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Abstract

In this paper we investigate near-rings of polynomials and polynomial functions. After some
results which belong to universal algebra we turn our attention to the familiar case of polynomials
and polynomial functions over a commutative ring with identity. We study the relation between
ring- and near-ring homomorphisms, and the behaviour of polynomial near-rings when the
ring splits into a direct sum. A discussion of the structure of these polynomial near-rings (radical,
semisimplicity) finishes this paper. These investigations are motivated by Clay and Doi (1973).

1980 Mathematics subject classification (Amer. Math. Soc): primary 16 A 76; secondary 08 A 40.

1. Some general concepts and results

1.1 DEFINITION. Let A =(A,Sl) be a universal algebra.
(a) M(A) = (/4/1,flu {°}), where <> means the composition of functions; the

operations coed are defined pointwise in AA.
(b) C{A) = {/e M(A)\'for all congruence relations = on A we have that

a = b=>f(a) =f{b) for all a, be A).
The functions in C(A) are said to be compatible.

(c) Let P(A) be the subalgebra of M(A) generated by id^ and the constant
functions. The elements in there are called polynomial functions. Let PC(A) be the
set of all constant maps in P(A).

1.2 REMARK. We always have that P(A) c C(A) c M(A). If A is an Q-group
(written additively with zero element 0) then these three algebras are near-rings
with respect to addition and composition. For all notations and results concerning
near-rings see Pilz (1977).
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Let A[x~] be the algebra of polynomials in one indeterminate x over A as defined
in Lausch and Nobauer (1973) (if we want to specify the variety V of which A is
taken then we write more precisely 04[x], V). For all on polynomials see Lausch
and Nobauer (1973). Again, if A happens to be an ft-group then A[_x~] is a near-
ring with respect to addition and substitution. A[x~] can be viewed as the free
union of A and the free algebra over {x} in V.

For later applications we compare polynomials in A and in (sub)direct com-
ponents. Generalizing results of Lausch and Nobauer (1973) and Nobauer (1976)
we get

1.3 THEOREM. Let Abe a subdirect product of algebras At (iel). For allfeC(A)
there are uniquely determined fteC(Ai) with f((...,at, ...)) = (...,/((a,),...) for all
(...,«„ ...)eA. IffeP(A) then allft are in P(At).

We remark that if nx is the usual projection A-+A{ then the/ ; makes the diagram

n,
fi

Ax

commutative.
Also, the map /-»(. . . , / ; , ••) is a monomorphism (see Lausch and Nobauer

(1973), Ch. 3, 3.53). After this general discussion we concentrate our attention to
the much more familiar case of commutative rings with identity.

2. Homomorphisms between (near-) rings of polynomials and polynomial functions

In all that follows (unless otherwise specified) let R,R1,R2>-- be commutative
rings with identity 1. In this case we get from Lausch and Nobauer (1973) (Results
no. 1, 4.5; 3, 3.11; 3, 3.21; 3, 3.61) and Nobauer (1976) or from So (1977) or
Werner (1971):

2.1 THEOREM.

(a) Let O: /?i[x]->i?2[^] be a (near-ring)homomorphism. Then <X>/i?j is a ring-
homomorphism R1^R2.

(b) Conversely, if<f>:R1-*R2 is a ring-homomorphism then
O: Rtlx^Rzlx]: ao+a1x+...+anx"->®(ao)+®(a1)x+...+<f>(an)x"

is a ring and near-ring homomorphism (hence a composition-ring homomorphism
from Ri[x] to R2[.x])- All composition-ring epimorphisms arise in this way.
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(c) Let R= ®ie[Ri- Then the correspondence / - » ( . . . , / ) , •••) of 1.3 is an iso-

morphism, hence C(R) = © f e / C( / ? , ) and P(R) = © ie,/*(/?;)•

(d) If R^R2 then R^x] ^ R2[_x], P(R1)^P(R2) and C(RJ s C(/?2) (as

composition rings).

Part (b) of this theorem settles the question about all composition-ring epi-
morphisms between polynomial composition-rings. It is harder to determine all
near-ring homomorphisms from i?,[x] to R2[x].

2.2 LEMMA (SO (1977)). Let <t» be a near-ring homomorphism from Rt[_x] to

(a) If R2 has no non-zero nilpotent elements then 4>(x) = ax with idempotent a.
(b) If R2 is an integral domain and O non-zero or if <I> is onto then O(x) = x.

