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We investigate the Reynolds analogy over riblets, namely the analogy between the
fractional increase in Stanton number Ch and the fractional increase in the skin-friction
coefficient Cf , relative to a smooth surface. We investigate the direct numerical simulation
data of Endrikat et al. (Flow Turbul. Combust., vol. 107, 2021, pp. 1–29). The riblet groove
shapes are isosceles triangles with tip angles α = 30◦, 60◦, 90◦, a trapezoid, a rectangle
and a right triangle. The viscous-scaled riblet spacing varies between s+ ≈ 10 to 60.
The global Reynolds analogy is primarily influenced by Kelvin–Helmholtz rollers and
secondary flows. Kelvin–Helmholtz rollers locally break the Reynolds analogy favourably,
i.e. cause a locally larger fractional increase in Ch than in Cf . These rollers induce negative
wall shear stress patches which have no analogue in wall heat fluxes. Secondary flows at the
riblets’ crests are associated with local unfavourable breaking of the Reynolds analogy, i.e.
locally larger fractional increase in Cf than in Ch. Only the triangular riblets with α = 30◦
trigger strong Kelvin–Helmholtz rollers without appreciable secondary flows. This riblet
shape globally preserves the Reynolds analogy from s+ = 21 to 33. However, the other
riblet shapes have weak or non-existent Kelvin–Helmholtz rollers, yet persistent secondary
flows. These riblet shapes behave similarly to rough surfaces. They unfavourably break the
global Reynolds analogy, and do so to a greater extent as s+ increases.
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1. Introduction

Heat-transfer augmentation, i.e. increasing cooling efficiency (Bunker 2013, 2017)
dictates the performance of many industrial devices. For example, the output power
of a high-speed electric generator depends on its rotational speed, which, in turn, is
limited by the cooling efficiency of its components (Bartolo et al. 2013). To date,
active cooling such as impingement jets is the only means of achieving efficient
heat-transfer augmentation (Bunker 2013, 2017). However, passive cooling has not yet
been conclusively shown to augment heat transfer with a higher efficiency than a smooth
surface.

To characterise the heat-transfer efficiency of a target surface relative to the smooth
surface, we first calculate its skin-friction coefficient Cf and Stanton number Ch and then,
following Bunker (2013), we plot the ratio Ch/Chs versus Cf /Cfs (figure 1), where Ch, Cf
and Chs, Cfs correspond to the target surface and smooth surface, respectively (see also
Bons 2002; Ligrani, Oliveira & Blaskovich 2003; Forooghi, Stripf & Frohnapfel 2018).
Note that we match Reynolds numbers between the flow over the target and smooth
surfaces. For instance, Walsh & Weinstein (1979) and Choi & Orchard (1997) study heat
transfer in a turbulent boundary layer over riblet and smooth surfaces, and they match
Reynolds numbers based on the free stream velocity and the distance downstream of
the inlet section. Stalio & Nobile (2003) and Jin & Herwig (2014) study heat transfer
in a turbulent channel flow over riblet and smooth surfaces, and they match Reynolds
numbers based on the bulk velocity and channel height. If Ch/Chs > Cf /Cfs (above the
dashed line in figure 1), the target surface has a higher heat-transfer efficiency than the
smooth surface. Otherwise, the target surface has a heat-transfer efficiency equal to the
smooth surface, Ch/Chs = Cf /Cfs (on the dashed line in figure 1), or lower than the
smooth surface, Ch/Chs < Cf /Cfs (below the dashed line in figure 1). The dashed line
is called the Reynolds analogy line, as a target surface falling onto this line preserves
the Reynolds analogy with fractional increases matching those of the reference smooth
surface. In this paper, we classify any technique or surface that is located above the
dashed line as favourable, and any technique or surface located below the dashed line as
unfavourable. There are also other indicators to characterise the heat-transfer performance,
e.g. Ch/Chs versus (Cf /Cfs)

1/3 (Webb & Eckert 1972; Lewis 1975; Karwa, Sharma &
Karwa 2013). This indicator, denoting performance at matched pumping power, is used
to evaluate rib turbulators, pin fins, swirl chambers or multitube heat exchangers (Karwa
et al. 2013; Ligrani 2013). When the performances of different surfaces are compared with
each other, the indicator based on Ch/Chs versus Cf /Cfs (Reynolds analogy) and the one
based on Ch/Chs versus (Cf /Cfs)

1/3 show similar trends (Ligrani 2013). In other words, the
best (worst) performing surface designs remain the best (worst) regardless of the chosen
indicator. For performance evaluation of riblets (our focus in the present study), previous
works have used the Reynolds analogy (Walsh & Weinstein 1979; Stalio & Nobile 2003).
Therefore, in the present study we use the Reynolds analogy to evaluate the heat-transfer
performance.

A series of numerical studies (Hasegawa & Kasagi 2011; Yamamoto et al. 2013; Motoki,
Kawahara & Shimizu 2018; Kaithakkal, Kametani & Hasegawa 2020, 2021) consider
the Reynolds analogy as the analogy between Cf and Ch for the target surface. These
studies set Prandtl number Pr = 1.0, and enforce identical boundary conditions between
the velocity and temperature. In this situation, the Reynolds analogy is naturally satisfied
between Cfs and Chs for the smooth surface. Here, however, we follow the definition of
the Reynolds analogy based on the fractional changes in Cf and Ch relative to the smooth
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Figure 1. Reynolds analogy plot (Bunker 2013) for various active and passive cooling techniques. Except wall
blowing/suction (grey region with green boundary, Pr = 1.0), the other data-points consider air (Pr ≈ 0.7).
The dashed line is the Reynolds analogy line (Ch/Chs = Cf /Cfs ), dividing the Reynolds analogy plot into
favourable (upper half) and unfavourable (lower half) regions. The highlighted grey regions are three active
cooling techniques: impingement jets (Bunker 2013); near-wall cooling (Liang 2014); and wall blowing/suction
(Hasegawa & Kasagi 2011; Yamamoto, Hasegawa & Kasagi 2013). The markers are passive cooling studies
on conventional roughness and riblets (table 1). All the passive cooling studies and their markers are listed in
the chart above the figure. For each study, we indicate what technique is used: laboratory experiment; direct
numerical simulation (DNS); or Reynolds-averaged Navier–Stokes (RANS). Note that the two sets of RANS
data by Benhalilou & Kasagi (1999) (filled magenta and blue diamonds) consider the same riblet geometry but
different RANS models (table 1). Panels (b,c) magnify (a) within the dotted frame and only show riblets data,
with (b) showing DNS and experiments and (c) showing RANS data. In (a), for the roughness studies (filled
squares) we show their trend as their equivalent sand-grain roughness k+

s increases.
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surface (Cf /Cfs = Ch/Chs). This definition is widely used by the studies over roughness
and riblets (figure 1 and table 1) and various cooling devices (Webb & Eckert 1972;
Lewis 1975; Karwa et al. 2013). This definition is of interest to the industry (Belnap,
Van Rij & Ligrani 2002; Bunker 2013, 2017) as it evaluates the performance of the
target surface relative to the smooth surface. To follow this definition, each velocity and
thermal condition needs to be matched between the target surface and the smooth surface.
The matching conditions include the velocity and thermal boundary conditions, Prandtl
number and Reynolds number. However, over the target surface, velocity and thermal
conditions can be different from each other, and Pr can be different from unity, provided
that each of these conditions is matched between the smooth surface and the target
surface.

