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A DIFFERENCE-DIFFERENTIAL BASIS THEOREM 

RICHARD M. COHN 

Introduction. Our aim in this paper is to extend to difference-differential 
rings the beautiful theorem of Kolchin [5, Theorem 3] for the differential case. 
The necessity portion of Kolchin's result is not obtained. 

What might well be called the Ritt basis theorem states that if a com­
mutative ring R with identity is finitely generated over a subring R0, then 
the ascending chain condition for radical ideals of R0 implies the ascending 
chain condition for radical ideals of R. (This is indeed a basis theorem. If we 
define a basis for a radical ideal A to be a finite set B such that A = \/ (B), 
then every radical ideal of a ring R has a basis if and only if the ascending 
chain condition for radical ideals holds in R.) It is the Ritt basis theorem 
rather than the Hilbert basis theorem which has appropriate generalizations 
in differential and difference algebra, where in fact it originated. For differ­
ential rings (even difference-differential rings) containing the rational numbers 
and for difference rings without restriction, this generalization has been known 
for about thirty years (see [3; 7; 8; 11]) although the full results were not 
explicitly stated. They may be found in Theorem II and Corollary I to 
Theorem III below. The situation for differential rings not containing the 
rationals is much more subtle, and for such rings the basis theorem does not 
hold without restriction. Two different aspects of the problem were explored 
by Kolchin [4] and Seidenberg [10]. Then Kolchin [5] produced a definitive 
result which included the earlier theorems and much more. 

Another feature of Kolchin's paper [5] was to generalize the basis theorem 
to certain subsets of the set of radical differential ideals. This generalization 
is very natural and does not complicate the proof of the basis theorem itself. 
It is also included in this paper and the necessary definitions are given in § 1. 

In the first three sections of this paper we summarize the needed definitions 
and known results. Sections 4 and 5 contain the proof of the principal theorem. 
In the final section we discuss a criterion of Seidenberg related to the basis 
theorem. Some knowledge of differential algebra [9] or difference algebra [1], 
while not technically needed, is desirable for an intuitive understanding of 
this paper. 

All rings discussed in this paper are commutative with identity, and all 
ring extensions are unitary. 

1. Conservative systems. A set C of ideals in a ring R is called conservative 
if 
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(a) If Au i G 7, are ideals of C, then Ç^iei At G C. (In particular, taking 7 
to be the empty set, we find R G C.) 

(b) If ^4i, i G 7, are ideals of C linearly ordered by inclusion, then 

UAtec. 

A conservative set C is divisible if for .4 G C, x G i^, i : x f C. A divisible 
conservative set is perfect if its members are radical ideals. A set of ideals 
satisfying the ascending chain condition is called Noetherian. 

If C is perfect and A G C, then 4̂ is an intersection of prime ideals of C, 
and if C is also Noetherian, then A is the intersection of finitely m a n y prime 
ideals of C. These facts give perfect sets their importance. In part icular, the 
differential ideals called perfect by Raudenbush [7] and the difference ideals 
called perfect by R i t t and Raudenbush [8] form perfect sets according to the 
définition above, and the theorems showing tha t such ideals can be represented 
as the intersection of prime differential or prime difference ideals are special 
cases of the result jus t s ta ted. T h e theory of conservative and of perfect sets 
(with some variat ions in terminology) is developed in [2; 5; 6], 

Let C be a conservative set of ideals in R. Le t 5 Ç R. We denote by {S; C) 
the minimal ideal of C containing S, tha t is, the intersection of all ideals of C 
containing S. If S is finite, then 5 is called a C-basis for {5; C\. Evident ly , C is 
Noether ian if and only if every ideal of C has a C-basis. 

Le t Ro be a subring of R, and let C be a set of ideals of R. W e denote by 
C/Ro the set of ideals A Pi R0, A G C, of Ro. I t is easy to see t ha t the prop­
erties of being conservative, divisible, perfect, or Noetherian are inherited 
from C by C/RQ. 

T h e following lemma [5, Lemma 2; 2, Lemma 6] is fundamental in s tudying 
perfect sets of ideals. 

LEMMA I. Let Rbe a ring and C a perfect set of ideals in R. Let S CI R, T Ç R. 
Let ST denote the set {st, s G S, t G T}. Then 

{S;C} n{T;C} = {ST;C\. 

Kolchin [5, Lemmas 3 and 1] has proved the following results. 

L E M M A I I . Let R be a ring and C a perfect set of ideals of R which is not 
Noetherian. Then there exist ideals maximal among those ideals of C which do 
not have a C-basis. Such ideals are prime. 

LEMMA I I I . Let Rbe a ring, C a perfect set of ideals of R, S Ç R, and a G R. 
If a G {S\ C\, then there exists a finite subset T of S such that a G {T; C}. 

With the aid of these lemmas, Kolchin [5] established the following 
generalization of the R i t t basis theorem. T h e proof is a specialization of t h a t 
of Theorem II below. 
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T H E O R E M I. Let R be a ring and R0 a subring of R such that R is finitely 
generated over Ro. Let C be a perfect set of ideals of R. If C/Ro is Noetherian, 
then C is Noetherian. 

