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A LATENT HIDDEN MARKOV MODEL FOR PROCESS DATA
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Response process data from computer-based problem-solving items describe respondents’ problem-
solving processes as sequences of actions. Such data provide a valuable source for understanding respon-
dents’ problem-solving behaviors. Recently, data-driven feature extractionmethods have been developed to
compress the information in unstructured process data into relatively low-dimensional features. Although
the extracted features can be used as covariates in regression or other models to understand respondents’
response behaviors, the results are often not easy to interpret since the relationship between the extracted
features, and the original response process is often not explicitly defined. In this paper, we propose a statis-
tical model for describing response processes and how they vary across respondents. The proposed model
assumes a response process follows a hidden Markov model given the respondent’s latent traits. The struc-
ture of hidden Markov models resembles problem-solving processes, with the hidden states interpreted as
problem-solving subtasks or stages. Incorporating the latent traits in hidden Markov models enables us
to characterize the heterogeneity of response processes across respondents in a parsimonious and inter-
pretable way. We demonstrate the performance of the proposed model through simulation experiments and
case studies of PISA process data.
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Problem-solving is one of the most important skills in the 21st century (Binkley et al., 2012) .
Evaluation of problem-solving competency has gained increasing popularity in large-scale assess-
ments. For example, Problem-Solving in Technology-Rich Environments (PSTRE)was one of the
three domains of the first cycle of the Programme of the International Assessment of Adult Com-
petencies (PIAAC). In the Programme of International Student Assessment (PISA), surveys were
conducted to measure students’ problem-solving and collaborative problem-solving skills in 2012
and 2015, respectively. In these assessments, respondents’ skills are measured by computer-based
interactive items where respondents are required to fulfill a real-life task through an interface in
a simulated computer environment. The use of computers in these items not only facilitates the
simulation of problem-solving scenarios, but also enables more comprehensive data collection.
When a respondent solves an interactive item, computer log files keep track of the actions taken by
the respondent within the interface (e.g., mouse clicks and keyboard inputs). After the completion
of the item, the recorded action sequence allows us to reproduce the main process of solving the
item and are thus called response process data.

Compared to traditional dichotomous or polytomous item responses that only record the
final response outcomes, process data contain detailed information on how respondents solved
an item. These data not only record whether the item was answered correctly or incorrectly, but
also demonstrate how the answer was reached. Thus, process data provide a valuable source
for understanding respondents’ problem-solving behaviors and improving current psychometric
practice. Recent studies have shown that process data are useful for accurate latent trait assessment
(Zhang et al., 2023) , comprehensive diagnostic classification (Liang et al., 2022; Zhan & Qiao,
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2022) , early detection of task failure (Ulitzsch et al., 2022b) , and problem-solving strategy
analysis (Wang et al., 2022) .

The rich information in response process data comes with difficulties in data analysis. First
of all, process data have a nonstandard format. The traditional item response of an item is a single
variable. In contrast, the corresponding response process is a sequence of categorical variables
(actions), and the number of categories (unique actions) is often a few dozen or more. Moreover,
the length of the sequence varies greatly across respondents. The nonstandard data format prevents
the direct application of many conventional item response models such as item response theory
models (Lord, 1980) and cognitive diagnostic models (Rupp et al., 2010) to process data.
Besides, the dependence structure among actions in a response process is often complicated.
Usually, the action to be taken in the next step depends on not only the current action, but
also actions taken several steps back, making simple models such as first-order Markov models
insufficient for characterizing process data. The unprecedented opportunities and challenges in
analyzing response process data call for innovative methods for utilizing the rich behavioral
information in the data.

Feature extraction is a common approach to circumventing the difficulties brought by the non-
standard format of response processes. In this approach, a fixed number of features are extracted
for each process and then fed to regression or other supervised learning methods to explore the
relationship between response processes and other variables of interest. For example, Chen et al.
(2019a) and Ulitzsch et al. (2022b) used a collection of summary statistics of response processes
to predict the final response outcome to achieve early detection of failure. He and von Davier
(2016) and Stadler et al. (2019) identified the differences in the behavior patterns among various
groups of respondents with the help of n-gram features. Zhang et al. (2023) developed methods
for obtaining accurate latent trait assessment through process features.

Traditionally, process features are summary statistics of a response process such as sequence
length, action counts, and item response time (Chen et al., 2019a; Ulitzsch et al., 2022b) . Features
derived from existing cognitive theory are also used in top-down research studies (Greiff et al.,
2016; vonDavier et al., 2019) . Such features usually do not comprehensively summarize response
processes and thus may overlook important information for understanding respondents’ problem-
solving behaviors.Moreover, theory-based features are often item-specific and time-consuming to
construct if a wide range of items are available. Recently, data-driven feature extraction methods
(Tang et al., 2020, 2021) have been developed. These methods do not require substantial prior
knowledge about the item. They, with the help of machine learning and statistical tools, compress
as much information in response processes into the extracted features as possible. However, the
relationship between the extracted features and the original response process is often not explicitly
defined. As a result, although the extracted features can be easily incorporated in psychometrically
meaningful machine learning tasks and often lead to performance improvement, identifying the
characteristics of response processes that contribute to the improvement requires additional careful
examination.

In this paper, we take a different route to analyzing process data. We propose a latent hidden
Markov model (LHMM) to describe respondents’ problem-solving processes directly. The pro-
posed model offers three distinct features that set it apart from previous models. First, it naturally
accounts for the long-term dependence among actions by adopting hidden Markov models as
the basic framework for characterizing response processes. Second, the hidden states in HMMs
can be interpreted as problem-solving states or subtasks, providing a detailed understanding of
response processes from a subtask perspective (Wang et al., 2022) . Third, a latent trait variable
is introduced in HMM to characterize the respondents’ heterogeneous behaviors in transitioning
between subtasks and completing a subtask parsimoniously. Compared to the analyses based on
feature extraction methods, the proposed model directly links respondents’ latent traits to their
problem-solving behaviors, providing more straightforward and interpretable results.
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Although several models have been recently proposed to characterize response processes
(Chen, 2020; Han et al., 2021; Xiao et al., 2021; Xu et al., 2020) , none of them possesses all
three features of the proposed model. Xiao et al. (2021) also used HMMs to describe response
processes, but they did not take into account respondents’ differences in problem-solving pro-
cesses. Xu et al. (2020) proposed a latent topic model with Markovian transition for process
data. This model is essentially an HMM with personalized state transition probability matrices
but a shared state-action probability matrix. However, since their model does not use latent trait
variables to parameterize the personalized state transition probability matrices, it is difficult to
visualize the differences in the response behaviors.Without considering the long-term dependence
among actions, Han et al. (2021) proposed a sequential response model which assumes response
processes follow a first-order Markov model after conditioning on the latent trait. Finally, Chen
(2020) developed a dynamic choice measurement model for process data based on marked point
processes. This model takes into account both the heterogeneity of respondents’ behaviors and the
complex action dependence structure. However, it requires a significant amount of expert input
to specify the dependence structure.

The rest of the paper is organized as follows. We first present an example of problem-solving
items and process data in Sect. 1 to motivate the proposed latent hidden Markov model described
in Sect. 2. In Sect. 3, we explain how the parameters and latent variables in the proposed model
are estimated. Case studies of process data from two problem-solving items in PISA 2012 are
presented in Sect. 4 to demonstrate the performance of the proposed model. Simulation studies
examining the performance of statistical inference in different scenarios are presented in Sect. 5.
We conclude with final remarks in Sect. 6.

1. An Example of Problem-Solving Items and Process Data

In this section, we describe the climate control (CC) item in PISA 2012 as an example
of items producing process data. This item is one of the 42 items in the survey for assessing
students’ problem-solving skills. In the CC item, students are asked to figure out how to use a new
air conditioner to control room climate. The item interface, presented in Fig. 1, includes an air-
conditioner with three control bars. Each bar, controlling either the temperature or the humidity
of the room, can be placed at five different positions, “−−” (−2), “−” (−1), default position (0),
“+” (1), and “++” (2). Students are required to determine which climate variable that each bar
influences by conducting experiments through the interface. They can slide the bars and click the
APPLY button to read the humidity and temperature under the current setting from the charts
in the interface. Based on the results, they need to match the control bars with the two climate
variables.

When students solve the item, the experiments they conduct and the buttons they click are
recorded sequentially in the computer log files. The CC item has 126 recorded actions, including
one action of clicking the RESET button and 125 (= 53) actions describing the setting of an
experiment conducted by a student. Each of the experiment setting actions describes the positions
of the three control bars when the APPLY button is clicked. For example, action “−1_2_0”
means a student places the top,middle, and bottom controls at “−,” “++,” and the default position,
respectively, and then clicks the APPLY button. A recorded sequence describes the entire response
of a student and is one observation of process data. For example, the sequence “1_0_0, RESET,
0_0_ − 2” shows that the student conducted two experiments when solving the item. In the first
experiment, the top control was moved to “+,” followed by a click of the APPLY button. Then,
the positions of the three controls were reset by a click of the RESET button. Finally, the bottom
control wasmoved to “−−,” and theAPPLYbuttonwas clicked to conduct the second experiment.
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In this paper, we present a statistical model describing such detailed response processes of a group
of respondents.

