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Abstract

Low dimensional algebraic K-groups of a commutative ring are described in terms of the homology of
its elementary matrix group. This approach is prompted by recent successful computations of
low-dimensional AT-groups using group homology methods, and it builds on the identity K2(R) =
H2(ER).

The proofs use Hochschild-Serre spectral sequences supplied with a multiplicative structure derived
from direct sum of matrices in the elementary matrix group ER = hmEnR.
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0. Introduction

Group homology techniques have recently proved fruitful in complete calcula-
tions of the algebraic X-groups of commutative rings in dimensions less than five.
The link comes from the well-known equalities

K2(R) = H2(ER), K3(R) = H3(StR),

where Km(R) is ir+(BGLR+), ER is the elementary matrix subgroup of GLR and
StR is the Steinberg group [5]. In practice low dimensional (co-)homology of EnR
or of the full general linear group is first computed (e.g. [3]). This note studies the
relationship between Kj(R) and Ht(ER) for / = 3,4 and 5, with a straightfor-
ward application of Hochschild-Serre spectral sequences.
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Our main results are as follows.

THEOREM 1. Modulo 2-primary torsion,
(i) K3(R) = H3(ER);

(ii) there is an exact sequence

(1) K4(R) ~ H4(ER) -» P2(K2(R));

(iii) if (K2(R))p is finitely generated for each odd prime p, there is an exact
sequence

(2) K5(R) " H5(ER) -+ K3(R) <8> K2(R) © A2(K2(R)T).

Here, H: Kt(R) = TTt(BER+) -> Ht(BER+) = Ht(ER) is, up to isomorphism,
the Hurewicz map. If A is abelian and A{ is the subgroup of A ® A generated by
{a ® b + (-iyb ® a: a,b^A), P2(A) = A/Ax and A2(A) = A/Ao. If /> is a
prime, 4̂̂  denotes the />-component of A, and AT is the odd torsion subgroup of

When 2-primary torsion is included, we have the following estimates.

THEOREM 2. (i) There is an exact sequence

(3) K2(R)/2K2(R)±K3(R)1H3(ER).

(ii) There are exact sequences

K3(R)/2K3(R) -» Ker(#: A"4(.R) ^ H4(ER))
(4)

J T ( i l ) / 2 ^ ( i l ) - H4(ER)/H(K4(R)) H> i

where K is some quotient o/Ker(2:

EXAMPLE. ^T2(Z) = Z / 2 and A"3(Z) = Z/48 [6]. Since the special linear group
SLnZ coincides with EnZ, by sequence (3) H3(SLZ) is either Z /24 or Z/48 .
Sould derives the dual to the following commutative diagram ([7], [1] page 188):

Z/12 © Z/48 = H3(St3Z) °^2 H3(StZ) = K3(Z) = Z/48

Z/12 © Z/12 = H3(SL3Z) -» H3(SLZ)

Hence H3(SLZ) must be Z/24, so that in (3), 1 is an injection.
On the other hand, when k > 2, K2(Z/2k) = Z/2 [2], yet H3(SLZ/2k) =

K3(Z/2k) ([1] page 74 implies the dual to this).
Section 1 sets out the main elements of the proof. Section 2 contains subsidiary

arguments.
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1. Proofs of the theorems

Much of the content of the theorems is in the following proposition, a more
general form of which is originally due to J. Whitehead. Ht(N,2) denotes the
homology of the Eilenberg-Mac Lane space, K(N, 2), of type (N, 2).

PROPOSITION 1. There are exact sequences

H H
(5) K4(R) - H4(ER) -> H4(K2(R),2) -» K3(R) •* H3(ER),

H H

(6) K5(R) -> H5{StR) -> K3(R)/2K3(R) -> K4(R) -» H4(StR).

PROOF. Sequence (5) is (14.4) in [9] applied to the simply connected space
BER+, with the identification H^BER*) = H^ER) (or see Table (10)); (6) is a
special case of a well-known exact sequence associated to a 2-connected space ([9]
page 81). H*(BStR+) is identified with H*(StR) and iri(BStR+) with

Proposition 1 is extended to Theorems 1 and 2 by studying Hochschild-Serre

spectral sequences associated to the central extension K2 (/?)>-» StR -» ER, or

more precisely, to the related fibrations

(7) BK2(R) -* BStR+ *-* BER+

and

(8) BStR+*->BER+ ^* K(K2(R),2).