In figure 1, we compile the heat-transfer efficiency of three active-cooling techniques
in addition to several surface types. The active techniques are impingement jets
(Bunker 2013), near-wall cooling (Liang 2014) and wall blowing/suction (Hasegawa &
Kasagi 2011; Yamamoto et al. 2013). These techniques are, for example, applied in
turbomachinery. The surfaces are either roughness or riblets with different shapes and
sizes (table 1). To facilitate clearer inspection, figure 1(a) collects all the data points,
and figure 1(b,c) only show the riblet cases by narrowing the plotting range to 0.7 <

Cf /Cfs, Ch/Chs < 1.5. Except wall blowing/suction (with Prandtl number Pr = 1.0), the
other data-points consider Pr ≈ 0.7, corresponding to air. Note that for different studies
that consider the same surface shapes and sizes (in inner wall units), the results still depend
on (1) the flow configuration (e.g. boundary layer or channel flow), (2) the definition of
Cf and Ch (e.g. based on bulk or free stream quantities), and (3) the definition of the
outer Reynolds number for matching between the target and smooth surfaces (e.g. bulk or
free stream Reynolds number). Even if (1)–(3) are made consistent, the results mildly
depend on (4) the value of the outer Reynolds number (Forooghi et al. 2018; Aupoix
2015).

Figure 1(a) shows that the impingement jets and wall blowing/suction, as active coolers,
perform favourably. However, considering all the surfaces, only some riblet cases (green
bullets, red bullets, blue filled diamonds, figure 1b,c) perform favourably. The rest perform
unfavourably. All the conventional rough surfaces (black, blue and magenta filled squares)
perform unfavourably. Their unfavourable performance is exacerbated as the roughness
Reynolds number k+

s increases (ks is the equivalent sand-grain roughness). We conjecture
that any other conventional rough surface behaves similarly. For a conventional rough
surface, Cf is comprised of viscous drag and pressure drag, while Ch is only comprised of
wall heat-flux. Wall heat-flux is a thermal analogue of viscous drag (Dipprey & Sabersky
1963; Owen & Thomson 1963). However, pressure drag does not have any thermal
analogue. Therefore, loosely speaking, Cf compared with Ch has an additional positive
component (pressure drag). This leads to Cf /Cfs > Ch/Chs for most rough surfaces.
Porous media, similar to rough surfaces, suffer from pressure drag (Kaviany 1985; Huang
et al. 2005; Chu et al. 2019). Therefore, the study of Chu et al. (2019) in a porous medium
reveals a larger increase in Cf than in Ch. From these studies we conclude that to improve
the cooling efficiency of rough surfaces (decrease Cf /Cfs relative to Ch/Chs) we need to
minimise the pressure drag. Another possible approach would be to break the analogy
between the viscous drag and wall heat-flux.

Riblets do not suffer from pressure drag which motivated previous investigations on
the potential of riblets for efficient heat transfer. The experimental cases (green and red
bullets) by Walsh & Weinstein (1979) and Choi & Orchard (1997), are encouraging,
suggesting the favourable performance of riblets (figure 1b). The computational case (blue
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Riblet-generated mechanisms that break the Reynolds analogy

Passive surface Approach Set-up Surface

Roughness k+
s

egg-carton

MacDonald, Hutchins & Chung (2019) DNS channel 40–400

spheres

Healzer, Moffat & Kays (1974) experiment BL 20–200

granular

Dipprey & Sabersky (1963) experiment pipe 3–600

Riblets s+ α

Walsh & Weinstein (1979) experiment BL 25–50 27.5◦

Choi & Orchard (1997) experiment BL 13 53◦

Stalio & Nobile (2003) DNS channel 20, 40 45◦

DNS channel 20, 40 60◦

Jin & Herwig (2014) DNS channel 9–22 —

DNS channel 16 —

DNS channel 16 30◦, 60◦

Benhalilou & Kasagi (1999) RANS channel 10–40 90◦

Myong et al. (1989)

Benhalilou & Kasagi (1999) RANS channel 10–40 90◦

Launder (1988)

Table 1. Previous heat-transfer studies on various surfaces (figure 1), using experimental, DNS or RANS
approach. The flow configurations are either boundary layer (BL), channel flow or pipe. The first three studies
are over conventional roughness and the rest are over riblets. For the roughness studies, k+

s is the roughness
Reynolds number based on equivalent sand-grain roughness. For the riblets studies, s+ is the riblet spacing in
wall units and α is the riblet tip angle. The last two sets of RANS studies are identical, except for the different
turbulent scalar flux models (Launder 1988; Myong, Kasagi & Hirata 1989).

filled diamonds) by Benhalilou & Kasagi (1999) also suggests favourable performance
(figure 1c). However, for this case RANS modelling was employed. The same case with
a different RANS model (magenta filled diamonds) suggests unfavourable performance
(figure 1c). Therefore, the RANS studies remain inconclusive. The computational studies
are sensitive to the turbulence model (e.g. RANS model) and boundary conditions.
Direct numerical simulation is a favourable computational approach since there are no
modelling assumptions. Yet unlike for velocity, the boundary condition for temperature
is a source of uncertainty. The compiled DNS cases in figure 1 and table 1 (green and
red filled circles, green, red and blue filled triangles), consider no-slip and impermeable
conditions at the riblet surface, with an assigned mean wall heat-flux following Kasagi,
Tomita & Kuroda (1992). Considering figure 1(b), all the DNS cases perform as well
as a smooth surface at best. The DNS case (red filled circles) by Jin & Herwig (2014)
has similar geometrical properties to the experimental case (red bullet) by Choi &
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Orchard (1997). They both consider triangular riblets with similar tip angles 53◦, 60◦.
However, the DNS suggests unfavourable performance, while the experiment suggests
favourable performance. Choi & Orchard (1997) noted that the experiments may be
affected by thermal radiation or unequal developments of velocity and thermal boundary
layers.