2. Model Description

In this section, we describe a latent hidden Markov model (LHMM) for response process
data. We use Y = (Y1, . . . ,YT ) to denote a generic response process (action sequence) of an
item. For t = 1, . . . , T , the t-th element Yt of Y is a random variable denoting the t-th action
taken in the process and it takes value from the action setA containing M possible actions of the
item. For simplicity, the actions in A are represented by 1, . . . , M . We use y = (y1, . . . , yT ) to
represent a realization of Y . Given a sequence x = (x1, . . . , xT ) and indices i < j , we use xi : j
to denote the subsequence of x consisting of xi , xi+1, . . . , x j . In the following, we first describe
the idea of using HMMs as a framework for modeling response processes in Sect. 2.1. Then, in
Sect. 2.2, latent trait variables are introduced to HMMs to account for individual differences in
response processes.

2.1. Hidden Markov Models

Under an HMM, the evolution of a response process Y is determined by a hidden state
sequence S = (S1, . . . , ST ) that evolves according to a first-order Markov model. Each element
in S indicates the hidden state of the step. It takes value from the set S = {1, 2, . . . , K } containing
K possible hidden states. In HMMs, the evolution of the action sequence and hidden states is
characterized by three groups of parameters, a K -dimensional initial state probability vector
π = (π1, . . . , πK ), a K×K state transition probabilitymatrix P = (pkl) describing the evolution
of the hidden states, and a K ×M state-action probability matrix Q = (qkj ) describing the action
distributions under different hidden states. Let s = (s1, . . . , sT ) be a realization of S. In the initial
step, the hidden state S1 follows the initial state probability distribution π with

P(S1 = s1) = πs1 . (1)

Given S1 = s1, the distribution of the initial action Y1 is determined by s1 and Q as

P(Y1 = y1 | S1 = s1) = qs1,y1 . (2)

For t = 2, . . . , T , given all previous hidden states S1:(t−1) and all previous actions Y1:(t−1), the
distribution of hidden state St depends only on St−1 as

P(St = st | S1:(t−1) = s1:(t−1),Y1:(t−1) = y1:(t−1)) = P(St = st | St−1 = st−1) = pst−1,st .

(3)

Given all previous actions Y1:(t−1) and all hidden states up to step t , action Yt is determined by
St only as

P(Yt = yt | Y1:(t−1) = y1:(t−1), S1:t = s1:t ) = P(Yt = yt | St = st ) = qst ,yt . (4)

The structure of HMMs is demonstrated in the left panel of Fig. 2.
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The structure formed by the observed sequence (action sequence) and the hidden state
sequence in HMMs resembles problem-solving processes. Solving a complex task often involves
completing a few simpler subtasks or going through several problem-solving stages. For example,
solving the CC item described in Sect. 1 could involve two stages. After the item starts, students
may enter an exploration stage in which they explore the interface and try to understand the
effects of clicking buttons and sliding control bars. Once they become familiar with the interface,
an efficient problem-solving stage may start. The role of problem-solving stages or subtasks in
response processes is similar to that of the hidden states in HMMs. In HMMs, the hidden states
evolve according to a Markov model and decide the action distribution at each step. In a response
process, the stage or subtask changes as the process progresses, and how actions are taken varies
across different stages or subtasks. In the efficient problem-solving stage of the CC item, students
are more likely to take actions that are directly related to identifying the climate variable associ-
ated with each control bar. For example, they may conduct experiments with only one bar moved
away from the default position, making actions such as “−1_0_0,” “0_2_0” and “0_0_1” more
likely be taken. Such pattern may not exist in the exploration stage. With the analogy between
hidden states and problem-solving stages, the state transition probability matrix P describes how
respondents move between the stages, and the state-action probability matrix Q describes how
actions are used differently in different stages.

Using HMMs for modeling response processes also enables us to incorporate long-term
dependence among actions in a response process. Actions in a response process are not taken
independently. The action that a respondent would take at a given step could depend on not only
the action taken in the step immediately before the current one, but also the actions taken several
steps back. Although the strong conditional independence assumptions (3) and (4) imposed on
the hidden states and actions limit the complexity of the dependence structure that HMMs could
characterize, we will see later in Sect. 4 that such simplified structure can reasonably describe
response processes in our case studies and that the hidden states can indeed be interpreted as
problem-solving stages.

2.2. Latent Hidden Markov Models

The above HMM representation of action sequences does not explicitly account for indi-
vidual differences in problem-solving. If two respondents took the same actions in steps 1 to
t , then, under HMMs, the distributions of the action at step t + 1 would be the same for the
two respondents. The difference in the actual actions taken at this step is purely explained by
randomness. However, respondents usually behave differently in solving problems. For instance,
in the CC item, students with more advanced problem-solving skills may have a higher chance
to enter the efficient problem-solving stage. They may also start the response processes in the
efficient problem-solving stage without going through the exploration stage. These differences
lead to different initial probability vectors, state transition probability matrices, and action emis-
sion probability matrices for different respondents in the framework of HMMs. To incorporate
such individual variation in problem-solving, we introduce an additional latent variable in HMM,
producing a latent HMM (LHMM), which is described in detail below.

Let θ denote a uni-dimensional variable describing a latent trait of a respondent. Throughout
this paper, we assume θ follows the standard normal distribution for simplicity. Under LHMM,
given θ , the response process follows the HMM whose parameters π , P , and Q are further
parametrized as follows. For initial state probabilities,

πk(θ) = P(S1 = k | θ) =

⎧
⎪⎨

⎪⎩

1
1+∑K

k′=2 exp(τk′θ+μk′ )
for k = 1;

exp(τkθ+μk )

1+∑K
k′=2 exp(τk′θ+μk′ )

for k = 2, . . . , K .
(5)
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For k = 1, . . . , K , the probability of a hidden state jumping from state k to state l is

pkl(θ) = P(St+1 = l | St = k, θ) =

⎧
⎪⎨

⎪⎩

1
1+∑K

l′=2 exp(akl′θ+bkl′ )
for l = 1;

exp(aklθ+bkl )
1+∑K

l′=2 exp(akl′θ+bkl′ )
for l = 2, . . . , K ;

(6)

and the probability of taking action j in state k is

qkj (θ) = P(Yt = j | St = k, θ) =

⎧
⎪⎨

⎪⎩

1
1+∑M

j ′=2 exp(ck j ′θ+dk j ′ )
for j = 1;

exp(ck j θ+dk j )

1+∑M
j ′=2 exp(ck j ′θ+dk j ′ )

for j = 2, . . . , M.
(7)

In other words, given θ , the initial hidden states S1, other hidden states St given the previous
hidden states St−1, and the action Yt given the current state St all follow multinomial logistic
models (MLM; McCullagh & Nelder, 2018) with θ as the covariate and state 1 or action 1 as the
baseline category. The structure of the model is depicted in the right panel of Fig. 2.

In (5), (6) and (7), τk , μk , akl , bkl , ck j , dkj are real-valued parameters. We write μ =
(μ2, . . . , μK ), τ = (τ2, . . . , τK ), A = (akl), B = (bkl), C = (ck j ), and D = (dkj ) as compact
notation of the parameters where A and B are K ×(K −1)matrices and C and D are K ×(M−1)
matrices. In addition, we also use η to denote the vector collecting all parameters (μ, τ , A, B, C,
and D) in LHMM.

Under the model for the state transition probability in (6), given St = k, the log odds of
jumping to state l versus state 1 at step t + 1 is aklθ + bkl . Parameter bkl is the log odds when
θ = 0. Parameter akl controls how sensitive the log odds are to the change of θ . If akl > 0, a
larger θ leads to higher odds of jumping to state l against state 1. If akl < 0, a larger θ leads
to lower odds. In the CC item, if θ represents students’ problem-solving skill proficiency, we
may expect the odds of jumping from the exploration state to the efficient problem-solving state
against staying in the exploration state to increase as θ increases. If the exploration stage is the
baseline state (State 1), then a12 is expected to be positive. If akl = 0 for l = 2, . . . , K , then
the state transition distribution for state k does not depend on θ and is completely determined
by bkl , l = 2, . . . , K . Parameters τ and μ for modeling the initial state probabilities in (5) and
parameters c and d for modeling the state-action probabilities in (7) can be interpreted similarly.

