dashed line), from the southern hemisphere, at 11 hPa pressure. A strong correlation between U
and Qy is evident. Here, dy = R dφ, where y is latitude in metres, φ is latitude in radians (planetographic) and
R(φ) is the local radius of curvature (see (5) in Dowling & Ingersoll 1989). These are a sample of the profiles
produced by Read et al. (2006) using the Cassini Composite Infrared Spectrometer (CIRS). Similar correlations
to this figure are found at other pressure levels.

the Rayleigh quotient in Lin (2003), it is necessary to find a convenient test function, but
no useful recipe is known for non-monotonic basic flows in a finite domain.

The rest of the article is organised as follows. In § 2, the quasi-geostrophic equation is
linearised around the basic flow to yield an eigenvalue problem. Our sufficient condition
for instability, in the form of a hurdle of the M−1( y) profile, is stated in § 3, together with
the KA stability theorem. Basic states are classified in the same section to clarify when
the stability conditions can be used. One of the classes is identified as having Jupiter-style
PV extrema; it yields an almost sharp stability condition that aligns with observations
of the jets on Jupiter and Saturn. In § 4, the stability criteria are illustrated with model
basic flow profiles. Section 5 studies the implications of the theoretical results obtained in
the previous two sections to planetary physics problems. Section 6 contains mathematical
proofs of the article’s theorems. Our strategy is to extend the Rayleigh quotient method,
developed by Howard (1964), Tung (1981) and Lin (2003), to the quasi-geostrophic system
and then utilise it to check the parameter dependence of eigenvalues. Section 7 concludes
with a summary and discussion of the hurdle theorem concept.

2. Formulation of the problem

For readers not familiar with geophysics, we introduce some basic terminology before
presenting our model. Our starting point is quasi-geostrophic conservation of PV
on a beta-plane (Vallis 2017), DQ/Dt = Qt − ΨyQx + ΨxQy = 0, where Ψ is the
streamfunction for the predominantly horizontal flow and the quasi-geostrophic PV
is written as Q = f0 + βy + Ψxx + Ψyy + ( f 2

0 /ρ)((ρ/N
2)Ψz)z. Here, t is time and x, y

and z are spatial coordinates in the zonal (longitudinal), meridional (latitudinal) and
vertical directions, respectively; when these appear as a subscript, the meaning is partial
differentiation. The zonal and meridional wind components can be found as U = −Ψy and
V = Ψx, respectively. In the quasi-geostrophic framework, the static density and squared
buoyancy frequency, ρ and N2, are given functions of z.

The quasi-geostrophic equation can be derived by first applying the shallow layer
approximation to the Navier–Stokes equations and then taking the limit of strong
stratification and rapid rotation. Conversely, the KA-I stability condition can be extended
from the quasi-geostrophic framework to the primitive shallow-water framework (Ripa
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1983). In the primitive context, note that admission of buoyancy (gravity) waves in addition
to Rossby waves complicates the shear stability question; however, the quasi-geostrophic
results continue to be useful (e.g. Stamp & Dowling 1993, figures 3 and 5).

In the above formulation, the terms f0 + βy are the first two terms of the Taylor series of
the planetary vorticity, f , which is also called the Coriolis parameter. The terms Ψxx + Ψyy
are the relative vorticity. The last term involving two vertical derivatives is the stretching
vorticity. If separation of variables can be used in z, the stretching vorticity may be
simplified via the vertical eigenvalue problem

f 2
0
ρ

( ρ
N2Φz

)
z
= −L−2

d Φ, (2.1)

with suitable boundary conditions, in which case there is a different Rossby deformation
length, Ld, for each vertical mode. Usually it is the smallest L−2

d > 0 (the first baroclinic
mode) that is of interest. The corresponding first Rossby deformation length (hereafter
simply denoted as Ld) is the length scale that separates potential-energy dominated
structures, i.e. large-scale pressure highs and lows maintained by the Coriolis effect, from
kinetic-energy dominated structures, i.e. small-scale pressure anomalies that get flattened
by gravity. The physical role played by Ld is analogous to the Larmor radius in plasma
flows (Hasegawa 1985).

2.1. The 1 3
4 model and the eigenvalue problem

Our formulation is based on multi-layer quasi-geostrophic systems (see § 5.3.2 of Vallis
2017). It is common practice in geophysical fluid dynamics to simplify the problem by
studying a multi-layer shallow-water model in which constant-density layers are arranged
in a (hydro)statically stable manner, with low density overlying high density. A two-layer
model of this type, with a fully dynamic weather layer that overlies a layer containing a
deep jet profile, Udeep, was first applied to Jupiter by Ingersoll & Cuong (1981). In this
case, the weather layer PV is written as

Q = f0 + βy + Ψxx + Ψyy − L−2
d (Ψ − Ψdeep), (2.2)

where Ld is the first Rossby deformation length and Ψdeep is the deep-layer streamfunction,
also known as the dynamic topography.

The ratio of the depth of the deep layer to the weather layer is taken to be very large,
so that Ψdeep may be treated as steady (Majda & Wang 2005). We further assume for
simplicity that the deep-layer circulation does not vary with longitude, x. Such variations
can affect the phase-locking of long Rossby waves and thereby can play an indirect role,
however the focus here is on unidirectional shear instability, which is relevant given the
predominantly zonal nature of gas giant circulations. Under those assumptions, Ψdeep
and Udeep = −(Ψdeep)y are functions of y only. The weather layer corresponds to the
first-baroclinic-mode structure of the atmosphere of a gas giant, whereas the barotropic
structure of the gas-giant interior is modelled by Ψdeep. This two-layer configuration has
traditionally been called the ‘11

2 layer’ model, but was recently rebranded as the ‘13
4 layer’

model when Udeep has an alternating jet profile rather than being still (Udeep = 0), to
emphasise the effect on the weather-layer dynamics that the corresponding undulations
of Ψdeep have via stretching vorticity (Flierl, Morrison & VilasurSwaminathan 2019).

In summary, the 1 3
4 layer model is written as conservation of quasi-geostrophic PV

DQ/Dt = 0 for (2.2) which now yields one nonlinear equation in one unknown, Ψ (x, y, t).
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As noted previously, gas giants are observed to be predominantly zonal, hence for the
linear stability analysis the basic state is assumed to be only a function of latitude, y. The x
dimension on a gas giant is periodic, hence the x and t dependencies are represented with
a Fourier component by replacing Ψ (x, y, t) in (2.2) with Ψ ( y)+ δψ( y) exp[ik(x − ct)],
where k and c are the zonal wavenumber and phase speed, respectively, and δ sets the scale
of the amplitude. The y dimension is assumed to span a channel of width L centred on
the origin, y ∈ (−L/2, L/2). When considering Jupiter’s atmosphere, we assume that the
channel is contained inside the northern or southern extratropical domain (i.e. poleward
of the equatorial jet), where quasi-geostrophic theory holds. The meridional boundary
conditions on the perturbations are Dirichlet, ψ(−L/2) = 0 and ψ(L/2) = 0, unless
otherwise stated.

The problem is linearised by restricting to |δ| � 1 and retaining only O(δ) terms.
These standard assumptions yield a linear ordinary differential equation that governs the
meridional structure of small-amplitude perturbations,

ψ ′′ − (k2 + L−2
d )ψ + Q′

U − c
ψ = 0, y ∈ Ω, (2.3)

where Ω = (−L/2, L/2) and a prime denotes ordinary differentiation with respect to y.
Three length scales exist for this problem: the channel width, L, the deformation length, Ld,
and the scale at which the basic flow varies, LU . In what follows, dimensional expressions
are retained when addressing physical phenomena, but in the mathematical case studies
expressions are implicitly non-dimensionalised using the length scale LU (i.e. L and Ld are
L/LU and Ld/LU in the dimensional form, respectively).

In the 1 3
4 layer model, U( y) = −Ψ ′( y) and Q′( y) are linked by

Q′( y) = β − U′′( y)+ L−2
d (U( y)− Udeep( y)). (2.4)

Note that in this model a Galilean transformation in x is applied for both layers so that U,
Udeep are replaced by U − α, Udeep − α, respectively, implying that Q′ is unchanged (note
that this is not the case in the 1 1

2 layer model, where Udeep is related to bottom topography
and, hence, not altered in the Galilean shift). The link (2.4) implies that two of the three
basic flow profiles, U( y) = −Ψ ′( y), Udeep( y) and Q′( y) may be specified independently,
after which the third is fixed. This is important in planetary science, as observing U and
Q′ determines Udeep, providing new insights into the nature of deep jets (Dowling 1995b;
Read et al. 2006, 2009b,a). Furthermore, as we shall see shortly, if there is a neutrality
hypothesis that can potentially be used to constrain the reciprocal Rossby Mach number,
to be defined in (3.3), then U and Q′ can be related. This is useful as U is easily observable,
whereas precise measurements of Q′ require accurate temperature retrievals and, thus, pose
a relatively greater challenge. Physically, the gas giant zonal winds are observed to be quite
stable; hence, in planetary physics, determining neutral Rossby Mach number profiles has
been a focus.

Given a wavenumber, k ≥ 0, and deformation radius, Ld > 0, (2.3) and the boundary
conditions constitute an eigenvalue problem for the complex phase speed, c = cr + ici.
For fixed Ld, if there is a k that yields ci > 0, the flow is unstable. It is easy to confirm that
the complex conjugate of the eigenvalue is also an eigenvalue; however, when |ci| is small,
only the mode with ci > 0 provides a good approximation to the viscous problem.

In the wider context, it is important to note that our mathematical analysis holds for the
quasi-geostrophic equation linearised around a broad range of U( y) and Q′( y) profiles. In
the case of rotation with a non-zero planetary vorticity gradient, β /= 0, the necessary and
sufficient conditions for stability have also been discussed in the context of the analogous

997 A25-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.728


Hurdle theorem applied to alternating jets

problem in plasma physics (e.g. Numata, Ball & Dewar 2007; Zhu, Zhou & Dodin 2018).
In the case of no rotation and no stratification, β = 0 and Ld → ∞, the PV gradient (2.4)
simplifies to Q′ = −U′′ and (2.3) reduces to the original Rayleigh equation, in which case
the PV extrema are inflection points of U( y).