Henceforth, abbreviate K2(R) as N, and for any group G identify H*(BG+)
with H*(G), and <£ J with <£».

Low dimensional £** terms in the spectral sequence

(9) H.(K(N,2);H.(StR))~H,(ER)

are depicted below. The computations of Ht(N,2) are in [4] Sections 21 and 22.
((5) can be read from this table, after appropriate identifications and use of the
Hurewiczepimorphism.K4(.R) -» H4(StR).)

T(N) = H4(N,2) is Whitehead's gamma group. The product A: N ® N =
H2(N,2) ® H2{N,2) -> T{N) has cokernel N/2N ([4] Section 18). Its image is
P2(N) ([9] Sections 5 and 6 covers the finitely generated case; for the general case
use the fact that the functors T, P2 and ®Z/2 all commute with direct limits).
H5(N, 2) is a torsion group; if (TV = H2(N, 2))p is finitely generated for any odd
prime p, then the isomorphism Tor(iV, N)p = Np®Np induces an isomorphism

2
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The remainder of this section draws on Table (10), Proposition 1, and the
following three propositions (the proofs of which constitute Section 2) to derive
the theorems.

PROPOSITION 2. H4(N,2)/rpmH4(ER) is a quotient ofN/2N.

PROPOSITION 3. H5(ER) has a summand H3(ER) ® H2(ER) such that
H5(ER)/<j>*H5(StR) = (Hs(ER) ® H2(ER)) ® yp^

PROPOSITION 4. H5(N,2)/^^H5(ER) is a quotient of (lim H3+q(n,q) =

Ker(iV -* NJ), the third integral homology group of the Eilenberg-Mac Lane
spectrum K(N).

For i > 3 there is a commutative diagram

iri(BStR+) -+

(11)

Ht(StR) = Ht(BStR+)

) =K,(R)

Hi(BER + ) = H^

When /' = 3, the left vertical map is the Hurewicz isomorphism. When / = 4, (6)
implies that it is an isomorphism off 2-primary torsion. Hence in these cases (/>*
can be identified with the Hurewicz map Kt(R) -> H^ER).
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From Table (10) read the exact sequence

H4(N,2)/t*H4(ER) » H3(StR)-*H3(ER).

Identify Ker^ , using Proposition 2, and <£*, as above, to get part (i) of Theorems
1 and 2.

Table (10) and Proposition 3 together yield the exact sequence:

(12) H5(StR) ^ HS(ER)/H2(ER) ® H3(ER) -J H5(N,2) -» H4(StR)

~^H4(ER)^ Inn/-*.

Off 2-primary torsion, ^^H4(ER) = H4(N,2) = P2(N), and xf,*H5(ER) =
H5(N, 2) (Propositions 2 and 4). Sequence (1) is the right portion of (12) after <£»
is identified with the Hurewicz homomorphism. Observe from (6) that H:
K5(R) -» H5(StR) is a surjection off 2-primary torsion. Therefore (2) is the left
portion of (12) in the case that H5(N, 2) is an exterior algebra. This completes the
proof of Theorem 1.

The first sequence in Theorem 2 (ii) is the join of the epimorphism K3(R) ®
Z/2 -» Ker(//: K4(R) -» H4(StR)) of sequence (6), and the epimorphism
Ker(K2(R) - i K2(R)) -» Ker(<f>,: H4(StR) -> H4(ER)) of Proposition 4. Since
H: K4(R) -» H4(StR) is onto, <f>*H4(StR) = H(K4(R)); use (12) to conclude
that H4(ER)/H(K4(R)) = Im^*. The second of the sequences (4) is thus
equivalent to Proposition 2.

