K-GROUPS OF RINGS AND THE HOMOLOGY OF THEIR ELEMENTARY MATRIX GROUPS

JANET AISBETT

(Received 28 March 1983; revised 15 August 1983)

Communicated by R. Lidl

Abstract

Low dimensional algebraic K-groups of a commutative ring are described in terms of the homology of its elementary matrix group. This approach is prompted by recent successful computations of low-dimensional K-groups using group homology methods, and it builds on the identity $K_2(R) = H_2(ER)$.

The proofs use Hochschild-Serre spectral sequences supplied with a multiplicative structure derived from direct sum of matrices in the elementary matrix group $ER = \lim_{n \to \infty} R$.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 18 F 25, 20 J 06; secondary 18 G 40.

0. Introduction

Group homology techniques have recently proved fruitful in complete calculations of the algebraic K-groups of commutative rings in dimensions less than five. The link comes from the well-known equalities

$$K_2(R) = H_2(ER), \quad K_3(R) = H_3(StR),$$

where $K_{\bullet}(R)$ is $\pi_{\bullet}(BGLR^{+})$, ER is the elementary matrix subgroup of GLR and StR is the Steinberg group [5]. In practice low dimensional (co-)homology of $E_{n}R$ or of the full general linear group is first computed (e.g. [3]). This note studies the relationship between $K_{i}(R)$ and $H_{i}(ER)$ for i=3,4 and 5, with a straightforward application of Hochschild-Serre spectral sequences.

^{© 1985} Australian Mathematical Society 0263-6115/85 \$A2.00 + 0.00

Our main results are as follows.

THEOREM 1. Modulo 2-primary torsion,

- (i) $K_3(R) = H_3(ER)$;
- (ii) there is an exact sequence

(1)
$$K_4(R) \stackrel{H}{\rightarrowtail} H_4(ER) \twoheadrightarrow P^2(K_2(R));$$

(iii) if $(K_2(R))_p$ is finitely generated for each odd prime p, there is an exact sequence

(2)
$$K_5(R) \xrightarrow{H} H_5(ER) \twoheadrightarrow K_3(R) \otimes K_2(R) \oplus \Lambda^2(K_2(R)_T).$$

Here, $H: K_i(R) \cong \pi_i(BER^+) \to H_i(BER^+) \cong H_i(ER)$ is, up to isomorphism, the Hurewicz map. If A is abelian and A_i is the subgroup of $A \otimes A$ generated by $\{a \otimes b + (-1)^i b \otimes a: a, b \in A\}$, $P^2(A) = A/A_1$ and $\Lambda^2(A) = A/A_0$. If p is a prime, A_p denotes the p-component of A, and A_T is the odd torsion subgroup of A.

When 2-primary torsion is included, we have the following estimates.

THEOREM 2. (i) There is an exact sequence

(3)
$$K_2(R)/2K_2(R) \xrightarrow{\iota} K_3(R) \xrightarrow{H} H_3(ER).$$

(ii) There are exact sequences

(4)
$$K_3(R)/2K_3(R) \to \text{Ker}(H: K_4(R) \to H_4(ER)) \twoheadrightarrow K$$
 and $K_2(R)/2K_2(R) \to H_4(ER)/H(K_4(R)) \twoheadrightarrow P^2(K_2(R))$

where K is some quotient of $Ker(2: K_2(R) \rightarrow K_2(R))$.

EXAMPLE. $K_2(\mathbf{Z}) = \mathbf{Z}/2$ and $K_3(\mathbf{Z}) = \mathbf{Z}/48$ [6]. Since the special linear group $SL_n\mathbf{Z}$ coincides with $E_n\mathbf{Z}$, by sequence (3) $H_3(SL\mathbf{Z})$ is either $\mathbf{Z}/24$ or $\mathbf{Z}/48$. Soulé derives the dual to the following commutative diagram ([7], [1] page 188):

$$\mathbf{Z}/12 \oplus \mathbf{Z}/48 = H_3(St_3\mathbf{Z}) \stackrel{0 \oplus 2}{\rightarrow} H_3(St\mathbf{Z}) \cong K_3(\mathbf{Z}) = \mathbf{Z}/48$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathbf{Z}/12 \oplus \mathbf{Z}/12 = H_3(SL_3\mathbf{Z}) \rightarrow H_3(SL\mathbf{Z})$$

Hence $H_3(SL\mathbf{Z})$ must be $\mathbf{Z}/24$, so that in (3), ι is an injection.

On the other hand, when $k \ge 2$, $K_2(\mathbb{Z}/2^k) = \mathbb{Z}/2$ [2], yet $H_3(SL\mathbb{Z}/2^k) \cong K_3(\mathbb{Z}/2^k)$ ([1] page 74 implies the dual to this).