The riblet studies in figure 1 and table 1 mostly investigate the global Reynolds analogy
behaviour. The global Reynolds analogy is based on the integrated Cf and Ch over time
and the entire surface. In the present study, we follow a local approach and analyse the
flow physics in depth. We attempt to relate the local flow physics to the global Reynolds
analogy behaviour. Specifically, we identify what flow physics contribute to the favourable
breaking of the Reynolds analogy at a local level, and what flow physics contribute
to its unfavourable breaking. Our second objective is to understand what geometrical
characteristics of the riblets trigger the favourable or unfavourable flow physics. By
pursuing these objectives, we can partially explain the scatter of the Reynolds analogy
behaviour by different riblet shapes (figure 1b). We can also provide insight for the
future riblet designs that aim to enhance the favourable flow events while attenuating
the unfavourable ones, hence increasing the heat-transfer efficiency. For these aims, we
employ DNS to ensure that the results are free from modelling errors. Also, DNS provides
a high-fidelity dataset that allows us to study the underlying physical mechanism in detail.
We investigate 20 riblet cases (table 2) by systematically changing their shape, the angle
α and size (s+, k+). Our shape choices are broadly similar to the previous riblet studies
in table 1 and to other studies on the fluid dynamics of riblets (Luchini, Manzo & Pozzi
1991; García-Mayoral & Jiménez 2011b, 2012). In particular, the fluid dynamics of these
geometries have been investigated in Endrikat et al. (2021a,b) and Modesti et al. (2021).
Here, we extend this investigation by focusing on heat transport and its (Reynolds) analogy
with momentum transport.

2. Flow set-up

2.1. Direct numerical simulation
We solve the governing equations for an incompressible fluid with constant density ρ,
kinematic viscosity ν and thermal diffusivity κ:

∇ · u = 0, (2.1)

∂u
∂t

+ ∇ · (uu) = − 1
ρ

∇p′ + ν∇2u − 1
ρ

dP
dx

êx, (2.2)

∂θ

∂t
+ ∇ · (uθ) = κ∇2θ − u

dTw

dx
, (2.3)

where (2.1), (2.2) and (2.3) are continuity, and the velocity and scalar transport equations,
respectively. Here, we ignore buoyancy, as appropriate for forced convection. All the
riblet studies in table 1 and figure 1 consider air with Pr = 0.7 as the working fluid.
We adhere to that convention here in order to facilitate comparison of our simulations
with the literature. In the equations above, u = (u, v, w) is the velocity vector, and x, y
and z are the streamwise, spanwise and wall-normal directions, respectively. The global
momentum balance for a fully developed channel flow requires the flow to be driven
by a uniform pressure gradient dP/dx. Therefore, in (2.2) the total pressure gradient
has been decomposed into the driving (mean) part dP/dx and the periodic (fluctuating)
part ∇p′. For the temperature field (2.3), we apply the thermal boundary condition by
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Kasagi et al. (1992), which imposes a prescribed mean heat flux at the wall. This condition
represents a thermally fully developed flow in a periodic channel flow. In this approach,
the total temperature T = (dTw/dx)x + θ is expressed based on the mean part dTw/dx and
the periodic (fluctuating) part θ . We substitute this expression for T in the temperature
transport equation ∂T/∂t + ∇ · (uT) = κ∇2T to obtain (2.3). In fact, the source term
u dTw/dx is part of ∂(uT)/∂x, the streamwise advection term. Note that for the present
straight and unyawed riblets, the surface-normal gradient of total temperature (to compute
the wall heat flux) is equal to the surface-normal gradient of θ . Our present thermal
boundary condition is also employed by the DNS studies on riblets by Stalio & Nobile
(2003) and Jin & Herwig (2014) reported in table 1 and figure 1. This makes our present
results comparable with the previous DNS studies. To our knowledge, this is the most
suitable boundary condition for a periodic domain to mimic a realistic thermally fully
developed channel flow. Indeed, Kasagi et al. (1992) and Watanabe & Takahashi (2002)
show good agreement between their numerical set-up with this boundary condition and
the experimental data.

As discussed in § 1, Reynolds analogy based on Cf /Cfs = Ch/Chs does not require
identical velocity and thermal boundary conditions, and Pr can be different from unity.
However, each of these conditions need to be matched between the flow over the riblet
surface and the flow over the smooth surface. We follow this approach here. In the studies
that consider the Reynolds analogy as the analogy between Cf and Ch (Hasegawa & Kasagi
2011; Yamamoto et al. 2013), they set Pr = 1 and enforce identical velocity and thermal
boundary conditions. They use a uniform heat source in (2.3), instead of −u dTw/dx,
with isothermal wall condition. The heat source is equal or proportional to −dP/dx.
However, it is not trivial to generate uniform heat source in practice. Nevertheless, we
conjecture that the choice of thermal boundary condition (our approach in (2.3) or uniform
heat source) has negligible effect on the thermal field inside the riblet groove. In the
Appendix, we analyse the velocity and temperature transport terms. We observe that the
source terms −dP/dx and −u dTw/dx have negligible contribution inside the riblet groove.
Further, Abe & Antonia (2017) compare the thermal boundary condition in (2.3) with the
uniform heat source approach for turbulent channel flow with heat transfer. They observe
close agreement between the two approaches in various quantities, including the mean
temperature profiles up to the logarithmic region, the bulk temperature and the mean
thermal dissipation.

We consider open channel flow (figure 2a), with periodic boundary conditions in the
streamwise and spanwise directions. The streamwise and spanwise domain sizes are Lx
and Ly, respectively. The channel mean height h is measured from the top boundary down
to the riblet mean height, i.e. h ≡ Ac/Ly, where Ac is the fluid cross-sectional area (shaded
in green in figure 2a). The boundary conditions for the velocity at the bottom wall are
no-slip and impermeable (u = v = w = 0), and at the top boundary are free-slip and
impermeable (∂u/∂z = ∂v/∂z = w = 0). The boundary conditions for θ at the bottom
wall and top boundary are θ = 0 and ∂θ/∂z = 0, respectively. In other words, at the bottom
wall the total temperature increases linearly in the x-direction, T = (dTw/dx)x, and the
top boundary is adiabatic (∂T/∂z = 0). We drive the flow and the thermal convection by
assigning dP/dx and dTw/dx in (2.2) and (2.3), respectively. If we average (2.2) and (2.3)
over time and the entire fluid domain, we obtain

− 1
ρ

dP
dx

h = 1
ρ

Fu

At
= 〈τw〉

ρ
≡ u2

τ , −Ub
dTw

dx
h = (Qw/At)

ρcp
= 〈qw〉

ρcp
≡ θτ uτ , (2.4a,b)
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Figure 2. Schematic representation of the simulation domain for the blade riblets (a), where Lx and Ly are the
streamwise and spanwise domain sizes, At is the total plan area (purple), Ac is the fluid cross-sectional area
(green), δFu is the differential viscous drag, δQw is the differential wall heat flux and δAw is the differential
wetted area. The domain mean height h ≡ Ac/Ly spans from the top boundary to the riblet mean height zm.
(b–e) Cross-sectional grid for a sample of each of the four riblet geometries (table 2), where the coordinates are
presented in viscous wall units. (b) Triangular T950, (c) trapezoidal TA50, (d) blade BL49 and (e) asymmetric
AT50 riblets.

where Fu is the wall drag, At is the total planar area, 〈τw〉 is the average wall shear stress,
uτ is the friction velocity, Ub is the bulk velocity, Qw is the wall heat transfer, 〈qw〉 is the
average wall heat flux and θτ is the friction temperature; see figure 2(a) for the schematic
representation of these wall fluxes and areas. Considering (2.4a,b) for a given fluid and
domain (i.e. fixed ρ, ν, κ, cp, h), we assign dP/dx based on a desired uτ , targeting a desired
Reτ ≡ uτ h/ν. Equations (2.1)–(2.3) are solved using the incompressible unstructured
second-order accurate finite-volume solver Cliff by Cascade Technologies Inc. (Ham,
Mattsson & Iaccarino 2006). The equations are integrated in time using a fractional-step
algorithm.

