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A DIFFERENCE-DIFFERENTIAL BASIS THEOREM

RICHARD M. COHN

Introduction. Our aim in this paper is to extend to difference-differential
rings the beautiful theorem of Kolchin [5, Theorem 3] for the differential case.
The necessity portion of Kolchin’s result is not obtained.

What might well be called the Ritt basis theorem states that if a com-
mutative ring R with identity is finitely generated over a subring Ry, then
the ascending chain condition for radical ideals of R, implies the ascending
chain condition for radical ideals of R. (This is indeed a basis theorem. If we
define a basis for a radical ideal 4 to be a finite set B such that A = +/(B),
then every radical ideal of a ring R has a basis if and only if the ascending
chain condition for radical ideals holds in R.) It is the Ritt basis theorem
rather than the Hilbert basis theorem which has appropriate generalizations
in differential and difference algebra, where in fact it originated. For differ-
ential rings (even difference-differential rings) containing the rational numbers
and for difference rings without restriction, this generalization has been known
for about thirty years (see [3; 7; 8; 11]) although the full results were not
explicitly stated. They may be found in Theorem II and Corollary 1 to
Theorem III below. The situation for differential rings not containing the
rationals is much more subtle, and for such rings the basis theorem does not
hold without restriction. Two different aspects of the problem were explored
by Kolchin [4] and Seidenberg [10]. Then Kolchin [5] produced a definitive
result which included the earlier theorems and much more.

Another feature of Kolchin's paper [5] was to generalize the basis theorem
to certain subsets of the set of radical differential ideals. This generalization
is very natural and does not complicate the proof of the basis theorem itself.
It is also included in this paper and the necessary definitions are given in § 1.

In the first three sections of this paper we summarize the needed definitions
and known results. Sections 4 and 5 contain the proof of the principal theorem.
In the final section we discuss a criterion of Seidenberg related to the basis
theorem. Some knowledge of differential algebra [9] or difference algebra [1],
while not technically needed, is desirable for an intuitive understanding of
this paper.

All rings discussed in this paper are commutative with identity, and all
ring extensions are unitary.

1. Conservative systems. A set C of ideals in a ring R is called conservative
if
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(@) If Ay, 4 € I, are ideals of C, then N, 4; € C. (In particular, taking I
to be the empty set, we find R € C.)
(b) If A4, 2 € I, are ideals of C linearly ordered by inclusion, then

U4, e
ier

A conservative set C is diwisible if for A € C, x € R, A:x € C. A divisible
conservative set is perfect if its members are radical ideals. A set of ideals
satisfying the ascending chain condition is called Noetherian.

If Cis perfect and 4 € C, then 4 is an intersection of prime ideals of C,
and if C is also Noetherian, then 4 is the intersection of finitely many prime
ideals of C. These facts give perfect sets their importance. In particular, the
differential ideals called perfect by Raudenbush [7] and the difference ideals
called perfect by Ritt and Raudenbush [8] form perfect sets according to the
definition above, and the theorems showing that such ideals can be represented
as the intersection of prime differential or prime difference ideals are special
cases of the result just stated. The theory of conservative and of perfect sets
(with some variations in terminology) is developed in [2; 5; 6].

Let C be a conservative set of ideals in R. Let.S € R. We denote by {S; C}
the minimal ideal of C containing S, that is, the intersection of all ideals of C
containing S. If S is finite, then S is called a C-basis for {S; C}. Evidently, Cis
Noetherian if and only if every ideal of C has a C-basis.

Let R, be a subring of R, and let C be a set of ideals of R. We denote by
C/R, the set of ideals A M Ry, A € C, of R,. It is easy to see that the prop-
erties of being conservative, divisible, perfect, or Noetherian are inherited
from C by C/R,.

The following lemma [5, Lemma 2; 2, Lemma 6] is fundamental in studying
perfect sets of ideals.

LeEmMA L. Let R be a ring and C o perfect set of ideals in R. Let.S € R, T C R.
Let ST denote the set {st,s € S,t € T}. Then

{S; AT, ¢ = {ST; ¢}
Kolchin [5, Lemmas 3 and 1] has proved the following results.

LemMA 1. Let R be a ring and C a perfect set of ideals of R which is not
Noetherian. Then there exist ideals maximal among those ideals of C which do
not have a C-basis. Such ideals are prime.

LemMA III. Let R be a ring, C a perfect set of ideals of R, S € R, and a € R.
If a € {S; C}, then there exists a finite subset 1" of S such that a € {T"; C}.

