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Milutin's Theorem states that if X and Y are uncountable metrizable compact
Hausdorff spaces, then C(X) and C(Y) are isomorphic as Banach spaces [15, p. 379].
Thus there is only one isomorphism class of such Banach spaces. There is also an
extensive theory of the Banach-Mazur distance between various classes of classical
Banach spaces with the deepest results depending on probabilistic and asymptotic
estimates [18]. Lindenstrauss, Haagerup and possibly others know that as Banach
spaces

where H is the infinite dimensional separable Hilbert space, R is the injective II x-factor
on H, and « denotes Banach space isomorphism. Haagerup informed us of this result,
and suggested considering completely bounded isomorphisms; it is a pleasure to
acknowledge his suggestion. We replace Banach space isomorphisms by completely
bounded isomorphisms that preserve the linear structure and involution, but not the
product. One of the two theorems of this paper is a strengthened version of the above
result: if N is an injective von Neumann algebra with separable predual and not finite
type I of bounded degree, then N is completely boundedly isomorphic to B(H). The
methods used are similar to those in Banach space theory with complete boundedness
needing a little care at various points in the argument. Extensive use is made of the
conditional expectation available for injective algebras, and the methods do not apply to
the interesting problems of completely bounded isomorphisms of non-injective von
Neumann algebras (see [4] for a study of the completely bounded approximation
property). The trace preserving normal conditional expectation available for type II2

von Neumann algebras is exploited to obtain the second Theorem (1.2): if M and N are
type II, von Neumann algebras with Mc+N, Nc+M, and M@Mc+M, then M and N
are completely boundedly normally isomorphic. Here ^ denotes a normal *-mono-
morphism from the one von Neumann algebra into another that is not necessarily
unital. Our results are not directly related to those on perturbation in von Neumann
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318 E. CHRISTENSEN AND A. M. SINCLAIR

algebras [1, 2] as the distance between the algebras used here is different from that used
in perturbation theory.

The basic definitions and the main results of this paper (Theorems 1.1 and 1.2) are
given below. In Section 2 we prove 1.1 giving a detailed account even when the lemmas
are only modifications of the Banach space results, in the hope of making this paper
easier to read. Theorem 1.2 and a couple of corollaries are proved in Section 3. There is
brief further discussion at the end of Section 2.

The standard theory of completely bounded linear operators between C*-algebras is
carefully expounded in Paulsen's lecture notes [12]. Let A/n(C), or Mn, denote the
algebra of n x n matrices over C, and let ® denote the spacial tensor product of C*-
algebras. An operator space X is a subspace of B(H), and associated with it is the norm
on Mn(X) inherited from M n(B(H)) = M n(Q® B{H) for all neN. If <j> is a linear operator
from one operator space X into another Y, define <$>„: Mn(X)->Mn(Y) by <pn = in®<f>,
where in is the identity operator on Mn(C). The operator <j> is completely bounded if
||</>||cb = sup{||(/)n||:n£ N} is finite. Many of the completely bounded operators we use
below will be constructed from the characterisation of completely bounded operators in
terms of a representation and two bridging operators (see [12] for a detailed discussion).

Let X^B(H) be an operator space and let (j>:X-*B{K) be a linear operator, where H
and K are Hilbert spaces. Then </> is completely bounded if, and only if, there is a
•-representation n of B(H) on a Hilbert space Hn and continuous linear operators
U:Hn->K and V:K^>Hn such that <p(x) = Un(x) V for all xeX; further U, V, and n may
be chosen so that ||$|U = ||^|| ' | |J/ | |- If 4> is normal, then n may be chosen to be normal.

Note that the completely bounded norm satisfies the standard inequalities H^ + i/'ll^^
IMU + IMU a n d lko|HU = IMU'IMU- Throughout © will denote the direct sum with
lx norm; observe that it is a direct sum of operator spaces because it induces a natural
direct sum on B(H) and Mn(B(H)®B(H)) = Mn(B(H))®Mn(B(H)) [13].