3. The stability conditions

The stability conditions for the eigenvalue problem can be succinctly expressed using the
reciprocal of the Rossby Mach number, as we shall see shortly. In the subsequent two
subsections, we define two classes of basic flows: class (i) and class (ii). This classification
is important as the strength of the stability conditions varies between them. It is convenient
to define the set of the PV extrema YQ = {y ∈ Ω | Q′( y) = 0} and the set of the zonal wind
zeros in a suitable Galilean frame YU,α = {y ∈ Ω | U( y) = α}; the number of elements of
the latter set depends on α. Hereafter, we assume that Q′( y), U( y) are C1. Therefore,
unless (U − c) vanishes somewhere, the eigenfunctions belong to the function space

C2
0 = { f ∈ C2(Ω̄) | f (−L/2) = f (L/2) = 0}, (3.1)

where Ω̄ = [−L/2, L/2]. For neutral modes, the critical latitudes are expressed as YU,c.

3.1. The reciprocal Rossby Mach number
The reciprocal Rossby Mach number, M−1( y), emerges as being central to this work
and there are various ways to motivate it. For example, in § 1 we briefly commented on
the physical interpretation by Dowling (2014, 2020). The following motivation is based
on mathematical consideration applied to the second-order ordinary differential equation
(2.3). If (2.3) possesses a non-trivial solution that meets the boundary conditions, then in
order for the solution to exhibit oscillatory behaviour at some point, the factor Q′/(U − c),
needs to be sufficiently larger than the smallest eigenvalue, κ2

0 , of the eigenvalue problem
formulated by the remaining terms with k = 0:

ϕ′′ − L−2
d ϕ = −κ2ϕ, y ∈ Ω, (3.2)

with ϕ(−L/2) = ϕ(L/2) = 0. This leads to the introduction of the reciprocal Rossby Mach
number,

M−1
α ( y) = 1

κ2
0

Q′

U − α
, (3.3)

where the subscript alpha explicitly shows the dependence on a reference-frame shift of
the zonal wind, α ∈ R. At this stage, α is arbitrary. However, as we will explain later, in the
Jupiter-style basic flows, there is only one optimal choice of α, allowing us to remove the
subscript. Note from (2.4) that Q′ is invariant with respect to α. Both κ2

0 and its associated
eigenfunction, ϕ0, can be computed explicitly:

κ2
0 = π2

L2 + L−2
d , ϕ0 = cos

(π

L
y
)
. (3.4a,b)

3.2. A sufficient condition for stability: class (i) basic flows
The extant sufficient conditions for stability can be expressed in terms of M−1

α as follows.
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THEOREM 3.1. Suppose there exists α such that M−1
α ≤ 0 for all y ∈ Ω , or that 0 ≤

M−1
α ≤ 1 for all y ∈ Ω . Then there is no unstable mode for any k.

Here, the former and latter conditions correspond to KA-I and KA-II, respectively.
Mathematically, the stability conditions can be used in the equality cases, although they
are often omitted in the physics literature (Dowling 2014). Our system is classified as a
non-canonical Hamiltonian system, and the theorem can be shown by Arnol’d’s method;
if a Hamiltonian H and a Poisson bracket {, } satisfy δH := {F,H} = 0 for all functionals
F at a steady solution, then the solution is stable if δ2H := {F, {F,H}} is strictly positive
or negative definite for all F. The method has a wide range of applications and can also
derive nonlinear stability with respect to finite amplitude disturbances. However, if we
restrict ourselves to the linear eigenvalue problem, Theorem 3.1 can be proved by a more
straightforward approach, as shown in Appendix A.

If Q′( y) does not change sign overΩ , i.e. there are no PV extrema, we can always choose
a large enough or small enough α to satisfy KA-I, which recovers the Charney–Stern
condition (KA-I is also known as a sufficient condition for the absence of over-reflections
of Rossby waves; see Lindzen & Tung 1978). In other words, the interesting case occurs
when there is at least one PV extremum. We assume the following properties for both class
(i) and class (ii) basic flows:

(a) the PV gradient Q′( y) changes sign somewhere in Ω;
(b) the zeros of Q′( y), the PV extrema, are isolated;
(c) Q′′( yl) /= 0 for all yl ∈ YQ = {y ∈ Ω | Q′( y) = 0}.

We say a basic flow belongs to class (i) if there exists an α ∈ R such that the following
additional condition is satisfied:

(d) M−1
α ( y) is continuous and one-signed in Ω .

Here R is the range of the zonal flow

R =
(

min
y∈Ω̄

U,max
y∈Ω̄

U

)
. (3.5)

In the definition, ‘a function is one-signed’ means that it is non-negative or non-positive
for all y ∈ Ω . Of course, from Theorem 3.1, the non-positive cases are stable.

Class (i) occurs when the PV extrema and the zeros of U − α coincide, i.e. YQ = YU,α .
For example, this is the case when Q′ in figure 2(a) is paired with U in figure 2(b). On
the other hand, the basic flow is not class (i) when U is replaced by the profile shown in
figures 2(c) or 2(d).

The importance of class (i) can be seen from the fact that it is the case that Theorem 3.1
may be able to show stability, when there is a PV extremum. The KA-I and KA-II stability
conditions can be combined; the flow is stable if

max
y∈Ω̄

M−1 ≤ 1. (3.6)

Here the reciprocal Rossby Mach number is simply written as M−1, as the choice of α is
trivial (see Theorem 6.1 in § 6.1). Note if M−1

α ( y) changes sign (i.e. the basic flow is not
class (i)), mathematically the condition (3.6) cannot guarantee stability.

Class (i) is the geophysically interesting case to which the ‘Jupiter-style’ shear flow
belongs, assuming a suitable Udeep (Dowling 2020; Afanasyev & Dowling 2022). As
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L/2

(a) (b) (c) (d )
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y

Q′
U U U

Figure 2. Classification of basic flow profiles. For all these examples, consider the PV gradient Q′( y) profile
shown in (a). The two PV extrema are indicated by the horizontal red dashed lines. The U( y) profile shown in
(b) is class (i). The U( y) profile shown in (c) is class (ii) but not class (i). The U( y) profile shown in (d) is not
class (ii).
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Figure 3. Comparison of Jupiter profiles of U (solid) and κ−2
0 Qy (dashed), using the same data as in figure 1.

Since L/Ld 	 1 on Jupiter, it follows that κ2
0 ≈ L−2

d , such that the similarity between the two profiles implies
M−1 ≈ 1 with α ≈ 0. This, and further evidence discussed in the text, support the identification of class (i) as
the Jupiter-style class. The deformation length is set here to Ld = cgw/| f0| = 1750 km, using the gravity wave
speed, cgw = 454 m s−1, inferred from the Comet Shoemaker-Levy 9 impact analysis (Hammel et al. 1995) and
the Coriolis parameter, f0, evaluated at the G-fragment impact site, latitude φ0 = −47.5◦ (planetographic); the
figure is centred on φ0.

mentioned in § 1, observations support that M−1 is around unity in Jupiter’s and Saturn’s
atmosphere (Dowling 1993; Read et al. 2006, 2009b,a). This configuration can be inferred
from the most accurate available observational data, as depicted in figure 3. The link
between class (i) and Jupiter’s atmosphere is further discussed in § 5.

3.3. A sufficient condition for instability: class (ii) basic flows
Basic flows that are not class (i) may also be physically important. For example, M−1

α
changes sign on a seasonal basis in Earth’s atmosphere (Du, Dowling & Bradley 2015).
Our main result, Theorem 3.2, which we call the hurdle theorem, can show the existence
of instability for a wider range of basic flows than class (i).

We say a basic flow belongs to class (ii) if there exists an α ∈ R satisfying the following
conditions, called class (ii) conditions:
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L/2

(a) (b) (c)
y

Q′ U U

–L/2

{U(y)|y ∈ Ω–}

Ω–

Ω+

{U(y)|y ∈ Ω+}

Figure 4. The PV gradient profile Q′( y) defines the sets Ω+ = {y ∈ Ω | Q′( y) > 0}, Ω− = {y ∈ Ω | Q′( y) <
0}. For the zonal wind profiles U( y) shown in (b,c), the set D = R\({U( y) | y ∈ Ω+} ∪ {U( y) | y ∈ Ω−}), has
two and one points, respectively (indicated by orange bullets and lines). Furthermore, in the vicinity of these
points, there are no points belonging to the set (3.8). Therefore, both cases are class (ii).

(a) M−1
α ( y) is continuous in Ω;

(b) M−1
α ( yj) is one-signed for all yj ∈ YU,α .

Note that if a basic flow is class (i), then it is class (ii). However, for class (ii) basic flows,
in general there can be more than one α that make M−1

α continuous. In figure 2(a,c), for
α = 0 the lower PV extremum cancels the singularity and M−1

α changes sign at the upper
PV extremum. Alternatively, an appropriately negative α may be chosen such that U − α

vanishes at the upper PV extremum.
It is useful to define the sets {U( y) | y ∈ Ω+} and {U( y) | y ∈ Ω−}, decomposing Ω

into the three parts,Ω+ = {y ∈ Ω | Q′( y) > 0},Ω− = {y ∈ Ω | Q′( y) < 0} and YQ. Then
if the set

D = R\({U( y) | y ∈ Ω+} ∪ {U( y) | y ∈ Ω−}) (3.7)

is non-empty, we may be able to select α from this set. Furthermore, in the vicinity of the
chosen point, there should be no points belonging to

{U( y) | y ∈ Ω+} ∩ {U( y) | y ∈ Ω−} (3.8)

to satisfy the second class (ii) condition.
To visually check whether the basic flow is class (ii), first find Ω+ and Ω− using Q′( y)

and then illustrate {U( y) | y ∈ Ω+} and {U( y) | y ∈ Ω−}. For example, with U( y) shown
in figure 4(b,c), the number of elements in D is one and two, respectively. The condition
that the point at which {U( y) | y ∈ Ω+} and {U( y) | y ∈ Ω−} are separated in the range of
U( y) is not particularly restrictive, such that a wide array of basic flows belongs to class
(ii). In particular, if U( y) is monotonic and there is at least one PV extremum, D should be
non-empty. On the other hand, for the basic flow U( y) shown in figure 2(d), D is empty,
and in fact the basic flow cannot be class (ii).

Our main result is the following ‘hurdle theorem’, which provides a sufficient condition
for instability (and the contrapositive necessary condition for stability). This theorem is
proved in § 6.

THEOREM 3.2. Suppose the basic flow is class (ii). Fix an α so that the class (ii)
conditions are satisfied. The flow is unstable if there is an interval [y1, y2] ⊂ Ω over
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–L/2 L/2
y1

Mα
–1

π2

h ≡ (y2 – y1)2

y2

y

+ Ld
–2

π2

L2 + Ld
–2

Figure 5. Example of an unstable M−1
α ( y) profile. Observe that the blue curve overcomes the hurdle h.

which

h ≡
π2

( y2 − y1)2
+ L−2

d

π2

L2 + L−2
d

< M−1
α (3.9)

is satisfied.