3. Statistical Inference

In this section, we describe how to estimate the parameters η, latent trait θ , and hidden
states S in LHMM when a set of response processes from different respondents is available. We
distinguish response processes and hidden state sequences from different respondents through
superscripts. For example, Y (i) = (Y (i)

1 , . . . ,Y (i)
Ti

) is the response process of respondent i and

S(i) = (s(i)
1 , . . . , s(i)

Ti
) is the corresponding (unobserved) hidden state sequence. The latent trait

of respondent i is denoted by θi . The set Yn = { y(1), . . . , y(n)} collects n observed response
processes from n respondents. In the following, we first give the likelihood function for LHMMs
in Sect. 3.1 and then describe how to obtain the marginalized maximum likelihood estimator of
the model parameters in Sect. 3.2. Latent trait estimation and hidden state estimation are then
discussed in Sects. 3.3 and 3.4, respectively.
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3.1. Likelihood Function

Since both θi and the hidden state sequence S(i) in LHMMs are unobservable, the (marginal-
ized) likelihood function of η given the i-th observed response process Y (i) = y(i) is

Li (η) = P
(
Y (i) = y(i) | η

)
=

∫ ∑

s(i)

P
(
Y (i) = y(i), S(i) = s(i), θi | η

)
dθi

=
∫

φ(θi )
∑

s(i)

P
(
Y (i) = y(i), S(i) = s(i) | θi , η

)
dθi ,

(8)

where the summation is over all possible realization s(i) of S(i) and φ(θ) = 1√
2π

e−θ2/2 is the
probability density function of the standard normal distribution.

Given θi and η, the action sequence Y (i) and the associated hidden state sequence S(i) follow
the HMMwith the elements of parameters π , P , and Q being πk(θi ), pkl(θi ), and qkj (θi ) defined
in (5), (6), and (7). Thus, according to assumptions (1) – (4),

P(Y (i) = y(i), S(i) = s(i) | θi , η) = π
(i)

s(i)1

q(i)

s(i)1 ,y(i)
1

Ti∏

t=2

p(i)

s(i)t−1,s
(i)
t
q(i)

s(i)t ,y(i)
t

, (9)

where π
(i)
k , p(i)

kl and q(i)
k j are short-hand notation for πk(θi ), pkl(θi ) and qkj (θi ), respectively.

Combining (8) and (9), we obtain the (marginalized) likelihood function for a set of response
processes Yn under LHMM as

L(η | Yn) =
n∏

i=1

Li (η) =
n∏

i=1

⎧
⎨

⎩

∫

φ(θi )
∑

s(i)

π
(i)

s(i)1

q(i)

s(i)1 ,y(i)
1

Ti∏

t=2

p(i)

s(i)t−1,s
(i)
t
q(i)

s(i)t ,y(i)
t
dθi

⎫
⎬

⎭
. (10)

The main difficulty in evaluation L(η | Yn) at a given η is to compute the summation
over s(i) and the integration over θi . Since the number of terms involved in the summation in
Li (η) is of order T K

i , it is computationally burdensome to calculate the summation directly even
for a sequence with a moderate length Ti and a small number of hidden states K . A dynamic
programming algorithm called forward–backward algorithm (Rabiner & Juang, 1986) has been
designed to compute the likelihood function for HMMs. It thus can be used to efficiently compute
the summation over s(i) in (10) for a given θi . For the integration, although the integral does not
have a closed-form expression, it can be computed numerically using Gauss–Hermite quadrature.
The details of evaluating the likelihood function L(η | Yn) are provided in Appendix A.

3.2. Parameter Estimation

We estimate the parameter vector η in LHMMs by its maximum likelihood estimator (MLE)

η̂ = argmax
η

L(η | Yn) = argmax
η

log L(η | Yn). (11)

Since the likelihood function L(η | Yn) is differentiable and its gradient is computable, gradient-
based optimization algorithms can be used to maximize the log-likelihood function log L(η | Yn).
We choose the BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970)
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to obtain η̂ because of its fast convergence rate. Although the gradient of L(η | Yn) can be
numerically computed from L(η | Yn), supplying the exact gradient to the BFGS algorithm often
leads to faster computation. The expressions of the gradient of L(η | Yn) and how they can be
evaluated using dynamic programming and Gauss–Hermite quadrature are given in Appendix B.

Expectation–Maximization (EM) algorithms (Dempster et al., 1977) are often used to
compute MLEs for latent variable models such as HMMs. An EM algorithm can be designed for
LHMMs, but unlike the EM algorithm for HMM, the optimization problem in the maximization
step for LHMMs does not have a closed-form solution, so BFGS or other numerical optimization
algorithms are still needed. In addition, numerical integration and dynamic programming are
also needed in the expectation step as in the evaluation of the likelihood function. Therefore,
EM algorithms do not bring significant convenience in computing the MLE for LHHMs, and we
directly maximize the log-likelihood function using the BFGS algorithm instead.

3.3. Latent Trait Estimation

Given the estimated parameters η̂, the latent trait θi is often estimated by the maximum
a posteriori (MAP) estimator or the expected a posteriori (EAP) estimator. We adopt the EAP
estimator for estimating θi because it can be easily computed from the intermediate results of
computing η̂, whereas computing the MAP estimator requires optimizing the posterior density
function of θi for each i . More specifically, the EAP estimator of θi is

θ̂i = E(θi |η̂, y(i)) =
∫

θi
∑

s(i) P(Y (i) = y(i), S(i) = s(i) | θi , η̂)φ(θi )dθi
∫ ∑

s(i) P(Y (i) = y(i), S(i) = s(i) | θi , η̂)φ(θi )dθi
. (12)

The denominator in (12) is Li (η̂). Its value is already computed in the final iteration of the
optimization algorithm for obtaining η̂. Also, the numerator can be calculated using Gauss–
Hermite quadrature. The components needed in the calculation (e.g., quadrature points, weights,
and function values at the quadrature points) can be recycled from computing Li (η̂) since the
integrand in the numerator is the integrand in the denominator multiplied by θi .

3.4. Hidden State Estimation

Given the estimated parameters η̂ and latent trait θ̂i , we estimate s(i) by the most probable
hidden state sequence for the action sequence y(i):

ŝ(i) = argmax
s(i)

P(Y (i) = y(i), S(i) = s(i) | θ̂i , η̂). (13)

As the number of possible hidden state sequences is exponentially large, directly maximizing the
probability is computationally expensive. Instead, in light of the connection between HMM and
LHMM, we obtain ŝ(i) through the Viterbi algorithm (Viterbi, 1967) , a dynamic programing
algorithm for finding the most probable hidden state sequence for HMM. Details of the algorithm
are provided in Appendix C.

We implement the algorithms mentioned in Sects. 3.1, 3.2, 3.3, and 3.4 in R (R Core Team,
2023) . The Gaussian quadrature points and weights are computed using the R package statmod
(Giner et al., 2023) . The function optim() is used to maximize the marginalized likelihood
function for LHMMs. The evaluation of the marginalized likelihood function is implemented
using Rcpp (Eddelbuettel & François, 2011) to improve the computational speed.
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4. Case Studies

In this section, we demonstrate how LHMM helps understand respondents’ problem-solving
processes through two case studies of response processes from PISA 2012.We consider data from
two items, the CC item described in Sect. 1 and the TICKET item to be introduced in Sect. 4.2.
The two items represent two important types of interactive problem-solving items: MicroDYN
system and finite state automata OECD (2014, Chapter 1).

4.1. Climate Control Item

In this section, we present the analysis of the CC response processes of 350 students from the
USA. The lengths of the response processes range from 3 to 128, with the average being 21. More
than 90% of the response processes contain fewer than 50 actions. As we described in Sect. 1, the
item originally has 126 distinct actions. In this case study, we simplify the 125 experiment setting
actions so that each action only reflects which bars are placed at a nonzero position at the time of
clicking the APPLY button. The simplification leads to nine distinct actions in total: “RESET,”
“None,” “Top,” “Middle,” “Bottom,” “Top_Middle,” “Top_Bottom,” “Middle_Bottom,” and “All.”

The CC item has been well-studied in the literature (Chen et al., 2019a; Greiff et al.,
2015; Xu et al., 2020) . An efficient way of solving the item is to adopt the Varying-One-Thing-
At-a-Time (VOTAT) strategy. The action sequence “Top, RESET, Bottom, RESET, Middle” is
an example of response processes adopting this strategy. In this case study, with the help of
the proposed LHMM, we examine how students’ problem-solving processes vary in terms of
adopting the VOTAT strategy. We fit the LHMM with K = 2. The choice of K is made based on
our understanding of the problem-solving stages involved in the item (Sect. 2.1). Also, the CC item
belongs to MicroDYN systems, which typically contains two phases: the knowledge acquisition
phase inwhich students collect information about the required task, and the knowledge application
phase in which students solve the required task by applying the acquired knowledge (Herborn et
al., 2017) . Our choice seems also reasonable from this perspective. We will discuss more about
data-driven selection of K in Sect. 4.3. For simplicity, we ignore the individual difference in the
initial state probability vector π by setting τ = 0. As a comparison to LHMM, we also fit the
HMM with two hidden states to the response processes. The results are presented below.

4.1.1. Comparison Between LHMM and HMM Fits Since HMM is a special case of LHMM
with τ , a, and c being zeros, we compare the goodness of fit of the twomodels using the likelihood
ratio test. The results (χ2(18) = 2394.0, p-value < 0.001) show that the proposed LHMM
provided a better fit than the standard HMM. Also, the Bayesian Information Criterion (BIC)
values of HMM and LHMM are 25020.7 and 22786.5, respectively. The results again support
incorporating the latent variable θ to explain the heterogeneity of response processes. We focus
on the results from LHMM in the rest of the sections. The estimated parameters are provided in
Table 3 in Appendix D.