Section 1 sets out the main elements of the proof. Section 2 contains subsidiary arguments.

1. Proofs of the theorems

Much of the content of the theorems is in the following proposition, a more general form of which is originally due to J. Whitehead. $H_{*}(N,2)$ denotes the homology of the Eilenberg-Mac Lane space, K(N,2), of type (N,2).

PROPOSITION 1. There are exact sequences

(5)
$$K_4(R) \xrightarrow{H} H_4(ER) \rightarrow H_4(K_2(R), 2) \rightarrow K_3(R) \xrightarrow{H} H_3(ER),$$

(6)
$$K_5(R) \stackrel{H}{\rightarrow} H_5(StR) \rightarrow K_3(R)/2K_3(R) \rightarrow K_4(R) \stackrel{H}{\rightarrow} H_4(StR)$$
.

PROOF. Sequence (5) is (14.4) in [9] applied to the simply connected space BER^+ , with the identification $H_i(BER^+) = H_i(ER)$ (or see Table (10)); (6) is a special case of a well-known exact sequence associated to a 2-connected space ([9] page 81). $H_*(BStR^+)$ is identified with $H_*(StR)$ and $\pi_i(BStR^+)$ with $K_i(R)$, $i \ge 3$.

Proposition 1 is extended to Theorems 1 and 2 by studying Hochschild-Serre spectral sequences associated to the central extension $K_2(R) \rightarrow StR \rightarrow ER$, or more precisely, to the related fibrations

(7)
$$BK_2(R) \to BStR^+ \stackrel{\phi^+}{\to} BER^+$$

and

(8)
$$BStR^{+} \stackrel{\phi^{+}}{\rightarrow} BER^{+} \stackrel{\psi}{\rightarrow} K(K_{2}(R), 2).$$

Henceforth, abbreviate $K_2(R)$ as N, and for any group G identify $H_*(BG^+)$ with $H_*(G)$, and ϕ_*^+ with ϕ_* .

Low dimensional E_{**}^2 terms in the spectral sequence

(9)
$$H_*(K(N,2); H_*(StR)) \Rightarrow H_*(ER)$$

are depicted below. The computations of $H_i(N, 2)$ are in [4] Sections 21 and 22. ((5) can be read from this table, after appropriate identifications and use of the Hurewicz epimorphism $K_4(R) \to H_4(StR)$.)

 $\Gamma(N) = H_4(N,2)$ is Whitehead's gamma group. The product Δ : $N \otimes N = H_2(N,2) \otimes H_2(N,2) \to \Gamma(N)$ has cokernel N/2N ([4] Section 18). Its image is $P^2(N)$ ([9] Sections 5 and 6 covers the finitely generated case; for the general case use the fact that the functors Γ , P^2 and $\otimes \mathbb{Z}/2$ all commute with direct limits). $H_5(N,2)$ is a torsion group; if $(N = H_2(N,2))_p$ is finitely generated for any odd prime p, then the isomorphism $\text{Tor}(N,N)_p \cong N_p \otimes N_p$ induces an isomorphism $(H_5(N,2))_p \cong \Lambda^2(N_p)$ ([4] 22.1).

The remainder of this section draws on Table (10), Proposition 1, and the following three propositions (the proofs of which constitute Section 2) to derive the theorems.

PROPOSITION 2. $H_4(N,2)/\psi_*H_4(ER)$ is a quotient of N/2N.

PROPOSITION 3. $H_5(ER)$ has a summand $H_3(ER) \otimes H_2(ER)$ such that $H_5(ER)/\phi_*H_5(StR) \cong (H_3(ER) \otimes H_2(ER)) \oplus \psi_*H_5(ER)$.

PROPOSITION 4. $H_5(N,2)/\psi_*H_5(ER)$ is a quotient of $(\lim_{N\to q} H_{3+q}(n,q) \cong \operatorname{Ker}(N\to N))$, the third integral homology group of the Eilenberg-Mac Lane spectrum K(N).

For $i \ge 3$ there is a commutative diagram

(11)
$$\pi_{i}(BStR^{+}) \longrightarrow \pi_{i}(BER^{+}) \cong K_{i}(R)$$

$$\downarrow H \qquad \downarrow H$$

$$H_{i}(StR) \equiv H_{i}(BStR^{+}) \stackrel{\phi_{\bullet}}{\longrightarrow} H_{i}(BER^{+}) \equiv H_{i}(ER).$$

When i = 3, the left vertical map is the Hurewicz isomorphism. When i = 4, (6) implies that it is an isomorphism off 2-primary torsion. Hence in these cases ϕ_* can be identified with the Hurewicz map $K_i(R) \to H_i(ER)$.