2. Dif ference-di f ferent ia l r ings . Let R be a ring, A — (5i, . . . , drn) 
derivat ions of R into R, and T = ( n , . . . , rn) isomorphisms of R into R such 
t h a t all pairs of members of A U T commute . Then (R, A, T) is called a 
difference-differential ring. (If A is empty , then (i?, A, T) is a difference ring, 
and if T is empty , a differential ring.) W e denote by 9 the set of formal 
power products (including the ident i ty) of of and 7> 0 is called the set of 
difference-differential operators . If 9 G 9 , then the order of 0 is the sum of 
the exponents of the 8i and TJ appearing in 0. 

W e denote by 9 ' the subset of 9 consisting of formal power products of 
the ôi only and by 9* the set of formal power products of the r3 only. If 
0 G 9 , then we have 0 = 0'0*, 0' G 9 ' , 0* G 6*. Th is representat ion is unique. 
I f a G - R , 0 G B * , then 6a is called a transform of a. I f a G i ? , 0 G 6 ' , and 0 is 
no t the empty product , then da is called a derivative of a. T h e nota t ion given 
here for the operators will be retained th roughout the paper even where the 
nota t ion for the ring itself is changed. 

Remark 1. W e shall generally use R to denote both the ring R and the 
difference-differential ring (R, A, T ) . A t times we shall also regard R as a 
difference ring with isomorphisms T and the e m p t y set of der ivat ions. No te 
t ha t A and T are ordered collections, no t sets. Th is is essential in defining 
extensions and homomorphisms. 

Let(R', A', T') be another difference differential ring where A' = (<5/, . . . ,ôj) 
and T' = ( r / , . . . , r / ) have the cardinal i ty of A and T, respectively. A ring 
homomorphism 0 from R to R' is called a difference-differential homomorphism 
if <j>bi = 5 /0 , (j)Tj = Tj'cj), 1 ^ i ^ m, 1 ^ j ^ n. If R is a subring of R' and the 
injection m a p is a difference-differential homomorphism, then (R, A, T) is 
called a difference-differential subring of (R!', A', T ; ) and we speak of the pair 
(i^, A, T) and ( i ^ , A', T ') as forming a difference-differential ring extension 
which will frequently be denoted by R'/R. (By abuse of language we some­
times refer to (Rf, A', T r) itself as a difference-differential extension of 
( * , A , T) . ) 

Le t jR'/i^ be a difference-differential ring extension, and let S ^ Rf. W e 
denote by R{S} the smallest difference-differential subring of Rf which contains 
R and S. If Rf = R{T}, where T is finite, we say t h a t Rf is finitely generated 
in the difference-differential sense over R. If R' = R{yi, . . . , yk}, and the set 
^ = [Qyu Q G 9 , 1 ^ i ^ k} is algebraically independent over R, then i?r is 
called a polynomial difference-differential ring over i^ (and i ^ / i ^ a polynomial 
difference-differential extension) in the indeterminates yi, . . . , yfc. T h e 
elements of Rf are then called difference-differential polynomials. I t is evident 
t h a t such extensions exist for every k and are unique to within isomorphism. 
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Every finitely generated difference-differential extension of R is obtained from 
a polynomial difference-differential extension through a difference-differential 
homomorphism which leaves R fixed. 

A difference-differential ring will be said to be ordinary as a difference ring 
if n = 1. If m = 0, n = 1, it is an ordinary difference ring. A corresponding 
terminology is applied if m = 1, or m = 1, w = 0. 

Le t i? ' be a polynomial difference-differential ring over R. We use the 
notat ion of the preceding paragraph. If u, v G Y and there exists ^ 0 such 
t h a t v = du, then v will be called, with some abuse of language, a multiple 
of u (a proper multiple if 6 is not the empty produc t ) . W e introduce an order­
ing < into Y as follows. Le t v G Y,v = d'd*yu 6' G 0 ' , ô * £ 6 * , l g i g i f e . W e 
assign to y the (m + # + 3)- tuple (a, fr, Ci, . . . , cm+re, i ) , where a is the order 
of df ,b the order of 0*, and the ct are the exponents of the successive <5 { and r;- in 0. 
Le t the (m -\- n -\- 3)-tuples be ordered lexicographically, and order the 
elements of Y as their (m + n + 3)-tuples are ordered. Note the following 
properties of < . 

(a) < is a total ordering and a well-ordering. 
(b) If u,v £ Y, 6 G 9, and u < v, then du < dv. 
(c) If u, v G 3 ,̂ and ^ is a proper multiple of u, then u < v. 
(d) If w = « V ? * , ^ = j S ' ^ i , where a', 0 ' G 6 r , a*, £* G 6* and a1 is of 

lower order than f3\ then u < v. 
T h e following lemma is proved exactly as in [9, p . 147]. 

LEMMA IV. With the notation of the preceding paragraph let u\ < u2 < . . . be 
elements of Y. Then there exist positive integers i, j ^ i, such that Uj is a multiple 
of ut. 

