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Abstract

In this paper we investigate near-rings of polynomials and polynomial functions. After some
results which belong to universal algebra we turn our attention to the familiar case of polynomials
and polynomial functions over a commutative ring with identity. We study the relation between
ring- and near-ring homomorphisms, and the behaviour of polynomial near-rings when the
ring splits into a direct sum. A discussion of the structure of these polynomial near-rings (radical,
semisimplicity) finishes this paper. These investigations are motivated by Clay and Doi (1973).

1980 Mathematics subject classification (Amer. Math. Soc.): primary 16 A 76; secondary 08 A 40.

1. Some general concepts and results

1.1 DEFINITION. Let 4 = (4, Q) be a universal algebra.

(a) M(A)=(4%,Qu {°}), where o means the composition of functions; the
operations w e Q are defined pointwise in 44.

(b) C(A4) = { fe M(A4)/for all congruence relations = on 4 we have that

a = b=f(a) =f(b) for all a,be A4}.
The functions in C(A) are said to be compatible.
(c) Let P(A4) be the subalgebra of M(A) generated by id, and the constant

functions. The elements in there are called polynomial functions. Let P(A) be the
set of all constant maps in P(4).

1.2 REMARK. We always have that P(4) = C(4) = M(A). If A is an Q-group
(written additively with zero element 0) then these three algebras are near-rings
with respect to addition and composition. For all notations and results concerning
near-rings see Pilz (1977).
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Let A[x] be the algebra of polynomials in one indeterminate x over A4 as defined
in Lausch and Nobauer (1973) (if we want to specify the variety V of which 4 is
taken then we write more precisely (4[x], V). For all on polynomials see Lausch
and Nébauer (1973). Again, if A4 happens to be an Q-group then A[x] is a near-
ring with respect to addition and substitution. 4[x] can be viewed as the free
union of 4 and the free algebra over {x} in V.

For later applications we compare polynomials in 4 and in (sub)direct com-
ponents. Generalizing results of Lausch and Nébauer (1973) and Nébauer (1976)
we get

1.3 THEOREM. Let A be a subdirect product of algebras A;(ieI). For all feC(A)
there are uniquely determined f;€ C(A)) with f((...,a;,...)) =(....fi(a), ...) for all
(...,a;...)€A. If fe P(A) then all f; are in P(A).

We remark that if x; is the usual projection 4— A4, then the f; makes the diagram

f

A——-A4

T Ty

i

A—A;
commutative,
Also, the map f—(...,f;,...) is a monomorphism (see Lausch and N&bauer
(1973), Ch. 3, 3.53). After this general discussion we concentrate our attention to
the much more familiar case of commutative rings with identity.

2. Homomorphisms between (near-) rings of pelynomials and polynomial functions

In all that follows (unless otherwise specified) let R, R, R,, ... be commutative
rings with identity 1. In this case we get from Lausch and Nobauer (1973) (Results
no. 1, 4.5; 3, 3.11; 3, 3.21; 3, 3.61) and Nébauer (1976) or from So (1977) or
Werner (1971):

2.1 THEOREM.
(a) Let ®: R,[x]1—R,[x] be a (near-ring)homomorphism. Then ®/R, is a ring-
homomorphism R;—R,.
(b) Conversely, if ®: R,— R, is a ring-homomorphism then
®: R, [x]->R,[x]: ag+a;x+... +a,x">D(ap)+P(a,)x+... + P(a,)x"
is a ring and near-ring homomorphism (hence a composition-ring homomorphism
from R [x] to R,[x]). All composition-ring epimorphisms arise in this way.
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(©) Let R= @ R;. Then the correspondence f—(..., f;, ...) of 1.3 is an iso-
morphism, hence C(R) = @ ;.; C(R;) and P(R) = @ . P(R).

(d) If R, =R, then R[x]= R,[x], P(R)) = P(R,;) and C(R,) = C(R;) (as
composition rings).

Part (b) of this theorem settles the question about all composition-ring epi-
morphisms between polynomial composition-rings. It is harder to determine all
near-ring homomorphisms from R,[x] to R,[x].

2.2 LemMMA (So (1977)). Let @ be a near-ring homomorphism from R,[x] to
Ry[x].

(@) If R, has no non-zero nilpotent elements then ®(x) = ax with idempotent a.

(b) If R, is an integral domain and ® non-zero or if © is onto then ®(x) = x.

PROOF. (a) Let ®(x) = ag+a,x+...+a,x" with a, # 0 (if ®(x) =0, (a) is trivially
true). Now gy = @(x) o 0 = O(x) o ®(0) = ®(x 2 0) = P(0) =0, and

a,x"+...4a; = 0(x) = O(x o x) = O(x) e D(x) = ap+a,P(x)+... +a,(P(x))"
="t ix" 4.