In short, if the reciprocal Rossby Mach number profile surpasses the hurdle h, then the
flow is unstable, as illustrated in figure 5. As can be seen from the proof in § 6, this result is
actually independent of the conditions applied at the boundaries (though it depends on L).

Note that the height of the hurdle, h, is always higher than unity, and depends on the
width of the hurdle. However, if L−2

d 	 π2/( y2 − y1)
2, the hurdle height is almost 1.

Thus, in this limit the condition for the existence of instability asymptotes to

max
y∈Ω̄

M−1
α > 1. (3.10)

This is the contrapositive of (3.6), implying that the KA-II stability condition is almost
sharp if the basic flow is class (i) and Ld is small (recall that for class (ii) the stability
condition (3.6) is not valid).

4. Analysis of model profiles

In this section, we stress-test the hurdle theorem (Theorem 3.2) with model basic flow
profiles. Stamp & Dowling (1993) used the assumption Q′ = aL−2

d U, such that M−1
0

becomes a constant a, together with a sinusoidal zonal wind profile U = cos(2πy/L), and
applied periodicity in both meridional and zonal directions. The assertion of Theorem 3.1
remains the same with Neumann or periodic boundary conditions for (3.2), in which case
(3.4a,b) is replaced by

κ2
0 = L−2

d , ϕ0 = 1. (4.1a,b)

Their basic flow is clearly class (i), and the numerical results are consistent with this
theoretical result. Moreover, their numerical computations suggest that whenever M−1

0 >1,
unstable modes exist for some k, implying that KA-II may give a sharp stability boundary.
Theorem 3.2 validates this numerical result, because when M−1

0 is a constant, we are able
to employ the full-width hurdle with unit height, h = 1.
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In general, the reciprocal Rossby Mach number will not be a constant but rather a
profile that may be ‘supersonic’ in some regions, M−1

α ( y) < 1, and ‘subsonic’ in others,
M−1
α ( y) > 1. To explore the ramifications of this generality to shear instability, we next

develop a model with a two-parameter, variable M−1
α ( y) profile. We use this model to

numerically explore first class (i) profiles in § 4.1, and then class (ii) profiles that are not
class (i) in § 4.2. Section 5 delves into the connection between the model and the stability
of Jupiter’s alternating jet streams. As commented at the end of § 2, our problem covers
the classical Rayleigh equation problem. In Appendix C we analyse one more model flow
to clarify where our analysis stands in the long history of Rayleigh-equation research.

4.1. Class (i)
Consider the quasi-geostrophic problem (2.3). In setting up a model basic flow, we assume
that the PV gradient profile has the form

Q′( y) = κ2
0 {a + (b − a)sech2( y)}U( y), (4.2)

where a, b > 0 are two free parameters. The advantage of using this designed basic flow
is that, regardless of U( y), the reciprocal Rossby Mach number with the choice α = 0
becomes

M−1
0 ( y) = a + (b − a)sech2( y). (4.3)

The case a = b corresponds to the PV profile considered in Stamp & Dowling (1993).
When b > a, the M−1

0 profile has a hump of height b centred at y = 0, and likewise a dip
when b < a.

If U( y) has a zero (i.e. 0 ∈ R), the existence of a PV extremum is guaranteed. Then,
since both a and b are positive, the function (4.3) is one-signed for all y, implying that
the model basic flow belongs to class (i), i.e. ‘Jupiter-style’. The two different zonal wind
profiles

U( y) = sin(2πy), (4.4)

U( y) = tanh( y), (4.5)

are considered. Here, lengths are implicitly scaled by LU . The profile (4.4) may be regarded
as a model for Jupiter’s alternating jets (with LU being the jet peak-to-peak length scale),
whereas (4.5) is a simpler case where there is only one PV extremum.

For class (i) the phase speed of the neutral modes is uniquely determined (§ 6, Theorem
6.1), and for our basic flows it is 0. Thus, setting c = 0 in (2.3), the equation satisfied by
the neutral solutions can be found as

ψ ′′ − (k2 + L−2
d − κ2

0 M−1)ψ = 0, (4.6)

simplifying the notation as M−1 = M−1
0 . This equation and the Dirichlet boundary

condition constitute an eigenvalue problem with λ = −k2 as the eigenvalue. Considering
that the model flows are meant to emulate the atmosphere of Jupiter, contemplating the
case of large L is natural.

When L is large, it is possible to study (4.6) analytically. To see the behaviour of a typical
neutral mode, let us choose the parameter L−2

d (b − a) = 2 that makes the analysis simple.

First, we note that ψ = sechy approximately satisfies (4.6) when k =
√

1 + L−2
d (a − 1),

because κ2
0 ≈ L−2

d . This mode decays exponentially for large |y| as shown by the red
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–1.5

–1.0

–0.5

ψ 0

0.5

1.0

1.5
(a) (b)

–8 –6 –4 –2 0

y k
2 4 6 8

10

L

100

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

Figure 6. (a) The eigenmodes of (4.6) for L = 16, Ld = 1, a = 1.5 and b = 3.5. There are four neutral
modes for this parameter set. The solid curves are the theoretical results assuming large L (k ≈
1.225, 0.6707, 0.5494, 0.2476). The symbols are the numerical results (k ≈ 1.269, 0.7178, 0.6016, 0.3564).
The red curve and the filled circles is the localised mode. The green curves and the open circles are the
oscillatory modes. (b) The neutral k for Ld = 1, a = 1.5 and b = 3.5. The solid curves are the theoretical
results, and the larger L, the better the agreement with the numerical results, shown by the symbols. In the limit
L → ∞, the oscillatory modes (green curves) form a continuous spectrum in the interval k ∈ (0,√0.5). There
is only one localised mode (red curve) at k = √

1.5.

curve in figure 6(a). Such localised modes do not interact with the boundary, and they
are robust to changes in L. However, there are also oscillatory modes that do not show
evanescent behaviour near the boundaries; see the green curves in figure 6(a). Those

curves can also be found theoretically. Let ω =
√

L−2
d (a − 1)− k2 be real. Then ψ =

ω cos(ωy)− (tanh y) sin(ωy) and ψ = ω sin(ωy)+ (tanh y) cos(ωy) satisfy (4.6). If L is
large, the former and latter solutions approximately satisfy the boundary conditions when
tan(ωL/2) = ω and tan(ωL/2) = −ω−1, respectively. There are many ω that meet these

requirements, and whenever k =
√

L−2
d (a − 1)− ω2 is real, (4.6) has a neutral mode that

oscillates near the boundaries. The number of allowed values of k increases with increasing
L, as shown in figure 6(b), and in the limit of L → ∞ the eigenvalues of the oscillatory
modes form a continuous spectrum occupying k ∈ (0, L−1

d
√

a − 1).
For L−2

d (b − a) /= 2, the theoretical analysis is a bit more complicated (Appendix B).
However, the final results are neat and clean as summarised in figure 7(a), which shows the
parameter plane with b − 1 and a − 1 as abscissa and ordinate. Clearly the third quadrant
must be stable as labelled because of the KA stability condition (3.6). Moreover, if L is
large, the first and second quadrants are unstable; the easiest way to see this is to note
that the right-hand side of (6.18) is almost a, because the integral is largely unaffected by
what happens in the hump or dip. The analysis just below (B2) also shows that even if
a is slightly above 1, many oscillatory modes will appear when L is large. The stability
of the flow is in fact non-trivial only in the fourth quadrant of figure 7(a), but somewhat
surprisingly, the stability in this region can be found analytically (see (B4)). In summary,
the theoretical neutral curve for L 	 1 can be described as

a =
{

1, if b ∈ (0, 1),
1 − L−2

d (b − 1)2, if b ≥ 1.
(4.7)
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–
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Decreasing Ld

Figure 7. (a) The theoretical neutral curve (4.7) for Ld = 1. (b) Comparison of the theoretical neutral curve
(green) and the numerical results (black) for Ld = 1. The three numerical neutral curves are computed using
L = 10, 12, 16. (c) Comparison of the numerical neutral curve (black) and the unstable parameter region by
Theorem 3.2 (red shaded). Here L = 16, Ld = 1. The b–a plane is used to make it easier to see the relationship
with figure 10. (d) The theoretical curve (4.7) for L−1

d = 1, 2, 4, 8. The blue shaded region is stable from
Theorem 3.1.

This neutral curve delimits the stable and unstable parameter regions, as shown in
figure 7(a). In the fourth quadrant, only localised modes appear, and this is the reason why
the neutral curve is so simple. Applying the shooting or Chebyshev collocation method
to (4.6), we can calculate the neutral curve for finite L. The computational results indeed
approach the theoretical result (4.7) as L is increased, as shown in figure 7(b).

One of the novel features of Theorem 3.2 is that, without resorting to eigenvalue
computations, applying a simple hurdle yields a useful estimate of the behaviour of
neutral curves. In figure 7(c), the unstable region is depicted, which can be identified by
setting the various hurdles for M−1( y). The numerically calculated neutral curve should
be sandwiched between the KA stable region and the unstable region identified by the
hurdle theory. The latter region has a piecewise smooth boundary because the behaviour
of hurdles in each quadrant is different. The entire first quadrant (with respect to the pivot
point (1,1)) is unstable, as can be found by considering the full width hurdle of height
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unity. In the second quadrant the hurdle giving the best results sits between one of the
boundaries and the dip. The third quadrant is KA stable. In the fourth quadrant, when b is
large enough the hump will be able to hurdle over. For this to be seen, the value of b must
be at least larger than 6 for Ld = 1, meaning that the hurdle estimation does not give sharp
results. However, as noted just below (3.10), the smaller Ld becomes, the more accurate
is the hurdle at detecting instability. In line with this expectation, the theoretical neutral
curve approaches the KA stability boundary with decreasing Ld (figure 7d).

The neutral modes do not depend on U( y), but the unstable modes stemming from
them do. Figure 8 shows the eigenvalue c of (2.3) calculated for the same parameters as
in figure 6(a). For the oscillatory zonal flow (4.4), all instabilities persist down to k =
0 (figure 8a). However, for the monotonic zonal flow (4.5), the first and second neutral
modes, as well as the third and fourth neutral modes, are connected as seen in figure 8(b),
resulting in a qualitatively completely different diagram. For both cases, the growth rate
kci is well below the analytically derived upper bound shown by the dotted curve (see
the supplementary material where Pedlosky’s bound is tightened using the approach by
Deguchi (2021)). The streamfunction at the maximum growth rate is indicated by arrows.
The fastest growing mode inherits the properties of the localised neutral mode and forms
a strong vortex in the centre of the region. The second and subsequent modes spread over
the whole domain, like the oscillatory neutral modes.