If P G Rf — R, with R' (as above) a polynomial difference-differential ring 
over R, then the leader u of P is the highest member of Y in the ordering < 
which is effectively present in P. The initial of P is the coefficient of the highest 
power of u in P when P is wri t ten as a polynomial in u with coefficients in 
i ? [F — u\. T h e séparant of P is the formal partial derivat ive dP/du. 

W e define a ranking ( tha t is, a pre-ordering) of the elements of R' as 
follows: Le t A, B G R''. Then 4̂ is of / o w r rawfe than i? if one of the following 
holds: T h e leader of A is lower than the leader of B\ A and B have the same 
leader u and A is of lower degree than B in u; A £ R, B £ R' — R. 

A difference-differential field is a difference-differential ring which is a field. 
T h e terminology to be used for difference-differential fields is for the most pa r t 
obvious. W e need only note t h a t if L/K is a difference-differential field exten­
sion and 5 Ç L , then K(S) denotes the smallest difference-differential subfield 
of L containing K and S. W e say t ha t S is a set of difference-differential 
generators of K(S) over K. 

Let R be a difference-differential ring. T h e set I of difference-differential 
ideals of R ( tha t is, of ideals of R closed under the operators 9 ) is a conserva-
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tive but not necessarily a divisible conservative set. Let D consist of those 
radical ideals A oi I which satisfy: 

(1) If for some r G T and a G R, ra G A, then a £ A; 
(2) If for some r G T and a £ R, ara G A, then a £ A. 

Then J9 is a perfect set of ideals [2, pp. 798-799] and indeed every perfect set 
contained in / is contained in D. Let S QR. We shall hereafter use the abbre­
viations {S} for {S; D] and [S] for {S; I}. We call the ideals of D the perfect 
difference-differential ideals of R (perfect difference ideals or perfect differential 
ideals if A, or T respectively, is empty). These definitions accord with those 
of Ritt and Raudenbush mentioned above, and the abbreviated notation 
coincides with that conventionally used for perfect difference and differential 
ideals. 

3. Transformai quasi-separability. Let L/K be a difference field exten­
sion. (That is, A is now the empty set or is disregarded.) A subset U of L is 
called trans formally independent over K if U* = {6u, 6 G 9*, u G U\ consists 
of distinct elements (i.e., diUi = 62u2 implies 0i = 62 and U\ = u2) and these 
form an algebraically independent set over K. The properties of transformai 
independence have been established in [1, Chapter 5] for the case n — 1, and 
they carry over without essential change to the general case. The cardinality 
of a subset of L maximal among those transformally independent over K is an 
invariant of L/K called the degree of transformai transcendence. 

Let U be a subset of L, V & subset of U maximal among those subsets of U 
transformally independent over K. If U — V is finite we say that U is of 
finite transformai codimension over K. Exactly as with the usual codimension 
of field theory we establish that the cardinality of U — V is independent of 
which maximal transformally independent set V is chosen. 

A subset U of L is said to be transformally separably independent over K 
if U* as defined above consists of distinct elements which constitute a separably 
independent set (that is, annul no separable polynomial) over K. We define 
L/K to be transformally qua si- separable if every subset of L transformally 
separably independent over K is of finite transformai codimension over K. 
If T is the empty set, this notion reduces to that of quasi-separability intro­
duced by Kolchin [5] and essential to his basis theorem for differential rings. 
It is easy to see that if L/K is quasi-separable when regarded as a field exten­
sion, then it is transformally quasi-separable. The following examples show 
that these notions are not equivalent. 

Example 1. Let F be an ordinary difference field of positive characteristic p. 
We write r for n . Let F(x) be an extension of F with x transformally indepen­
dent over F. Let K = F(xp). Then F(x) is not quasi-separable over K since 
the r*x, i = 0, 1, . . . , form a separably independent set of infinite codimen­
sion. Of course, this set is not transformally separably independent and so 
does not violate the definition of transformai quasi-separability. To show that 
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F(x) is in fact transformally quasi-separable over K, note t ha t if it were not , 
there would exist an infinite ascending chain of difference fields between K 
and F(x). Using [1, Chapte r 5, Theorem X V I I I ] , i t is easy to see t h a t no such 
chain exists. Indeed, every finitely generated extension of an ordinary difference 
field is transformally quasi-separable. 

Example 2. Le t F be a field of positive characteristic p. Le t Ci, c2, . . . be 
algebraically independent over F. Let 

K = F(dp, c2
v, . . .) and L = F(cu c2, . . .)• 

Then L/K is not quasi-separable. Le t r be the ident i ty automorphism of L. 
Then L/K may be regarded as a difference field extension. I t is transformally 
quasi-separable since there are no transformally separably independent sets. 

Le t R be a difference ring, R0 a difference subring of R. Le t P be a pr ime 
and perfect difference ideal of R. (A prime difference ideal need no t be perfect 
since i t may fail to satisfy (1) of § 2.) Le t K be the quot ient field of 
Ro/ (Ro Pi P) and L the quot ient field of R/P. In an obvious canonical way, 
we m a y regard L/K as a difference field extension. In [5] Kolchin defined 
(independently, of course, of the difference field s t ructure) P to be quasi-
separable over Ro if L/K is quasi-separable. We shall say t h a t P is transform­
ally quasi-separable over R0 if L/K is transformally quasi-separable. 
Similarly, P is separable over RQ if L/K is separable. 