4.1.2. Latent Trait Interpretation In Fig. 3, we present θ̂ and its relationship with students’
binary item responses. The middle panel displays boxplots of θ̂ grouped by students’ binary item
responses indicating whether the item was answered correctly (1) or incorrectly (0). It shows that
students who successfully solved the item tend to have a higher θ̂ . In addition, the ROC curve of
classifying the item response by θ̂ is plotted in the right panel of Fig. 3. The area under the curve
(AUC) is 0.709. These results suggest that the latent trait may be related to students’ problem-
solving skills. Further examination of the response processes shows that the VOTAT strategy is
often used in the response processes with large θ̂ , while the response processes with small θ̂ often
lack this feature. Table 1 presents a few examples of response processes with top or bottom 5%
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Table 1.
Examples of response processes with top or bottom 5% of θ̂ .

θ̂ Response Process

2.91 None, RESET, Middle, Middle, RESET, Middle, RESET, Top, None, RESET, Bottom
2.57 None, RESET, Top, RESET, Middle, RESET, Bottom, RESET, None, RESET, Bottom
−1.93 Top_Bottom, Top_Middle_Bottom
−1.82 Top_Bottom, None, Top_Bottom, RESET, Top_Bottom

Note: For ease of presentation, the exhibited response processes are shortened by removing consecutively
repeating actions.
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Figure 4.
State-action probability matrices at the quartiles of θ̂ in the CC item. The column names T_M, T_B, and M_B stand for
actions “Top_Middle,” “Top_Bottom,” and “Middle_Bottom,” respectively.

of θ̂ . Since the ability of using the VOTAT strategy is closely related to problem-solving skills, it
is not unreasonable to interpret the latent trait θ as students’ problem-solving proficiency.

4.1.3. Hidden State Interpretation In Fig. 4, we plot the state-action probability matrices at
the quartiles of θ̂ to check the connection between the two hidden states and the problem-solving
processes of the CC item. As shown in the figure, actions “Middle,” “Bottom,” and “RESET” are
often used in State 1 but rarely used in State 2. These actions are often used in the VOTAT strategy
to isolate the effect of a control bar. In contrast, the actions involving placing multiple bars at
nonzero positions (e.g., “All” and “Top_Middle”) often have small or near zero probabilities in
State 1 and higher probabilities in State 2. These patterns suggest that students often explore the
item interface and try to figure out how to solve the problem in State 2 and apply the efficient
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State transition probability curves of the CC item.

VOTAT strategy to solve the problem in State 1. We label States 2 and 1 as the EXPLORE and
VOTAT States, respectively.

The probabilities associated with action “Top” under the two states seem to conflict with the
interpretation. Intuitively, action “Top” plays a similar role as actions “Middle” and “Bottom.” It
should be a critical action in applying the VOTAT strategy. However, in the estimated state-action
probability matrices, “Top” has a much higher probability in the EXPLORE State than in the
VOTAT State. A possible reason for this counterintuitive pattern is that “Top” is also used when
students explore the interface since the top bar is often the first control bar one would move. The
fitted LHMM tends to assign the same hidden states to “Top” as those for “All,” “Top_Middle,”
and other actions that students used when exploring the interface.

4.1.4. Difference in Response Processes Across Students We investigate the variation in
response processes by examining the state transition and the state-action probability curves shown
in Figs. 5 and 6. Regarding the state transition probabilities, in both states, the probability of stay-
ing in the same state is high, indicating students often stay in one state for a few steps and then
jump to the other state. As θ increases, the probability of staying in the EXPLOREState decreases,
while the probability of staying in the VOTAT State has no notable change. These results suggest
that students with higher problem-solving proficiency often take fewer actions in the EXPLORE
State and reach the efficient VOTAT State faster. Once in the VOTAT State, all students are very
likely to stay in the efficient problem-solving state regardless of their problem-solving proficiency.

In terms of state-action probability, students’ behaviors vary with θ in both states. In the
EXPLORE State, students with a higher θ tend to use diverse actions to explore the interface
while those with a lower θ often place all three bars at nonzero positions without exploring
other patterns or using the RESET button. In the VOTAT State, the behavior patterns for students
with θ between 0.5 and 2.5 do not vary greatly. They mainly use actions “Middle,” “Bottom,” and
“RESET” to apply the VOTAT strategy. On the other hand, students with a lower θ are more likely
to take actions “Middle_Bottom,” “Top_Bottom,” and “None.”By examining the action sequences
and corresponding estimated hidden state sequences of these students, we found that some of these
students seem to use a different way to implement the VOTAT strategy. Instead of placing only
one bar at a nonzero position at a time, they place one additional bar at a nonzero position at
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State-action probability curves of the CC item.

a time. Inspecting the change in the temperature and humidity readings under the two settings
provides information on the climate variable controlled by the additional bar. Action sequence
“Middle, Middle_Bottom, Top_Middle_Bottom, Middle_Bottom, Bottom, Top_Bottom” is an
example of the response processes performing VOTAT in this way. Students can identify the
climate variable associatedwith the bottombar by comparing the readings under settings “Middle”
and “Middle_Bottom.” Similarly, the readings from “Middle_Bottom” and “Bottom” provide
information about the middle bar. The results from LHMM can help us distinguish the two
different ways of implementing the VOTAT strategy to some extent.

4.2. TICKET Item

In the section, we focus on the response processes from the TICKET item. The item requires
students to purchase a full fare country train ticket with two individual trips through an automated
ticketing machine. The interactive screen of the ticketing machine, along with operating instruc-
tions, is included in the item interface. Figure7 presents screenshots of different pages shown on
the ticketing machine screen and how the screen changes in response to button clicks. The upper
left screenshot gives the initial page. The same operating instructions are shown in the left panel
of each page. They are omitted in the screenshots of subsequent pages to save space. The flow
of the pages is marked by the arrows in the figure. When solving the item, a student needs to
choose the train network (country trains or city subway), fare type (full fare or concession), and
pricing basis (daily or individual trips) for the tickets in sequence. The student will also be asked
to choose the number of trips if individual trip tickets are chosen. Tickets are purchased after
clicking the BUY button on the final page. If the CANCEL button is clicked on any page, then the
screen will return to the initial page with all previous choices cleared. The TICKET item involves
13 distinct actions, each corresponding to clicking a button in the interface. The descriptions of
these actions are provided in Table 2.

Our dataset contains the response processes of 417 students from theUSA. The process length
ranges from 4 to 32, with a mean of 6.58 and a standard deviation of 3.71. The action counts and
proportions are presented in the last column of Table 2. Among the 417 students, 272 (65.2%)
answered the item correctly.

As described above, theTICKET item requires students tomake threemajor choices regarding
the network, fare type, and pricing basis of the ticket to be bought. Choosing each aspect of the
ticket can be seen as a subtask of the original task. However, the transitions of the subtasks are
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Table 2.
Actions in the TICKET item.

Action Description Count (Proportion)

country_train Click COUNTRY TRAINS button 398 (14.5%)
city_subway Click CITY SUBWAY button 173 (6.3%)
full_fare Click FULL FARE button 412 (15.0%)
concession Click CONCESSION button 120 (4.3%)
daily Click DAILY button 107 (3.9%)
individual Click INDIVIDUAL button 399 (14.6%)
trip_1 Choose tickets for one individual trip 54 (2.0%)
trip_2 Choose tickets for two individual trips 391(14.3%)
trip_3 Choose tickets for three individual trips 38 (1.4%)
trip_4 Choose tickets for four individual trips 16 (0.6%)
trip_5 Choose tickets for five individual trips 26 (0.9%)
Buy Click BUY button to purchase the chosen tickets 403 (14.7%)
Cancel Click CANCEL button 205 (7.5%)

completely determined by the action in the current step, clearly violating the model assumptions
of LHMM. Despite this, we still fit LHMMwith three hidden states (K = 3) to examine whether
LHMM can recover the subtask structure under model misspecification. Because of the design of
the interface, all students start the item by choosing the train network, so we ignore the individual
difference in the initial state probability vector π by setting τ = 0. The HMM with three hidden
states is also fitted to the data for comparison.

4.2.1. Comparison Between LHMM and HMM Fits Similar to the analysis of the CC item,
we use the likelihood ratio test and BIC to compare the model fits of LHMM and HMM. The
likelihood ratio test gives test statistic χ2(42) = 872.0 and p-value< .001. The BIC values of
HMM and LHMM are 8663.8 and 8124.3, respectively. These results indicate that LHMM is
more appropriate to describe the response processes than HMM. In the remaining parts of the
section, we examine the results from LHMM in detail. The estimated parameters are provided in
Table 4 in Appendix D.

4.2.2. Latent Trait Interpretation The left panel of Fig. 8 presents the histogramof the estimated
latent traits θ̂ for the 417 students. A tall bar on the high end of θ̂ stands out in the graph. It exists
because a significant proportion of students have identical action sequences “country_trains,
full_fare, individual, trip_2, Buy,” leading to identical θ̂ values for these students.