Hence n=1 and a, = a?.

(b) If R, is even an integral domain, then either a =0 (in this case we get
® = 0o, the zero map) or a = 1. If ® is an epimorphism, ®(x) is (as the image of
the identity of R,[x]) the identity in R,[x], that is ®(x) = x.

So we know something about the image of xeR,[x]. Every ring homo-
morphism from R,[x] to R,[x] is already determined by the images of 1 and x.
However, this is not true for the near-ring homomorphisms:

2.3 ExampLE (So (1977)). Let p be an odd prime.

(a) Define @: Z,,[x]>Z,,[x] by ®(ao+...+a,x") :=plas+...+a,x"). Then ©
is a near-ring homomorphism (but no ring homomorphism) with ®(x) =px and
(1) =p.

(b) Define ¥: Z,,[x]>Z,,[x] by ¥(ao+...+a,x") := p(a,+...+a)x+pa,.
Then ¥ is again a near-ring homomorphism with W(x) =px and ¥(1) =p, but
LE-R &

Nevertheless, we can prove

2.4 PrROPOSITION. Let @: R [x]— R,[x] be a composition ring homomorphism
and R, be an integral domain. Then, as in 2.1(b),

®(ap+ ... +a,x") = D(ag)+ ... + P(a,)x"
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Proor. By 2.2(b), we have ®(x) =x. Since ® is also a ring homomorphism,
O(x") = (®(x))", and from that we get our result.

2.5 REMARK. One can improve 2.1(c) by
Ry = Ry<>R([x] = Ry[x]<P(R,) = P(R;)

(as near-rings). See So (1977).

3. P(Z)

Now we study the polynomial functions from the residue-class rings Z, into
itself. If n = V... pk® then Z, = Z, vy ®...®Z, x» and hence by 2.1(c)

P(Z,) = P(kau))@ ces ®P(Zpr"('))'

This reduces our attention to near-rings of the type P(Z ).

If k=1 we know that Z, is a finite field and all functions Z,—Z, are poly-
nomial functions by Lausch and Nébauer (1973); so P(Z,) = M(Z,). If k>1,
the situation becomes much more complicated. Of course, P(Z,) is in

C(Z,) ={fe M(Z,)/for all [9Z,, iel and te Z, we have f(t+i)—f(t)el}.

By the way, functions which fulfil f(r+i)—f(r) el for all re R and i€ (for some
ideal I R) are called I-loyal. The set of all I-loyal functions forms a composition
ring C(R) between C(R) and M(R) and C(R) =[);9x Ci(R). Iloyal functions
are studied in So (1977).

Returning to P(Z,): its cardinal number is studied, for example, in Kempner
(1921), Keller and Olson (1968), Miiller and Eigenthaler (1979) and No6bauer
(1974); the first explicit descriptions can be found in Kempner (1921).

We give the following descriptions, taken from So (1977). The basic idea is the
following: Find in Z,[x] the polynomials of lowest degree (normed and not
normed) which induce the zero function in P(Z,). The remaining polynomials of
smaller degree can be shown to yield exactly all different elements of P(Z,).

This gives a possibility to describe their number as well as to characterize
P(Z,) in several cases. One more remark: if » is the product of distinct primes
then P(Z,) = C(Z,) by 2.1 (for instance).

3.1 EXAMPLEs. Let p>2 be a prime.

P(Z,)) = {fe CZ,>)lf (kp+c) = kf(p+¢)—(k— D) f(c) for ke {2, ....,p—1}
and ce{0,...,p—1}}.
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P(Z,) ={feC(Z,)/for all ke{3,4,...,p>—1} and all ce{0,...,p—1} there
are a,b, de Z,; with p* f(p+¢) = p* f(c) A pf 2o+ )= p2f (p+¢)—1(©))
Akp+c)=af((k—Dp+c)+bf(k—2)p+c)+df(c)}.

3.2 CorOLLARY (So (1977) and Nobauer (1976)). For p>2,

|P(Z)| =p%, |P(Z,)] =p* <p?*" =|C(Z,y],
[ P(Z,5)| = p*P<p?* 77 = | C(Z,)].

As usual, p = 2 causes some trouble.

3.3 EXAMPLES.
P(Z) = C(Zy) ={f: x> ap+a,x+a,x*+a;x*lay, a,€ Ly A ay,a3€{0,1}}
P(Zg) ={J: x~>ap+ay x+d, x*+a3x*/ag,a; € g A az,a5€{0,1,2,3}} |
={feC(Zg) f(4) =212~ FO)Af(5) =2/(3)—f(1)
A(O) =fB)+f@D—fO) A f(T) =6f(D+3(3)}
# C(Zsg)

3.4 REMARK. The recursion formula given in Keller and Olson (1968) is
| P(Z,) | =pP® | P(Z 1) | for k > 2, where B(k) is the smallest teN with p*/z!