4. T h e r e d u c t i o n t h e o r e m . Let R be a difference-differential ring and 
R! = R{yi, . . • , Jk] a polynomial difference-differential ring over R. Le t 
A G Rr — R, B G R', and let A be of degree d in its leader u. We say t h a t B is 
reduced with respect to A if B is free of transforms of derivatives of u and of 
degree less than d in each transform of u. Le t F = {Fu i G /} be a set of 
elements of Rf — R. W e say t h a t F is an autoreduced set if for each i, j G I 
with i 7^ j , Fj is reduced with respect to Ft. I t follows easily from Lemma IV 
t h a t all autoreduced sets are finite. Le t H G R'', and let F be autoreduced. 
W e say tha t H is reduced with respect to F if H is reduced with respect to 
each Fi, i G i \ (If F is empty , every member of Rr is reduced with respect 
to F.) 

R E D U C T I O N THEOREM. Let R be a difference-differential ring, 

R' = R{ylt ...,yt] 

a polynomial difference-differential ring over R. Let F = {i^i, . . . , Fr] be an 
autoreduced set in Rf'. Let G G R'. Then there exists a polynomial H in Rf 

reduced with respect to i7, a product J of powers of transforms of séparants and 
initials of the Fu and a polynomial L in [Fi, . . . , Fr] such that 

(1) H = JG - L. 
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We may choose (1) such that neither J nor L effectively involves a member of Y 
higher than the leader of G. If R is a difference ring, J may be taken to be a product 
of transforms of initials of the Ft. 

Proof. If F is empty , we may let H = G, J — 1, L = 0. Le t F no t be empty . 
Le t Uj denote the leader, 13 the initial, Sj the séparant , and d3- the degree 
in Uj of Fj, 1 S j ^ r. If a polynomial A of R' is no t reduced with respect 
to F, then i t involves one or more multiples of leaders of the Fj to degrees 
which violate the definition of reduction. T h e highest such mult iple is called 
the /^-leader of A. W e assume t h a t there are polynomials for which no relation 
of the form of (1) exists and obtain a contradict ion. Clearly no Sj is 0, since 
otherwise (1) follows trivially. 

All polynomials for which no relation of the form of (1) holds m u s t have 
F-leaders. Among such polynomials let A be one which has lowest /^-leader v 
and among these is of lowest degree d in v. For some (not necessarily unique) 
J, 1 S j ^ r, ^ is a mult iple of Uj, say v = dUj, 0 G 0 . Le t E denote the initial 
of 6Fj. If 6 Ç 0*, then E = 61 j , 6Fj is of degree dj in BUj, and d ^ dj. If 
6 d 0*, then E is a transform of S3 and BFj is linear in Buj. 

By the division algori thm there exists a non-negat ive integer a and a 
polynomial M 6 R' such t ha t A1 = EaA — M (BFj) is of degree less than 
dj in v, and is free of v if 6 £ 0*. Nei ther M nor OFj effectively involves a mem­
ber of Y higher than the leader of A. Now Ai can involve effectively only 
those members of Y which are present either in 6Fj or in A. Fu r the rmore , 
those present in A b u t no t in OFj appear to the same degree in A and in A\. 
Let u 6 F , u > v, be effectively present to degree e'mAi. T h e n u is not present 
in BFj, and so A is of degree a t least e in u. Since v is the F-leader of A, i t m u s t 
be t h a t if u is a mult iple of some uj} then w = B*uu 0* G 0*, and e < dt. 
Hence, u is no t the F-leader of A i. Then A i either has no F-leader, has F-leader 
lower than v, or has i^-leader v and is of degree less than t h a t of A in its 
F-leeider. In all cases there exists a relation J\A\ — L x = A2 of the form 
of (1). Combining this with the relation above between A and Ai we obtain 
the contradict ion t h a t A satisfies a relation of the form of (1). T o prove the 
last s t a t emen t of the theorem, note t h a t if Rf is a difference ring, the a rgumen t 
above can be carried ou t wi thout reference to séparants . 

5. T h e bas i s t h e o r e m s . T h e first result b e k w , Theorem II, applies to 
rings which are difference rings only. I t is needed for the proof of Theorem III 
for difference-differential rings. 

Remark 2. I t is a reasonable conjecture t h a t Theorem II is a special case 
of Theorem I I I : This is so for ordinary difference rings since, as we have 
observed (Example 1), the condition of transformai quasi-separabil i ty required 
in Theorem III is satisfied by any finitely generated extension of an ordinary 
difference field. 
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Remark 3. Theorem II is not really new. For ordinary difference rings it is, 
except for the generalization to arbi t rary perfect sets of difference ideals, a 
theorem of R i t t and Raudenbush [8, Theorem] . T h e general case is obtained 
by applying to the work of S t rod t [11] the ideal-theoretic considerations of [8]. 

