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Monolayer two-dimensional transition metal dichalcogenides (TMDs) have invoked great interest for 

potential applications because of their strong light-matter interactions and direct energy gap. However, 

the external environment heavily influences the optical properties of TMD monolayers. Encapsulating 

TMDs in h-BN is recognized as the most effective way to preserve their intrinsic optical properties
 
[1,2], 

and to obtain narrow excitonic linewidths. It has been proven that h-BN encapsulation can reduce the 

roughness of graphene from 114 ± 1 to 12 ± 5 pm [3]. Besides roughness, surface protection
 
[1], charge 

disorder
 
[2], and variations of dielectric environment [4] are also believed to be key factors that could 

induce inhomogeneous excitonic linewidth broadening of TMDs. However, no such study has 

comprehensively compared and disentangled the various proposed factors that contribute to excitonic 

linewidth broadening exists, because few techniques can address all factors single-handedly. 

 

In order to explore the role of these factors, we investigated the roughness and absorption behavior by 

electron energy loss spectroscopy (EELS) of WS2 monolayers either supported or encapsulated by two 

different nanosheets (h-BN and Si3N4) in a scanning transmission electron microscope (STEM) [5]. 

Using this technique, the factors leading to exciton absorption linewidth inhomogeneity can be ranked in 

increasing order of importance: monolayer roughness, surface cleanliness, and substrate induced charge 

trapping. In Fig. 1., the EELS spectra of WS2 monolayers in different configurations are illustrated. 

 

Experiments were done on the ChromaTEM microscope, a modified Nion HERMES 200 equipped with 

an electron monochromator. The electron beam energy is set at 60 keV with a spread down to below 10 

meV. The convergence half-angles for the EELS and diffraction measurements are 10 mrad and 1 mrad. 

Roughness was measured with the sample tilted with respect to the electron beam from 0 to 385 mrad as 

shown in Fig. 2, which is similar to previous experiments for graphene [3,6]. Corrugated monolayers are 

expected to show diffraction spots blurring as the tilt angle increases, whereas a flat monolayer does not. 

Additionally, numerical calculations for the diffraction patterns under different roughnesses are 

performed in QSTEM [7] to ascertain the corrugation of the monolayers in each configuration [8]. 
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Figure 1. EELS spectra of WS2 monolayers in various configurations at 110 K. The linewidth of the A 

exciton in increasing order is: h-BN encapsulated, h-BN supported, freestanding CVD-grown, Si3N4 

supported and Si3N4/h-BN encapsulated WS2 monolayers. 

 

 
 

Figure 2. (a) and (b) are the diffraction patterns of a WS2 monolayer on a 15-nm Si3N4 membrane, 

corresponding to the reciprocal space of a corrugated monolayer and Ewald sphere geometry in (d) and 

(e). The intensity profiles of the diffraction spots are plotted in (c), which are indicated in (a) and (b) by 

the purple and yellow box. 
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