We consider four families of riblet shapes: triangular (figure 2b); trapezoidal (figure 2c);
blade (figure 2d); and asymmetric (figure 2e) riblets. We report the simulation parameters
for all the cases in table 2. The fluid dynamics of these cases is studied by Endrikat
et al. (2021a,b) and Modesti et al. (2021). For triangular riblets we consider three tip
angles α = 30◦, 60◦, 90◦, for trapezoidal riblets we consider α = 30◦ with k/s = 0.5
and for asymmetric riblets we consider α = 63.4◦ (k/s = 0.5). For the blade riblets, the
riblet spacing to the thickness ratio is fixed at s/t = 5.0 with k/s = 0.5. The name of
each case consists of one or two letters followed by a number. The letters indicate the
riblet geometry: triangular (T); trapezoidal (TA); asymmetric (AT); and blade (BL). The
number consists of two digits for all cases, except the triangular riblets (three digits). The
two-digit numbers indicate the riblet spacing in wall units s+ (e.g. TA63 has s+ = 63). The
three-digit numbers for the triangular riblets indicate α (the first digit is α/10) and s+ (the
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two remaining digits). For example, T321 has α = 30◦ and s+ = 21. For T950 (triangular
riblet with α = 90◦ and s+ = 50), we include four additional cases from Endrikat et al.
(2021b) to validate the domain size and the grid. Here T950W (L+

y = 450) and T950N
(L+

y = 150) have wider and narrower spanwise domain sizes, respectively, compared with
T950 (L+

y = 250). Here T950NC (Δ+
x = 8.0, 0.46 ≤ Δ+

y ≤ 8.1) and T950NVC (Δ+
x =

11.9, 0.65 ≤ Δ+
y ≤ 8.9) have one level and two levels coarser grid sizes, respectively,

compared with T950N (Δ+
x = 6.0, 0.3 ≤ Δ+

y ≤ 7.1). All the cases are at Reτ = 395,
except T333 where Reτ = 1000 (triangular riblet with α = 30◦ and s+ = 33). We also
perform two reference smooth-wall simulations at Reτ = 395 (S395) and Reτ = 1000
(S1000) to compute the ratios Ch/Chs and Cf /Cfs . The naming of these cases is consistent
with Endrikat et al. (2021a,b) and Modesti et al. (2021). Our choice of Reτ ensures that the
near-wall flow is fully turbulent. MacDonald et al. (2019) study the Reynolds number effect
in turbulent forced convection over rough surfaces (their § 3.2). They compare Reτ = 395
with Reτ = 590 in terms of the roughness function 
U+ and the temperature difference

Θ+. The difference in 
U+ and 
Θ+ between the two Reynolds numbers is 0.08 and
0.1, respectively.

We perform DNS in a so-called minimal open-channel configuration. In this approach,
the domain size Lx × Ly is made smaller than the standard full-domain size for channel
flow (2πh × πh, Lozano-Durán & Jiménez (2014)). As a result, the computational
cost will be reduced (Chung et al. 2015). This technique was initially proposed to
study the near-wall turbulence in smooth-wall channel flow (Jiménez & Moin 1991;
Flores & Jiménez 2010; Hwang 2013). Later, Chung et al. (2015) and MacDonald
et al. (2017) adopted this technique to study rough-wall channel flow, demonstrating its
accuracy to compute the roughness function 
U+. MacDonald et al. (2019) extended
the minimal-channel application to turbulent forced convection over rough surfaces, and
accurately computed the temperature difference 
Θ+.

We show the computational grid for each geometry in figure 2(b–e). The grid points
are clustered at the riblet tips and stretched with a hyperbolic-tangent distribution towards
the top boundary. For the asymmetric riblets (figure 2e), we perform mesh refinement
in the spanwise and wall-normal directions using the adaptive mesh refinement tool
Adapt (Cascade Technologies Inc.). In this tool, we specify a set of maximum spacings
Δ+

ym
, Δ+

zm
for a set of heights. The tool creates different mesh zones based on the selected

heights and iteratively subdivides the computational cells to meet the target spacings.
Specifically, we set Δ+

ym
= {1.5, 3, 4, 5} and Δ+

zm
= {0.9, 2, 4, 6} for the selected heights of

z+ − z+
t � {16, 40, 80} and above, respectively (zt is the z-coordinate of the riblet tip). We

report the grid resolutions in table 2. For the production cases, the number of grid points
per riblet spacing (ns ≥ 27) is similar to the previous DNS studies on riblets (ns ≥ 24
in Goldstein, Handler & Sirovich (1995), Goldstein & Tuan (1998) and García-Mayoral &
Jiménez (2011b)). Also, the grid spacing in the streamwise and spanwise directions (Δ+

x ≤
6.5, Δ+

y ≤ 7.1) is similar to the previous DNS studies on riblets (Δ+
x ≤ 9, Δ+

y ≤ 4 in
García-Mayoral & Jiménez (2011b) and García-Mayoral & Jiménez (2012)) and roughness
(Δ+

x ≤ 6, Δ+
y ≤ 6 in MacDonald et al. (2019) and Chan et al. (2015)). Nevertheless, a

grid-convergence study for the triangular riblet with α = 90◦ and s+ = 50 (T950) was
performed by running one level finer and two levels coarser grids (figure 2 in Endrikat et al.
(2021b)). The reported grid for T950 in table 2 with ns = 33, Δ+

x = 6.0 and Δ+
y ≤ 7.1

reaches grid convergence in the mean velocity, turbulent stresses and energy spectra.
The same grid yields grid convergence in Cf /Cfs, Ch/Chs and heat transfer efficiency
η ≡ (Ch/Chs)/(Cf /Cfs). We conclude this by comparing T950N (same grid resolution
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Riblet-generated mechanisms that break the Reynolds analogy

as T950) with T950NC (one level coarser grid resolution than T950) and T950NVC (two
levels coarser grid resolution than T950). The difference between T950N and T950NC
in terms of Cf /Cfs, Ch/Chs and η is 0.2 %, 0.1 % and 0.1 %, respectively. Other cases
reported in table 2 have similar or finer resolution than T950.