If X and Y are operator spaces, X and Y are said to be completely boundedly
isomorphic, written X cb=Y, if there is a linear isomorphism <t> (probably not preserving
the product structure) such that (f> and <j)~l are completely bounded. Let

dcb{X, Y) = inf{||0||ci,-||0-1||cft:</>:Ar-r' with <£ and <p~l completely bounded}

be the completely bounded distance between X and Y. If <j> and <j>~1 are normal, we
write X ocb s Y and let dacb(X, Y) be the corresponding normal distance between X
and Y. An operator (j> between two C*-algebras is said to preserve the involution if
</>(x*) = 4>{x)* for all x. Throughout the isomorphisms will be taken to be involution
preserving: the exception is the maps constructed in Lemma 2.6; however, modifying
that operator leads to an involution preserving completely bounded isomorphism.

Theorem 1.1 If N'is an injective von Neumann algebra with separable predual and not
finite type I of bounded degree, then N is completely boundedly isomorphic to B(H) by an
involution preserving operator. Further dcb(N,B(H))^216.

The hypothesis of separable predual is to ensure N has a faithful normal represen-

https://doi.org/10.1017/S0013091500028716 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028716


INJECTIVE VON NEUMANN ALGEBRAS 319

tation on H. Finite type I algebras of bounded degree are completely boundedly
isomorphic to commutative algebras so cannot be Banach space isomorphic to B(H).
Corollary 2.7 lists the isomorphism classes of injective von Neumann algebras with
separable preduals: I'JneW), 1&, B(H). Theorem 1.1 may be used to transfer operator
space or Banach space information from B(H) to the von Neumann algebra N; for
example, the failure of the approximation property. (Corollary 2.14.)

With care in the calculations and minor changes to the proof one can show that if the
von Neumann algebra N in Theorem 1.1 has no finite type I central direct summand,
then the completely bounded isomorphism may be chosen to preserve the identity.

Theorem 1.2. // M and N are type Hi von Neumann algebras with Mc>N,
and M@Mc+M, then M and N are completely boundedly normally isomorphic. Further
dacb(M,N)g,216.

The above result is a weak type of Schroder-Bernstein Theorem but with the initial
injections preserving the algebra structure and the final isomorphism not doing so. The
hypothesis M®M<^M is implied by M = M®R, where R is the unique injective \ll

factor. Can the condition M©Mc+M be dropped in the above hypotheses? This
problem is related to the example von Neumann gives in the appendix of the fourth
"On rings of operators" paper, where he constructs two type IIi factors M and N with
Mc+N and Nc+M but M not isomorphic to N.

We wish to thank Guyan Robertson for drawing Lemma 2.2 to our notice after the
first version of this paper was complete; his suggestions simplified the proof of Theorem
1.1.

2. Injective algebras

In general hypotheses involving complete positivity are considerably stronger than
those involving complete boundedness. Replacing the hypothesis of complete bounded-
ness of (j> and </>"' by their complete positivity for unital C*-algebras easily leads to the
algebras being isomorphic. The proof involves standard techniques; see [12] for more
about complete positivity and isomorphisms.

Lemma 2.1. Let A and B be unital C*-algebras, and let $ be a linear isomorphism
from A onto B. If </> and 4> ~l are completely positive, then A is *-isomorphic to B by the
^-isomorphism

= 4>(\)-ll2<t>(a)<l,(irli2 {as A).

Proof. Stinespring's Theorem ensures that there is a representation of $ as
<t>(a)= V*n(a)V, where n is a *-representation of A on a Hilbert space K, and V:H-*K is
a continuous linear operator where BzB{H). Then \\<t>'l\\V*V^V*n{4>~l(\))V =

1(1)) = 1 s o t n a t V*V = (j>(l) is a positive invertible element of B. Hence 9 is well
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320 E. CHRISTENSEN AND A. M. SINCLAIR

defined, and 6 and 6~l are completely positive linear isomorphisms from A onto B, and
B onto A, with 0(1) = 1. Hence ||0||,.fc = ||0"1||Ci,= 1 and 6 is a complete isometry. Thus 82

is a Jordan isomorphism from M2(A) onto M2(B) as it is a unital isometry between
these C*-algebras [8]. Applying 92 to the Jordan product

x o i r o y
o oj |_o o

shows that 9 is a homomorphism, which completes the proof.