PROOF, (a) Let <5>{x) = ao+axx+.. .+anx" with an ^ 0 (if <P(JC) = 0, (a) is trivially
true). Now a0 = O(x) o 0 = O(x) ° O(0) = $(x ° 0) = 0(0) = 0, and

Hence « = 1 and ax=a\.
(b) If /J2 is even an integral domain, then either a = 0 (in this case we get

O = o, the zero map) or a = 1. If <t> is an epimorphism, O(x) is (as the image of
the identity of / ^ [ J C ] ) the identity in R2{x\, that is O(x) = x.

So we know something about the image of x e ^ J x ] . Every ring homo-
morphism from i?![x] to R2[x~] is already determined by the images of 1 and x.
However, this is not true for the near-ring homomorphisms:

2.3 EXAMPLE (SO (1977)). Let p be an odd prime.
(a) Define O: Z 2 , [ x ] - Z 2 j F M by O(a0+ ...+<*„*") :=p(ao + ...+anx")- Then O

is a near-ring homomorphism (but no ring homomorphism) with O(x) =px and
O(l) =p.

(b) Define «P: Z 2 P [ J C ] - » Z 2 , M by W{ao+...+aX) : = p(al,+...+al)x+pa0.
Then *P is again a near-ring homomorphism with T(x) =/?;c and *F(1) =p, but

Nevertheless, we can prove

2.4 PROPOSITION. Lef O: i i i M ^ ^ M ^ e ^ composition ring homomorphism
and R2 be an integral domain. Then, as in 2.1(b),
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PROOF. By 2.2(b), we have 3>(x) = JC. Since O is also a ring homomorphism,
= (O(x))", and from that we get our result.

2.5 REMARK. One can improve 2.1(c) by

R, S ̂ oRilx] s ^[xKlii,) s P(R2)

(as near-rings). See So (1977).

3-

Now we study the polynomial functions from the residue-class rings Zn into
itself. If n = p* ( 1 ) -p j ( r ) then Zn s Zp,w>0-..©Zp,.,«r> and hence by 2.1(c)

This reduces our attention to near-rings of the type P(Zpk).
If k = 1 we know that Zp is a finite field and all functions Zp->Zp are poly-

nomial functions by Lausch and Nobauer (1973); so P(ZP) = M(Zp). If
the situation becomes much more complicated. Of course, P(Zn) is in

C(ZJ = {/evl/(Zn)/for all / ^ Z n , i e / a n d *eZn we have/ ( /+ / ) - f ( t )e l} .

By the way, functions which fulfil/(/•+/)—f(r)el for all re^? and i e / (for some
ideal 7^i i?) are called I-loyal. The set of all /-loyal functions forim a composition
ring Q(/?) between C(i?) and M(/?) and C(R) = fl/aR Q(^)- /-loyal functions
are studied in So (1977).

Returning to P(Zpk): its cardinal number is studied, for example, in Kempner
(1921), Keller and Olson (1968), Muller and Eigenthaler (1979) and Nobauer
(1974); the first explicit descriptions can be found in Kempner (1921).

We give the following descriptions, taken from So (1977). The basic idea is the
following: Find in Zn[;c] the polynomials of lowest degree (normed and not
normed) which induce the zero function in P(ZJ. The remaining polynomials of
smaller degree can be shown to yield exactly all different elements of P(Zn).

This gives a possibility to describe their number as well as to characterize
P(Zn) in several cases. One more remark: if n is the product of distinct primes
then P(ZJ = C(ZJ by 2.1 (for instance).

3.1 EXAMPLES. Let p> 2 be a prime.
P(Zp2) = {feC(ZJ/f(kp+c) = kf(p+c)-(k-lMc) for ke{2, ...,p-l}

and ce{0,...,/» —1}}.
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= {/eC(Zp3)/for all ke{3,4,...,p2-l} and all ce{0, ...,p-l} there
are a, b, de Zp3 withp2f(p+c) =p2f{c) APf(2p+c)=p(2f(p+c)-f(c))

)= af{{k- l)p+c)+bMk-2)p+c)+df(c)}.

3.2 COROLLARY (SO (1977) and Nobauer (1976)). For/>>2,

|P(Zp) | = p", | P(Zp2) | =

As usual, p =2 causes some trouble.