With the aid of these lemmas, Kolchin [5] established the following
generalization of the Ritt basis theorem. The proof is a specialization of that
of Theorem II below.
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TuEOREM 1. Let R be a ring and Ry a subring of R such that R s finitely
generated over Ry. Let C be a perfect set of ideals of R. If C/Rqy ts Noetherian,
then C is Noetherian.

2. Difference-differential rings. Let R be a ring, A = (61,..., 0u)
derivations of R into R, and T = (71, ..., 7,) isomorphisms of R into R such
that all pairs of members of A\U T commute. Then (R, A, T) is called a
difference-differential ring. (If A is empty, then (R, A, T) is a difference ring,
and if T is empty, a differential ring.) We denote by © the set of formal
power products (including the identity) of é; and 7,. © is called the set of
difference-differential operators. If 9 € O, then the order of 6 is the sum of
the exponents of the §; and 7; appearing in 6.

We denote by 0 the subset of O consisting of formal power products of
the §; only and by ©* the set of formal power products of the 7; only. If
6 € O, then we have 8§ = 6'6%, 0 € 0, 6* ¢ 6*. This representation is unique.
If « € R, 0 € 6% then 6a is called a transform of a. If ¢ € R, 6 € 6, and 0 is
not the empty product, then 6a is called a deriwvative of a. The notation given
here for the operators will be retained throughout the paper even where the
notation for the ring itself is changed.

Remark 1. We shall generally use R to denote both the ring R and the
difference-differential ring (R, A, T). At times we shall also regard R as a
difference ring with isomorphisms T and the empty set of derivations. Note
that A and T are ordered collections, not sets. This is essential in defining
extensions and homomorphisms.

Let (R’, A’, T’) be another difference differential ring where A’ = (6,/,...,6,)
and T = (r/, ..., 7.) have the cardinality of A and T, respectively. A ring
homomorphism ¢ from R to R’ is called a difference-differential homomorphism
if¢d; = 6/¢, o7, =7/09,1 =1 =< m,1 <7 =< n I Risasubring of R and the
injection map is a difference-differential homomorphism, then (R, A, T) is
called a difference-differential subring of (R’, A’, T') and we speak of the pair
(R, A, T) and (R’, A’, T’) as forming a difference-differential ring extension
which will frequently be denoted by R’/R. (By abuse of language we some-
times refer to (R, A, T') itself as a difference-differential extension of
(R, A, T).)

Let R'/R be a difference-differential ring extension, and let S € R’. We
denote by R{.S} the smallest difference-differential subring of R’ which contains
Rand S. If R = R{T}, where T is finite, we say that R’ is finitely generated
in the difference-differential sense over R. If R’ = R{y1, ..., ), and the set
Y =1{0y,0 € 0,1 <7 =<k} is algebraically independent over R, then R’ is
called a polynomial difference-differeniial ring over R (and R’/R a polynomial
difference-differential extension) in the indeterminates ¥, ..., y:. The
elements of R’ are then called difference-differential polynomials. It is evident
that such extensions exist for every k and are unique to within isomorphism.
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Every finitely generated difference-differential extension of R is obtained from
a polynomial difference-differential extension through a difference-differential
homomorphism which leaves R fixed.

A difference-differential ring will be said to be ordinary as a difference ring
ifn=1.1{m=0,n=1,itis an ordinary difference ring. A corresponding
terminology is applied if m = 1, orm = 1,n = 0.

Let R’ be a polynomial difference-differential ring over R. We use the
notation of the preceding paragraph. If #,v € ¥ and there exists § € 6 such
that v = 6u, then v will be called, with some abuse of language, a multiple
of u (a proper multiple if 8 is not the empty product). We introduce an order-
ing < into Y as follows. Letv € Y, v = 0'60%y,, 0 € 6',6* € 6*,1 <1 < k. We
assign to v the (m + n + 3)-tuple (a, b, ¢1, . . ., Cmyn, %), Where a is the order
of 8, b the order of 6*, and the ¢, are the exponents of the successive §; and 7,in 6.
Let the (m + n 4 3)-tuples be ordered lexicographically, and order the
elements of YV as their (m + n 4 3)-tuples are ordered. Note the following
properties of <.

(a) < is a total ordering and a well-ordering.

(b) If u,v € V,0 € 6, and # < v, then fu < 6.

(¢) Ifu,v € Y, and v is a proper multiple of #, then # < v.

(d) If u = ad'a*y,;, v = f'B*y,, where o/, 8/ € O, a*, B* € 6* and &' is of

lower order than @/, then u# < v.
The following lemma is proved exactly as in [9, p. 147].

Lemya IV. With the notation of the preceding paragraph let uy < uy < .. .be
elements of V. Then there exist positive integers i, j # 1, such that u; is a multiple

of u;.