4. R-subgroups

4.1 DEFINITION. A subgroup S of (R[x], +) or of (P(R), +) is called an R-
subgroup if r.se S for all re R and se S.

The importance of R-subgroups stems from:

4.2 REMARK. If N is the near-ring R[x] or P(R) then every left ideal, ideal, N-
or Ny-subgroup of N is an R-subgroup. This is true because of rxos=r.s for all
reR and s in a (left) ideal or Ny-subgroup S.

Hence R-subgroups are common generalizations of left ideals and N,-subgroups
in polynomial near-rings.

4.3 EXAMPLES.
(@) For I R, let I = {ay+a; x+...+a,x"e R[x]/a,eI for all k > 1}. Then I is
an R-subgroup of R[x], but no left ideal.
(b) Let I<g R be such that | R/I| =2, and ae R\I. Then
{peR[x]/pca—p-0el}
is a maximal left ideal, maximal right ideal, maximal R-subgroup and a maximal

ideal of R[x], but in general not a ring ideal.
3
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4.4 THEOREM. Let R = @,y R,. Then every R-subgroup S of R[x] or P(R) is (in
the group-theoretical sense) the direct sum of Rsubgroups of RJ[x](P(R)),
respectively).

The proof is accomplished by using the fact that both R[x] and P(R) are near-
rings with identity.

4.5 COROLLARY. In the situation as in 4.4, S is maximal if and only if S is of the
form S =58,® ®;+; Ri[x] (or §=5,® ®;+,P(R,)), where S; is a maximal R
subgroup in R[x] (P(R)), respectively).

4.6 REMARK. The last two results remain true if “R-subgroup” is changed
into “Ry[x]-subgroup” (P,(R)-subgroup, respectively) or into “left ideal”. Here,
R,[x] and Py(R) denote the zero-symmetric parts of R[x] and P(R), respectively.

5. Radicals of polynomial near-rings

Again, we adopt the notations and results of Pilz (1977). Since R[x] has an
identity, J;(R[x]) = J,(R[x]). We get an upper bound for these radicals:

5.1 THEOREM. J,(R[x]) < (J(R) : R), where J(R) is the Jacobson radical of R.

PRrROOF. Let M be a maximal ideal of R. It is shown in So (1977) that for each
a€R, (M :a) is a maximal left ideal and a maximal R,[x]-subgroup of R[x].
Since (R[x]) is the intersection of all maximal left ideals of R[x] which are at
the same time maximal Ry[x]-subgroups, we get that

JRIxIs N NM:a)=N N (M:a)=(3(R):R).

M max aeR acR M max

5.2 COROLLARY. If R is a semisimple ring of characteristic 0 then ,(R[x])={0}.
This holds since in this case (3(R) : R) = ({0} : R) ={0}.

5.3 COrROLLARY. If R is an infinite field then R[x] is 2-semisimple.
5.4 PROPOSITION. Let R be a finite field of order >2. Then 3,(R[x]) = ({0} : R).
Proor. Since J(R) = {0} we get J,(R[x]) = ({0} : R) by 5.1. Conversely, the

radical J(R[x]), as defined in Clay and Doi (1973), is there shown to be
=({0} : R); one easily sees that J(R[x]) < J,(R[x]). Hence

({0} : R) = 32(R[x]).
5.5 THEOREM. Let R be a field with char R # 2. Then J(R[x]) = {0}.
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PRrOOF. By 7.94 of Pilz (1977), the left ideals of R[x] are under these assumptions
just the ring-ideals; the maximal ones are those (ring-)ideals which are generated
by irreducible polynomials. But their intersection is zero.

To handle the case of characteristic 2 to some extent, we have to consider when
Ry[x] happens to be a ring.

5.6 THEOREM. Let R be a ring (not necessarily commutative with identity).

(@) If R has an identity then: Ry[x] is a ring=>P,(R) is a ring<>R is Boolean.

(b) If R is simple then: Ry[x] is a ring=>P,(R) is a ring=>R > Z, v R is a zero
ring.

ProoOF. Let R be arbitrary and Ry[x] a ring; then Py(R) is a ring. Let idz =1,
i =i.i, and so on.
(1) i?o(i+i) =i%ci+i%oiimplies i2+i? =0, hence for all re R,

0=02+i)(r)=r2+r2

(2) Forall reR, i2o(i+ri) =i%oi+i%o(ri); so i2+4iri4ri*>+riri = i*+riri. As in
(1) we get (sr+rs)s =0 for all s, re R.
(3) For all teR, i%o(i+it) = i?oi+i?oir implies that r(rt+tr) =0 for r, te R.
(4) By (3) and (2) we get a®b = ba® (a,be R).
(5) From that and (2) one deduces that for all a,be R,
(a+b)* =a®>+a’b+ab*+b>.