Of particular interest from a planetary physics perspective is the fourth quadrant of
figure 7(a). Figure 9 shows the growth rates computed for the two different parameter sets,
(L, Ld, a, b) = (16, 1, 0.5, 2) and (L, Ld, a, b) = (16, 1/8, 0.5, 1.2). The latter setting is
somewhat close to the situation found in Jupiter’s atmosphere, as we shall see in § 5. In the
chosen base flow U = sin(2πy), there exist many critical latitudes, and in § 6 it is shown
that they must coincides with the PV extrema for class (i). For both eigenfunctions shown
in figure 9, one can observe that disturbances are localised near the centre of the domain,
i.e. where the critical latitudes are subsonic (M−1 > 1). Since a = 0.5, other critical
latitudes are supersonic (M−1 < 1). The occurrence of vortices at subsonic latitudes is not
a phenomenon specific to the current model. Mathematically, this expectation arises from
the fact that, according to Sturm’s oscillation theorem, neutral modes exhibit oscillatory
behaviour only when M−1 well exceeds unity. When Ld is small, as soon as the hump of
M−1 exceeds 1, an unstable mode occurs, as noted at the end of § 3.3. This is why the
eigenfunction for the Ld = 1/8 case shown in figure 9 has smaller vortices.

4.2. Class (ii)
Interesting things happen when considering negative b in (4.2). There is no longer any
guarantee that the basic flow is class (i), as the sign of the M−1

0 profile (4.3) may change.
The neutral curve does depend on the choice of U, because the phase speed of neutral
modes is not always zero. Here we mainly consider the second zonal wind profile U( y) =
tanh( y), fixing L = 16, Ld = 1. When a and b are positive, the neutral curve is obtained as
shown in figure 7(c). What happens if the neutral curve is extended to the region where b
is negative? For example, consider the situation when a is smaller than 1 and b is negative;
the results look like figure 10. The emergence of the unstable region is due to the modes
with non-zero phase speed, because clearly M−1

0 will be everywhere smaller than 1.
It is easy to see that the PV extrema are zeros of U( y) and {a + (b − a)sech2( y)}. For

example, consider the case a = 0.5, b = −0.5. The zeros of {a + (b − a)sech2( y)} are
at ±0.8814, and thus the PV extrema are YQ = {−0.8814, 0, 0.8814}. One of these three
points must coincide with the zero of the U( y)− α, for M−1

α to be continuous. Thus, there
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Figure 8. The black crosses are numerical solutions of the eigenvalue problem (2.3) with the PV gradient
profile (4.2) and the parameters L = 16, Ld = 1, a = 1.5 and b = 3.5: (a) U = sin(2πy); (b) U = tanh( y).
The magenta squares are the neutral modes computed in figure 6(a). The dotted curves indicate the analytic
upper bound of ci shown in the supplementary material available at https://doi.org/10.1017/jfm.2024.728. The
panels on the right depict contour plots of the streamfunction ψ( y) eikx + ψ∗( y) e−ikx at the wavenumber that
maximises the growth rate kci. The sign of the contours is distinguished by red and blue.

are neutral modes with cr = 0 and cr ≈ ±U(0.8814) ≈ ±0.7071. If α = 0 is chosen, the
M−1
α profile is everywhere less than unity as shown by the red curve in figure 11(a). Hence,

the flow is stable for steady modes. However, when α = 0.7071 is used, M−1
α exceeds 1

significantly, as indicated by the blue curve in figure 11(b).
Travelling-wave-type neutral modes with a phase speed of 0.7071 indeed appear for the

parameter choice a = 0.5, b = −0.5 (figure 11b). For α = 0.7071, class (ii) conditions are
satisfied. This follows from the monotonicity of U( y); see the comments below (3.8). As
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Figure 9. Stability analysis in the fourth quadrant of figure 7(a), with U = sin(2πy). Red plus symbols:
L = 16, Ld = 1, a = 0.5 and b = 2. Green cross symbols: L = 16, Ld = 1/8, a = 0.5 and b = 1.2. In both
cases, the most unstable eigenfunctions are indicated by arrows. The red and blue curves are contours of the
streamfunction; see figure 8 caption.
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Figure 10. The stability of the basic flow U = tanh( y)with the parameters L = 16, Ld = 1. The black curve is
the numerically obtained neutral curve. The red shaded area is the unstable parameter region found by Theorem
3.2.

would be expected from these facts, unstable modes appear when k is reduced from the
neutral values (figure 12). The eigenfunctions with the largest growth rates are similar to
the neutral mode, with vortices concentrated in regions where M−1

α exceeds 1.
The fact that the neutral curve for b < 0 depends on U suggests that the situation is

much more complicated when the basic flow is not of class (i). For example, if the basic
flow U( y) = sin(2πy) is used, the only reference shift α that would make M−1

α continuous
is 0, when a > 0, b < 0, and L is large. However, this does not mean that considering only
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Figure 11. (a) Reciprocal Mach number profile for Ld = 1, L = 16, a = 0.5 and b = −0.5. The basic flow
U = tanh( y) is used. (b) The numerically obtained neutral modes at the same parameters. They have the phase
speed cr ≈ 0.7071.
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Figure 12. The same plots as figure 8 but for Ld = 1, L = 16, a = 0.5 and b = −0.5. The basic flow
U = tanh( y) is used. The neutral solutions, indicated by the magenta squares, are identical to those shown
in figure 11(b). The red and blue curves are contours of the streamfunction; see figure 8 caption.

steady modes is sufficient. The reason for this is that when {U( y)|y ∈ Ω−} ∩ {U( y) | y ∈
Ω+} is non-empty, there may be a singular neutral mode (see the remark below (6.4)).
Such singular modes are beyond the scope of this paper and, in fact, there is no need to
consider them in the planetary context as long as we assume that Jupiter’s atmosphere is
of class (i).
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Hurdle theorem applied to alternating jets

5. Implications of the model results to planetary atmospheres

In this section, we summarise implications of our model analysis in geophysics problems,
including deep jets on Jupiter and Saturn and the inference of Saturn’s rotation period
(which is otherwise elusive because its magnetic field is not tilted). We then motivate
non-dimensional, idealised cases and show the deep jets associated with neutral stability
are reasonable, even with slightly varying reciprocal Rossby Mach number. We end the
section with a few comments about weakly unstable scenarios for the neighbourhoods
of prominent features such as Jupiter’s Great Red Spot and Saturn’s Polar Hexagon and
Ribbon.

Before delving into the analysis of the model introduced in the last section, we
emphasise that our purpose here is not to faithfully reproduce the details of Jupiter’s
atmospheric phenomena, but rather to elucidate key physical mechanisms. It is understood
that the beta-plane 1 3

4 quasi-geostrophic model is derived from a series of simplifications,
for example, the actual atmospheres of Jupiter and Saturn have continuous vertical
structure. In addition, the value of Ld may vary with latitude and we do not have good
estimates in hand outside the vicinity of the latitude range shown in figure 3. The
assumption that Jupiter’s atmosphere falls under class (i) is inferred from observations,
with the understanding that the actual planet is dynamically active, with long periods
of stability punctuated by episodic storm outbreaks. Remote-sensing observations are
accompanied by noise, and when substituting the figure 1 data into (3.3), it is evident
that, regardless of how we choose the zonal wind shift, M−1

α ( y) cannot be made into a
continuous function.

Nevertheless, there is a consensus among multiple independent research groups that the
observed Q′( y) and U( y) tend to have the same sign on Jupiter and Saturn (Dowling 1993;
Read et al. 2006, 2009b; Marcus & Shetty 2011), and when this property is ideal, the basic
flow falls under class (i). As a minimum check to test that the link between the stability
theory and the correlation seen in figure 3 is robust with respect to noise, the following
numerical experiment was performed. Given the base flows, regardless of their class, the
value of Ld that makes the flow configuration neutral can be computed by the eigenvalue
problem (2.3). Therefore, if κ0 is computed from that Ld, we can compare κ−2

0 Q′ and U
to check their correlation. We spline interpolated U and Qy in the latitude range shown
in figure 3, corresponding to L ≈ 10 860 km. The numerical eigenvalue problem (2.3)
yields κ−1

0 ≈ 1700 km, which is reasonably close to the value κ−1
0 = 1750 km used in

figure 3. Moreover, the neutral wave has a relatively small phase speed cr ≈ 6 m s−1. As
a consequence, plotting (U − cr) and κ−2

0 Q′ with the computed κ−1
0 , cr gives the same

level of correlation as in figure 3. This result is robust with respect to the artificially set
boundary conditions in the computation.

On Jupiter, the jet wavelength is LU ≈ 2πLd, as can be seen from figure 1 using the fact
that 1◦ latitude is approximately 1200 km; a similar relationship holds for Saturn. Based
on this observation, we choose Ld = 1/2π in the non-dimensional model, employing the
profiles (4.2) and (4.4). The black curve in figure 13 represents the numerically obtained
neutral curve; as expected, it lies between the stable and unstable regions obtained by
Theorems 3.1 and 3.2. The hurdle theorem result now better approximates the neutral curve
than figure 7(c). In addition, figure 13 clearly demonstrates that even a slight deviation
from the KA-II stability boundary may result in flow instability. As discussed in § 1, the
introduction of the Rossby Mach number was motivated by the physical interpretation of
KA-II. Our discovery that KA-II is relatively sharp under Jupiter’s atmospheric conditions
reinforces the validity of that physical mechanism.
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Figure 13. The black curve is the neutral curve for Ld = 1/2π, L = 16. The basic flow profiles (4.2) and (4.4)
are used. The blue shaded region is stable from Theorem 3.1. The red shaded region is unstable from Theorem
3.2.

Stabilising alternating jets with PV extrema in a gas-giant weather layer, or in an
analogous 1 3

4 layer system, via KA-II requires that there be alternating jets in the deep
layer. Such deep jets must in turn be stabilised by some physical process other than KA-II.
The key there appears to be that the deep jets operate in a quite different geometry: that
of a rapidly rotating deep sphere instead of a shallow spherical shell, as investigated by
Ingersoll & Pollard (1982). Regardless of the physics behind the synchronisation between
the weather and deep jets, it is a fortunate circumstance for geophysicists because in
practice, to detect stable PV extrema in a weather layer is to infer deep jets, which is
how Jupiter’s deep jets were first discovered, decades before the Juno gravity mission
confirmed their existence (Dowling & Ingersoll 1989; Dowling 1993, 1995b). Our take is
that KA-II provides the weather layer jets with the flexibility to adjust to alternating deep
jets, and this represents a meaningful step forward in understanding the overall stability of
the atmosphere-interior system.