The referee has kindly pointed out that the above lemma is true with completely
positive weakened to 2-positive with the use of Stinespring replaced by

Before embarking on the proof of the various lemmas we record a few elementary
facts about completely bounded isomorphisms.

If £ is a completely bounded projection on a von Neumann algebra N with ||£||c6= 1,
then Ncb^EN®(l-E)N and dcb(N,EN®(I-E)N)^4. This is trivial using lj/:N->
EN®(I-E)N:x\-^Ex®(I-E)x with |M|cfc=2 and ||iA-1||(:() = 2.

If Acb^B and Mcb^N, then A®Mcb^B®N and dcb(A®M,B®N)^
max(dcb{A, B), dcb(M, N)).

Finally

dcb(X, Z) ^ dcb(X, Y) • dcb{ Y, Z).

Corresponding results hold for normal completely bounded isomorphisms both here
and in the lemma below. If X is an operator space, let X°° denote the operator space
obtained by taking the J°° direct sum of countably infinitely many copies of X.

The main proof depends on a Banach space argument using a lemma of Pelczynski's
to obtain the Schroder-Bernstein result required [10, 2.a.3, p. 54].

Lemma 2.2. / / B, N, X, Y are operator spaces with Bcb^B™, Bcb^N®X and
Ncb = B®Y then Bcb = N and dcb(B,N)^a2p2y2, where a, j5, y are the completely
bounded distances in the three isomorphisms, respectively.

Proof. This is a standard algebraic calculation using the result that the permutation
on a direct sum is a complete isometry:
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INJECTIVE VON NEUMANN ALGEBRAS 321

cb^B"'®B®Y cb^B^QY

cb^BQYcb^N.

The isomorphisms Bcb = N®X and N cb = B®Y in the above lemma will follow from
injectivity in 1.1 and from the trace preserving conditional expectation in 1.2.

Lemma 2.3. If B = B(H) is the algebra of all bounded linear operators on a separable
infinite dimensional Hilbert space H, then Bcb^B'* with

Proof. There is a natural normal *-monomorphism from B™ into B obtained from
I = Y,?Pj by identifying 0 © - © 0 © B © 0 with p}B\pjH, where p} are infinite dimensio-
nal projections on H with pjpk=O if j^k. Thus Bcb = Bx®X since there is a
completely bounded normal projection from B onto B°° given by

Hence

Two of the isomorphisms are complete isometries and the others have distance 4, so
dcb{B,Ba>)^ 16.

The following lemma is essentially in [19],

Lemma 2.4. Let N be an injective von Neumann algebra which is not finite type 1 of
bounded degree. Then there is a normal *-monomorphism from M = © f Mn(C) into N.

Proof. If N has a central summand which is not finite of type I, then inside this
summand there are pairwise orthogonal projections py for 1 ^i<oo and l^j^i so
that vfjV,j=pn and VjjVfj=Pif, this is just the definition of Pn~Pij- Then the
von Neumann subalgebra of N generated by the set {VJ/. 1 ^i<oo, l^j^i) is
isomorphic to Jf. If N is finite of type I, then

where A} are abelian von Neumann algebras and m(j) tends to infinity with j [9]. We
inductively choose a sequence j(n) in N such that j(n+l)>j(n) and j(n)^n for all n.
The algebra M is now embedded into N by embedding Mn(C) into Mm(J{n))(Am) for
each neN.

https://doi.org/10.1017/S0013091500028716 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028716


322 E. CHRISTENSEN AND A. M. SINCLAIR

The crucial idea of using a sequence pn in the following proof is known to
Linderstrauss and Haagerup.

Proof of Theorem 1.1. The hypotheses of Lemma 2.2 are checked with B = B(H). By
hypothesis the von Neumann algebra N has a faithful normal representation on H and
there is a completely bounded conditional expectation E from B(H) onto N; thus
B{H)cb^N@X, where X = Ker£.