If P¢ R — R, with R’ (as above) a polynomial difference-differential ring
over R, then the leader u of P is the highest member of V¥ in the ordering <
which is effectively present in P. The mnitial of P is the coefficient of the highest
power of # in P when P is written as a polynomial in # with coefficients in
R[Y — u]. The separant of P is the formal partial derivative 0P/ du.

We define a ranking (that is, a pre-ordering) of the elements of R’ as
follows: Let A, B € R’. Then A is of lower rank than B if one of the following
holds: The leader of 4 is lower than the leader of B; A and B have the same
leader u and 4 is of lower degree than Binu; A € R, B € R’ — R.

A difference-differential field is a difference-differential ring which is a field.
The terminology to be used for difference-differential fields is for the most part
obvious. We need only note that if L/K is a difference-differential field exten-
sion and S CL, then K(S) denotes the smallest difference-differential subfield
of L containing K and S. We say that S is a set of difference-differential
generators of K{S) over K.

Let R be a difference-differential ring. The set I of difference-differential
ideals of R (that is, of ideals of R closed under the operators 0) is a conserva-

https://doi.org/10.4153/CJM-1970-141-3 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1970-141-3

1228 RICHARD M. COHN

tive but not necessarily a divisible conservative set. Let D consist of those
radical ideals 4 of I which satisfy:

(1) If forsomer € Tanda € R, 7a € 4, thena € 4;

(2) If forsomer € Tandea € R, ara € 4, thena € A.
Then D is a perfect set of ideals [2, pp. 798-799] and indeed every perfect set
contained in I is contained in D. Let.S CR. We shall hereafter use the abbre-
viations {S} for {S; D} and [S] for {S; I}. We call the ideals of D the perfect
difference-differential ideals of R (perfect difference ideals or perfect differential
ideals if A, or T respectively, is empty). These definitions accord with those
of Ritt and Raudenbush mentioned above, and the abbreviated notation
coincides with that conventionally used for perfect difference and differential
ideals.

3. Transformal quasi-separability. Let L/K be a difference field exten-
sion. (That is, A is now the empty set or is disregarded.) A subset U of L is
called transformally independent over K if U* = {6u, 8 € 0%, u € U} consists
of distinct elements (i.e., 6111 = 6su, implies 8; = 6y and #; = u,) and these
form an algebraically independent set over K. The properties of transformal
independence have been established in [1, Chapter 5] for the case » = 1, and
they carry over without essential change to the general case. The cardinality
of a subset of L maximal among those transformally independent over K is an
invariant of L/K called the degree of transformal transcendence.

Let U be a subset of L, V" a subset of U maximal among those subsets of U
transformally independent over K. If U — V is finite we say that U is of
finite transformal codimension over K. Exactly as with the usual codimension
of field theory we establish that the cardinality of U — V is independent of
which maximal transformally independent set 1 is chosen.

A subset U of L is said to be transformally separably independent over K
if U* as defined above consists of distinct elements which constitute a separably
independent set (that is, annul no separable polynomial) over K. We define
L/K to be transformally quasi-separable if every subset of L transformally
separably independent over K is of finite transformal codimension over K.
If T is the empty set, this notion reduces to that of quasi-separability intro-
duced by Kolchin [5] and essential to his basis theorem for differential rings.
It is easy to see that if L/K is quasi-separable when regarded as a field exten-
sion, then it is transformally quasi-separable. The following examples show
that these notions are not equivalent.

Example 1. Let I’ be an ordinary difference field of positive characteristic p.
We write 7 for 71. Let F(x) be an extension of F with x transformally indepen-
dent over F. Let K = F(x?). Then F(x) is not quasi-separable over K since
the 7%, ¢ = 0, 1, ..., form a separably independent set of infinite codimen-
sion. Of course, this set is not transformally separably independent and so
does not violate the definition of transformal quasi-separability. To show that
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F(x) is in fact transformally quasi-separable over K, note that if it were not,
there would exist an infinite ascending chain of difference fields between K
and F(x). Using [1, Chapter 5, Theorem XVIII], it is easy to see that no such
chain exists. Indeed, every finitely generated extension of an ordinary difference
field is transformally quasi-separable.

Example 2. Let F be a field of positive characteristic p. Let ¢i, ¢4, ... be
algebraically independent over F. Let

K = F(Clp, 627), .. ) and L= F(Cl, Coy .. )

Then L/K is not quasi-separable. Let 7 be the identity automorphism of L.
Then L/K may be regarded as a difference field extension. It is transformally
quasi-separable since there are no transformally separably independent sets.