Assuming that Jupiter’s atmosphere favours neutral states, the deep layer profile
Udeep( y) can be calculated from (2.4). In the previous studies, zonal-wind pairs (weather
layer and deep layer) appropriate for the 1 3

4 layer model applied to Jupiter were calculated
from Voyager winds and vorticity data and plotted in Dowling & Ingersoll (1989)
and Dowling (1995b, 2020). The deep-layer westward jets tend to be similar to the
cloud-top westward jets, whereas the deep-layer eastward jets tend to be stronger than
the weather-layer eastward jets by about 50 % (Dowling 1995b). For our model where
Jupiter’s weather-layer profile is idealised as a sinusoid, U( y) = sin(2πy), if we take
M−1 = 1 (i.e. a = b = 1) with κ−1

0 ≈ Ld, (2.4) yields the dimensional deep jet profile
Udeep( y) = U( y)+ βL2

d/U0, such that the deep-layer profile is the same sinusoid but
with a positive shift. The size of this shift can be estimated for Jupiter assuming β ≈
3.5 × 10−12 m−1 s−1, Ld ≈ 1750 km and a stratospheric wind amplitude, U0 ≈ 25 m s−1,
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Figure 14. Idealised, non-dimensional zonal wind profiles relevant to Jupiter. Note that the domain of latitudes
shown is an enlarged view near the origin of the full domain, and L/Ld 	 1 is assumed such that κ−2

0 ≈ L2
d . (a)

The solid black curve is U( y) = sin(2πy). The blue curve is Udeep( y) corresponding M−1 = 1, which amounts
to a positive shift by β = 0.3. The dashed black curve is the profile M−1( y) = a + (b − a)sech2( y), with
(a, b) = (0.6, 1.1), which is a point on the neutral curve shown in figure 13; the red curve is the corresponding
Udeep( y). (b) Profiles of U (solid) and κ−2

0 Qy (dashed) corresponding to the dashed M−1 and red Udeep profiles
in (a); compare with figure 3.

as in figure 3, which yields βL2
d/U0 ≈ 10.7/25 ≈ 0.4. Alternatively, the 1 3

4 layer model
applied to Jupiter’s Great Red Spot, which is centred closer to the equator at latitude −23◦,
would typically use Ld ≈ 2000 km and a tropospheric wind amplitude, U0 ≈ 50 m s−1,
which yields βL2

d/U0 ≈ 14/50 ≈ 0.3; both are consistent with Voyager results (Dowling
1995a). The non-dimensionalised Udeep( y) with βL2

d/U0 = 0.3 is depicted in figure 14(a)
by the blue curve. We can also calculate M−1 using other points from the neutral curve,
for example, the neutral point (a, b) = (0.6, 1.1) yields the Udeep( y) profile represented by
the red curve in figure 14(a). The family of neutral solutions provides helpful information
about expected variations in observations.

Recall that for class (i), the choice of α is unique. Furthermore, on the neutral curve,
the value of α must equal to the phase speed of the neutral modes (to be shown in
Theorem 6.2), consistent to the observation by Read et al. (2009a) that long-wavelength
Rossby waves in Saturn have the same 10h34m rotation period. Consequently, for those
neutral modes, the PV extrema and critical latitudes must coincide. As seen in the
previous section, when Ld is small, the middle critical latitude in the model is nearly
sonic (M−1 = 1), when the flow is nearly neutral. This situation is consistent with the
observations by Read et al. (2006, 2009b) where it is revealed that Jupiter and Saturn
each have at least a dozen stable or marginally stable (i.e. supersonic or sonic, M−1 � 1)
PV extrema, consistent with the fact that the alternating jets on those planets persist on a
decadal time scale (Porco 2003).

In addition, as first spotted by Dowling & Ingersoll (1989) and later confirmed by
Marcus & Shetty (2011), Jupiter’s Great Red Spot straddles a PV extremum. Numerical
experiments (e.g. Dowling 1993) suggest that vortices appear at subsonic (M < 1)
latitudes, as theoretically expected for nearly neutral unstable modes. As seen in figure 1,
the nature of the correlation of U and Qy differs between the latitude ranges of −30◦ to
−20◦ and −50◦ to −30◦, and the former range is where features such as the Great Red
Spot and Oval BA are observed. As a useful exercise, one can plot M−1( y) profile using
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the data shown in figure 1 and Ld estimated in figure 3, to demonstrate the presence of
a hurdle that aligns with the range of latitudes −30 to −20 degrees, and that at other
latitudes, M−1( y) is characterised by several humps that peak close to unity.

Further to this point, Dowling (2020) pointed out that Saturn has two different,
persistently wavy jets sandwiched between straight jets in its northern hemisphere, the
Ribbon and the Polar Hexagon, and offered the hypothesis that these are examples of
‘subsonic’ regions sandwiched between ‘sonic’ or ‘supersonic’ regions. Although the
temperature fields necessary to empirically determine the stretching vorticity, and hence
the PV field, at and below Saturn’s cloud tops are difficult to obtain with the data in hand,
the morphology of these wavy jets is well established, which suggests that an analysis
couched in terms of M−1( y) along the lines outlined here would be instructive.

6. Mathematical proofs

Our strategy to show sufficient conditions for instability (i.e. necessary conditions for
stability) is similar to the two-step procedure in Howard (1964) and Lin (2003): first prove
the conditions that guarantee the existence of a neutral solution, and then establish the
existence of unstable modes in its neighbourhood in parameter space. A regular mode, to
be defined in the following, must exist for these processes to take place, and guaranteeing
this essentially corresponds to the second class (ii) condition.

6.1. Choice of α for class (i) basic flows
We first note that the following theorem holds.

THEOREM 6.1. Suppose the basic flow is class (i). Then there is only one α ∈ R that
makes M−1

α continuous. Moreover, M−1
α /= 0 for all y ∈ Ω .

This theorem can be shown as follows. The possibility of M−1
α vanishing only occurs

at yl ∈ YQ. For class (i), U′( yl) /= 0 for all yl ∈ YQ, because otherwise M−1
α becomes

singular, in view of the assumption that Q′′( yl) /= 0 for all yl ∈ YQ. L’Hôpital’s rule now
suggests that M−1

α ( yl) = Q′′( yl)/U′( yl) /= 0. We can also show that the α ∈ R that makes
M−1
α continuous and one-signed is uniquely determined. Suppose there are two possible

values of α, α1 and α2, say. Since M−1
α1

and M−1
α2

are continuous functions that do not
vanish in Ω , (Mα1 − Mα2) is a continuous function. However, this implies that α2−α1

Q′ is a
continuous function, which is not possible unless α1 = α2.

Class (i) is an extension of class H in Howard (1964) and class K+ in Lin (2003) to
the quasi-geostrophic equation. However, such strong restrictions for basic flows are not
necessary to derive the hurdle theorem, as remarked in § 3.

6.2. Classification of neutral modes
Let us consider the neutral solutions, setting ci = 0. The key to classify neutral modes
is to note that they can potentially become singular at the critical latitudes, the points
at which U( y) coincides with the phase speed cr. Mathematically, the set of the critical
latitudes, YU,cr = {y ∈ Ω | U( y) = cr}, are regular singular points of (2.3) when ci = 0.
The appropriate tool for analysing the behaviour of solutions around such singularities
is Frobenius’ method, from which it can be shown that ψ is continuous but ψ ′ may be
discontinuous at the critical latitudes (Lin 1955). A necessary and sufficient condition for

997 A25-22

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

72
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.728
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no jumps to exist at a critical latitude is that either Q′ = 0 or ψ = 0, or both, occur there.
Here, following Drazin & Reid (1981), we briefly explain the nature of the critical latitudes
without going into the details of Frobenius’ method.

Because of the singularities, neutral solutions must be understood as the vanishing
ci limit in unstable solutions. Let us multiply (2.3) by ψ∗ and take the imaginary part,
keeping finite ci:

ψ∗ψ ′′ − ψψ∗ ′′ + 2iciQ′

(U − cr)2 + c2
i
|ψ |2 = 0. (6.1)

Integrate (6.1) across a critical latitude, y = yc (i.e. U( yc) = cr), and take the limit ci →
0+,

[ψ∗ψ ′ − ψψ∗ ′]yc+
yc− = lim

ε→0+
lim

ci→0+

∫ yc+ε

yc−ε
−2iciQ′

(U − cr)2 + c2
i
|ψ |2 dy. (6.2)

An intuitive way to evaluate the right-hand side is as follows. If ε > 0 is sufficiently
small, we may be able to assume that Q′|ψ |2 is almost a constant, and that U − cr is
approximately U′

c( y − yc), where U′
c = U′( yc). Then the right-hand side of (6.2) can be

explicitly worked out by using the well-known formula that can be found by differentiating
the arctangent function:

−2i(Q′|ψ |2)|y=yc lim
ε→0+

lim
ci→0+

2
U′

c
arctan

(
εU′

c

ci

)
= −2iπ

(
Q′|ψ |2
|U′|

)∣∣∣∣
y=yc

. (6.3)

The above argument is consistent with the viscous problem when the singularity of the
inviscid solution is regularised by viscosity (Lin 1955). The regularisation by inertia is
also possible (Haberman 1972; Robinson 1974), although such a situation is relevant to
nonlinear equilibrium states (e.g. Deguchi & Walton 2018), here we only consider the
linear problem.

The above result suggests that if multiple critical latitudes appear as YU,cr =
{y1, y2, . . . , yN}, integrating (6.1) over Ω yields

0 =
N∑

j=1

(
Q′|ψ |2
|U′|

)∣∣∣∣
y=yj

. (6.4)

If Q′ = 0 or ψ = 0 happen at all the critical latitudes, there are no jumps at all, and
hence the neutral solution ψ is real and C2

0. Here, it is convenient to define terminology to
distinguish between neutral-mode types.

(a) Pathological mode: empty YU,cr or ψ vanishes at all critical latitudes.
(b) Regular mode: eigenfunction is not pathological and is C2

0.
(c) Singular mode: eigenfunction is not C2

0.