The boxplots in the middle panel show that students who answered the item correctly tend to
have a smaller θ̂ , and those who answered the item incorrectly tend to have a larger θ̂ . The ROC
curve in the right panel of Fig. 8 has AUC 0.899, which is close to 1. Based on these results, we
interpret the latent trait as students’ problem-solving skills that the TICKET item is designed to
assess.With this interpretation, it is evident that students with the action sequence “country_trains,
full_fare, individual, trip_2, Buy” should have the highest θ̂ as this action sequence corresponds
to the most succinct way of answering the item correctly.

4.2.3. Connection Between Hidden States and Subtasks To examine how the hidden states
in LHMM are connected with problem-solving subtasks, we present in Fig. 9 the state-action
probability matrices at the quartiles of θ̂ . In State 1, actions “country_train” and “city_subway”
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Figure 9.
State-action probability matrices at the quartiles of θ̂ in the TICKET item.

are taken with high probabilities. Since the two actions are the only possible choices for the train
network, State 1 is related to the subtask of choosing the train network. Similarly, State 2 is related
to the subtask of choosing fare type as actions “full_fare” and “concession” are taken with high
probabilities in this state. Finally, in State 3, the high probability actions involve choosing between
daily and individual trip tickets and the number of individual trips. Hence, the state is related to the
subtask of choosing the pricing basis (and related details) of the tickets. Although LHMM is not
provided with the information on how the required task should be solved, the hidden states in the
fitted model can be linked to the subtasks of solving the required task. This suggests that LHMM
is able to capture the structure of students’ response processes of the TICKET item. For ease of
reference, we label the three states as the Network state, the Fare Type state, and the Pricing state,
respectively.

4.2.4. Difference in Response Processes Across Students With the interpretations of the latent
trait and hidden states in mind, we are now ready to examine how the response processes vary
across students. Figure10 shows the curves of state-action probabilities as functions of the
latent trait θ . In the Network state, as θ increases, the probability of taking the correct action
(“country_train”) increases while the probability of taking the incorrect action (“city_subway”)
decreases. Similar patterns are also observed in the Fare Type and Pricing states. Since θ is inter-
preted as students’ problem-solving proficiency, the results agree with the intuition that students
who are better at problem-solving will more likely make the correct choices.

Figure 11 exhibits the curves of state transition probabilities. According to the figure, when
in the Network state (left panel), the students will almost surely jump to the Fare Type state in
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the next step regardless of students’ problem-solving proficiency θ . If the current state is the Fare
Type state (middle panel), the next state is either the Pricing state or the Network state. Among
the two states, the Pricing state takes about 90% of the probability, and the percentage increases
slightly as θ increases. If the current state is the Pricing state (right panel), the state either stays
at the Pricing state (for selecting the number of individual trips) or returns to the Network state.
Students with higher θ values are more likely to stay in the Pricing state. The transition from Fare
Type or Pricing to Network is a result of clicking the CANCEL button to correct previous choices
or explore the interface more. Students with better problem-solving skills are less likely to make
mistakes and need less exploration. Hence, they are less likely to restart the selection process
and more likely to remain on the track of choosing the network, fare type, and pricing basis to
complete the required task.

Note that the state transition patterns obtained fromLHMMare consistentwith how the screen
pages are switched in the interface although such information was not utilized in model fitting. It
again suggests that LHMM is able to characterize the structure of the response processes of the
TICKET item. The resemblance between state transitions and page changes further confirms the
links between hidden states and the subtasks.

4.3. Selection of K

Fitting LHMMs requires a pre-specified number of hidden states K . In the case studies, we
set K = 2 in the CC item and K = 3 in the TICKET item based on our understanding of the
required tasks in the two items. For both items, we tried K = 2, 3, 4, 5, 6 and found that the chosen
K produces the most interpretable results. Data-driven methods for setting K in an HMM are
available. Chapter 15.6 of Cappé et al. (2005) gives a penalized maximum likelihood method for
selecting K . The resulting criterion for selection is similar to BIC but with a heavier penalty on the
model complexity. For the CC item, themodifiedBIC values for the LHMMwith K = 2, 3, 4, 5, 6
are 22820.11, 22724.54, 22298.61, 23597.99, 24391.41 with K = 4 corresponding to the smallest
value. However, the values for K = 2, 3, 4 do not vary very much. Our choice K = 2 also seems
reasonable in terms of the criterion. For the TICKET item, the modified BIC values are 9402.99,
8586.84, 9169.67, 9695.15, and 10094.50.According to this criterion, K = 3 is selected,matching
our choice. Although strong consistency has been established for the modified BIC, we do not
recommend to select K solely based on the criterion.Whether the obtained results are interpretable
is also an important factor. Finally, as far as the authors’ knowledge, the ordinary BIC has not
been theoretically justified for selecting K in HMMs or LHMMs as the model with a smaller K is
located on the boundary instead of the interior of the parameter space of the model with a larger
K .

5. Simulation Studies

In this section, we demonstrate the performance of LHMM through simulation studies. We
investigate 1) the performance of estimating the parameters, latent traits, and hidden states in
LHMM and 2) how well the proposed model can be distinguished from the ordinary HMM.

5.1. Settings

For the first aim, we generate action sequences from the LHMM described in Sect. 2.2 with
three hidden states (K = 3) and ten actions (M = 10). The parameters of the LHMMare presented
in Table 5 in Appendix E. These parameters are chosen so that the resulting probability curves
(solid lines in Fig. 14) resemble those estimated from the TICKET item. Datasets with different
combinations of sample size n and average sequence length L are generated to investigate how
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the estimation performance changes with the two quantities. Two choices of n, 100 and 500, are
considered to represent small and large sample size scenarios. Two choices of L , 10 and 50, are
considered to represent short and long sequences scenarios. Fifty datasets are generated for each
combination of n and L . To generate a sequence, we first generate θi from the standard normal
distribution and the sequence length Ti from the Poisson distribution with mean L . Then, the
hidden states and actions in the sequence are generated sequentially from the LHMM. Note that
the sequences in a generated dataset vary in length and action composition.

For each dataset, we fit the proposed LHMM using the algorithms described in Sect. 3. Since
the parameters in LHMM are identifiable up to a permutation of hidden states and sign change
of parameters A and C, the following post-estimation processing is conducted to match the
estimated latent traits and parameters with the corresponding true values before evaluating the
estimation performance. First, to align the estimated and the true latent traits, wemultiply θ̂ by−1
if the correlation between θ̂ and θ is negative. Then, the estimated latent traits θ̂ are standardized
to have mean zero and standard deviation one. The estimated parameters are also rescaled and
shifted accordingly. Furthermore, for each possible permutation of the hidden states, we record
the deviation of the estimated probability curves computed using the permuted parameters from
the true curves. The deviation measure will be described shortly. The permutation producing the
smallest deviationmeasurement is then chosen to obtain the final permuted parameters and hidden
states for evaluation.

For each dataset, we measure the discrepancy between the estimated and true state transition
probability curves using root-mean-squared error (RMSE):

RMSE(P) =
√
√
√
√ 1

nK 2

K∑

k=1

K∑

l=1

n∑

i=1

( p̂kl(θi ) − pkl(θi ))2,

where θi is the true latent trait of the i-th sequence in the dataset, pkl(θ) is the true probability
curve of transition from state k to state l, and p̂kl(θ) is the corresponding estimated curve. The
RMSEs for evaluating the estimated state-action probability curves and the initial state probability
distribution are defined analogously. We use the Pearson correlation between the estimated and
true latent traits to evaluate the accuracy of latent trait estimation. The accuracy of hidden state
estimation is evaluated by computing the proportion of the estimated hidden states that match the
true ones.

For the purpose of comparing the proposed model and the ordinary HMM, we also fit the
HMM with K = 3 to each of the datasets generated previously. In addition, we generate datasets
from a HMMwith K = 3 and fit both LHMM and HMM to each datasets. The model parameters
are set as their counterparts in the LHMMwith θ = 0. Same as the settings for generating datasets
from LHMM, we consider sample size n = 100, 500 and average sequence length L = 10, 50.
Fifty datasets are generated for each combination of n and L . The two fitted models for a given
dataset are compared using BIC.

5.2. Results

5.2.1. Comparison of LHMM and HMM Figure 12 presents the histograms of the difference
between the BIC values of LHMM and HMM in different scenarios. The top and bottom rows
correspond to results for datasets generated from LHMM and HMM, respectively. According
to the figure, BIC can correctly choose between LHMM and HMM most of the time. Several
mistakes are made in the case of n = 100 and L = 10 when the true model is LHMM and in the
case of n = 500 and L = 10 when the true model is HMM. Overall, short sequences may bring
difficulty in distinguishing between LHMM and HMM using BIC.
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5.2.2. Parameter Estimation The RMSEs of the estimated probabilities are given in Fig. 13. In
general, the performance of estimating the state transition and state-action probabilities improves
as n or L increases. However, increasing sequence length does not reduce the RMSE of the
estimated initial state probabilities since only thefirst action in each sequence provides information
on π . In Fig. 13, the medians of the RMSE for each component are usually below 0.1, indicating
reasonable overall estimation performance. We present the estimated probability curves from
two randomly selected datasets in Fig. 14. One dataset is selected from the small-n-small-L
scenario (n = 100, L = 10), and the other one is selected from the large-n-large-L scenario
(n = 500, L = 50). It is clear that the probability curves are estimated more accurately in the
latter scenario. Although the estimated curves in the small-n-small-L scenario can deviate from
the true curves by a large amount, the overall trends often still resemble the true ones.