T H E O R E M I I . Let Rbe a difference ring and R0 a difference subring of R such 
that R is finitely generated in the difference ring sense over R0. Let C be a perfect 
set of ideals of R whose members are difference ideals. {Then they are necessarily 
perfect difference ideals.) If C/Ro is Noetherian, then C is Noetherian. 

Proof. R is the homomorphic image of a polynomial difference ring 
Ro{yu • • • » Jk}- Le t C be the set of ideals which are the complete pre-images 
in Ro{yi, . . . , y^} of the ideals of C. Using [2, § 4 (Lemma X I I , and the final 
pa ragraph) ] , it is easy to see t ha t if C satisfies the hypotheses of Theorem I I , 
then so does C\ and t ha t i t is sufficient to prove C Noetherian. Hence, we 
shall suppose henceforth t ha t R = Ro{yi, . . . ,yk}. 

Suppose t h a t the theorem is false. By Lemma I I , there exists a prime ideal 
P G C such t h a t P has no C-basis, and every ideal of C properly containing P 
has a C-basis. Le t PQ = P C\ R0, C0 = C/Ro. Then P 0 has a Co-basis T. Le t 5 
denote the set of polynomials of P which have no coefficient in P 0 . Of course, 
the members of 5 are in R — RQ. W e proceed to construct inductively an 
autoreduced set F of members of S. If 5 is the empty set, let F be the empty 
set. ( I t can easily be proved tha t this case cannot, in fact, occur.) Suppose 
t h a t 5 is not empty . Le t F\ be a polynomial of lowest rank among those in S. 
Suppose t h a t Pi , . . . , Fu i ^ 1, have been found and const i tute an auto­
reduced set. If no polynomial of S is reduced with respect to Fi, . . . , Fh the 
set is complete. If S contains polynomials reduced with respect to Pi, . . . , Fu 

let Fi+i be one of lowest rank. Then Pi, . . . , Fi+i is autoreduced. In a finite 
number , say r, of steps, the process mus t terminate . Clearly, no polynomial 
of 5 is reduced with respect to F. Le t A G P be reduced with respect to F. 
HA' is the sum of those terms of A with coefficients no t in P 0 , then A' G P , 
and A' is reduced with respect to F. Hence A' = 0. Therefore, all coefficients 
of terms of A are in P 0 . 

Le t Ijy 1 ^ j ^ r, denote the initial of Fj. No Ij is in P . For suppose t h a t 
for some j , Ij Ç P . Since Ij is reduced with respect to F, it has some coefficient 
in P 0 . Then Fj has some coefficient in P 0 , contradict ing Fj G S. 

Let / = Ii . . . Ir. Since P is prime, J ([ P. By the maximali ty of P , the 
ideal {P, J; C] has a C-basis U. Using Lemma I I I we see t h a t we may choose 
U = J, Vi, . . . , Vu where the Vt are in P . Le t G G P . I t follows from the 
final s t a t ement in the reduction theorem t h a t there exists some product K 
of powers of transforms of J and a polynomial L G [Pi, . . . , Fr] such t h a t 
R = KG — L is reduced with respect to F. Since R Ç P , every coefficient 
of R is in P 0 . Then R G {T; C}. Hence, KG G {T, Pi , . . . , FT; C}, and so 
JG G {P, Pi , . . . , Fr; C}. Le t JP denote the set {JG, G G P}. Then 
JPQ{T,Fu...,Fr]C\. 
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Using Lemma I we find 

P = Pn{P,J;C\Q {.IP, Vu..., VU Q 
Q{T,Fu...,Fr, Vu..., Vt;C] C P. 

Hence, P has a finite basis, contradicting its definition. 

THEOREM III . Let Rbe a difference-differential ring and RQ a difference subring 
of R such that R is finitely generated in the difference-differential sense over R0. 
Let Cbe a perfect set of ideals of R whose members are difference-differential ideals. 
Let every prime ideal of C be transformally quasi-separable over R0. If C/R0 is 
Noetherian, then C is No ether ian. 

Proof. As in the proof of Theorem II we may assume that R is a polynomial 
difference-differential ring, R = Ro{yi, . . . ,yk}-

Suppose that the theorem is false. We define P and P 0 as in the proof of 
Theorem II. Let 5 be the set of polynomials of P which are not in R0 and have 
séparant not in P. (S may be empty.) We construct inductively an auto-
reduced set F in S. If 5 is empty, let F be empty. If 5 is not empty, let Fi be 
a polynomial of lowest rank in S. Suppose that F1} . . . , Ff have been found. 
If 5 contains no polynomial reduced with respect to F1} . . . , Fu the set is 
complete. If 5 contains polynomials reduced with respect to Fi, . . . , Ft, let 
Fi+i be one of lowest rank. Let Fi, . . . , Fr be the autoreduced set obtained 
by this procedure. No polynomial of 5 is reduced with respect to F. 