Over riblets, wide Kelvin–Helmholtz (KH) rollers emerge (García-Mayoral & Jiménez
2012). Endrikat et al. (2021b) demonstrated the suitability of minimal channels for riblets,
in particular for the present cases in table 2. They performed domain-independence
studies for cases T950 and T321, the former without KH rollers and the latter with the
rollers. Endrikat et al. (2021b) also compared the blade riblet cases BL20 and BL33,
computed using minimal channel, with closely matched blade riblet cases 13L and 20L by
García-Mayoral & Jiménez (2012), computed using full-domain simulations. Consistent
with the previous minimal channel studies (Chung et al. 2015; MacDonald et al. 2017),
with L+

y = 250 and L+
x = 1027 at Reτ � 395 and k+ � 40, the mean velocity is accurately

predicted up to z+
c � 0.4L+

y = 100 (figure 4 in Endrikat et al. (2021b)). Also, with this
domain size, turbulence remains unaffected (by the domain size) up to 30 wall units above
the riblet crest (§ 3.2 in Endrikat et al. (2021b)). Therefore, we choose L+

y � 250 and L+
x �

1027 at Reτ = 395, and L+
y � 600 and L+

x = 2000 at Reτ = 1000. With these choices,
we resolve the flow field up to z+

c � 100 (Reτ = 395) and z+
c � 240 (Reτ = 1000). In

§ 2.3, we perform domain size study for the velocity and temperature by considering the
grid converged case T950 with different domain sizes: T950 (L+

y = 250) and T950W
(L+

y = 450).
The simulations were run for sufficient flow-through times to obtain statistical

uncertainties in 
U+ and 
Θ+ of ±0.1 or less (table 1 in Endrikat et al. (2021b)).
For minimal channels, the required averaging time to obtain a desired level of statistical
uncertainty is derived by MacDonald et al. (2017) (see § 4). We further checked statistical
convergence following Vinuesa et al. (2016) to ensure that the plane and time averaged
total stress above the riblet tips is close to linear (§ 2.4 in Endrikat et al. (2021b)).

2.2. Virtual origin
We need the virtual origin d to compute 
U+ (U+

s − U+
r , where subscripts r and s refer

to the riblet and smooth cases, respectively) and the temperature difference 
Θ+ (Θ+
s −

Θ+
r ). We use 
U+ and 
Θ+ to compute Cf and Ch (see § 2.3 in MacDonald et al. (2019)).

To find d, we follow the suggestion by Luchini (1996). According to Luchini et al. (1991),
for a drag reducing riblet (
U+ < 0) the origin of turbulence is shifted upwards relative
to the origin of the riblet mean height zm. This shift appears as a shift in the turbulent part
of the Reynolds shear stress uwT . Following Endrikat et al. (2021a), we compute uwT by
excluding the form-induced component from the total Reynolds shear stress. Figure 3(a)
shows uwT for asymmetric riblets AT15 (black solid line) and AT40 (dashed–dotted line)
compared with the smooth wall (◦).

Following Luchini (1996), we find d by shifting the uwT profile of the riblet cases to
collapse, when plotted against z − d, onto the uwT profile of a smooth case at matched Reτ ,
when plotted against z. We collapse the two profiles at their maximum slope near the wall.
This works well for drag-reducing riblets. Endrikat et al. (2021a) propose an extrapolation
for determining d for the other cases of table 2: for each riblet shape at constant α or
t/s, they find d for the minimum size, e.g. AT15 for asymmetric riblet, and then set the
virtual origin of other cases by assuming that d/k is constant. We follow the same approach
for the temperature (passive-scalar) field. In figure 3, we consider uwT , θwT , 
U+ and

Θ+ for the asymmetric riblet cases AT15 (solid line) and AT42 (dashed–dotted line).
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Figure 3. Profiles of (a,d) turbulent part of Reynolds shear stress uwT , (b,e) turbulent scalar flux θwT and
(c, f ) roughness function 
U+ (U+

s − U+
r , where subscripts r and s refer to the riblet and smooth cases,

respectively) and the temperature difference 
Θ+ (Θ+
s − Θ+

r ). The profiles with black colour correspond to
the momentum transport (uw+, 
U+) and those with magenta colour correspond to the temperature transport
(θw+

, 
Θ+). We consider asymmetric riblets AT15 (magenta solid line, black solid line) and AT40 (magenta
dashed–dotted line, black dashed–dotted line), and smooth wall case at Reτ = 395 (◦). All the quantities in
wall units are scaled by uτ and ν. Panels (a–c) show the profiles by having the mean riblet height zm as the
origin, and (d–f ) show the same profiles by having the virtual origin d as the origin. In (d), d is obtained for
the mean velocity by shifting uwT , and in (e), d is obtained for the mean temperature by shifting θwT (see the
text for discussion). In ( f ), the profiles of 
U+ and 
Θ+ are shifted by the values of d obtained from (d) and
(e), respectively.

In figure 3(a–c), we plot the profiles by taking the riblet mean height zm as the origin.
In figure 3(d–f ), we plot the profiles by taking d as the origin. Figure 3( f ) shows that
accounting for the origin d at the present Reτ where the log layer is nascent, results in a
wider plateau of near constant 
U+ and 
Θ+, thereby allowing a more robust measure
of the roughness function and temperature difference, and hence Cf and Ch. In figure 3( f ),
the values of d for plotting 
U+ and 
Θ+ are obtained, respectively, from uwT (figure 3d)
and θwT (figure 3e). By analysing several riblet cases, we find that the values of d obtained
from uwT (for 
U+) and θwT (for 
Θ+) are very close to each other (within 3 % of k).
Therefore, in the rest of this paper we use one value of d (from uwT ) to compute 
U+ and

Θ+.

2.3. Skin-friction coefficient and Stanton number
The skin-friction coefficient Cf and Stanton number Ch are defined as

Cf ≡ 2 〈τw〉
ρU2

b
= 2

U+
b

2 , Ch ≡ 〈qw〉
ρcpUbΘm

= 1
U+

b Θ+
m

, (2.5a,b)
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Riblet-generated mechanisms that break the Reynolds analogy

where U+
b is the bulk velocity and Θ+

m is the mixed-mean temperature (Owen & Thomson
1963; Bird, Stewart & Lightfoot 1962). Here

U+
b ≡ 1(

z+
max − z+

min
)

∫ z+max

z+min

U+ dz+, Θ+
m ≡ 1

U+
b

(
z+

max − z+
min

)
∫ z+max

z+min

U+Θ+ dz+

(2.6a,b)

where z+
min and z+

max are the bottom of the riblet groove and top boundary of the domain,
respectively. The mixed mean temperature is the temperature one would obtain if the fluid
from the channel was discharged into a container and was thoroughly mixed. According to
(2.5a,b), we need U+

b and Θ+
m to compute Cf and Ch. However, we cannot compute U+

b and
Θ+

m by directly integrating U+ and Θ+ profiles from the minimal-channel configuration.
We show this in figure 4. We compare the U+ profile (figure 4a) and Θ+ profile (figure 4b)
between the smooth wall case S395 in minimal domain (blue solid line, blue dotted line,
L+

x × L+
y = 1027 × 250) and the smooth wall DNS of Kawamura et al. (1998) in full

domain (◦, black, L+
x × L+

y = 2528 × 1264). The minimal-domain U+ and Θ+ profiles
(blue solid line) reproduce the full-domain profiles (◦, black) up to z+

c � 0.4L+
y � 100.