Let R be a difference ring, R, a difference subring of R. Let P be a prime
and perfect difference ideal of R. (A prime difference ideal need not be perfect
since it may fail to satisfy (1) of §2.) Let K be the quotient field of
R/ (Ry M P) and L the quotient field of R/P. In an obvious canonical way,
we may regard L/K as a difference field extension. In [5] Kolchin defined
(independently, of course, of the difference field structure) P to be quasi-
separable over R, if L/K is quasi-separable. We shall say that P is transform-
ally quasi-separable over R, if L/K 1is transformally quasi-separable.
Similarly, P is separable over R, if L/K is separable.

4. The reduction theorem. Let R be a difference-differential ring and
R = R{y1, ...,y a polynomial difference-differential ring over R. Let
A € R — R,B € R,and let 4 be of degree d in its leader «. We say that B is
reduced with respect to A if B is free of transforms of derivatives of u and of
degree less than @ in each transform of u. Let F = {F;, i € I} be a set of
elements of R — R. We say that F is an autoreduced set if for each 7,7 € I
with 7 # j, F; is reduced with respect to F,. It follows easily from Lemma IV
that all autoreduced sets are finite. Let H € R’, and let F be autoreduced.
We say that H is reduced with respect to F if H is reduced with respect to
each F;, 1 € I. (If Fis empty, every member of R’ is reduced with respect
to F.)

REDUCTION THEOREM. Let R be a difference-differential ring,
R = R{yl, ... yyk}

a polynomial difference-differential ring over R. Let F = {Fy, ..., F,} be an
autoreduced set in R'. Let G € R'. Then there exists a polynomial H in R’
reduced with respect to F, a product J of powers of transforms of separants and
initials of the Fy, and a polynomial L in [Fy, ..., F,] such that

(1) H=JG — L.
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We may choose (1) such that neither J nor L effectively involves a member of ¥
higher than the leader of G. If R is a difference ring, J may be taken to be a product
of transforms of wmitials of the I .

Proof. If Fisempty, wemaylet H = G,J = 1, L = 0. Let F not be empty.
Let u; denote the leader, I; the initial, .S; the separant, and d; the degree
inu;of Fj, 1 =37 =< r. If a polynomial 4 of R is not reduced with respect
to F, then it involves one or more multiples of leaders of the F; to degrees
which violate the definition of reduction. The highest such multiple is called
the F-leader of 4. We assume that there are polynomials for which no relation
of the form of (1) exists and obtain a contradiction. Clearly no S; is 0, since
otherwise (1) follows trivially.

All polynomials for which no relation of the form of (1) holds must have
F-leaders. Among such polynomials let 4 be one which has lowest F-leader v
and among these is of lowest degree d in v. For some (not necessarily unique)
7,1 =7 = r,vis amultiple of %, say v = 6u;, § € 6. Let E denote the initial
of 9F;. If 6 ¢ ©* then E = 01, 0F; is of degree d; in 6u;, and d = d,. If
6 ¢ 6%, then E is a transform of S, and 8F) is linear in 6u ;.

By the division algorithm there exists a non-negative integer ¢ and a
polynomial M € R’ such that A, = E*4 — M(0F,) is of degree less than
d;in v, and is free of v if § ¢ ©*. Neither M nor F; effectively involves a mem-
ber of V higher than the leader of 4. Now A; can involve effectively only
those members of ¥ which are present either in 6F; or in A. Furthermore,
those present in 4 but not in F; appear to the same degree in 4 and in 4;.
Letu € YV, u > v, be effectively present to degree e in A;. Then u is not present
in F;, and so 4 is of degree at least e in «. Since v is the F-leader of 4, it must
be that if # is a multiple of some u;, then u = 6*u;, 6* € 6*, and e < d..
Hence, # is not the F-leader of A;. Then A4, either has no F-leader, has F-leader
lower than v, or has F-leader v and is of degree less than that of 4 in its
F-leader. In all cases there exists a relation J14; — L1 = A, of the form
of (1). Combining this with the relation above between 4 and A; we obtain
the contradiction that 4 satisfies a relation of the form of (1). To prove the
last statement of the theorem, note that if R’ is a difference ring, the argument
above can be carried out without reference to separants.

5. The basis theorems. The first result below, Theorem II, applies to
rings which are difference rings only. It is needed for the proof of Theorem 111
for difference-differential rings.

Remark 2. 1t is a reasonable conjecture that Theorem II is a special case
of Theorem III: This is so for ordinary difference rings since, as we have
observed (Example 1), the condition of transformal quasi-separability required
in Theorem III is satisfied by any finitely generated extension of an ordinary
difference field.
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Remark 3. Theorem 11 is not really new. For ordinary difference rings it is,
except for the generalization to arbitrary perfect sets of difference ideals, a
theorem of Ritt and Raudenbush [8, Theorem]. The general case is obtained
by applying to the work of Strodt [11] the ideal-theoretic considerations of [8].