Let uj denote the leader, Sj the séparant, and Ij the initial of Fj. We claim 
that IjQP,j= 1, . . . , r. Let t denote the degree of Fj in Uj and put 
Fj = IjUj1 + A. If Ij G P , then A £ P. Since A is reduced with respect to F, 
the séparant of A is in P. Then dA/dUj £ P, since either it is this séparant, 
or A does not involve Uj. If Ij were in P, we wrould find 

Sj = tuS-Uj + dA/duj Ç P, 

a contradiction. Let J = Ii . . . IrSi . . . Sr. Then J d P. 
If U is any subset of Y, then U* will denote the set of transforms of the 

members of U. (Note that U C £/*.) Evidently, Roll/*] is a difference ring 
under the contractions to it of the members of T. For each j , 1 ^ j ^ r, we 
write Uj = ajPjyuj), &j G 0',Pj Ç 6*, 1 S i(j) ̂  k. Let V consist of those 
6yu 6 G B', 1 S i ^ k, which are not derivatives of any a^yi(^. Every member 
of P reduced with respect to F is in P0[F*]. We are going to partition V*. 

Let X consist of those members of V which have no derivative in V. Then X 
is finite. For if not, there exists an infinite sequence %i < x2 < . . . of elements 
of X. By Lemma IV there exist integers i, j > i, such that Xj is a multiple of xt. 
This contradicts the fact that no derivative of xt is in V. 

Let 5 be the maximum of the orders of elements of X. Let W consist of the 
elements of V of order at most s, and let Z — V — W. (If X is empty, let W 
be empty.) Note that each a ^ o ) is in W. If w G W*, z ̂  Z*, then w < z. 
Every member of Z* has some first derivative in Z*. Every member of 
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P C\ R0[Z*] is reduced with respect to F. F* = W* U Z* is the desired 
par t i t ion. 

Le t A G R — R0 with leader u. Le t z; G F appear effectively in A. Then 
d(A,v) is defined to be the difference between the first entries in the 
(m + n + 3)-tuples assigned as in § 2 to w and to v. Le t i G i 5 be reduced 
with respect to F, and let z G Z*. I t will be shown t h a t dA/dz G P . For 
suppose t ha t dA/dz £ P. W e may assume tha t A and z have been chosen so 
t h a t d(A, z) is minimal. W e may also assume t h a t if z' G Z*, dA/dz' (? P , 
then 2/ ^ 2. Le t 3i, . . . , z* be the members of Z* and ?Ci, . . . , wm the members 
of IF* appearing effectively in A. W e may choose the subscripts so t h a t 
Z\ < z2 < . . . < zt. Of course wt < Zi, 1 ^ i ^ m. Since Zj is the leader of 
A, dA/dzt £ P. I t follows t h a t z = zs for some s, 1 ^ s ^ t — 1. W e have 

There exists <5 G A such tha t 5z G Z*. Le t 

t 

At = ÔA - X) (&4/d*0fe< 
s+l 

s m 

= ^ ' + Z (dA/dz,)8z, + £ (d^/dw,)*»,, 
1 1 

where A' involves effectively only certain wt and Zj. Evident ly, Ai G P> I t 
may be t ha t Ai is not reduced with respect to F. This can result only from 
the presence in A i of certain 8wt or of certain 8zj}j < s. Using the reduction 
theorem, we see t h a t there exists a product K of powers of transforms of 
initials and séparants of F and a polynomial L in [Fi, . . . , Fr] such t h a t 
A 2 = X^4i — L is reduced with respect to F. Fur thermore , K and L may be 
chosen so tha t they involve only members of Y lower than 8zs. 

If ôzs is either not effectively present in A 2 or is its leader, then dA2/d(ôzs) G P* 
In the remaining case the leader of A 2 is some zu s < i ^ t, and d(v42, <5ss) < 
d(A,zs). I t follows from the minimali ty of d(A,zs) t h a t in this case also 
dA2/d{8zs) G P. Since dA2/d(8zs) = KdA1/d(8zs), and K £ P , it remains 
only to prove t h a t dA\/ d(8zs) (? P in order to obtain a contradiction. If 8zs is 
not one of the zu then d^4i/d(<5s5) = dA/dzs d P . Suppose t ha t 8zs = Zj. Then 

t 

dA!/d(8zs) = dA/dzs + 8(dA/dZj) - X) (tfA/dZidz^bzu 

where the sum is over f. Since j > s, 8(dA/dZj) G P . Also dA/dZi G P and 
d(dA/dzu *,) < d ( ^ , z), so t h a t d2A/dZidZj G P , s + 1 ^ i ^ /. Hence in 
this case also, dAi/d{8zs) (/ P . 

I t follows in part icular from the above t h a t if A G P C\ R0[Z*], z G Z*, 
then dA/dz G P . Let </> be the canonical homomorphism of R onto P / P . Then 
one sees easily t h a t <j>Z is transformally separably independent over the 
quot ien t field L of <t>Ro. By the hypothesis of transformai quasi-separabili ty, 
4>Z is of finite transformai codimension over L. I t follows exactly as in [5, p . 12], 
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with transformai independence replacing algebraic independence, t h a t there 
is a finite subset T of V such t h a t P C\ RQ[V*] is contained in the perfect 
difference ideal generated in R0[V*] by P C\ RQ\T*]. Now RQ[T*] is finitely 
generated as a difference ring over R0. By Theorem II there exists a finite set B 
which is a C/i?0[r*]-basis for P H R0[T*]. Then P H R0[V*] Ç {£ ; C}. Eve ry 
polynomial of P reduced with respect to F is therefore in {B; C). Since P is 
properly contained in {P,J\C}, there is a C-basis for {P,J;C\, and by 
L e m m a I I I we m a y take this basis to be Ai, . . . , Ag, J with the At £ P. T h e 
proof m a y be completed as for Theorem I I . 