Beyond z+
c , the minimal-domain profiles (blue dotted line) depart from the full-domain

profiles (◦, black), but the universal outer layers can easily be reconstructed. Importantly,
the minimal domain resolves the flow up to z+

c (Chung et al. 2015; MacDonald et al.
2017, 2019), which includes the effects of different riblet shapes and sizes. Beyond z+

c , we
reconstruct the full-domain profiles (blue dashed line in figure 4a,b) using the composite
profiles of full-domain channel flow (U+

f , Θ+
f ):

U+
f = 1

κu
ln(z+ − d+) + Bu + 2Πu

κu
Wu(z/h) − 
U+, z+ ≥ z+

c , (2.7a)

Θ+
f = 1

κθ

ln(z+ − d+) + Bθ + 2Πθ

κθ

Wθ (z/h) − 
Θ+, z+ ≥ z+
c . (2.7b)

We first reconstruct our smooth cases S395 and S1000 (
U+ = 
Θ+ = 0). To verify our
reconstruction, we use the DNS data of full-domain channel flow at Reτ = 395, Pr = 0.71
(Kawamura et al. 1998) and Reτ = 1020, Pr = 0.71 (Abe, Kawamura & Matsuo 2004).
We choose κu = 0.4 and κθ = 0.46 following Pirozzoli, Bernardini & Orlandi (2016). We
set the offsets Bu = 5.2 and Bθ = 3.8 (for Pr = 0.7), to make the profiles continuous at z+

c .
For the wake functions Wu and Wθ , we use the formulation for channel flow by Nagib &
Chauhan (2008) (see their equation (12)). We set the velocity wake parameter Πu = 0.05,
as suggested by Nagib & Chauhan (2008) (see their figure 6). We set the temperature
wake parameter Πθ = 0.08, to obtain the best fit with the reference DNS (figure 4b, the
inset). After reconstructing the smooth channel profiles, we shift them by 
U+ and 
Θ+
(table 2) to reconstruct the region above z+

c for the riblet cases.
We show the accuracy of minimal-domain simulation and profile reconstruction in

figure 4(a,b) by comparing the resolved and reconstructed profiles for S395 (blue solid
line, blue dashed line) with the full-domain reference data (◦, black) at Reτ = 395 and
Pr = 0.71. Figure 4(a) compares the U+ profiles and figure 4(b) compares the Θ+
profiles. We calculate Cf and Ch (2.5a,b) by integrating the resolved (blue solid line) and
reconstructed (blue dashed line) portions of the profiles. The obtained Cfs and Chs for S395
(blue solid line, blue dashed line) are different by 0.4 % and 0.2 %, respectively, compared
with the Cfs and Chs from the reference full-domain DNS (◦, black). We further show the
accuracy of minimal-domain simulation for the triangular riblet with α = 90◦ and s+ = 50
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Figure 4. Assessing the accuracy of the minimal-domain approach for (a,b) smooth case S395 and
(c,d) triangular riblet case with α = 90◦ and s+ = 50. Panels (a,b), respectively, compare U+ and Θ+ profiles
between S395 (blue solid line, blue dotted line) and DNS of full-domain smooth channel flow (◦, black,
Kawamura et al. (1998)) at matched Reτ = 395 and Pr = 0.71. The minimal-domain profiles (blue solid
line) reproduce the full-domain profiles (◦, black) up to z+

c � 0.4L+
y � 100. Beyond z+

c , the minimal-domain
profiles (blue dotted line) depart from the full-domain profiles (◦, black), because the minimal domain correctly
resolves the flow only up to z+

c (Chung et al. 2015; MacDonald et al. 2017, 2019). Beyond z+
c , the profiles

are reconstructed (blue dashed line) using the composite profiles of Nagib & Chauhan (2008). Panels (c,d),
respectively, compare U+ and Θ+ profiles between two domain sizes of the same riblet case (triangular
riblet with α = 90◦ and s+ = 50); T950 with L+

y = 250 (black solid line, black dotted line) and T950W with
L+

y = 450 (red solid line, red dotted line). Beyond z+
c , the minimal-domain profiles (black dotted line, red

dotted line) are replaced by the composite profiles (black dashed line, red dashed line) based on Nagib &
Chauhan (2008).

(figure 4c,d). We compare different domain sizes: T950 with L+
y = 250 (black solid line,

black dotted line) and T950W with L+
y = 450 (red solid line, red dotted line). We compare

the U+ profiles (figure 4c) and Θ+ profiles (figure 4d). We reconstruct the profiles
beyond z+

c � 0.4L+
y � 100 for T950 (black dashed line) and beyond z+

c � 0.4L+
y � 180

for T950W (red dashed line). The profiles from the two domain sizes agree well with
each other, both in the resolved (solid lines) and reconstructed (dashed lines) parts. The
difference in Cf /Cfs, Ch/Chs and η between the two domain sizes is 1 %, 0.5 % and 0.4 %,
respectively. The reported uncertainties for Cf /Cfs, Ch/Chs and η take into account the
uncertainty due to the domain size and profile reconstruction together. These quantities
are obtained by integrating the resolved portion of the profiles (from the minimal-domain
simulation) and the reconstructed portion.

As mentioned in § 1, different studies use different Reynolds number definitions for
matching the flow condition between the riblet and smooth surfaces. Experimental studies
(Walsh & Weinstein 1979; Choi & Orchard 1997) consider the developing turbulent
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Riblet-generated mechanisms that break the Reynolds analogy

boundary layer, and use Reynolds number Rex ≡ U∞x/ν based on the free stream velocity
U∞ and the distance x downstream of the test section entrance. Numerical studies (Stalio
& Nobile 2003; Jin & Herwig 2014) consider channel flow, and use bulk Reynolds number
Reb ≡ Ubh/ν. Here, we also calculate Cf /Cfs and Ch/Chs at a matched Reb. For the cases
simulated at Reτ = 395 (table 2), we match at Reb = 7038. For the case T333 simulated
at Reτ = 1000 (triangular riblet at α = 30◦, s+ � 33), we match at Reb = 20192. These
matched values of Reb correspond to Reτ = 395 (at Reb = 7038) and Reτ = 1000 (at
Reb = 20192) for smooth-wall channel flow.

3. Results

3.1. Global investigation of Reynolds analogy
Figure 5 is a comprehensive plot measuring Reynolds analogy for all the cases in table 2.
Each marker in figure 5(a–e) corresponds to one riblet case. To identify the markers, we
draw a chart above figure 5(a–e) that contains the geometry of each riblet case and its
marker. In the chart, we arrange the riblets horizontally based on their spacings s+ and
we arrange the riblets vertically based on their shapes. To facilitate inspection, we show
the performance relative to Reynolds analogy of all cases in three plots: triangular riblets
(figure 5a); trapezoidal riblets (figure 5b); blade and asymmetric riblets (figure 5c). We
also include some comparable cases of the previous studies: Walsh & Weinstein (1979)
(green bullets), Choi & Orchard (1997) (red bullet) and Jin & Herwig (2014) (blue filled
triangle). We draw an ellipse around each comparable pair, both in the chart and in the
Reynolds analogy plots.