THEOREM 1I. Let R be a difference ring and Ry a difference subring of R such
that R is finitely generated in the difference ring sense over Ry. Let C be a perfect
set of ideals of R whose members are difference ideals. (Then they are necessarily
perfect difference ideals.) If C/R, is Noetherian, then C is Noetherian.

Proof. R is the homomorphic image of a polynomial difference ring
Ro{v1, ..., yi. Let C’" be the set of ideals which are the complete pre-images
in Ro{¥1, ...,y of the ideals of C. Using [2, § 4 (Lemma XII, and the final
paragraph)], it is easy to see that if C satisfies the hypotheses of Theorem 11,
then so does C’, and that it is sufficient to prove C’ Noetherian. Hence, we
shall suppose henceforth that R = Ro{yi1, ..., y4.

Suppose that the theorem is false. By Lemma II, there exists a prime ideal
P € Csuch that P has no C-basis, and every ideal of C properly containing P
has a C-basis. Let Py = P M Ry, Co = C/R,. Then P, has a Cy-basis 7. Let .S
denote the set of polynomials of P which have no coefficient in P,. Of course,
the members of S are in R — Ry,. We proceed to construct inductively an
autoreduced set F of members of S. If S is the empty set, let F be the empty
set. (It can easily be proved that this case cannot, in fact, occur.) Suppose
that S is not empty. Let F be a polynomial of lowest rank among those in S.
Suppose that Fy, ..., F;, ¢ =2 1, have been found and constitute an auto-
reduced set. If no polynomial of S is reduced with respect to Iy, ..., F;, the
set is complete. If .S contains polynomials reduced with respect to Fy, ..., F;,
let Fi;1 be one of lowest rank. Then Fy, ..., F;1 is autoreduced. In a finite
number, say 7, of steps, the process must terminate. Clearly, no polynomial
of S is reduced with respect to F. Let 4 € P be reduced with respect to F.
If A’ is the sum of those terms of A with coefficients not in Py, then A’ € P,
and A4’ is reduced with respect to F. Hence 4’ = 0. Therefore, all coefficients
of terms of 4 are in P,.

Let I;,1 = j < r, denote the initial of F;. No I, is in P. For suppose that
for some j, I; € P. Since I, is reduced with respect to F, it has some coefficient
in Po. Then F; has some coefficient in Py, contradicting F; € S.

Let J = 1I,...1, Since P is prime, J ¢ P. By the maximality of P, the
ideal {P, J; C} has a C-basis U. Using Lemma III we see that we may choose

U=1J,Vy...,V, where the V; are in P. Let G € P. It follows from the
final statement in the reduction theorem that there exists some product K
of powers of transforms of J and a polynomial L € [Fy, ..., F,] such that
R = KG — L is reduced with respect to F. Since R € P, every coethcient
of R is in Py. Then R € {T'; C}. Hence, KG € {T, Fy, ..., F,; C}, and so
JG €T, F1, ..., F,; C}. Let JP denote the set {JG,G € P}. Then
JP C{T, Fy, ..., F,; C}.
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Using Lemma I we find

P=PNI{P,J;CC{JP, V1, ..., Vi C
C{T,Fyy...,F,, Vi,..., Vi C) C P.

Hence, P has a finite basis, contradicting its definition.

THuEOREM III. Let R be a difference-differential ring and Ry a difference subring
of R such that R is finitely generated in the diference-differential sense over R,.
Let C be a perfect set of ideals of R whose members are difference-differenital ideals.
Let every prime ideal of C be transformally quasi-separable over Ro. If C/Ry 1s
Noetherian, then C is Noetherian.

Proof. As in the proof of Theorem II we may assume that R is a polynomial
difference-differential ring, R = Ro{y1, ..., yi}.

Suppose that the theorem is false. We define P and P, as in the proof of
Theorem II. Let S be the set of polynomials of P which are not in Ry and have
separant not in P. (S may be empty.) We construct inductively an auto-
reduced set F in S. If S is empty, let F be empty. If Sis not empty, let F; be
a polynomial of lowest rank in S. Suppose that Fy, ..., F; have been found.
If S contains no polynomial reduced with respect to Fy, ..., F;, the set is
complete. If S contains polynomials reduced with respect to Fy, ..., F;, let
Fi41 be one of lowest rank. Let Fy, ..., F, be the autoreduced set obtained
by this procedure. No polynomial of .S is reduced with respect to F.