In standard textbooks such as Drazin & Reid (1981) and in previous research, there has
been no distinction made between pathological modes and regular modes. We shall show
in § 6.3 that when the first class (ii) condition is satisfied and the reciprocal Rossby Mach
number surpasses a hurdle, neutral solutions exist with some choices of k, and at least
one of them must be a regular mode. Moreover, if the second class (ii) condition holds,
unstable modes must exist around the (non-pathological, least oscillatory) regular neutral
mode (§ 6.4).
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If the intersection of sets {U( y) | y ∈ Ω+} and {U( y) | y ∈ Ω−} is non-empty, the
summation in (6.4) may cancel and, hence, a singular mode may exist (thus, for class
(i) there are no singular modes). For the singular modes we cannot use the standard
Sturm–Liouville theory to be used in §§ 6.3 and 6.4, and for the pathological modes we
have difficulty in showing neighbourhood instability.

6.3. A sufficient condition for existence of a neutral mode
Let us assume that for some α ∈ R the reciprocal Rossby Mach number M−1

α ( y) becomes
continuous. Write λ = −k2. Then from (2.3) the neutral modes with the phase speed c = α

must satisfy

−ψ ′′ + (L−2
d − κ2

0 M−1
α )ψ = λψ, y ∈ (−L/2, L/2), (6.5)

and the Dirichlet boundary conditions. This is a regular Sturm–Liouville problem with
eigenvalue λ. It is well known that all eigenvalues are real, and they can be ordered as
λ0 < λ1 < λ2 < . . . , where λn → ∞ as n → ∞. By integration by parts, it is easy to
check that the associated eigenfunctions, ψ0, ψ1, ψ2, . . ., are real and satisfy the equation

Rα(ψn) ≡

∫
Ω

{|ψ ′
n|2 + (L−2

d − κ2
0 M−1

α )|ψn|2} dy∫
Ω

|ψn|2 dy
= λn. (6.6)

Here the Rayleigh quotient, Rα , depends on α. It should also be noted from Sturm’s
oscillation theorem that the nth eigenfunction ψn has n zeros in the interval (−L/2, L/2),
a useful fact to be used below. In figure 6(a), the red curve is ψ0, and the other curves may
be ψ1, ψ2, ψ3. Likewise the modes shown in figure 16(b) are the zeroth and first modes.

The minimum eigenvalue λ0 can be found by the optimisation problem

λ0 = min
φ∈C2

0

Rα(φ), (6.7)

where the unique minimiser is the zeroth eigenfunction φ = ψ0. Note that there is no
problem to extend the search space to

H1
0 =

{
φ

∣∣∣∣
∫
Ω

|φ|2 dy < ∞,

∫
Ω

|φ′|2 dy < ∞, φ(−L/2) = φ(L/2) = 0
}

(6.8)

by a density argument. Here, following the usual notation in mathematics, H implies
that the space is a Hilbert space, the superscript 1 implies that the square integrability
of the first derivative and the subscript 0 implies that the Dirichlet boundary conditions
are satisfied.

A sufficient condition for existence of a neutral mode is then summarised as follows.

THEOREM 6.2. Suppose there is α ∈ R that makes M−1
α continuous. If there exists g( y) ∈

H1
0 such that Rα(g) ≤ 0, there is a neutral mode with the phase speed cr = α.

If the assumption of the theorem is met, a neutral mode can be found because λ0 =
minφ∈H1

0
R(φ) ≤ R(g) ≤ 0 implies that the minimiser of (6.7) is the neutral eigenfunction

having the wavenumber k = k0 ≡ √−λ0 ≥ 0. This neutral mode is ψ0 introduced earlier.
The neutral curves shown in figures 7(a), 10 and 13 are indeed determined by ψ0 and,
crucially, this mode must be a regular mode.
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Hurdle theorem applied to alternating jets

Since cr = α for ψ0, the critical latitudes (the points yj at which U( yj) = cr is satisfied)
must appear on the PV extrema (i.e. YU,cr ⊂ YQ). However, for class (i) basic flows, the
stronger result YQ = YU,cr can be shown for ψ0, because YQ = YU,α as remarked just
below (3.5), and there is only one choice of α from Theorem 6.1.

In the next section, we shall show the following theorem.

THEOREM 6.3. Suppose the basic flow is class (ii), and fix α so that the class (ii)
conditions are satisfied. If there exists g( y) ∈ H1

0 such that Rα(g) < 0, the flow is unstable.
Furthermore, if the basic flow is class (i), a necessary and sufficient condition for stability
is that no such g( y) ∈ H1

0 exists.

The second half of the theorem is somewhat similar to that derived by Howard (1964)
and Lin (2003) for shear flows, but the first half is entirely new. We also remark that in the
case of the Rayleigh equation, it can be proved that the phase speed of the neutral solution
is in the range of U( y), denoted R, by Howard’s semicircle theorem, and that there are
no pathological modes when k > 0. Moreover, when k = 0, a regular mode can be found
analytically. Those facts are used, for example, in proofs by Howard (1964), Balmforth
& Morrison (1999) and Hirota et al. (2014), but they do not in general apply to stability
problems more complex than the Rayleigh equation. This is essentially the reason why
Tung (1981) struggled to incorporate the effect of non-zero β into the theory, but as we
will see in the next section, the solution is, in fact, simple.

6.4. Existence of an unstable mode
Here we show Theorem 6.3. The proof is rather technical and readers who are not
interested in the mathematical details may skip this subsection without losing the thread of
the discussion. We first note that upon writing γ ≡ −L−2

d − k2 = λ− L−2
d , (2.3) becomes

ψ ′′ +
(

Q′

U − c
+ γ

)
ψ = 0. (6.9)

The corresponding dispersion relation, F(c, γ ) = 0, can be formulated by two linearly
independent solutions of (6.9). They are analytic functions in the upper or lower half
complex c-plane, and behave regularly with respect to γ , and so does F(c, γ ). A neutral
solution is obtained when ci is brought close to zero in the dispersion relation. From the
symmetry of the inviscid problem, neutral solutions always exist as pairs, i.e. the ci = 0+
mode and the ci = 0− mode.

Let us suppose that the assumptions of Theorem 6.3 are satisfied. From Theorem 6.2
we know that there is a regular neutral mode ψ0 with wavenumber k0 = √−λ0 > 0 and
phase speed α. This mode satisfies

Lψ0 ≡ ψ ′′
0 +

(
Q′

U − α
+ γ0

)
ψ0 = 0. (6.10)

Here, we define the linear operator L for later use.
In view of the argument just below (6.9), we can compute the coefficients of the Taylor

expansion of c(γ ) around the neutral mode in the upper half complex plane. Writing γ0 ≡
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λ0 − L−2
d , around the neutral mode, the following expansion holds,

ci(γ ) = dci

dλ

∣∣∣∣
0
(γ − γ0)+ O((γ − γ0)

2). (6.11)

Here and hereafter, the symbol ‘|0’ attached to a quantity means that it is evaluated at
the ci = 0+ neutral mode. The expression (6.11) is valid as long as ci does not become
negative. Our goal below is to show dci/dγ |0 /= 0; then (6.11) implies that an unstable
mode can be found by slightly varying γ from the neutral value.

Differentiate (6.9) with respect to γ ,

ψ ′′
γ +

(
Q′

U − c
+ γ

)
ψγ +

(
1 +

(
Q′

U − c

)
γ

)
ψ = 0, (6.12)

where the subscript γ denotes the differentiation. Evaluate this equation at the neutral
parameter,

Lψγ |0 +
(

1 +
(

Q′

U − c

)
γ

∣∣∣∣∣
0

)
ψ0 = 0. (6.13)

Now, combine (6.10) and (6.13) to obtain

0 =
∫
Ω

(ψ0Lψγ |0 − ψγ |0Lψ0) dy +
∫
Ω

(
1 +

(
Q′

U − c

)
γ

∣∣∣∣∣
0

)
ψ2

0 dy. (6.14)

The first integral vanishes after integration by parts. Therefore

dc
dγ

∣∣∣∣
0

= −

∫
Ω

ψ2
0 dy

K
= −

(Kr − iKi)

∫
Ω

ψ2
0 dy

K2
r + K2

i
, (6.15)

where

K = Kr + iKi = lim
ci→0+

∫
Ω

Q′ψ2
0

(U − α − ici)2
dy. (6.16)

The limit can be worked out as

K = −
∫
Ω

Q′ψ2
0

(U − α)2
dy + iπκ2

0

N∑
j=1

(
M−1
α ψ2

0
|U′|

)∣∣∣∣∣
y=yj

, (6.17)

noting that the integrand of (6.16) becomes singular at YU,α = {y1, y2, . . . , yN}. The
dashed integral represents the Cauchy principle value integral.

Here, since α ∈ R, the set YU,α is non-empty. The terms in the summation in (6.17)
cannot cancel out because all the M−1

α ( yj) are one-signed from the second Class (ii)
condition. Also U′( yj) /= 0 for all j, as otherwise M−1

α ( y) cannot be continuous. Moreover,
ψ0 does not vanish in Ω because it is the least oscillatory eigenmode, as remarked just
below (6.6). From (6.17) Ki is non-zero, and therefore we can conclude (dci/dγ )|0 /= 0
using (6.15).

We still need to show the latter half of Theorem 6.3 for class (i) basic flows. It is
sufficient to consider the case M−1

α ( y) > 0 for all y, as otherwise the flow must be
stable from Theorem 3.1. For any unstable mode ψ we can deduce (A5), which yields
Rα(ψ) < 0. Thus, if we suppose there is no g ∈ H1

0 such that Rα(g) < 0, then there should
be no unstable modes.
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Hurdle theorem applied to alternating jets

6.5. Simple integral-based stability conditions
If a function g ∈ H1

0 that makes the Rayleigh quotient negative is found, the existence
of instability is guaranteed by Theorem 6.3. The remaining question for deriving simple
necessary conditions for stability is how to choose g. A good test function is g = ϕ0, the
function introduced in (3.4b). Using (6.6), the condition Rα(ϕ0) < 0 becomes

1 <
2
L

∫ L/2

−L/2
M−1
α cos2

(πy
L

)
dy. (6.18)

Note that this result depends on the boundary conditions. For example, if periodic
boundary conditions are used, the eigenvalue problem (3.2) produces (4.1b), and thus the
condition (6.18) must be replaced by

1 <
1
L

∫ L/2

−L/2
M−1
α dy. (6.19)

6.6. A simple stability condition using a hurdle
The above conditions require us to examine the profile of M−1

α ( y) across the entire domain,
Ω . However, it turns out we can show the existence of instability by just checking a local
part of the basic flow. Consider a comparison problem in a subinterval [y1, y2] ⊂ Ω with
some M̃−1( y) profile.