The trapezoidal (figure 5b), blade and asymmetric riblets (figure 5c) break the Reynolds
analogy in an unfavourable way; especially, as s+ increases. We quantify this in table 2
(the rightmost column) by reporting the heat transfer efficiency η ≡ (Ch/Chs)/(Cf /Cfs).
For the trapezoidal, blade and asymmetric riblets with s+ > 50, η varies between 0.955
and 0.975. For these cases, if we take into account all the possible simulation uncertainties,
η is still below unity. We consider the uncertainties due to the statistical averaging and
grid (§ 2.1), as well as the domain size and profile reconstruction (§ 2.3). To estimate
how the statistical uncertainty of ±0.1 in 
U+ and 
Θ+ (§ 2.1) propagate to η, we
use Taylor series expansion of the analytical relation for η(
U+, 
Θ+) (see (11) in
Aupoix (2015)). For the case BL49, we obtain statistical uncertainty of ±0.008 in
η with 
U+ = 1.84 ± 0.1, 
Θ+ = 1.10 ± 0.1 and the smooth wall coefficients Cfs =
0.0063, Chs = 0.0037 at Reτ = 395. We also report an uncertainty of ±0.001 in η due
to the grid, and a total uncertainty of ±0.004 due to the domain size and profile
reconstruction (§§ 2.1 and 2.3). Summing all the possible uncertainties for BL49, we
report η = 0.974 ± 0.013, hence we find a statistically robust unfavourable breaking of the
global Reynolds analogy. However, the triangular riblets (figure 5a) break the Reynolds
analogy to a lesser extent. A closer inspection of figure 5(a) (as shown in figure 5d,e)
reveals that the triangular riblet cases T321 with α = 30◦, s+ = 21 (figure 5d) and T333
with α = 30◦, s+ = 33 (figure 5e) fall onto or slightly above the Reynolds analogy line.
Among all the riblet cases in table 2, only T321 and T333 yield η > 1 (1.007 and 1.012,
respectively). These values of η are marginally higher than unity. With the levels of
simulation uncertainties in η, it is not possible to definitely conclude that T321 and T333
break the global Reynolds analogy favourably. For the case T321, we obtain statistical
uncertainty of ±0.008 in η with 
U+ = 0.83 ± 0.1, 
Θ+ = 0.87 ± 0.1 and the smooth
wall coefficients Cfs = 0.0063, Chs = 0.0037 at Reτ = 395. For the case T333, we obtain
statistical uncertainty of ±0.008 in η with 
U+ = 2.75 ± 0.1, 
Θ+ = 2.35 ± 0.1 and
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Figure 5. Reynolds analogy plot for all the cases (table 2) and comparable cases from previous studies. The
top chart shows their geometries. In the chart, from top to bottom, riblet geometries are arranged as the
following: triangular riblets with α = 30◦, 60◦, 90◦; trapezoidal riblets; blade riblets; and asymmetric riblets.
In the horizontal direction, riblets are arranged based on their spacing s+. The previous cases are shown with
filled symbols. For each comparable pair from the previous studies and the present data, we draw an underline
in the top chart, and we draw an ellipse in the Reynolds analogy plots. We compare different riblet geometries
in separate plots: (a) triangular riblets (T3, T6, T9); (b) trapezoidal riblets (TA); (c) blade BL and asymmetric
AT riblets. Panels (d,e) magnify the Reynolds analogy plot within the dotted rectangles shown in (a), and only
show Reynolds analogy for the triangular riblet at (d) α = 30◦ and s+ = 21, and (e) α = 30◦ and s+ = 33. In
the chart, the highlighted cases in bold (T333, T950, TA63, BL49) are further analysed in § 3.2.
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Riblet-generated mechanisms that break the Reynolds analogy

the smooth wall coefficients Cfs = 0.0049, Chs = 0.0029 at Reτ = 1000. By adding
the grid size, domain size and profile reconstruction uncertainties in η (±0.005), we
report η = 1.007 ± 0.013 and η = 1.012 ± 0.013 for T321 and T333, respectively. Hence
the observed favourable breaking is within the uncertainty bounds. However, we can
definitively conclude that as the viscous-scaled riblet spacing increases from s+ = 21
(T321, figure 5d) to s+ = 33 (T333, figure 5e), the triangular riblet with α = 30◦ preserves
its performance close to the Reynolds analogy line. In contrast, the other riblet shapes
(e.g. figure 5b,c) depart from the Reynolds analogy line towards the unfavourable side
as s+ increases; this trend is similar to conventional rough surfaces (figure 1a), although
roughness departs farther from the Reynolds analogy line. These observations motivate us
to investigate the flow physics of T333 (η � 1.012) compared with the other riblet cases
(η < 1) in § 3.2.

Walsh & Weinstein (1979) experimentally investigated triangular riblets with α � 30◦
(green bullets in figure 5a) in addition to sharper and blunter triangular riblets with
α � 16◦ and 40◦, respectively. To reconstruct the Reynolds analogy plot of Walsh &
Weinstein (1979), we use their reported Cf /Cfs and η (see their figures 2 and 3).
Walsh & Weinstein (1979) observe different behaviour in the heat transfer efficiency
of triangular riblets with α � 30◦ (having η > 1) compared with those with α � 40◦
(having η < 1). Consistently, we see different behaviour in the heat transfer efficiency
of triangular riblets with α = 30◦ (×, ∗ with η � 1) and those with α = 60◦ (

�
, � with

η < 1). However, for triangular riblets with α = 30◦, Walsh & Weinstein (1979) report
a more noticeable favourable breaking of the global Reynolds analogy (green bullets
in figure 5a) compared with our observation in the current study (×, ∗ in figure 5d,e).
The different observations between the experimental and DNS data could be due to the
factors discussed in § 1 (flow configuration, definition of Cf , Ch and Reynolds number)
in addition to experimental uncertainties. Nevertheless, the consistent observation of the
unique behaviour of triangular riblets with α = 30◦ calls for further exploration of the
underlying flow physics. Walsh & Weinstein (1979) could not investigate the underlying
flow physics, owing to experimental limitations. An advantage of DNS is the high-fidelity
dataset, particularly in the riblet grooves, to probe the underlying flow structure. We
perform such investigations in the following sections.