5.2.3. Latent Trait and Hidden States Estimation Figure 15 presents the results of estimating
the latent variables in LHMM.Overall, both latent traits and hidden states are estimated reasonably
well. In all scenarios, the median Pearson correlations between estimated and true latent traits
are above 0.85, and the median accuracies of estimated hidden states are above 0.8. However,
large variation in estimation performance is seen in scenarios with short sequences. Note that both
latent traits and hidden states are sequence-specific. While increasing sequence length provides
more information for these latent variables, increasing sample size does not directly provide more
information. As a result, in Fig. 15, we do not see significant improvement in the estimation
performance when n is increased from 100 to 500.

6. Summary and Discussion

Process data contain rich information on respondents’ problem-solving behaviors that is not
available in traditional item responses. This paper proposes an LHMM for characterizing response
processes and understanding the heterogeneity of problem-solving behaviors across respondents.
Under the proposedmodel, a response process follows anHMMgiven the respondent’s latent trait.
The parameters inHMMare further parametrized using the latent trait to account for individual dif-
ferences in solving problems. The structure of HMMs is analogous to problem-solving processes
with the hidden states interpreted as problem-solving subtasks. The latent-trait-dependent state
transition probability matrix P and state-action probability matrix Q describe how respondents
differ in arranging and completing subtasks, respectively.

In LHMM, the latent trait is introduced as a quantity that summarizes the differences in
respondents’ behavior patterns in a parsimonious and abstract way. Examining the estimated
latent trait θ̂ can help distinguish the behavior patterns of respondents in different groups. For
example, in the CC item, after comparing θ̂ with respondents’ age, one may observe that younger
respondents have significantly smaller θ̂ and thus are less likely to reach the efficient VOTAT
state. Identifying the differences can provide guidance on designing more targeted and even
individualized interventions.

Although the proposed model does not impose concrete meaning on the latent trait, it is
possible to find meaningful interpretations of the latent trait for at least some items. In the case
studies, we interpret the latent trait as respondents’ problem-solving skill by observing the close
relationship between θ̂ and the binary item responses. In general, interpreting the latent trait
requires knowledge about the item design. One can first infer the meaning of θ by examining how
the state transition probability P and the state-action probability matrix Q change with θ . The
conjecture can then be verified by comparing the latent traits with appropriate quantities (e.g.,
binary item response in our case).
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Figure 15.
Boxplots of evaluation measures of estimated latent variables.

One important feature of the proposed model is the use of HMM as the basic framework for
modeling response processes. This feature allows us to connect latent traits to problem-solving
subtasks. Latent variable models with simpler structures may not possess this feature although
they can still describe the heterogeneity of problem-solving processes. For example, one could
consider a set of n-grams (He & von Davier, 2016) of actions. Item response theory (IRT)
models can be used to describe the binary matrix recording whether each n-gram appears in
each response process or not. We considered a 2PL IRT approach for analyzing the TICKET and
CC items. Unigrams and bigrams of actions were used to form the data matrix. The estimated
latent traits have a moderate to strong correlation with those obtained from LHMM (0.87 for
the TICKET item and 0.47 for the CC item), indicating that similar levels of heterogeneity are
summarized in the two models. For the TICKET item, the results from the IRT model show that,
as θ increases, the probability of using “country_train” increases and the probability of using
“subway” decreases, but the results do not reveal that the two actions are the two options for
determining the train network. Similarly, for the CC item, we are not able to tell from the IRT
model results that students with a higher θ tend to reach the efficient VOTAT State faster.

Under the proposedmodel, the response processes of respondentswith the same θ are assumed
to evolve according to the same stochastic process. This assumption does not deprive the model’s
ability to describe the behavior diversity among these respondents. In fact, the diversity is charac-
terized by the dispersion of the state transition and the state-action probability distributions. For
example, if a state-action distribution is concentrated on a single action, different respondents are
very likely to take the same action under the given hidden state. The actions taken by different
respondents will be more diverse if more actions are assigned significant probability or if the
probability is more evenly distributed among actions. According to the state-action distributions
in Fig. 9, in State 1, respondents’ behaviors vary more at θ = −0.74 than those at θ = 0.71 since
three actions have non-trivial probabilities at the smaller θ , while a single action “county_train”
takes almost all probability mass at the larger θ . Similar patterns are observed in other states.
Quantitatively, Shannon entropy (Cover & Thomas, 2006) can be used to measure the dis-
persion or the uncertainty of a distribution, with a higher value indicating more variation. The
Shannon entropies of the state-action probability distributions in the three hidden states are 0.34,
0.38, and 0.23 at θ = −0.74 and reduced to 0.02, 0.16, and 0.01 at θ = 0.71. These results are
consonant with existing empirical results showing that the behavior patterns of respondents with
lower problem-solving proficiency have more variation (Eichmann et al., 2020; He et al., 2019;
Ulitzsch et al., 2022a,b) .

The proposed model and our data analyses have several limitations, suggesting directions for
further investigation. In the case studies,we interpret the latent trait as problem-solving proficiency
because of its close relationship with binary item responses. Ideally, the interpretation should be
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further validated through carefully designed experiments or reliable measurement results. Such
analyses will also help gauge the possibility of using LHMM as a measurement model. Also,
we currently interpret the hidden states based on the patterns in state-action probability matrices
and our understanding of the required tasks. More systematic and less subjective methods for
interpreting hidden states would be beneficial for applying the proposed model in practice.

When analyzing the CC item, we grouped multiple recorded actions into one action. The
simplification may cause information loss and obscure certain patterns in students’ behaviors.
Other ways of grouping the actions may lead to results different from those shown in our case
study. Analyzing the response processes without simplifying the action set can avoid the problem
but will be more computationally intensive.

Because of the complexity of human behaviors, it is almost certain that LHMM is not the
underlying model generating real response processes. Nonetheless, the overly simplified model
is helpful for understanding respondents’ problem-solving behaviors as we showed in the case
studies. It is interesting to see ifmore suitablemodels can be designed to capturemore complicated
patterns without sacrificing interpretability and computational efficiency too much.

Like many other studies on process data, we focus on analyzing individual items and ignore
potential connections between them. Joint modeling of response processes from multiple items
can be statistically more efficient than single-item analyses. It can also help us understand how
the behavior patterns in different items are related. Although joint analysis using LHMM is con-
ceptually straightforward, it could be computationally challenging due to the increased number
of parameters. In addition, there are several model choices to consider, such as whether respon-
dents’ behaviors in different items should be affected by the same latent trait. As it stands, the
proposed LHMM is not flexible enough to accommodate such needs. As we discussed below,
several extensions can be considered to increase the flexibility of the model and better support
joint modeling of response processes from different items.

The proposed model involves a single latent trait in the initial state probability vector π ,
state transition probability matrix P , and state-action probability Q. In complex problem-solving
items, it is very likely that multidimensional latent traits should be used for characterizing the
heterogeneity of response processes. It is also possible that P and Q are affected by different
latent traits. LHMMs involving multidimensional latent traits are straightforward to formulate.
However, the MLE of the model parameter may be difficult to obtain since numerical integration
in higher dimensionsmay be computationally expensive and inaccurate. Developingmore compu-
tationally efficient methods for statistical inference is essential for suchmodels. Jointly estimating
model parameters and latent traits may be a direction to take as this method has demonstrated
computational advantages in multidimensional item response theory models Chen et al. (2019b).

Currently, no constraint is imposed on the state transitions in our model. Transitions could
occur between any two states. In practice, constraints exist on state transitions. For example, in
the TICKET item, the design of the item interface determines that no transition should occur
from the Network state to the Pricing state or from the Pricing state to the Fare Type state. In the
CC item, it is natural to assume that students will not go back to an inefficient problem-solving
state once they figure out the efficient strategy, which prohibits the transition from the VOTAT
State to the EXPLORE State. The fitted LHMM allows such transitions, although only with tiny
probabilities. Imposing constraints on state transitions reduces the dimension of parameter space
and thus improves the stability of the model fit. Developing data-driven methods to detect such
structure in the state transition probability matrix is an interesting future direction.

As a final remark, wewould like to point out that the proposed LHMMmay not be suitable for
response processes from all problem-solving items despite its good performance in characterizing
the response structure of the TICKET item and the CC item. Also, if the required task does not
have a multi-subtask pattern, one can still fit an LHMM to the response processes, but the hidden
states may not have a clear interpretation.
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Appendix A LHMM Likelihood Computation

The likelihood for a set of response processes Yn following an LHMM is

L(η | Yn) =
n∏

i=1

P(Y (i) = y(i) | η) =
n∏

i=1

{∫

φ(θi )P(Y (i) = y(i) | η, θi )dθi

}

.