Let pn be an increasing sequence of finite rank projections in B(H) with dim pnH = n
and pn converging strongly to /. Let <^:B(//)-»^ = @"M n (C) be defined by <t>(x) =
®pnxpn, where pnB(H)pn is identified with Mn(C). Then <f> is completely bounded with
\\<t>\\cb=\. Define ^.Ji^B{E) by <^((xn))^)>?> = LIM<Zn(xn)^>7> where Xn is the natural
map used to identify Mn(C) with pnB{H)pn and *„ + ^,,©0) = xn{yn) for all yneMn(C) and
all neM; here LIM is a Banach limit on N. Then \ji is a completely bounded operator
from Jt into B(H) with ||^||cj,= l. Further ij/ocf) is the identity on B(H) and <̂>oi/> is the
projection from M onto (j)(B(H)). By Lemma 2.4 there is a normal *-monomorphism
from ^ into N. The injectivity of M gives a conditional expectation F from N onto ^#,
and the projection </>oi/> carries Jl onto <p(B(H)) so N cb^B(H)®Y, where

Lemma 2.3 ensures that the remaining hypothesis of Lemma 2.2 is satisfied, and that
a ^ 16. The remark after Lemma 2.1 shows that /?^=4 and y ^ 4 in Lemma 2.2. This gives
the estimate in Theorem 1.1, since dcb(N,B)^a2fl2y2 = 2i6.

The following elementary lemma is used in the proof of Corollary 2.7. We are grateful
to Tomczak-Jaegerman for informing us that the Banach space distance d(JVfn(C), C"2)
between Mn(C) and C 2 is greater than en, where 0 < c < l is a universal con-
stant (see [18] for a detailed discussion and further references). Is dcb(Mn(C),C2) = nl

Lemma 2.6. Let A be a C*-algebra and let neN. Then Mn(A)cb = A"2 and
2

Proof. This result is just Mn(C)cb = C"2 tensored with the identity operator on A,
since ||<£®/||Ci = ||<£||ci> for a completely bounded operator <j> [12]. A linear isomorphism
<j> between the finite dimensional C*-algebras Mn(C) and C"2 is completely bounded so

2

We obtain the estimate on the completely bounded distance by calculating \\4>\\cb for
an obvious <j>. Let

<f>(aij) = (all,al2,...,au,a2l,...,a2n,...,ani,...,ann)

for all (a,j)eMn(A). We shall show that ||^>||c6=l and ^ " ' H ^ ^ n by writing down
representations of the completely bounded linear operators <f> and <f)~l. Let eis

(l^i,j^n) be the standard matrix units of MJ^C), and let n be the /^-amplification of
the natural representation of Mn(C) on the n-dimensional Hilbert space. Then n(a) =
a®In2 for all asM„{€.)• Let
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INJECTIVE VON NEUMANN ALGEBRAS 323

with each element elj repeated n-times, and let

with each n-tuple {eli,e2l,...,eni) repeated n-times. Then

)K and

Thus ||0||,.fc^l since C2->Afn2(C):(aJ)->diag(aJ-e11) is a complete isometry.
Let R be the n x n 2 matrix with n ones in each row, from l+(i—l)w to n + (i— l)n in

the ith row, with all the other elements of R zero; written as n square blocks the ith
block in R has a row of ones in the ith row and zeros elsewhere. The n2 x n matrix T is
the transpose of (/„,/„,...,/„), where each /„ is the nxn identity matrix. Then
(aij) = (l)'i(<j)(aij)) = R(t>(aij)T, since left multiplication by R drops the elements between
l+( i — l)n and in in </>(a,j) into the ith row, and post multiplication by T shifts them
back to form (ay). Now RR* = nI = T*Tso ||̂ »~ 1||cfe^||/?||-IJT'JI = w, which completes the
proof.

Alternatively Lemma 2.6 may be proved by calculating the completely bounded
norms of 0 and <j>~1 from the definition of ||'||cfc. For | |0~ 1||cfc an estimate similar to
||(alV)||g«max{|ay|: l£i,j^n} for all (ao)eMn(C) is useful.

The method of proof of 1.1. yields a little more.