Let u; denote the leader, S; the separant, and I, the initial of F,. We claim
that I, ¢ P,j=1,...,7. Let ¢t denote the degree of F; in #; and put
Fi=1ITu;"+ A.1fI,€ P,then 4 € P. Since 4 is reduced with respect to F,
the separant of 4 is in P. Then 04/du; € P, since either it is this separant,
or A does not involve u ;. If I; were in P, we would find

S, = tu, I, 4+ d4/du, € P,

a contradiction. Let J = I,...I,.S;...S,. Then J ¢ P.

If U is any subset of ¥, then U* will denote the set of transforms of the
members of U. (Note that U C U*.) Evidently, R, U*] is a difference ring
under the contractions to it of the members of T. For each j,1 < j < 7, we
write u; = a;BYup, @; € 0,8, € 6%, 1 < 2(j) = k. Let V consist of those
0y, 0 € 6,1 < ¢ < k, which are not derivatives of any «a;y,;. Every member
of P reduced with respect to F is in Ro[V*]. We are going to partition V*.

Let X consist of those members of 7 which have no derivative in V. Then X
is finite. For if not, there exists an infinite sequence x; < x» < ... of elements
of X. By Lemma IV there exist integers ¢, j > 7, such that x;is a multiple of x,.
This contradicts the fact that no derivative of x; is in V.

Let s be the maximum of the orders of elements of X. Let W consist of the
elements of V of order at most s, and let Z = 7 — W. (If X is empty, let W
be empty.) Note that each ey is in W. If w € W* 2z € Z*, then w < =z.
Every member of Z* has some first derivative in Z*. Every member of
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P M\ Ry[Z*] is reduced with respect to F. V¥ = W*\U Z* is the desired
partition.

Let A € R — R, with leader u. Let v € YV appear effectively in A. Then
d(A4,v) is defined to be the difference between the first entries in the
(m + n + 3)-tuples assigned as in § 2 to » and to v. Let 4 € P be reduced
with respect to F, and let z € Z*. It will be shown that d4/dz ¢ P. For
suppose that d4/dz ¢ P. We may assume that 4 and z have been chosen so
that d(4, z) is minimal. We may also assume that if 2’ € Z*, 04/92 ¢ P,
then 2/ < z. Letz, ..., 2, be the members of Z* and w;, . . . , w,, the members
of W* appearing effectively in 4. We may choose the subscripts so that
21 < 29 < ... < g, Of course w; < 21,1 £ 17 =< m. Since z, is the leader of
A, d4/0z, € P. It follows that z = z, for some 5,1 £ s £t — 1. We have
94/9z, € P,s+ 1 <i <t

There exists 6§ € A such that 6z € Z*. Let

12
Ay =84 — D, (04/92,)2,

s+1
= A"+ > (94/02.)0z, + 3. (94 /0w )sw,,
1 1

where A’ involves effectively only certain w; and z,. Evidently, 4, € P. It
may be that 4, is not reduced with respect to /. This can result only {rom
the presence in 4; of certain éw; or of certain éz;, j < s. Using the reduction
theorem, we see that there exists a product K of powers of transforms of
initials and separants of F and a polynomial L in [Fy, ..., F,] such that
A, = KA, — L is reduced with respect to F. Furthermore, K and L may be
chosen so that they involve only members of ¥ lower than éz,.

If 6z is either noteffectively presentin 4, orisitsleader, then 4 ,/9 (62,) € P.
In the remaining case the leader of 4, is some z;,, s < ¢ £ ¢, and d (4., 6z,) <
d(A4, z5). It follows from the minimality of d(4, 2z,) that in this case also
342/ d(d2,) € P. Since 9A5/9(62;) = KdA1/d(3,), and K ¢ P, it remains
only to prove that dA41/9(82;) ¢ P in order to obtain a contradiction. If 6z, is
not one of the z;, then d41/9(6z;) = 94/9z, ¢ P. Suppose that §z, = z,. Then

1
0A1/8(62,) = A0z, + 8(0A/0z;) — D (9°A/02,02,)d2,,
s+1
where the sum is over ¢. Since j > s,6(04/9z;) € P. Also dA4/9z, € P and
d(dA /32, 2;) < d(4, 2), so that 92°4/9z,02; ¢ P, s+ 1 =47 < t. Hence in
this case also, dA41/9(z;) ¢ P.