We demonstrate here how to compute Li
(
η | y(i)

) = P
(
Y (i) = y(i) | η

)
. For notation simplicity,

the superscripts and the subscripts denoting different respondents are suppressed hereafter. We
explain first how to compute f (η, θ) = P(Y = y | η, θ) given (η, θ) and then how to numerically
integrate φ(θ) f (η, θ) with respect to θ to obtain L(η | y).

For k = 1, . . . , K and t = 1, . . . , T , define the forward probability

αt (k | θ) = P(Y1:t = y1:t , St = k | η, θ). (A1)

Given η and θ , we can obtain f (η, θ) from the forward probabilities αT (k | θ) since
f (η, θ) = ∑K

k=1 αT (k | θ). According to HMM assumptions (1–4), it is easy to verify
α1(k | θ) = πk(θ)qk,y1(θ) and

αt (k | θ) =
K∑

l=1

αt−1(l | θ)plk(θ)qk,yt (θ), t = 2, . . . , T, (A2)

where πk(θ), pkl(θ), and qkj (θ) are defined in (5–7). Therefore, αT (k | θ) can be computed by
first calculating α1(k | θ) and then applying (A2) recursively.

Besides the forward probabilities, one can also define the backward probability

βt (k | θ) = P(Y (t+1):T = y(t+1):T | St = k, η, θ), k = 1, . . . , K , t = 1, . . . , T − 1. (A3)

Letting βT (k | θ) = 1, then we have the recursive relation

βt (k | θ) =
K∑

l=1

pkl(θ)ql,yt+1(θ)βt+1(l|θ). (A4)

Although computing f (η, θ) does not require the backward probabilities, we still compute them
when evaluating the likelihood because they, together with the forward probabilities, are essential
components for computing the derivatives of the likelihood function. See Appendix B for details.

Given that f (η, θ) is computable, we can approximate

L(η | y) =
∫

φ(θ) f (η, θ)dθ = 1√
π

∫

e−x2 f (η,
√
2x)dx

usingGaussian–Hermite quadrature by 1√
π

∑U
u=1 wu f (η,

√
2xu)where x1, . . . , xU areU quadra-

ture points andw1, . . . , wU are the associated weights. The quadrature points and the correspond-
ingweights for a givenU can be computed based on the Hermite polynomials.We use the function
gauss.quad in the R package statmod for this aim.

The algorithm for computing the likelihood function for LHMM is summarized in Algo-
rithm 1.
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Algorithm 1. (LHMM likelihood computation) The likelihood function L(η | y) for a response
process y following LHMM is computed in the following steps.

1. Obtain Gaussian–Hermite quadrature points x1, . . . , xU and the associated weights
w1, . . . , wU .

2. For u = 1, . . . ,U , compute f (η,
√
2xu) as follows.

(a) Compute α1(k | √
2xu) = πk(

√
2xu)qk,y1(

√
2xu) and set βT (k | √

2xu) = 1 for
k = 1, . . . , K .

(b) For t = 2, . . . , T and k = 1, . . . , K , compute

αt (k | √
2xu) =

K∑

l=1

αt−1(l | √
2xu)plk(

√
2xu)qk,yt (

√
2xu)

and

βT−t+1(k | √
2xu) =

K∑

l=1

pkl(
√
2xu)ql,yT−t+2(

√
2xu)βT−t+2(l | √

2xu).

(c) Compute f (η,
√
2xu) = ∑K

k=1 αT (k | √
2xu).

3. Compute L(η | y) = 1√
π

∑U
u=1 wu f (η,

√
2xu).

Appendix B Gradient of LHMM Log-Likelihood Function

For a given element η in η,

∂ log L(η)

∂η
=

n∑

i=1

1

Li (η | y(i))

∂Li (η | y(i))

∂η
.

The algorithm for calculating Li (η | y(i)) is presented in Appendix A. We explain here how

to compute ∂Li (η| y(i))
∂η

. The superscripts and the subscripts denoting different respondents are
suppressed hereafter to simplify notation. Let f (η, θ) = P(Y = y | η, θ). Then

∂L(η | y)
∂η

=
∫

φ(θ)
∂ f (η, θ)

∂η
dθ. (A5)

If ∂ f (η,θ)
∂η

is computable given (η, θ), then the integral on the right-hand side of (A5) can be
approximated using Gaussian–Hermite quadrature similarly as in computing the likelihood func-
tion. In the remaining part, we focus on deriving ∂ f (η,θ)

∂η
. In the following calculations, the initial

state probability πk , the state transition probabilities pkl , and the state-action probabilities qkj all
depend on θ as defined in (5–7). To simplify notation, we do not explicitly write them as functions
of θ .

First, consider taking derivative of f with respect to πk , pkl , and qkj . Define αt =
(αt (1), . . . , αt (K ))� and β t = (βt (1), . . . , βt (K ))� where αt (k) and βt (k) are the forward
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and backward probabilities defined in (A1) and (A3), respectively. Then, the relationship in (A2)
and (A4) can be expressed compactly as

αt = α�
t−1P Q̃t , and β t = P Q̃t+1β t+1,

where P is the state transition probability matrix and Q̃t = diag{q1,yt , . . . , qK ,yt }. Recursively
applying the above relationship, we get

αt = π� Q̃1P Q̃2 · · · P Q̃t and β t = P Q̃t+1 · · · P Q̃T 1,

where 1 is a column vector of K ones. Let x denote a generic element of π , P or Q. Then,

∂ f

∂x
= ∂π� Q̃1

∂x
P Q̃2 · · · P Q̃T 1 +

T−1∑

t=1

α�
t

∂ P Q̃t+1

∂x
β t+1.

Replacing x with πk , pkl , and qkj and simplifying the expression, we obtain

∂ f

∂πk
= qk,y1β1(k), k = 1, . . . , K

∂ f

∂pkl
=

T−1∑

t=1

αt (k)βt+1(l)ql,yt+1 , k, l = 1, . . . , K

∂ f

∂qkj
=

∑

t :yt= j

αt (k)βt (k)/qkj , k = 1, . . . , K , j = 1, . . . , M.

(A6)

According to the chain rule,

∂ f

∂μk
=

K∑

k′=1

∂ f

∂πk′
∂πk′

∂μk
= πk

(
∂ f

∂πk
−

K∑

k′=1

∂ f

∂πk′
πk′

)

,
∂ f

∂τk
=

K∑

k′=1

∂ f

∂πk′
∂πk′

∂τk
= θ

∂ f

∂μk
,

∂ f

∂bkl
=

K∑

l ′=1

∂ f

∂pkl ′
∂pkl ′

∂bkl
= pkl

(
∂ f

∂pkl
−

K∑

l ′=1

∂ f

∂pkl ′
pkl ′

)

,
∂ f

∂akl
=

K∑

l ′=1

∂ f

∂pkl ′
∂pkl ′

∂akl
= θ

∂ f

∂bkl
,

∂ f

∂dkj
=

M∑

j ′=1

∂ f

∂qkj ′

∂qkj ′

∂dkj
= qkj

⎛

⎝
∂ f

∂qkj
−

K∑

j ′=1

∂ f

∂qkj ′
qkj ′

⎞

⎠ ,
∂ f

∂ck j
=

M∑

j ′=1

∂ f

∂qkj ′

∂qkj ′

∂ck j
= θ

∂ f

∂dkj
.

(A7)

Combining (A6) and (A7) gives ∂ f
∂η

for η = τk, μk, akl , bkl , ck j , dkj .

Appendix C Viterbi Algorithm

Let y be a sequence following the LHMMwith parameters η and latent trait θ . The most probable
hidden state sequence ŝ can be found using the Viterbi algorithm. For k = 1, . . . , K and t =
2, . . . , T , define
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vt (k) = max
s1:(t−1)

P(Y1:t = y1:t , S1:(t−1) = s1:(t−1), St = k | θ, η).

According to HMM assumptions (1)–(4), we have the recursive relation

vt (k) = max
l=1,...,K

vt−1(l)plk(θ)qk,yt (θ),

where v1(k) = πk(θ)qk,y1(θ). Let

ut (k) = argmax
l=1,...,K

vt−1(l)plk(θ)qk,yt (θ).

After computing vt (k) and ut (k) for k = 1, . . . , K and t = 2, . . . , T sequentially, the most
probable hidden state sequence can be obtained by backtracing:

ŝT = argmax
k=1,...,K

vT (k), ŝt = argmax
k=1,...,K

ut+1(k), for t = T − 1, . . . , 1. (A8)

The algorithm is summarized in Algorithm 2.

Algorithm 2. (Viterbi Algorithm) The most probable hidden state sequence ŝ for a response
process y following the LHMM with latent trait θ is obtained in the following steps.