2. Proofs of Propositions 2,3 and 4

Wagoner [8] defines a direct sum to be a group for which [G, G] is perfect, and
which has an operation ffi: G X G -» G such that for any finite sets { gv... ,gn }
c G and {hly...,hn} c [G,G], and for any g0 e G, there exist g, g e G and
A e [G, G] with g(l e g^g"1 = f(g, © I)!"1 = g, and goA.-go1 = AAjA"1, 1 < i
< n. SW? and £/? are examples of direct sum groups under the "interleaving"
operation defined on the generators of StR to be xtJ © xmn = ^2/,2y;c2m+i,2n+i-
He claims that if / : G -» ̂  is a homomorphism of direct sum groups which
respects the sum, then / „ : BG+-> BH+ is an H-ma.p between .//-spaces with
operation induced by the direct sum. Thus the fibrations (7) and (8) can be
considered as fibrations of //-spaces. The associated spectral sequences with
coefficients in a ring are therefore bigraded differential algebras. Finally, Loday
([5] 1.4.1) shows that the inclusion K2(R) -» StR is a homomorphism of direct
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sum groups. That is, the direct sum operation on the kernel of <j>: StR -* ER
coincides with the abelian group sum. So the ring structure on H+(N, i) induced
by the direct sum is the usual one for Eilenberg-Mac Lane spaces.

With multiplicative structure, the spectral sequences are easily manipulated to
prove the Propositions 2, 3 and 4. Note that each of these holds for 2-primary
torsion also.

PROOF OF PROPOSITION 2. First consider the spectral sequence (9), low dimen-
sional £»» terms of which are depicted in (10). Because there is an epimorphism
\p*: H2(Er) -* H2(N,2), compatible with the products, \p*\H4(ER) maps onto
Im(H2(N,2) ® H2(N,2)) in H4(N,2). This product is, up to isomorphism, the
product map A: N ® N -» T(N) which has cokernel N/2N. Hence
H4( N, 2)/i> „ H4( ER ) is a quotient of N/2N. •

PROOF OF PROPOSITION 3. Consider the spectral sequence H*(ER; H*(N)) =>
Ht(StR). The Kunneth formula yields a split injection N ® H3(ER) >->

H3(ER; N). The composite H2(ER) ® H2(ER) -» H5(ER) -» H3(ER; N) has
image N ® H^(ER) and therefore may be used to split H2(ER) <8> H3(ER) from
H5(ER) or indeed from coker(</>»: H5(StR) -» H5(ER)).

Return now to the spectral sequence (9). From Table (10), there is an exact
di.o

sequence HA(N, 2) -* H3(StR) -* H3(ER), and hence an exact sequence.

H2(N,2)9HA(N,2) -> H2(N,2) ® H3(StR) -» H2(N,2) ® H3(ER).
Because of the multiplicative structure, d£0\H2(N,2) ® H4(N,2) is 1 <8> d40, so
that £2~3 is a quotient of H2(N, 2) ® H3(ER). However, the product X = H2(ER)
® H3(ER) is represented in E2Q ® £"3 = £"3 or terms of lower filtration degree.
These are E^4 = 0, and £"5 = <f>*H5(StR). By the previous paragraph X n
Im</>» = 0. Thus * is represented in £2~3, and Eg3 = N ® H3(ER). An inspection
of (10) then shows that H5(ER)/(<t>*H5(StR) © £2~3) = ^ = Im ^».

PROOF OF PROPOSITION 4. In the commutative diagram below the maps x are
the well-known natural isomorphisms (e.g. [4], Section 12), and the maps p are
induced by the homology product. The fact that H3(N,2) = 0 has been used to
simplify the bottom row. The left vertical isomorphism is obvious.
(13)

Tor(H2(ER), H2(ER)) i £ ^ ( ^ i f ^ f f j ) X H2+l(ER) » H3_,(ER)
i-0,1 0,1

a !>/<. 1 * . U .

TOT{H2(N,2), H2(N,2)) ^ HS(K(N,2) X K(N,2)) ^
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By [4] 22.1 and 22.2, Hs(N,2)/lmp is isomorphic to Coker(A: 2N ®2N -»

r(2A^)) =2N, where 2N = Ker(JV -i N). (Moreover, [4] 22.1 and 28.1 imply that

this is the surjective image of H5(N,2) in lim H3+q(N, q).) From the diagram

(13), we see that H5(N,2)/4>^H5(ER) must be a quotient of 2N.
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