ψ̃ ′′ − (k̃2 + L−2
d )ψ̃ + κ2

0 M̃−1ψ̃ = 0, y ∈ ( y1, y2). (6.20)

We impose the Dirichlet condition, ψ̃( y1) = ψ̃( y2) = 0. If this problem has a neutral
mode, ψ̃0( y) say, and M̃−1 < M−1

α on [y1, y2], the original problem (6.5) must be unstable.
The reason is as follows. We set the test function as

g( y) =
{
ψ̃0( y), if y ∈ [y1, y2],
0, otherwise,

(6.21)

using the neutral mode. Then the Rayleigh quotient can be computed as

R(g) =

∫ y2

y1

|ψ̃ ′
0|2 + (L−2

d − κ2
0 M−1

α )|ψ̃0|2 dy∫ y2

y1

|ψ̃0|2 dy

<

∫ y2

y1

|ψ̃ ′
0|2 + (L−2

d − κ2
0 M̃−1)|ψ̃0|2 dy∫ y2

y1

|ψ̃0|2 dy
= −k̃2 ≤ 0, (6.22)

where k̃ is the wavenumber of the neutral mode ψ̃0( y). A particularly convenient
comparison problem is when M̃−1 is a constant, since the problem can be solved
analytically using trigonometric functions. It is easy to check that a neutral mode with
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a wavenumber k̃ can be found when

M̃−1 =
π2

( y2 − y1)2
+ (k̃2 + L−2

d )

κ2
0

. (6.23)

We want to make M̃−1 as small as possible to produce instability criteria as sharp as
possible, so we let k̃ → 0. Then the condition M̃−1 < M−1

α on [y1, y2] yields Theorem 3.2.
In brief, the hurdle theorem corresponds to selecting the test function g( y) in (6.21) with
ψ̃0( y) = sin(π y−y1

y2−y1
). It is possible to design test functions that provide greater sensitivity

to the conditions, but in this article we have chosen to prioritise simplicity of the criteria.

7. Conclusion and discussion

Rayleigh’s inflection-point theorem of 1880 ushered in a century-long series of sufficient
conditions for the stability of inviscid, parallel shear flows. Yet, well into the 21st century,
sufficient conditions for instability (or, equivalently, necessary conditions for stability)
have remained elusive for applied researchers. We have developed a simple methodology
that allows for the detection of inviscid instability, inspired by empirical observations of
the stability of Jupiter’s alternating jets. All that is needed to operate our method is a
comparison of h defined in (3.9) with the profile of the reciprocal Rossby Mach number,
M−1
α ( y), which can be easily calculated from the basic flow (see § 3.3). The true stability

boundary in the parameter space should be found between the unstable regions detected
by Theorem 3.2 and the stable regions deduced by the KA criteria.

Our method relies solely on the fundamental tools of Sturm–Liouville theory, but
exhibits a high level of applicability beyond Rayleigh’s equation framework. Similar
hurdle stability conditions guaranteeing instability are likely to be found for various
inviscid shear-flow stability problems in science and engineering, including hypersonic,
stratified, magneto-hydrodynamic and/or non-Newtonian flows. To the best of the authors’
knowledge, the possibility of such a general and practical instability theory has not been
pointed out previously. The hurdle theory could even yield new insights into classical
Rayleigh equation problems as illustrated in Appendix C, where an internally heated
vertical channel is analysed.

As noted in § 1, in order for the sufficient condition of instability (Theorem 3.2) to apply,
the basic flow must belong to a class with certain favourable properties. We assume there is
at least one PV extremum in the domain and identify two basic-flow classes of interest, for
which M−1

α ( y) is continuous in some reference zonal wind shift, α. From the perspective
of the general inviscid stability problem, one of the novelties of our work is the extension of
the applicability of stability conditions through the introduction of new classifications. As
illustrated by Theorem 6.3, our sufficient condition of instability apply to class (ii), which
covers almost all monotonic flows and a wide range of non-monotonic flows. If the basic
flow belongs to this class, it can be asserted that there exists the least oscillatory regular
neutral mode (§ 6.3) and that instability occurs when the parameters are slightly altered
(§ 6.4). Theorem 6.3 requires a test function, but the stability condition can be simplified
to the hurdle form using a kind of comparison principle (§ 6.6). A convenient method to
determine whether the basic flow belongs to class (ii) is as follows. (1) Plot U( y) and mark
all the points at the latitudes where Q′ = 0, y = yj say. Then for each point, draw a line at
constant U = U( yj). If all of these lines intersect the U( y) curve at points which are not
marked, then the profile is not in class (ii). (2) If the profile passes the first test, then check
whether there is an odd number of zeros of Q′ in between any successive pair of zeros of
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Hurdle theorem applied to alternating jets

U − α. If so, this is also not in class (ii). If the profile passes both tests, the profile is in
class (ii).

In general, class (ii) admits more than one reference-frame shift, α (see § 4.2). However,
for a subclass of it, referred to as class (i), α is uniquely determined (Theorem 6.1). For the
latter class, M−1( y), which can now be safely unsubscripted, does not change sign. Class
(i) is approximately identified with Jupiter and Saturn. An important feature of class (i) is
that on the neutral curve the PV extrema must coincide with the critical latitudes, where the
zonal wind speed matches with the phase speed of the neutral mode α. Around the neutral
parameters, vortices are produced near the critical latitudes, although mathematically we
can show that all neutral modes have no singularity there. Furthermore, for class (i),
Theorem 3.2 gives the necessary and sufficient condition for the stability when the limit
Ld → 0 is taken.

The stability results for the linearised 13
4 layer model are summarised as follows.

(a) If Q′ has no zeros, the flow is stable (Charney–Stern).
(b) Even if Q′ has zeros, if the flow is class (i), it is stable if either M−1 ≤ 0 everywhere

(KA-I) or 0 ≤ M−1 ≤ 1 everywhere (KA-II).
(c) If the flow is class (ii), it is unstable if there are α, h such that M−1

α > h in the
interval where the hurdle h is defined (Hurdle theorem).

If the flow is not class (ii), then numerical methods are currently the primary recourse
to determining stability.

Our results also offer new insights into the theoretical understanding of pattern
formation in planetary atmospheres. The KA stability theorems were re-expressed by
Dowling (2014) in terms the Rossby Mach number, revealing a key attribute that supersonic
PV extrema are stable. However, this left the natural question of how subsonic a PV
extremum must be before becoming unstable, which is answered precisely by Theorem
3.2, and illustrated with detailed model analyses in §§ 4 and 5. In the case where M−1

is a constant, the sonic condition, M−1 = 1, must give the stability boundary, according
to Theorems 3.1 and 3.2. Therefore, the conjecture of Stamp & Dowling (1993) is
mathematically confirmed to be correct. In § 4 we extended the Stamp & Dowling (1993)
model to study the case where M−1 is not constant. The sech2 bump profile considered
for M−1( y) (see (4.3)) is interesting from the perspective of planetary physics because
the behaviour of neutral curves can be analysed analytically to some extent. There exist
qualitatively distinct neutral states, oscillatory and localised modes. In the context of
Jupiter’s atmosphere, only the latter appears, and the KA-II condition becomes almost
sharp (figure 13). This implies that in atmospheres sustained over long periods, the M−1

profile cannot become too subsonic, aligning with observational facts. However, a closer
look in figure 1 reveals that the Qy curve sits above U in the latitude range of −30 to −20
degrees. Unsteady dynamics may occur at neutral or subsonic PV extrema there (see Read
et al. 2006, 2009b).

From the M−1 profile under the assumption of neutrality, in the context of 1–3/4
layer dynamics, we can calculate Udeep( y) from (2.4). It is noteworthy that the estimate
of Udeep( y) has been historically important for probing the deep jets on Jupiter
(Dowling 1995b), though additional considerations for Jupiter in combination with Juno
gravity inversions of interior circulations, and for Saturn in combination with ring-wave
seismology (i.e. kronoseismology), are warranted in the future.

The quasi-correlations of the zonal flow U and the PV gradient Q′ seen in figure 1
suggests that the Jupiter’s alternate jets are formed to be nearly linearly neutral with
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respect to inviscid Rossby wave instability. To understand why such a mean flow is
achieved, it is necessary to consider the nonlinear evolution of the disturbances and their
mutual interaction with the mean flow. It is numerically shown in Dowling (1993) that
when Jupiter’s observed basic flow is made the initial condition for a local unforced
shallow-water model, it will rapidly evolve to become marginally stable. In addition,
slowly moving, planetary-scale thermal features have been regularly observed on Jupiter
(see Fisher et al. 2016 and references therein). These lines of evidence suggest that a gas
giant’s alternating jets tend to evolve until the longest Rossby waves are coherent across
them, becoming stationary with respect to deep-seated, large-scale pressure anomalies;
this has been called a ‘princess and the pea’ phenomenon (Stamp & Dowling 1993).

The spontaneous generation mechanism of zonal jets has long remained a subject
of debate among experts, as documented in Read (2024). The central inquiry lies in
understanding how the energy provided by the heat from the Sun or the interior of
gas giants is converted into the kinetic energy of zonal and equatorial jets. While
some numerical successes have emerged over the decade (see Schneider & Liu 2009;
Lian & Showman 2010), a comprehensive and rational explanation is still lacking.
Decomposing the flow into non-axisymmetric and axisymmetric components marks the
first step in observing how Rossby waves transfer angular momentum within zonal mean
flows, facilitated by Reynolds stress (Andrews & McIntyre 1976, 1978). The observed
strong correlation between zonal flow and Reynolds stress suggests that this is indeed
an indispensable mechanism (e.g. Ingersoll et al. 1981). Coupling the mean flow with
linear perturbation equations through Reynolds flux terms is often called the mean-field
approximation or quasi-linear theory in the modelling community (e.g. O’Gorman &
Schneider 2007). It is noteworthy that studies on near-wall turbulence have demonstrated
how the interaction between mean vortex fields and inviscid neutral waves rationally
elucidates the generation of streaks (Wang, Gibson & Waleffe 2007; Hall & Sherwin
2010). Recent investigations have further pinpointed the presence of neutral waves within
large-scale laminar–turbulent patterns in rotating flows (Wang et al. 2022). Thus, we
expect that the formation and evolution of Jupiter’s alternating jets might be similarly
explored by coupling the mean flow equations for the planet’s atmosphere and interior
with the inviscid stability problem of the mean flow, along the lines of similar theories
developed in near-wall turbulence.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2024.728.
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Appendix A. Sufficient conditions of stability

Consider the integral of ψ∗×(2.3) over Ω = (−L/2, L/2). Integration by parts yields

∫
Ω

Q′(U − c∗)
|U − c|2 |ψ |2 dy =

∫
Ω

{|ψ ′|2 + (k2 + L−2
d )|ψ |2} dy, (A1)
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Hurdle theorem applied to alternating jets

whose real and imaginary parts are∫
Ω

Q′(U − cr)

|U − c|2 |ψ |2 dy =
∫
Ω

{|ψ ′|2 + (k2 + L−2
d )|ψ |2} dy, ci

∫
Ω

Q′

|U − c|2 |ψ |2 dy = 0,

(A2a,b)
respectively. When we assume ci /= 0, the above two equations can be combined into∫

Ω

Q′(U − w)
|U − c|2 |ψ |2 dy =

∫
Ω

{|ψ ′|2 + (k2 + L−2
d )|ψ |2} dy, (A3)

where w ∈ R is arbitrary. If there exists w such that Q′/(U − w) ≤ 0 for all y, (A3) cannot
be satisfied, meaning that the flow is stable. In other words, the stability is guaranteed if
there exists w ∈ R such that M−1

w ≤ 0 for all y ∈ Ω (i.e. KA-I). The above derivation is
essentially the standard argument for shear flows due to Rayleigh and Fjørtoft.