1. For k = 1, . . . , K , compute v1(k) = πk(θ)qk,y1(θ).
2. For t = 2, . . . , T ,

(a) Compute wt (l, k) = vt−1(l)plk(θ)qk,yt (θ) for k, l = 1, . . . , K ;
(b) Record vt (k) = maxl wt (l, k) and ut (k) = argmaxl wt (l, k) for k = 1, . . . , K .

3. Obtain ŝ by backtracing:

(a) ŝT = argmaxk vT (k);
(b) For t = T − 1, . . . , 1, set ŝt = argmaxk ut+1(k).

Appendix D Estimated LHMM Parameters in Case Studies

Tables 3 and 4 present the LHMM parameter estimates for the CC item and the TICKET item,
respectively.
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Table 3.
Estimated LHMM parameters for the CC item.

A B π

State 1 State 2 State 1 State 2

State 1 0.00 0.00 0.00 −2.59 0.13
State 2 0.00 −0.15 0.00 2.05 0.87

C
All T_M T_B M_B Top Middle Bottom None RESET

State 1 0.00 0.23 −0.91 0.60 −1.05 4.12 4.02 0.97 3.58
State 2 0.00 1.87 2.63 3.79 2.49 0.47 −0.71 4.75 2.43

D
All T_M T_B M_B Top Middle Bottom None RESET

State 1 0.00 −5.80 0.97 2.75 −2.13 3.48 3.57 2.90 3.47
State 2 0.00 −1.34 −2.88 −6.26 −0.68 −4.66 −5.74 −6.11 −1.36

For ease of comparison, a column of zeros is prepended to A, B, C, and D. In C and D, T_M, T_B, and
M_B stand for actions “Top_Middle,” “Top_Bottom,” and “Middle_Bottom,” respectively.

Table 4.
Estimated LHMM parameters for the TICKET item.

A B τ μ π

State 1 State 2 State 3 State 1 State 2 State 3

State 1 0.00 0.07 − 1.28 0.00 6.52 − 0.63 0.00 0.00 0.990
State 2 0.00 − 0.06 0.19 0.00 − 4.17 2.62 0.00 − 7.33 0.001
State 3 0.00 1.82 2.56 0.00 − 3.23 3.21 0.00 − 4.75 0.009

C
trains subway full conc. indv. daily trip_1 trip_2 trip_3 trip_4 trip_5 Buy Cancel

State 1 0.00 − 3.52 − 0.34 − 0.77− 0.04 − 0.21 − 0.77 − 1.92− 0.58− 0.28− 0.12− 4.60− 0.04
State 2 0.00 − 0.85 0.76 − 0.72 0.95 − 0.61 0.43 0.07 0.41 0.32 0.77− 0.98− 0.37
State 3 0.00 − 0.90 1.81 − 0.04 1.08 − 3.84 0.88 1.06− 0.98− 1.54− 1.48 1.30− 1.43

D
trains subway full conc. indv. daily trip_1 trip_2 trip_3 trip_4 trip_5 Buy Cancel

State 1 0.00 − 3.07 − 6.24 − 5.93− 6.58 − 6.35 − 6.95 − 7.49− 6.91− 7.27− 7.04− 5.24− 5.57
State 2 0.00 − 3.00 8.12 6.24− 4.27 0.11 − 2.29 − 2.77− 2.89− 2.92− 3.23− 0.52 5.69
State 3 0.00 − 1.92 − 0.92 0.03 5.85 1.35 3.74 5.76 2.66 1.58 2.06 5.63 3.94

For ease of comparison, a column of zeros is prepended to A, B, C, and D. In C and D, trains, sub-
way, full, conc., and indv. stand for actions “country_trains,” “city_subway,” “full_fare,” “concession,” and
“individual,” respectively.

Appendix E True Parameters in Simulation Studies

Table 5 presents the parameters of LHMM for generating the action sequences in the simulation
study. The values are chosen so that the resulting state transition and state-action probability
curves are similar to those obtained in the TICKET item.
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Table 5.
Parameters used for generating action sequences in the simulation study.

τ μ A B
l = 2 l = 3 l = 2 l = 3

k = 1 0.1 −1.0 2.0 −0.5
k = 2 0.0 −2.0 −0.1 0.5 −2.0 1.0
k = 3 0.0 −1.0 1.0 2.0 −1.5 1.5

C
j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

k = 1 −2.0 −0.5 −0.5 0.0 −0.1 −0.5 −1.0 −0.5 −0.1
k = 2 −1.0 1.0 −1.0 1.0 −0.5 0.5 0.0 0.5 0.5
k = 3 −1.0 1.5 0.0 1.0 −1.5 1.0 1.0 −1.0 −2.0

D
j = 2 j = 3 j = 4 j = 5 j = 6 j = 7 j = 8 j = 9 j = 10

k = 1 −1.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0 −2.0
k = 2 −1.0 2.0 2.0 -2.0 0.0 −1.0 −1.0 −1.0 −1.0
k = 3 −1.0 −0.5 0.0 2.0 1.0 2.0 2.0 1.0 1.0

Data availability

The dataset analyzed in the current study are available at https://www.oecd.org/pisa/
pisaproducts/database-cbapisa2012.htm

Declarations

Conflict of interest The author has no conflicts of interest to declare that are relevant to the content of this
article.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article
under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of
the accepted manuscript version of this article is solely governed by the terms of such publishing
agreement and applicable law.

References

Binkley, M., Erstad, O., Herman, J., Raizen, S., Ripley, M., Miller-Ricci, M., & Rumble, M. (2012). Defining twenty-first
century skills. In Assessment and teaching of 21st century skills (pp. 17–66). Springer.

Broyden, C. G. (1970). The convergence of a class of double-rank minimization algorithms 1. General considerations.
IMA Journal of Applied Mathematics, 6(1), 76–90.

Cappé, O., Moulines, E., & Ryden, T. (2005). Inference in hidden Markov models. Springer. https://doi.org/10.1007/0-
387-28982-8

Chen,Y. (2020).A continuous-timedynamic choicemeasurementmodel for problem-solving process data.Psychometrika,
85(4), 1052–1075.

Chen, Y., Li, X., Liu, J., & Ying, Z. (2019a). Statistical analysis of complex problem-solving process data: An event
history analysis approach. Frontiers in Psychology, 10, 486.

Chen, Y., Li, X., & Zhang, S. (2019b). Joint maximum likelihood estimation for high-dimensional exploratory item factor
analysis. Psychometrika, 84(1), 124–146.

Cover, T. M., & Thomas, J. A. (2006). Elements of information theory (2nd ed.). Wiley.
Dempster, A. P., Laird, N. M., & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm.

Journal of the Royal Statistical Society Series B, 39(1), 1–22.

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:19:44, subject to the Cambridge Core terms of use.

https://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm
https://www.oecd.org/pisa/pisaproducts/database-cbapisa2012.htm
https://doi.org/10.1007/0-387-28982-8
https://doi.org/10.1007/0-387-28982-8
https://www.cambridge.org/core


240 PSYCHOMETRIKA

Eddelbuettel, D., & François, R. (2011). Rcpp: Seamless r and c++ integration. Journal of Statistical Software, 40, 1–18.
Eichmann, B., Greiff, S., Naumann, J., Brandhuber, L., & Goldhammer, F. (2020). Exploring behavioural patterns during

complex problem-solving. Journal of Computer Assisted Learning, 36(6), 933–956.
Fletcher, R. (1970). A new approach to variable metric algorithms. The Computer Journal, 13(3), 317–322.
Giner, G., Chen, L., Hu, Y., Dunn, P., Phipson, B., & Chen, Y. (2023). statmod: Statistical modeling [Computer software

manual]. Retrieved from https://cran.r-project.org/package=statmod
Goldfarb, D. (1970). A family of variable-metric methods derived by variational means. Mathematics of Computation,

24(109), 23–26.
Greiff, S., Niepel, C., Scherer, R., & Martin, R. (2016). Understanding students’ performance in a computer-based

assessment of complex problem solving: An analysis of behavioral data from computer-generated log files.Computers
in Human Behavior, 61, 36–46. https://doi.org/10.1016/j.chb.2016.02.095

Greiff, S., Wüstenberg, S., & Avvisati, F. (2015). Computer-generated log-file analyses as a window into students’ minds?
A showcase study based on the PISA 2012 assessment of problem solving. Computers & Education, 91, 92–105.

Han, Y., Liu, H., & Ji, F. (2021). A sequential response model for analyzing process data on technology-based problem-
solving tasks. Multivariate Behavioral Research, 57, 960.

He, Q., & von Davier, M. (2016). Analyzing process data from problem-solving items with n-grams: Insights from a
computer-based large-scale assessment. In Y. Rosen, S. Ferrara, & M. Mosharraf (Eds.), Handbook of research on
technology tools for real-world skill development (pp. 749-776). Information Science Reference. https://doi.org/10.
4018/978-1-4666-9441-5.ch029

He, Q., Liao, D., & Jiao, H. (2019). Clustering behavioral patterns using process data in PIAAC problem-solving items.
In Theoretical and practical advances in computer-based educational measurement (pp. 189-212). Springer.
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