3.3 EXAMPLES.

4) = C(Z4) = {/: x^ao+aix+a2x
2+a3x

3jao,a1eZ4Aa2,a3e{0,1}}
= {/: x-*ao+al x+a\2 x

2+a3 x3/a0, ax e Z8 A a2, a3 e {0,1,2,3}} |
= {/e C(Z8)//(4) = 2/(2) - / ( 0 ) A / ( 5 ) = 2/(3) - / ( I )

A / ( 6 ) =/(3)+/(4)- / (0) A / ( 7 ) = 6/(l)+3/(3)}
# C(Z8)

3.4 REMARK. The recursion formula given in Keller and Olson (1968) is
=/<*> lAZ^-O | for k ^ 2, where j8(A:) is the smallest teN with pk/tl

4. R-subgroups

4.1 DEHNITION. A subgroup S of (/?[x], +) or of (PCR), +) is called an R-
subgroup if r.seS for all reR and se5 .

The importance of /?-subgroups stems from:

4.2 REMARK. If # is the near-ring i?[x] or P(R) then every left ideal, ideal, N-
or A^o-subgroup of N is an /?-subgroup. This is true because of rx ° s = r. s for all
reR and s in a (left) ideal or A^-subgroup S.

Hence /{-subgroups are common generalizations of left ideals and AVsubgroups
in polynomial near-rings.

4.3 EXAMPLES.

(a) For /<j R, let / = {ao+al x+...+anx
neR[x~]/akeIfor all k > 1}. Then / is

an i?-subgroup of R[x], but no left ideal.
(b) Let te R be such that |R/I\ = 2 , and aeR\I. Then
{p e R[x]lp O a -p ° 0 e /}

is a maximal left ideal, maximal right ideal, maximal /{-subgroup and a maximal
ideal of R[x], but in general not a ring ideal.
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4.4 THEOREM. Let R — @ «=/ ^,- Then every R-subgroup S of R[_x\ or P(R) is (in
the group-theoretical sense) the direct sum of Rrsubgroups of Rt[x] (/>(/?,)),
respectively).

The proof is accomplished by using the fact that both R[x] and P(R) are near-
rings with identity.

4.5 COROLLARY. In the situation as in 4.4, S is maximal if and only ifS is of the
form S = Sl®®j*lRj[x] (or S = Si®®j^iP(Rj)), where Sf is a maximal Rr

subgroup in Ri\_x~] (P(R^), respectively).

4.6 REMARK. The last two results remain true if "/^-subgroup" is changed
into "/f0[x]-subgroup" (/^(/Q-subgroup, respectively) or into "left ideal". Here,
Ro [JC] and P0(R) denote the zero-symmetric parts of R[x2 and P(R), respectively.

5. Radicals of polynomial near-rings

Again, we adopt the notations and results of Pilz (1977). Since /?[*] has an
identity, 3 i ( ^ M ) = 32(^W)- We get an upper bound for these radicals:

5.1 THEOREM. %2(R W ) £ (3(-R) : ^)> where %(R) is the Jacobson radical of R.

PROOF. Let M be a maximal ideal of R. It is shown in So (1977) that for each
aeR, (M : a) is a maximal left ideal and a maximal i?0[x]-subgroup of R[x].
Since (R[_xJ) is the intersection of all maximal left ideals of /?[x] which are at
the same time maximal i?o[x]-subgroups, we get that

3:(«Ms fl n(M:a) = n n (M:a) = (3(R):R).
M max asR aeR M max

5.2 COROLLARY. IfR is a semisimple ring of characteristic 0 then 32CRM)== M -
This holds since in this case (3(R) : R) = ({0} : R) = {0}.

5.3 COROLLARY. If R is an infinite field then R[_x~\ is 2-semisimple.

5.4 PROPOSITION. Let R be a finite field of order >2. Then 3 2 ( ^M) = ({0} : R).

PROOF. Since 3(1?) = {0} we get 32(/?[x]) s ({0} : R) by 5.1. Conversely, the
radical SC^MX as defined in Clay and Doi (1973), is there shown to be
=({0} : R); one easily sees that 3 ( ^ W ) £ 32(^W)- Hence

5.5 THEOREM. Let R be afield with char R^2. Then %(R\.xJ) = {0}.
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PROOF. By 7.94 of Pilz (1977), the left ideals of/f[x] are under these assumptions
just the ring-ideals; the maximal ones are those (ring-)ideals which are generated
by irreducible polynomials. But their intersection is zero.

To handle the case of characteristic 2 to some extent, we have to consider when
R0[x] happens to be a ring.

5.6 THEOREM. Let R be a ring {not necessarily commutative with identity).
(a) If R has an identity then: R0[.x] is a ring=>P0{R) is a ringoR is Boolean.
(b) If R is simple then: R0[x] >s a nnQ^PoiK) 's a ringoR = Z2 v R is a zero

ring.

PROOF. Let R be arbitrary and R0{_x] a ring; then P0(R) is a ring. Let idR = /,
i2 =i.i, and so on.