To find KA-II, we rewrite the left hand side of (A3) by introducing an α ∈ R and setting
w = 2cr − α:∫

Ω

(U − w)(U − α)

(U − cr)2 + c2
i

Q′

U − α
|ψ |2 dy =

∫
Ω

(U − cr)
2 − (cr − α)2

(U − cr)2 + c2
i

Q′

U − α
|ψ |2 dy. (A4)

Using Poincaré’s inequality (L2/π2)
∫
Ω

|φ′|2 dy ≥ ∫
Ω

|φ|2 dy, from (A3) we can deduce

κ2
0

∫
Ω

ZM−1
α |ψ |2 dy =

∫
Ω

{|ψ ′|2 + (k2 + L−2
d )|ψ |2} dy ≥ (κ2

0 + k2)

∫
Ω

|ψ |2 dy, (A5)

where Z( y) = ((U − cr)
2 − (cr − α)2)/((U − cr)

2 + c2
i ) < 1 for all y. If M−1

α ∈ [0, 1]
for all y the inequality (A5) cannot be satisfied, so the flow must be stable.

Appendix B. Analysis of (4.6) for L � 1

Writing

ν =
√

1 + 4κ2
0 (b − a)− 1

2
, μ =

√
k2 + L−2

d − κ2
0 a, (B1a,b)

the general solution of (4.6) can be written as

ψ( y) = C1Pμν (tanh y)+ C2Qμν (tanh y) (B2)

using arbitrary constants C1 and C2. Here Pμν and Qμν are the associated Legendre
functions of the first and second kind, respectively. The constant μ determines the
behaviour of the solution at large |y|. If μ is real, the behaviour is exponential, whereas
if μ is imaginary, the behaviour is oscillatory (see, for example, Bielski 2013). Now we
assume that L is large. Since κ2

0 ≈ L−2
d under this assumption, the constant μ can become

imaginary only when a > 1. This is the case where the oscillatory modes may appear.
If μ and ν are integers satisfying 0 ≤ μ ≤ ν, the neutral mode can be obtained by using

the Legendre polynomials. The localised mode ψ = sech y found in § 5.2 is the special
case ν = μ = 1. The parabolic part of the neutral curve (4.7) can be found by generalising
this mode, because from Sturm’s oscillation theory, the mode without zeros, i.e. ψ0, is
usually the most dangerous. This mode can be written explicitly as ψ0( y) = (sech y)ν ,
because it satisfies (4.6) when ν = μ. For the solution to decay as |y| → ∞, it is necessary
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for ν to be greater than 0, a condition that is indeed satisfied in the forth quadrant of
figure 6(a). The condition ν = μ can be written as

k2 = 1
2

(
1 + 2L−2

d (b − 1)−
√

1 + 4L−2
d (b − a)

)
(B3)

using (B1a,b). Thus the neutral mode ψ0 exists when the right-hand side of (B3) is
non-negative. After some algebra, this condition can be simplified to

a ≥ 1 − L−2
d (b − 1)2. (B4)

Appendix C. The Rayleigh equation case: internally heated flow

Here we consider the Rayleigh equation case, i.e. Q′ = −U′′ and L−2
d = 0 in (2.3). Our

stability condition (Theorem 3.2) has broader applicability compared to existing ones,
however, there may be cases where existing conditions are more suitable when they can
be applied. To demonstrate this, here we purposefully choose a basic flow for which the
condition by Tollmien (1935) is applicable.

The basic flow we choose is

U( y) = y4 − 6y2 + 5
12

+ a(1 − y2), (C1)

which appears when internally heated fluid flows through a vertically oriented channel;
see Nagata & Generalis (2002). The walls are set at y = −1 and 1, hence L = 2. The
parameter a is the ratio of the Reynolds number to the Grashof number. Based on the
Orr–Sommerfeld numerical calculations, Uhlmann & Nagata (2006) argued that for O(1)
wavenumbers, instability appears when a ∈ (−5/12, 0) ≈ (−0.4166, 0), because of the
existence of inflection points and reverse flow. Note that unstable modes also exists
at small wavenumber parameter regions due to a viscous instability mechanism (i.e.
Tollmien–Schlichting waves), but that is not the current focus.

The basic flow (C1) has two inflection points inΩ = (−1, 1) when a ∈ (−1/2, 0), yc =
±√

2a + 1. For other values of a, there are no inflection points and the flow must be
stable according to KA-I; see figure 15. Using α = U( yc) = −a(5a + 2)/3, the reciprocal
Rossby Mach number can be obtained as

M−1
α ( y) = L2

π2
−U′′

U − α
= 1

π2
48

10a + 5 − y2 . (C2)

This is continuous in Ω = (−1, 1) when a ≥ −2/5, so we conclude that the flow is class
(i) if a ∈ [−2/5, 0). In the remaining parameter range a ∈ (−1/2,−2/5), there are no
α ∈ R for which M−1

α ( y) is continuous, and hence the basic flow is not class (ii) (and,
thus, not class (i)).

For a ∈ [−2/5, 0) we can use Theorem 3.2 to show that the flow is unstable when
a ∈ [−2

5 ,
24
π2 − 1

2) ≈ [−0.4,−0.01366). This result can be found by simply setting y2 =
1, y1 = −1; in this case the height of the hurdle is 1 according to (3.9). Note that the
stability condition (3.6) is satisfied when a is greater than 24/π2 − 2

5 ≈ 0.08634, but it is
not useful because the flow is not class (i) there, due to the absence of critical latitudes
(inflection points).

If a /∈ (−1/2,−1/3), the basic flow belongs to the class considered in Tollmien (1935),
and therefore the KA-I condition provides a sharp stability boundary at a = 0. Thus,
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–0.5 –0.4 –0.1

–0.01366

0.1

a
0–0.3 –0.2

No inflection

point

No inflection

point

Not

class (ii) Class (i)

Figure 15. The stability of the Rayleigh equation with the model flow profile (C1). The blue regions are KA
stable because there are no inflection points in U( y). The red region is unstable according to Theorem 3.2.
Numerical computations detect instability for a ∈ (−0.5, 0).

Tollmien’s theory more accurately pinpoints the stability boundary than (3.6). However,
in terms of applicability, the advantage is reversed, since (−1/2,−2/5) ⊂ (−1/2,−1/3)
(see figure 15). In fact, Tollmien’s result can be obtained by taking ψ = U( y) as a test
function, which is only possible for very special class of basic flows. Note also that to
identify instability in the current problem, focusing on the domain-spanning hurdle is
sufficient. Drazin & Howard (1966) have previously investigated the existence of neutral
eigensolutions in this scenario. However, demonstrating the presence of instability requires
proper treatment of multiple critical layers in the flow.

Numerical computations using the shooting or Chebyshev collocation method reveal
that the flow is unstable when a ∈ (−0.5, 0). Consequently, the inference made by
Uhlmann & Nagata (2006) was incorrect. The computation becomes challenging around
a = −0.5, but we can employ asymptotic methods to address this. Let us consider ε =√

a + 1
2 as a small parameter. Then we write y = εY , k = ε−1k0 and

c = − 1
12 + ε2 + ε4c0 + · · · (C3)

in the Rayleigh equation. Noting U − c = ε4(Y4/12 − Y2 − c0)+ · · · and U′′ = ε2(Y2 −
2)+ · · · , the leading-order equation can be found as(

Y4

12
− Y2 − c0

)
(ψYY − k2

0ψ)− (Y2 − 2)ψ = 0. (C4)

Here we must impose ψ → 0 as |Y| → ∞. This eigenvalue problem can be solved by the
shooting method to find the eigenvalue c0 = c0r + ic0i for fixed k0. The asymptotic growth
rate c0i, shown in figure 16, captures the behaviour of the full solution very well even when
ε is moderately small. Since this instability appears around singular neutral modes, it is
outside the application of the sufficient conditions of stability available so far.

Whether simple stability criteria can be obtained for basic flows that do not belong to
class (ii) is still an open question. A central issue here is determining under what conditions
singular neutral modes must occur. Due to the presence of jumps at singular points, λ =
−k2 is no longer obtained as an eigenvalue of a self-adjoint operator, and the optimisation
of a quadratic form (6.6) cannot be used to demonstrate the presence of neutral modes.

Another open problem is extension of the theory to basic flows that vary spatially in
a more complicated manner than considered here. In other shear flow studies, despite
the change of the basic flow in two directions being the prevalent configuration in
almost all realistic flows, the Rayleigh–Fjørtoft condition, which only holds in idealised
situations, is often employed to explain the origin of instability. A typical example is
the Kelvin–Helmholtz instability observed in flows over a riblet (e.g. García-Mayoral &
Jiménez 2011). Uhlmann & Nagata (2006) also studied inviscid instability in duct flows
using second derivatives of the basic flow along the steepest direction of the flow field.
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0

0.1

0.2

c0i

k0

0.3

0.4

0.5

0.2 0.4 0.6 0.8 1.0

Figure 16. The green curve is the solution of the asymptotic problem (C4). The red filled circles are the
solution of the Rayleigh equation with the basic flow (C1). The growth rate ci computed for various k for
a = −0.45, and then the data are rescaled as c0i = ci/ε

4, k0 = k/ε, using ε = √
0.5 − 0.45 ≈ 0.2236.

Curiously, they found that the presence of inflection points calculated in this manner is
effective in detecting instability. This is further evidence that the method developed in this
paper could be generalised. A difficulty with this extension is that the necessary conditions
for the existence of a neutral mode are not known, although a sufficient condition has
recently been found in the case of a single critical layer (Deguchi 2019).
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