It follows in particular from the above that if 4 € P M Ry[Z*], z € Z*,
then 94/dz € P. Let ¢ be the canonical homomorphism of R onto R/P. Then
one sees easily that ¢Z is transformally separably independent over the
quotient field L of ¢R¢. By the hypothesis of transformal quasi-separability,
¢Z is of finite transformal codimension over L. It follows exactly as in [5, p. 12],
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with transformal independence replacing algebraic independence, that there
is a finite subset 1" of ¥ such that P M Ry[V*] is contained in the perfect
difference ideal generated in Ro[V*] by P M Re[T*]. Now R [7*] is finitely
generated as a difference ring over R,. By Theorem II there exists a finite set B
which is a C/Ro[1*]-basis for P M Ro[T*]. Then P M Ro[V*] C {B; C}. Every
polynomial of P reduced with respect to F is therefore in {B; C}. Since P is
properly contained in {P, J; C}, there is a C-basis for {P,J; C}, and by
Lemma III we may take this basis to be Ay, ..., 4, J with the 4; € P. The
proof may be completed as for Theorem II.

A differential (or difference-differential) ring is called a Ritt algebra if it
contains the rational numbers.

CoroLLARY 1. Let R, be a difference-differential ring which is a Ritt algebra.
Let the set of perfect difference-differential ideals of Ry be Noetherian. If R is a
difference-differential ring finitely generated in the difference-dyferential sense
over Ry, and C is the set of perfect difference-differential ideals of R, then C is
Noetherian.

Proof. C is a perfect set. Every prime ideal of R is separable over R, and
therefore certainly transformally quasi-separable.

Remark 4. One can give a direct proof of Corollary I similar to the proof of
Theorem II and shorter than the proof of Theorem III.

Kolchin defines a differential field K to be diferentially quasi-perfect if every
differential extension field of K is quasi-separable over K. Of course, every
field of characteristic 0 and every perfect field of positive characteristic is
differentially quasi-perfect. Let K be of positive characteristic . Let C be the
subfield of K consisting of differential constants; that is,

ce C ifé,ec=0, 1=1,...,m.

Kolchin has shown [5, p. 7-07] that K is differentially quasi-perfect if and
only if C:K? is finite.

CoRrOLLARY 11. Let K be a diference-differential field which s diyferentially
quasi-perfect when regarded as a differential field. Let R be a difference-differential
ring finitely generated over K, and let C be the set of perfect difference-differential
ideals of R. Then C is Noetherian.

Proof. C is a perfect set. By the result of Kolchin mentioned above, every
prime difference-differential ideal of R is quasi-separable, and therefore
certainly transformally quasi-separable.

If K is a differential field only, then C is Noetherian if and only if K is
quasi-perfect [5, Theorem 2, Corollary 2]. Theorem II and the examples of § 3
show that this condition is not necessary (though clearly sufficient) for K a
difference-differential field. The question remains open whether it is necessary
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that every difference-differential extension of K be transformally quasi-
separable.

6. Separability criteria. Throughout this section F denotes a field of
positive characteristic p. Let {2, 2 € I} be a p-basis for F/F?. There exist
uniquely determined derivations d;, ¢ € I, such that

dizi= 1, diZj=O, ’L,]EI,’L#].

Let R = Fl{x;,j € J}] be a polynomial ring (in possibly infinitely many
indeterminates) over F and let P be a prime ideal of R. We extend the d; to R
by defining dx; = 0,7 € I,j € J. Seidenberg [10] showed that P is separable
if and only if given 4 € P M F[{x/?,j € J}], every d;A € P. Since separable
ideals are certainly quasi-separable, this criterion can be applied to differential
polynomial rings to select a Noetherian set of perfect differential ideals; and
this is carried out in [10].
Let X be the map of R into R defined as follows: Let 4 € R. If

4 € Fl{xf,j € J}],

then N4 = A. Otherwise AA = 1. We may restate Seidenberg’s criterion in
terms of links [2, § 5] as follows: A radical ideal Q of R will be called allowable
if it admits the links {\; d4}, that is, if

(2) N4 € Qimpliesd;4 € Q,1 € I.

Seidenberg’s criterion stated above thus becomes: a prime ideal is separable
if and only if it is allowable. Seidenberg also showed that the set C of allowable
radical ideals is perfect. (There is a more general result in [5, p. 7-08,
Example 3].) Hence, every allowable radical ideal is the intersection of separ-
able prime ideals. Using the mechanism of [2] we may prove these results
very rapidly. In fact {2, Lemma XIV], Cis perfect if every ideal Q of C satisfies

(2') Let A, B € R. BNA € Q implies Bd;A € Q,s € I.

We need merely show that (2') follows from (2). Suppose that Q satisfies (2)
and BNA € Q. If NA = 1, then B € Q and so Bd;4 € Q,: € I. Suppose that
M = A. Then BA € Q, and so B?4 € Q. Since \(B?A) = B?4 in this case,
it follows from (2) that every d;(B?4) € Q. Butd;(B*4) = B?d,A. Since Q is
radical, each Bd;4A € Q.