Corollary 2.7. An injective von Neumann algebra with separable predual is completely
boundedly isomorphic to one, and only one, of the following algebras: /^(ne^J), lm,B(H).

Proof. Note that these representatives of the completely bounded isomorphism
classes are not even isomorphic as Banach spaces. Theorem 1.1 shows that only the
finite type I von Neumann algebras of bounded degree need be considered. By the
standard characterization of these algebras [5, 9, 17] and Lemma 2.6, a finite type I
von Neumann algebra is completely boundedly isomorphic to a commutative von Neu-
mann algebra with separable predual. A commutative von Neumann algebra with
separable predual, is isomorphic to one of the following von Neumann algebras: ln

x, lx,
LcoCO.1], /,„[<>, l]e/nco, ^ [0 ,1 ]©/» (see [17, 1.21, p. 112]). The last two algebras are
completely boundedly isomorphic to LX{Q, 1]; this follows from Lemma 2.2.

Finally we show how to modify the standard Banach space arguments showing that
ZfsLTO, 1] is Banach space isomorphic to /°° [14] to obtain L*>cb^r. Clearly
L?cb^l™®X for some operator space X by identifying /°° with a suitable subalgebra of
L00. To apply Lemma 2.2 it only remains to show that rcb^

Choose a sequence xnel) = L'[0,1] with

Ml, = 1}.

Define Q:ll->I} by 0(aj = £<x^x.n. Then 6 is a continuous linear operator onto a dense
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324 E. CHRISTENSEN AND A. M. SINCLAIR

subspace of L1. A direct calculation leads to ||0*||ct^l on using the definition of
complete boundedness and the natural representations of L°° on L2 and of I00 on I2. The
inequality ||0"~ *||e6^ 1 follows from the observation that if (f,j) e M „{!?), then

= sup

Hence 9* is a complete isometry from L00 into /°° £ B(/2).
The Wittstock extension theorem for completely bounded operators [12, Theorem 7.2,

p. 100] gives an extension i//:B(l2)-^B(L2) of the completely bounded operator
0*-1:d*(Lx)->B(L2) with ||^||cfc = ||0*-1||<.6=l. Since L<° is an injective subalgebra of B(Lz),
there is a conditional expectation E from B(L2) onto L00 with ||£||cl, = l. Let <f> from /°° to
0*(L°°) be defined by </> = 0*o£oi^|r. Then <j> is a completely bounded projection from /°°
onto L° with |U||c6= 1. This completes the proof.

Note that dcb(/0O,Lco)g28.
Note that the equivalence class containing B(H) is of finite dcb{-,-) diameter, but that

containing lx is of infinite diameter.
We have not tried to obtain the best estimate in dcb(N, B(H)) ̂  constant, and the

value given in Theorem 1.1 can be reduced to 212* by exploiting Lemmas 2.9 to 2.12.
The proofs are omitted.

Lemma 2.8 If A is a C*-algebra with A =• M2(A) s M3(A), then dcb(A, A@A) ^ 12.

Lemma 2.9. / / N is a properly infinite von Neumann algebra, then dcb(N,N")^n112

for all neM.

Lemma 2.10. Let N be an injective von Neumann algebra with separable predual that
contains no finite type I central summand. Then N is isomorphic to AT©Mn(C) for all
neN.

Lemma 2.11. Let N be an injective von Neumann algebra with separable predual. If N
is not finite type I of bounded degree, then Ncb^N®N with dcb(N,N®N)^ 16.

Lemma 2.12. // B, N, X, Y are operator spaces with

Ncb^N®N, Ncb^BQY,

then Ncb^B and dcb(N,B)^ixp2yS2, where a, /?, y, 6 are the completely bounded
distances in the four isomormpisms, respectively.

The estimate dcb(B,N)^212i now follows with a^2*. 0^2*, yg2 4 and <5^24; this is
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INJECTIVE VON NEUMANN ALGEBRAS 325

reduced to 3.210* if N has no finite type I central direct summand by Lemma 2.8.
Wassermann and Robertson have independently recently shown that dcb(N,B(H))^28,
see [20].