A differential (or difference-differential) ring is called a Ritt algebra if i t 
contains the rational numbers . 

COROLLARY I. Let Ro be a difference-differential ring which is a Ritt algebra. 
Let the set of perfect difference-differential ideals of R0 be Noetherian. If R is a 
difference-differential ring finitely generated in the difference-differential sense 
over Ro, and C is the set of perfect difference-differential ideals of R, then C is 
Noetherian. 

Proof. C is a perfect set. Every pr ime ideal of R is separable over R0 and 
therefore certainly transformally quasi-separable. 

Remark 4. One can give a direct proof of Corollary I similar to the proof of 
Theorem II and shorter than the proof of Theorem I I I . 

Kolchin defines a differential field K to be differentially quasi-perfect if every 
differential extension field of K is quasi-separable over K. Of course, every 
field of characterist ic 0 and every perfect field of posit ive character is t ic is 
differentially quasi-perfect. Le t K be of positive characteris t ic p. Le t C be the 
subfield of K consisting of differential cons tants ; t h a t is, 

c Ç C if dtc = 0, i = 1, . . . , m. 

Kolchin has shown [5, p . 7-07] t h a t K is differentially quasi-perfect if and 
only if C:KP is finite. 

COEOLLARY I I . Let K be a difference-differential field which is differentially 
quasi-perfect when regarded as a differential field. Let Rbe a difference-differential 
ring finitely generated over K, and let C be the set of perfect difference-differential 
ideals of R. Then C is Noetherian. 

Proof. C is a perfect set. By the result of Kolchin mentioned above, every 
pr ime difference-differential ideal of R is quasi-separable, and therefore 
certainly transformally quasi-separable. 

If K is a differential field only, then C is Noether ian if and only if K is 
quasi-perfect [5, Theorem 2, Corollary 2]. Theorem II and the examples of § 3 
show t h a t this condition is no t necessary ( though clearly sufficient) for K a 
difference-differential field. T h e question remains open whether i t is necessary 
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that every difference-differential extension of K be transformally quasi-
separable. 

6. Separabil i ty cri teria. Throughout this section F denotes a field of 
positive characteristic p. Let {zu i G /} be a ^-basis for F/Fp. There exist 
uniquely determined derivations dui G / , such that 

diZi = 1, diZj = 0, i,j G / , i 9* j . 

Let R = F[{Xj,j G J\] be a polynomial ring (in possibly infinitely many 
indeterminates) over F and let P be a prime ideal of R. We extend the dftoR 
by defining diXj = 0, i G / , i G / . Seidenberg [10] showed that P is separable 
if and only if given A G P C\ F[{XjP,j G /}], every dtA G P . Since separable 
ideals are certainly quasi-separable, this criterion can be applied to differential 
polynomial rings to select a Noetherian set of perfect differential ideals; and 
this is carried out in [10]. 

Let X be the map of R into R defined as follows: Let A £ R. lî 

A G Fl{xfjeJ\], 

then \A = A. Otherwise \A = 1. We may restate Seidenberg's criterion in 
terms of links [2, § 5] as follows: A radical ideal Q of R will be called allowable 
if it admits the links {\;di}, that is, if 

(2) XA G Q implies dtA G Q, i G J. 
Seidenberg's criterion stated above thus becomes: a prime ideal is separable 

if and only if it is allowable. Seidenberg also showed that the set C of allowable 
radical ideals is perfect. (There is a more general result in [5, p. 7-08, 
Example 3].) Hence, every allowable radical ideal is the intersection of separ­
able prime ideals. Using the mechanism of [2] we may prove these results 
very rapidly. In fact [2, Lemma XIV], C is perfect if every ideal Q of C satisfies 

(2r) Let A, B G R. B\A G Q implies BdtA G Q, i G F 
We need merely show that (2;) follows from (2). Suppose that Q satisfies (2) 

and BXA G Q. If X^ = 1, then B G Q and so BdtA G Q, i G / . Suppose that 
\A = A. Then BA G (?, and so BVA G Q. Since \(B*A) = BVA in this case, 
it follows from (2) that every di(BpA) G Q. But d , (5M) = BHiA. Since Q is 
radical, each BdtA G Q. 

There is an easy generalization of Seidenberg's criterion. A set D of (not 
necessarily commuting) derivations of F into F will be called adequate if given 
x G F — Fv there exists d £ D such that dx ^ 0. It is easily seen (for example, 
using [10, Theorem 4]) that {du i G /} is adequate. Let R and X be as above. 
We extend D to R by defining dxj = 0, d G Z>, j G / . A radical ideal Q of i£ is 
D-allowable if it admits all the links {X; d}, d G D, that is, if 

(2*) XA e Q implies dA £ Q,d e D. 