(1) i2 o(I+J) = /2o/+/2o/ implies i2+i2 = 0, hence for all reR,

0 = ( /2+/2)(r)=r2+r2 .

(2) For all reR,i2° (i+ri) == i2 o /+ i2 o (ri); so i2 + iri+ri2+riri = i2 + riri. As in
(1) we get (sr+rs)s = 0 for all s, reR.

(3) For all tsR, i2°(i+it) = i2 °i+i2 ° it implies that r(rt+tr) = 0 for r, teR.
(4) By (3) and (2) we get a2 b = ba2 {a, b e R).
(5) From that and (2) one deduces that for all a, b e R,

(a+b)3=a3+a2b+ab2+b3.
(6) Now

= (a3+a2b+ab2+b3)(a+b)

= a4+a2 ba+ab2 a+b3a+a3 b+a2 b2+ab3+bA

= aA+a3b+a3b+a2b2+a2b2+ab3+ab3+b*

by(iH3).
(7) Since /3°(/+i2) = /3o/+j3o/2 we get for aeR: (a+a2)3 =a3+(a2)3 . By

using (5) we arrive at a4 = a5 =a8 for all aeR.
(8) Since a*+b4 = (a+Z))4 =(a+6)5 =(a+b)4(a+b) =a*+b*a+a4b+b4- we

get for all a, b e R: a4 b = ab4.
(9) Now suppose that R contains an identity. Then by (8) with b = 1 we see

that for all aeR: a4 = a, hence a2 = (a4)2 = a8 = a, and R is shown to be
Boolean.

(10) Conversely, if R is Boolean, then it remains to show that P0(R) fulfils the
left distributive law. Since a Boolean ring is a commutative ring with identity, we

https://doi.org/10.1017/S1446788700020930 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700020930


68 Giinter Pilz and Yong-Sian So [8]

can use the usual normal form for polynomials. Consider

and

Now for all reR:

(11) Suppose now that /? is simple. Take some aeR. We show that Ra2 is an
ideal of R. Of course, it is a left ideal. Now take beR, and some ra2eRa2. Then
(ra2)b=r(a2b)=rba2eRa2. If /to2 / {0} then by the simplicity of R, Ra2 =R.
Hence there is some

eeR: ea2 =a2.
But then for all

c = da2eR: ec = eda2 = ea2d = a2d = da2 = c

and similarly ce = c. Hence R has an identity and R must be Boolean by (9).
But a simple Boolean ring is isomorphic to Z2.

(12) Now suppose that R is simple, but Ra2 = {0} for all aeR. Since

A(R) :={xeR/Rx = {0}}<! R,

either A(R) = R (whence R2 = {0} and R is a zero ring) or A(R) = {0}. Assume
that A(R) = {0}. Since all a2eA(R), a2 = 0 for all aei?. Also,

so for all a, beR: ab+ba = 0. But then all Ra are ideals of/? as can be seen as in
(11). Since R2 # {0}, there is some aoeR with Ra0 # {0}, hence Ra0 =R. Again
we can deduce the existence of an identity, a contradiction to a2 = 0 for each aeR.

(13) Conversely, if R is either a zero ring or if R = Z2 then P0(R) is easily shown
to be a ring.

5.7 REMARK. Even if R = Z2, S0[x] is not a ring:

x3 o (x+x2) =x3oX+x3° x2

would result in the impossible equation x*+x5 =0 .
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5.8 COROLLARY. Let R be a ring with identity. P(R) is an abstract affine near-
ring if and only ifR is a Boolean ring. This follows from a quick inspection of part (10)
of the last proof: zero symmetric polynomial functions distribute even over all other
polynomial functions.

5.9 COROLLARY. Let R be a Boolean ring. Then

where 3(PC(R)) is the "Jacobson-radical" of the P0(R)-module PC(R) (which is
isomorphic to R itself), namely the intersection of all maximal submodules.

PROOF. This result follows immediately from 5.8 and Theorem 9.77 of Pilz
(1977).

We close our considerations by a result which can be deduced from 4.5 and 4.6
as is done for 3 2 in Pilz (1977).

5.10 THEOREM (SO (1977). Let R s © ieI R(. Then for all

v e {0, i , 1,2}: 3v(* W ) = ® 3V(K,- W )

and

iel

5.11 COROLLARY (SO (1977)). Let n e N be a product of distinct primes. Then

This follows from 5.10 and the fact that for prime p

32(P(Zp))=32(M(Zp)) = {0}

(Pilz (1977)).

The authors thank the "Osterreichische Forschungsfonds" (Projekt Nr. 3479)
for highly appreciated assistance.
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