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Filamentous microstructures in 3.46 billion-year-old rocks (Apex chert) from Western Australia have 
been claimed to represent the oldest morphological evidence of life on Earth [1]. However, the 
biological nature of these filaments has been questioned on numerous occasions [e.g., 2] and this has led 
to one of the longest running and most controversial debates in palaeontology. Here we use a 
combination of focused ion beam (FIB) milling, TEM and SEM to decode the detailed morphology and 
chemistry of the Apex filaments and determine their formation mechanism.  
 
Critical to the claims of a biological origin for the Apex filaments is a suggested presence of cells, 
having three-dimensional wall compartments made of carbon [3]. In contrast, our TEM analyses of 
ultrathin wafers through four representative filaments reveal filament morphologies that are 
characteristic of a mineralic origin, with complex nano-scale intergrowths of mineral phases (Fig. 1a). 
Each filament is made up of multiple plate- or sheet-like grains of phyllosilicate (Fig. 1b, green), sitting 
within a matrix of microcrystalline quartz. Occasionally quartz is also seen inter-grown with the 
phyllosilicate within a filament. ChemiSTEM mapping shows that the phyllosilicate mineral(s) contain 
the elements K, Al, Si, O, plus variable amounts of Ba and minor Mg. Electron diffraction patterns of 
this mineral obtained in the TEM possess d-spacings consistent with a 2:1 layered phyllosilicate crystal 
lattice structure. This structure is found both in micas such as muscovite and some clay minerals. The 
nano-morphology of the phyllosilicate, appearing as a worm-like stack of crystals, closely resembles 
vermiculite, a common alteration product of mica. However, the chemical composition is spatially 
heterogenous on the nano- to micro-scale. This, together with the presence of barium, suggests that the 
phyllosilicate is likely a complex hydrothermal association of mica alteration products that are best 
termed vermiculite-like. 
 
Further ChemiSTEM mapping shows that carbon (Fig. 1b, yellow) and iron (Fig. 1b red) are closely 
associated with the phyllosilicate filaments. Both carbon and iron are seen interleaved between sheets of 
phyllosilicates within the body of the filaments, and also coat the outer margins of some parts of the 
filaments. In addition, carbon occurs away from the filaments within the quartz matrix where it forms a 
boundary phase between quartz grains (Fig. 1a). These data indicate significant redistribution of carbon 
both within and around the Apex filaments, in marked contrast to patterns found by us in bona fide fossil 
microbes from younger rocks [4]. Carbon interleaved between phyllosilicates within the filaments may 
resemble ‘cellular compartment walls’ when investigated with lower spatial resolution (for example in 
optical work).  Our higher spatial resolution analysis of supposed ‘cellular compartments’ instead 
reveals very inconsistent compartment lengths (<50 nm up to c. 1 µm), with length/width ratios that 
match crystal growth patterns and are unlike any known microbial cells.  
 
3D FIB-SEM data reveal further complexities to the filaments and additional insights into carbon 
distribution in their vicinity. These data demonstrate how the morphology of the filaments changes quite 
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significantly over spatial scales of only a few micrometres along the length of a filament. In some FIB 
slices, their filamentous nature is clear and books of phyllosilicate crystals appear neatly stacked, while 
in other slices the filaments are seen to branch, suddenly thicken or be joined by additional 
microstructures. Furthermore, SEM highlights a number of nano-cracks within the chert matrix; these 
often feed right into the filaments and are filled with carbon. Like the TEM data, the SEM data are 
incompatible with these filaments being fossils of primitive filamentous organisms. 
 
Carbon distribution in Apex ‘microfossils’ is, therefore, not comparable with true cellular morphology. 
Our non-biological formation model is: 1, Hydration of mica flakes (abundant in the country rock) 
during widespread hydrothermal activity resulting in vermiculite-like phyllosilicate formation. 2, 
Continued heating plus expulsion of water from phyllosilicate crystal lattices, causing exfoliation (i.e., 
accordion-like expansion at right angles to the cleavage plane), and creating the initial worm-like 
filamentous morphological expression of microfossil-like artefacts. 3, Adsorption of later hydrocarbons 
(and locally additional iron) onto the phyllosilicate, mimicking cell walls. We note that exfoliated 
vermiculite has high adsorption capacity for hydrocarbons resulting from the strong capillary action of 
slit-like pores between plate-like grains, encouraging its use for cleaning up oil spills [5]. 
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Figure 1.  a) HAADF-STEM image of a filament from the 3.46 billion-year-old Apex chert. b) False 
colour ChemiSTEM three-element overlay map of area boxed in (a). The filament comprises stacks of 
sheet-like phyllosilicate grains (green) with carbon (yellow) and iron (red) interleaved between some of 
the sheets and around some of the filament margin. This distribution of phases is incompatible with a 
biological origin for the filament. 
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