(6) Now
(@a+b)* = (a+b)* (a+b)
= (@ +a?b+ab*+ b3 (a+b)
= a*+a® ba+ab? a+b> a+a® b+a® b*> +ab® +b*
=a*+a b+a® b+a® b2 +a? b +abd+ab>+b*
—a*+b*
by (1)-(3).

(7) Since i3o(i+i%) =i30i+i*-i* we get for aeR: (a+a?)?® =a>+(a*)’. By
using (5) we arrive at a* = g> =48 for all aeR.

(8) Since a*+4b* = (a+b)* = (a+b)° = (a+b)*(a+b) =a*+b*a+a*b+b* we
get for all a,he R: a* b = ab*.

(9) Now suppose that R contains an identity. Then by (8) with b =1 we see
that for all aeR: a* =a, hence a?=(a*)* =a®=a, and R is shown to be
Boolean.

(10) Conversely, if R is Boolean, then it remains to show that Py(R) fulfils the
left distributive law. Since a Boolean ring is a commutative ring with identity, we
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can use the usual normal form for polynomials. Consider
(B ) (0 o) “Fgoreo =
and
(;aki") o @bj if) + (;ak i") o(;Cj if)
= a(Th;#) + La (Sesi) =g

k
Now for all re R:

1(r) =;ak (;(bj+cj) rj)k
=Y a (S +epr) = ... =g(n.
k J

(11) Suppose now that R is simple. Take some ae R. We show that Ra? is an
ideal of R. Of course, it is a left ideal. Now take be R, and some ra® e Ra®. Then
(ra®) b =r(a® b) = rba® € Ra®. If Ra* # {0} then by the simplicity of R, Ra*> =R.
Hence there is some

ecR: ea® =a>.
But then for all

c=da*’cR:ec =eda®* =ea’d=a*d=da* =c¢

and similarly ce = c¢. Hence R has an identity and R must be Boolean by (9).
But a simple Boolean ring is isomorphic to Z,.
(12) Now suppose that R is simple, but Ra? = {0} for all ae R. Since

A(R) :={xeR/Rx ={0}} < R,

either A(R) = R (whence R> = {0} and R is a zero ring) or 4A(R) = {0}. Assume
that A(R) = {0}. Since all a®>€ A(R), a* =0 for all ae R. Also,

0 = (a+b)* = a®>+ab+ba+b* = ab+ba,

so for all a,be R: ab+ba = 0. But then all Ra are ideals of R as can be seen as in
(11). Since R* # {0}, there is some ay€ R with Ra, # {0}, hence Ra, = R. Again
we can deduce the existence of an identity, a contradiction to a®> = 0 for each ae R.

(13) Conversely, if R is either a zero ring or if R = Z, then Py(R) is easily shown
to be a ring.

5.7 REMARK. Even if R =Z,, Ry[x] is not a ring:
x3o(x4xY) =x3ox+x30x?

would result in the impossible equation x*+x> =0.
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5.8 COROLLARY. Let R be a ring with identity. P(R) is an abstract affine near-
ring if and only if R is a Boolean ring. This follows from a quick inspection of part (10)
of the last proof" zero symmetric polynomial functions distribute even over all other
polynomial functions.

5.9 CorOLLARY. Let R be a Boolean ring. Then

Jo(P(R)) = ... = F2(P(R)) = J(Po(RN+I( pymy P(R)),

where J(P.R)) is the “Jacobson-radical” of the Py(R)-module P.(R) (which .is
isomorphic to R itself), namely the intersection of all maximal submodules.

Proor. This result follows immediately from 5.8 and Theorem 9.77 of Pilz
(1977).

We close our considerations by a result which can be deduced from 4.5 and 4.6
as is done for J, in Pilz (1977).

5.10 THEOREM (So (1977). Let R= @ ;s R,. Then for all

ve{0,3,1,2}: J(R[x]) = G? JuR[xD)
a'ld i€

SUP(R) = 6? JUP(R)).

5.11 COROLLARY (So (1977)). Let neN be a product of distinct primes. Then
3(P(Z,)) ={0}.
This follows from 5.10 and the fact that for prime p
J2AP(Z,) = J(M(Z,)) = {0}
(Pilz (1977)).

The authors thank the “Osterreichische Forschungsfonds” (Projekt Nr. 3479)
for highly appreciated assistance.
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