LEMMA V. The D-allowable radical ideals of R form a perfect set C. If D is 
adequate, then a prime ideal of R is separable if and only if it is D-allowable, 
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and C consists precisely of the ideals of R which are intersections of separable 
prime ideals. 

Proof. T o prove the first s t a t emen t we proceed exactly as in the special case 
of allowable ideals using (2*) instead of (2). I t remains only to prove t h a t if D 
is adequate , then a pr ime ideal is separable if and only if i t is D-allowable, 
since the last pa r t of the lemma then follows a t once from a proper ty of perfect 
sets s ta ted in § 1. 

Let U denote the set of power products of the %i. Le t D be adequa te and 
let P be a D-allowable pr ime ideal of R. W e mus t show t h a t if A (z P, 

n 

A = J2 a>iUip, 

where the ut are elements of £7 and the at are in F and not all 0, then there exist 
bi, 1 ^ i ^ n, in F and no t all 0 such t h a t B = ^ = i btUi G P . Suppose t h a t 
this is false and tha t A is chosen with n minimal such t h a t no such B exists. 
W i t h o u t loss of generali ty we may assume t h a t a,\ = 1. There exists 
j , 2 S j ^ n, such t h a t aô C? Fv. There is some d G D such t h a t da2 ^ 0. Then 
dA = X)?«2 (dai)Uip G P, and not all coefficients of dA are 0. By the 
minimal i ty of n, there exist cu 2 ^ i ^ n, in F and no t all 0 such t h a t 
2 ^ = 2 CiUi G P. This is a contradict ion. 

Now let P denote a separable prime ideal of R and let A = Xl?=i ^iUtv £ P , 
where the at are in F. W e shall see t h a t if d is any der ivat ion of F into F, then 
dA G P . (We extend d to R by let t ing dx -̂ = 0 , ; £ / . ) W e again suppose t h a t 
this is false and choose A with n minimal such t h a t dA d P. Then no at is 0. 
By the separabil i ty of P there exist bu 1 ^ i ^ n, in F and not all 0 such 
t h a t B = Y^i=i biUi Ç P . W e m a y suppose t h a t b\ 7e- 0. Then 

C = bM - axBv G P r\ F[{xf,j G J}]. 

Ei ther C is " shor te r " than A or C = 0. Hence, dC G P . Comput ing dC we 
find the contradict ion dA G P . 

T H E O R E M IV. Le£ K be a difference-differential field of positive characteristic p. 
Let R = K{yi, . . . , yk\ be a polynomial difference-differential ring over K and D 
an adequate set of derivations of K into K. Let C be the set of D-allowable perfect 
difference-differential ideals of R. Then C is a perfect set and is Noetherian. 

Proof. C is the intersection of two perfect sets: the set of perfect difference-
differential ideals and the set of P-al lowable ideals. I t follows easily from the 
definition t h a t C is perfect. By L e m m a V, every pr ime ideal of C is separable 
and therefore transformally quasi-separable. I t follows from Theorem I I I t h a t 
C is Noether ian. 

T h e following result is the extension to difference-differential ideals of a 
theorem of Seidenberg [10, Theorem 5]. 

COROLLARY I I I . Let K and R be as in Theorem IV. Let C be the set of difference-

https://doi.org/10.4153/CJM-1970-141-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1970-141-3


DIFFERENCE-DIFFERENTIAL BASIS THEOREM 1237 

differential ideals of R which are intersections of separable prime and perfect 
difference-differential ideals of R. Then C is perfect and Noetherian. 

Proof. Le t D be the set of derivations {du i Ç 1} denned a t the beginning 
of this section. As has been stated, D is adequate . By Theorem IV the set C 
of D-allowable perfect difference-differential ideals of R is perfect and 
Noetherian. Lemma V shows t h a t C and C contain the same prime ideals. 
Since C is perfect, it consists precisely of the intersections of its prime ideals. 
Then C = C by definition of C. 

COROLLARY IV. Let K and R be as in Theorem IV. If A is adequate, the set 

of perfect difference-differential ideals of R is Noetherian and every prime and 
perfect difference-differential ideal of R is separable. 

Proof. Every perfect difference-differential ideal of R is A-allowable. 

Remark 5. Le t i ^ b e a differential field. If A is not adequate , there is a prime 
differential ideal in the polynomial differential ring K{y] which is not separable. 
For there exists a G K — Kp such t h a t 8ta = 0, 1 ^ i ^ m. Then \yv — a) is 
a prime b u t not separable differential ideal. Wi th slight modification to allow 
for extensions which are not finitely generated, Corollary IV and the result 
jus t s ta ted are equivalent to the following theorem stated by Kolchin in [5]. 
Let C be the subfield of differential constants of K. Then K is differentially 
separable {that is, every differential extension of K is separable) if and only if 
C = Kv. Corollary IV could easily have been proved using this theorem. 
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