Finally note that in proving 1.1 we have essentially proved the following corollary.
Note however that there is no bound on dcb(N,N®N) in general because of finite
dimensional type I algebras. For example if N = Mn(C)(Bla0, then dcb(N,N(&N) tends to
infinity as n tends to infinity.

Corollary 2.13. / / N is an infinite dimensional injective von Neumann algebra with
separable predual, then N cb = NQ)N.

Szankowski's result that B{H) does not have the approximation property [15]
combined wth 1.1. gives the following corollary.

Corollary 2.14. / / N is an injective von Neumann algebra with separable predual not
finite type I of bounded degree, then N does not have the approximation property.

3. Type II, algebras

If xeJV* regard x = {xux2,...). Let L denote the left shift on N<°, that is, Lx =

Lemma 3.1 Let N be a von Neumann algebra. If <j> is a normal *-monomorphism from
N@N into N, then there is a normal *-monomorphism 9from Nx into N such that
0{x) = <l>{xl®6(Lx)) for all xeN™, where x=(x7) and L is the left shift on N™.

Proof. Let en = (l,..., 1,0,...) be in JV00 with n ones in the first n places and zeros
thereafter; then AT is isomorphic to enN™. Define 9j inductively on N°° by

and

The last equation is equivalent to

Then each 9n is a normal *-homomorphism from N00 into N, and 9n is a monomor-
phism when restricted to N". Further

for all n, fcS 1. Hence 0 i W ) is an increasing sequence of weakly closed *-subalgebras of
N; let W be the weak closure of Wo = u 9n(N"). The boundedness of the sequence
(6n(x):neN) implies that if LIM is a Banach limit on l°°, then 0(x) = LIM0n(x) exists in
the weak topology in N for each xeNx. The equation

9n+k(enx) = 9n+k(en)9n+k(x) = 9n(enx) = 9n(x)
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326 E. CHRISTENSEN AND A. M. SINCLAIR

(n,k^ 1) ensures that

9(enx) = en(eMx) = en(x)

for all xeN™. Also

so 9n(en) is an increasing sequence of projections in W, which converges strongly to the
identity 0(1) of W because 9J^en}9(x) = 9n(x) (neN). The last equation then implies that
0n(x) converges strongly to 9(x) for all xeiV00. From this and each 9n being a
•-homomorphism from N™ into N it follows that 9 is a *-homomorphism. The
inequality

, r,}\ ^ \\(9(x) - 9n(x)K\\ -\\4 + \<9n(xK,

-9n(eM\l |N|- \\4

for xeA/81 and £,neH, shows that 9 is a normal operator on the closed unit sphere
(N00)! of N°° since each 9n is normal. Since a linear functional weakly continuous on the
unit sphere of a von Neumann algebra is weakly continuous on the algebra [9, 7.4.5, p.
483], 9 is a normal operator. If 0(x) = O, then 8n{enx) = 9n(en)9(x) = 0 so that enx = 0
because 9n is a monomorphism on N"; so x = 0 and 0 is a monomorphism. The equation
satisfied by 0 and </> follows from the definitions of 6n and 0, and the strong convergence
of dJLx) to 9(x).

Lemma 3.2. Let N be a type II t von Neumann algebra. If there is a normal
*-homomorphism from N®N into N, then N acb^N™ by an involution preserving
operator; further dacb{N, Af00)^ 16.

Proof. By Lemma 3.1 there is a normal *-monomorphism 0 from N™ onto the
weakly closed subalgebra 9(NX) of N. Let £ be a conditional expectation from N onto
0(N°°); note that £ is a completely positive operator preserving the identity. Then
Nacb = Nx@X, where X = Ker£, and the completely bounded distance between these
spaces is bounded by 4. Hence

with the involution preserved. Clearly dacb(N,Nco) ^16.

3.3. Proof of Theorem 1.2. Lemmas 3.1 and 3.2. together with the conditional expec-
tation from a type II t von Neumann algebra onto a weakly closed *-algebra (not
necessarily containing the identity of the whole algebra) give the hypotheses of Lemma
2.2 for completely bounded normal isomorphisms.
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