There is an easy generalization of Seidenberg’s criterion. A set D of (not
necessarily commuting) derivations of F into F will be called adequate if given
x € F — F?thereexistsd € D such thatdx # 0. It is easily seen (for example,
using [10, Theorem 4]) that {d,, ¢ € I} is adequate. Let R and X be as above.
We extend D to R by defining dx; = 0,d € D, j € J. A radical ideal Q of R is
D-allowable if it admits all the links {\; d}, d € D, that is, if

(2*) M4 € Q impliesd4 € Q,d € D.

LeEmMA V. The D-allowable radical ideals of R form a perfect set C. If D is
adequate, then a prime ideal of R is separable if and only if it is D-allowable,
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and C consists precisely of the ideals of R which are intersections of separable
prime ideals.

Proof. To prove the first statement we proceed exactly as in the special case
of allowable ideals using (2*) instead of (2). It remains only to prove that if D
is adequate, then a prime ideal is separable if and only if it is D-allowable,
since the last part of the lemma then follows at once from a property of perfect
sets stated in § 1.

Let U denote the set of power products of the x;. Let D be adequate and
let P be a D-allowable prime ideal of R. We must show thatif 4 € P,

n
A = Z aiuil’,
=1

where the u; are elements of U and the ¢; are in FF and not all 0, then there exist
by, 1 £1¢ = m,in Fand not all 0 such that B = X ;_1bu; € P. Suppose that
this is false and that 4 is chosen with # minimal such that no such B exists.
Without loss of generality we may assume that a; = 1. There exists
7,2 £ j = n,such thata; ¢ F?. There is some d € D such that da, # 0. Then
d4 = Yt (da)u? € P, and not all coefficients of d4 are 0. By the
minimality of #, there exist ¢;,2 < i < #, in F and not all 0 such that
> i—ecat; € P. This is a contradiction.

Now let P denote a separable prime ideal of R andlet4 = >/ au? € P,
where the @, are in F. We shall see that if d is any derivation of F into F, then
dA € P. (We extend d to R by letting dx; = 0,7 € J.) We again suppose that
this is false and choose 4 with # minimal such that d4 ¢ P. Then no a; is 0.
By the separability of P there exist b;, 1 < 7 < #, in F and not all 0 such
that B = Y ;-3 bu; € P. We may suppose that b; 5 0. Then

C =024 — B € PN Flixp2,j € J}).

Either C is ‘“‘shorter’” than 4 or C = 0. Hence, dC ¢ P. Computing dC we
find the contradiction d4 € P.

THEOREM IV. Let K be a difference-differential field of positive characteristic p.
Let R = K{yi, . ..,y be a polynomial difference-differential ring over K and D
an adequate set of derivations of K into K. Let C be the set of D-allowable perfect
difference-differential ideals of R. Then C is a perfect set and 1s Noetherian.

Proof. C is the intersection of two perfect sets: the set of perfect difference-
differential ideals and the set of D-allowable ideals. It follows easily from the
definition that C is perfect. By Lemma V, every prime ideal of C is separable
and therefore transformally quasi-separable. It follows from Theorem III that
C is Noetherian.

The following result is the extension to difference-differential ideals of a
theorem of Seidenberg [10, Theorem 5].

CoroLLARY I11. Let K and R be as in Theorem IV. Let C be the set of difference-
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differential ideals of R which are intersections of separable prime and perfect
difference-differential ideals of R. Then C is perfect and Noetherian.

Proof. Let D be the set of derivations {d;, 2 € I} defined at the beginning
of this section. As has been stated, D is adequate. By Theorem IV the set C’
of D-allowable perfect difference-differential ideals of R is perfect and
Noetherian. Lemma V shows that C and C’ contain the same prime ideals.
Since C’ is perfect, it consists precisely of the intersections of its prime ideals.
Then C = C’ by definition of C.

CoroLLaRryY IV. Let K and R be as in Theorem IV. If A is adequale, the set
of perfect difference-differential ideals of R 1is Noetherian and every prime and
perfect difference-differential ideal of R is separable.

Proof. Every perfect difference-differential ideal of R is A-allowable.

Remark 5. Let K be a differential field. If A is not adequate, there is a prime
differential ideal in the polynomial differential ring K{y} which is not separable.
For there exists a € K — K? such that é,a = 0, 1 < ¢ < m. Then {y? — 4} is
a prime but not separable differential ideal. With slight modification to allow
for extensions which are not finitely generated, Corollary IV and the result
just stated are equivalent to the following theorem stated by Kolchin in [5].
Let C be the subfield of differential constants of K. Then K is differentially
separable (that is, every differential extension of K 1is separable) if and only if
C = K?. Corollary IV could easily have been proved using this theorem.
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