From Table (10) read the exact sequence

$$H_4(N,2)/\psi_*H_4(ER) \rightarrow H_3(StR) \xrightarrow{\phi_*} H_3(ER).$$

Identify Ker ϕ_* using Proposition 2, and ϕ_* , as above, to get part (i) of Theorems 1 and 2.

Table (10) and Proposition 3 together yield the exact sequence:

(12)
$$H_5(StR) \stackrel{\phi_*}{\to} H_5(ER)/H_2(ER) \otimes H_3(ER) \stackrel{\psi_*}{\to} H_5(N,2) \to H_4(StR)$$

$$\stackrel{\phi_*}{\to} H_4(ER) \twoheadrightarrow \operatorname{Im} \psi_*.$$

Off 2-primary torsion, $\psi_* H_4(ER) = H_4(N,2) \cong P^2(N)$, and $\psi_* H_5(ER) = H_5(N,2)$ (Propositions 2 and 4). Sequence (1) is the right portion of (12) after ϕ_* is identified with the Hurewicz homomorphism. Observe from (6) that $H: K_5(R) \to H_5(StR)$ is a surjection off 2-primary torsion. Therefore (2) is the left portion of (12) in the case that $H_5(N,2)$ is an exterior algebra. This completes the proof of Theorem 1.

The first sequence in Theorem 2 (ii) is the join of the epimorphism $K_3(R) \otimes \mathbb{Z}/2 \to \operatorname{Ker}(H: K_4(R) \to H_4(StR))$ of sequence (6), and the epimorphism $\operatorname{Ker}(K_2(R) \to K_2(R)) \to \operatorname{Ker}(\phi_*: H_4(StR) \to H_4(ER))$ of Proposition 4. Since $H: K_4(R) \to H_4(StR)$ is onto, $\phi_* H_4(StR) \equiv H(K_4(R))$; use (12) to conclude that $H_4(ER)/H(K_4(R)) \cong \operatorname{Im} \psi_*$. The second of the sequences (4) is thus equivalent to Proposition 2.

2. Proofs of Propositions 2, 3 and 4

Wagoner [8] defines a direct sum to be a group for which [G, G] is perfect, and which has an operation $\oplus: G \times G \to G$ such that for any finite sets $\{g_1, \ldots, g_n\} \subset G$ and $\{h_1, \ldots, h_n\} \subset [G, G]$, and for any $g_0 \in G$, there exist $\bar{g}, g \in G$ and $h \in [G, G]$ with $g(1 \oplus g_i)g^{-1} = \bar{g}(g_i \oplus 1)\bar{g}^{-1} = g_i$ and $g_0h_ig_0^{-1} = hh_ih^{-1}$, $1 \le i \le n$. StR and ER are examples of direct sum groups under the "interleaving" operation defined on the generators of StR to be $x_{ij} \oplus x_{mn} = x_{2i,2j}x_{2m+1,2n+1}$. He claims that if $f: G \to H$ is a homomorphism of direct sum groups which respects the sum, then $f_*: BG^+ \to BH^+$ is an H-map between H-spaces with operation induced by the direct sum. Thus the fibrations (7) and (8) can be considered as fibrations of H-spaces. The associated spectral sequences with coefficients in a ring are therefore bigraded differential algebras. Finally, Loday ([5] 1.4.1) shows that the inclusion $K_2(R) \to StR$ is a homomorphism of direct

sum groups. That is, the direct sum operation on the kernel of ϕ : $StR \to ER$ coincides with the abelian group sum. So the ring structure on $H_*(N, i)$ induced by the direct sum is the usual one for Eilenberg-Mac Lane spaces.

With multiplicative structure, the spectral sequences are easily manipulated to prove the Propositions 2, 3 and 4. Note that each of these holds for 2-primary torsion also.

PROOF OF PROPOSITION 2. First consider the spectral sequence (9), low dimensional E_{**}^2 terms of which are depicted in (10). Because there is an epimorphism $\psi_*\colon H_2(Er)\to H_2(N,2)$, compatible with the products, $\psi_*|H_4(ER)$ maps onto $\operatorname{Im}(H_2(N,2)\otimes H_2(N,2))$ in $H_4(N,2)$. This product is, up to isomorphism, the product map $\Delta\colon N\otimes N\to \Gamma(N)$ which has cokernel N/2N. Hence $H_4(N,2)/\psi_*H_4(ER)$ is a quotient of N/2N. \square

PROOF OF PROPOSITION 3. Consider the spectral sequence $H_*(ER; H_*(N)) \Rightarrow H_*(StR)$. The Künneth formula yields a split injection $N \otimes H_3(ER) \Rightarrow H_3(ER; N)$. The composite $H_2(ER) \otimes H_2(ER) \to H_5(ER) \to H_3(ER; N)$ has image $N \otimes H_3(ER)$ and therefore may be used to split $H_2(ER) \otimes H_3(ER)$ from $H_5(ER)$ or indeed from $\operatorname{coker}(\phi_*: H_5(StR) \to H_5(ER))$.

Return now to the spectral sequence (9). From Table (10), there is an exact sequence $H_4(N,2) \xrightarrow{d_{40}^4} H_3(StR) \twoheadrightarrow H_3(ER)$, and hence an exact sequence.

$$H_2(N,2) \otimes H_4(N,2) \stackrel{1 \otimes d^4}{\rightarrow} H_2(N,2) \otimes H_3(StR) \twoheadrightarrow H_2(N,2) \otimes H_3(ER).$$

Because of the multiplicative structure, $d_{6,0}^4|H_2(N,2)\otimes H_4(N,2)$ is $1\otimes d_{4,0}^4$, so that $E_{2,3}^\infty$ is a quotient of $H_2(N,2)\otimes H_3(ER)$. However, the product $X=H_2(ER)\otimes H_3(ER)$ is represented in $E_{2,0}^\infty\otimes E_{0,3}^\infty=E_{2,3}^\infty$ or terms of lower filtration degree. These are $E_{1,4}^\infty=0$, and $E_{0,5}^\infty=\phi_*H_5(StR)$. By the previous paragraph $X\cap \text{Im }\phi_*=0$. Thus X is represented in $E_{2,3}^\infty$, and $E_{2,3}^\infty\cong N\otimes H_3(ER)$. An inspection of (10) then shows that $H_5(ER)/(\phi_*H_5(StR)\oplus E_{2,3}^\infty)=E_{5,0}^\infty\cong \text{Im }\psi_*$.

PROOF OF PROPOSITION 4. In the commutative diagram below the maps χ are the well-known natural isomorphisms (e.g. [4], Section 12), and the maps ρ are induced by the homology product. The fact that $H_3(N,2)=0$ has been used to simplify the bottom row. The left vertical isomorphism is obvious. (13)

$$Tor(H_{2}(ER), H_{2}(ER)) \xrightarrow{\chi} \frac{H_{5}(ER \oplus ER)}{\sum_{i=0,1} H_{2+i}(ER) \otimes H_{3-i}(ER)} \xrightarrow{\rho} \frac{H_{5}(ER)}{\sum_{0,1} H_{2+i}(ER) \otimes H_{3-i}(ER)}$$

$$\cong \downarrow \psi_{*} \qquad \qquad \downarrow \psi_{*} \qquad \qquad \downarrow \psi_{*}$$

$$Tor(H_{2}(N,2), H_{2}(N,2)) \xrightarrow{\chi} H_{5}(K(N,2) \times K(N,2)) \xrightarrow{\rho} H_{5}(N,2)$$

By [4] 22.1 and 22.2, $H_5(N,2)/\text{Im }\rho$ is isomorphic to $\text{Coker}(\Delta: {}_2N \otimes_2 N \to \Gamma({}_2N)) \cong {}_2N$, where ${}_2N = \text{Ker}(N \overset{2}{\to} N)$. (Moreover, [4] 22.1 and 28.1 imply that this is the surjective image of $H_5(N,2)$ in $\lim_{\longrightarrow q} H_{3+q}(N,q)$.) From the diagram (13), we see that $H_5(N,2)/\psi_*H_5(ER)$ must be a quotient of ${}_2N$.

References

- [1] J. Aisbett, E. Lluis-Puebla, V. Snaith and C. Soulé, 'On $K_*(\mathbb{Z}/n)$ and $K_*(\mathbb{F}_q[t]/(t^2))$ ', Memoirs Amer. Math. Soc., to appear.
- [2] K. Dennis and M. Stein, ' K_2 of discrete valuation rings,' Adv. in Math. 18 (1975), 182–238.
- [3] L. Evens and E. Friedlander, 'On K_{*}(Z/p²Z) and related homology groups,' Trans. Amer. Math. Soc. 270 (1982), 1-46.
- [4] S. Eilenberg and S. Mac Lane, 'On the groups $H(\pi, n)$,' II, Annals of Math. 60 (1954), 49–139.
- [5] J. -L. Loday, 'K-théorie algébrique et représentations de groupes,' Ann. Sci. École Norm. Sup.,
 (4) 9 (1976), 309-377.
- [6] R. Lee and R. Szczarba, 'The group K₃(Z) is cyclic of order 48, Ann. of Math. 104 (1976), 31-60.
- [7] C. Soulé, 'Cohomology of SL₃Z,' Topology 17 (1978), 1-22.
- [8] J. Wagoner, 'Delooping classifying spaces in algebraic K-theory,' Topology 11 (1972), 349-370.
- [9] J. Whitehead, 'A certain exact sequence,' Ann. of Math. 52 (1950), 51-95.

Department of Mathematics University of Queensland St. Lucia 4067 Queensland Australia