3.2. Local investigation of Reynolds analogy
The Reynolds analogy plots (figure 5) are constructed based on Cf ≡ 2 〈τw〉 /(ρU2

b) and
Ch ≡ 〈qw〉 /(ρcpUbΘm). These quantities are obtained by integrating τw and qw over time
and the entire riblet surface. Therefore, breaking of the analogy between Cf /Cfs and
Ch/Chs (based on 〈τw〉 and 〈qw〉) is due to the breaking of the analogy between their
local instantaneous counterparts (based on τw and qw). We denote the local counterparts
as Ĉf /Cfs and Ĉh/Chs . We use the prefix ‘global’ when we mention Cf /Cfs and Ch/Chs ,
and we use the prefix ‘local’ when we mention Ĉf /Cfs and Ĉh/Chs . In § 3.2.1, we study
the breaking of the analogy between the local Ĉf /Cfs and Ĉh/Chs , hence local breaking
of Reynolds analogy. Then in §§ 3.2.2, 3.2.3 and 3.2.4 we uncover the important flow
mechanisms that are associated with the local breaking of Reynolds analogy. We identify
the favourable and unfavourable flow mechanisms depending on how they locally break
Reynolds analogy. Finally, in §§ 3.2.3 and 3.2.4 we analyse the contribution of each
important flow mechanism to the global breaking of Reynolds analogy. We investigate
how this contribution depends on the riblet geometry.
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Figure 6. Different definitions of local Stanton number for blade riblet BL49, in different coordinates such that
Ch = (1/Aw)

∫
Aw

ĈhdAw. (a) Here C∗
h = qw/(ρcpUbΘm) is a temporary definition based on local wall heat flux

qw = dQw/dAw in x–y coordinate; (b) C∗
h the same as (a) in x–ξ coordinate; (c) Ĉh = q̂w/(ρcpUbΘm) in x–ξ

coordinate based on compensated q̂w = (Aw/At)qw, where Aw and At are the total wetted area and total planar
area (figure 2), respectively. In the schematic on the top right we colour each part of the three-dimensional
sketch of blade riblets. Next to (a,c), we draw the sketch in x–y and x–ξ coordinates, respectively. This highlights
which parts of the blade surface become visible in each coordinate system.

3.2.1. Local skin-friction coefficient versus local Stanton number
We define the local Ĉf and Ĉh (figure 6) so that they are relatable to their global
counterparts (figure 5). In figure 6, we demonstrate how we define Ĉh for the blade riblet
BL49, as an example. We follow the same procedure for Ĉf .

To the global Ch, each part of the riblet surface contributes proportionally to its wetted
area. For example, in the schematic in figure 6 (top right), Ch is obtained through
integration of the local wall heat flux qw = δQw/δAw over time, and also spatially over
the vertical sidewalls (in black), base (in grey) and the crest (in green). Therefore,
local investigation based on a view of qw in the xy-plane would suffer from distortion
(figure 6a), because the vertical sidewalls are missing. Even for other riblets with tilted
sidewalls, the xy-plane is not suitable. Therefore, we define a new unfolded coordinate
ξ with two properties: (1) it is tangent to the riblet surface, and (2) it is normal to
the x-coordinate. In the xξ -plane (figure 6b), each part of the riblet surface contributes
proportionally to its wetted area. Therefore, we study the local Stanton number in
the xξ -plane. A possible definition for local Stanton number is C∗

h ≡ qw/(ρcpUbΘm)

(figure 6b). Averaging C∗
h over the xξ -plane and time yields Qw/(ρcpUbΘmAw), which

differs from the global Ch ≡ Qw/(ρcpUbΘmAp) by a factor of Aw/Ap. Therefore, we define
the local Ĉh = (Aw/Ap)C∗

h (figure 6c) such that its average over the xξ -plane and time
yields (1/T)(1/Aw)

∫
T

∫
Aw

ĈhδAw dt = Ch where T is the averaging time period. We define

Ĉf correspondingly.
Figure 7 compares the global Reynolds analogy (figure 7a,c,e,g) with the local Reynolds

analogy (figure 7b,d, f,h) for selected riblet cases (highlighted in bold in the top chart of
figure 5). For fair comparison of the global Reynolds analogy between different cases,
the size of the plotting range is the same for all figure 7(a,c,e,g). The selected cases have
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different riblet shapes with a diverse global Reynolds analogy behaviour. The case T333
(figure 7g,h, triangular riblet at α = 30◦, s+ = 33) falls above the Reynolds analogy line,
TA63 (figure 7c,d, trapezoidal riblet at s+ = 63) and BL49 (figure 7e, f, blade riblet at
s+ = 49) fall below the Reynolds analogy line, and T950 (figure 7a,b, triangular riblet
at α = 90◦, s+ = 50) almost falls onto the Reynolds analogy line. Our findings based
on investigation of these cases are sufficient to explain the behaviour of other cases of
the present study. The unique behaviour of T333 in its global Reynolds analogy (§ 3.1,
figures 5e and 7g) is also seen in its local Reynolds analogy (figure 7h). In this case,
there are distinct patches of Ĉf < 0 (highlighted with green boundaries). These patches
locally break the Reynolds analogy, because negative Ĉf does not have an analogue in Ĉh.
Solution to (2.3) obeys θ ≥ 0, hence Ĉh ≥ 0. Therefore, the larger and stronger the patches
of Ĉf < 0 are in a riblet case, the stronger is the local breaking of Reynolds analogy. In
T333, patches of Ĉf < 0 occupy a substantial fraction of the wetted area. To quantify
this observation, we report the area of Ĉf < 0 (AĈf <0) at the top of figure 7(b,d, f,h). For
T333, AĈf <0 � 0.28Aw (figure 7h). However, for the unfavourable cases TA63 and BL49,
AĈf <0 � 0.01Aw and 0.08Aw, respectively (figure 7d, f ). For T950 that preserves Reynolds

analogy, AĈf <0 � 0.01Aw (figure 7b). Additionally, in T333 patches of Ĉf < 0 are more
negative than their counterparts in the other riblet cases. To support this observation, we
conditionally average Ĉf /Cfs over AĈf <0, i.e. C̄f /Cfs |Ĉf <0 = (1/AĈf <0)

∫
AĈf <0

Ĉf /CfsδAw,

and report it on top of figure 7(b,d, f,h). For T333, C̄f /Cfs |Ĉf <0 � −0.74 (figures 7h),

whereas for T950, TA63 and BL49, C̄f /Cfs |Ĉf <0 � −0.07, −0.09 and −0.22, respectively
(figure 7b,d, f ).

From the analysis in this section, we conjecture that the unique behaviour of T333 in
global Reynolds analogy (figures 5e and 7g) is due to the large proportion of the wetted
area occupied by strong patches of Ĉf < 0. We investigate the source of negative Ĉf next.

3.2.2. Source of negative skin-friction coefficient: KH rollers
In figure 8, the flow near the riblet grooves is visualised for T950 (figure 8a,b) and
T333 (figure 8c,d): in these cases, patches of negative Ĉf occupy 0.01Aw and 0.28Aw,
respectively. To capture coherent structures, we plot the isosurfaces of pressure fluctuations
(subtracted from the xy-plane and time averaged pressure) p′+ ≡ p′/(ρu2

τ ) = −5, and
the wall-normal velocity fluctuations w′+ ≡ w′/uτ at the riblet crest. Figure 8(c,d),
corresponding to T333, reveal that patches of negative Ĉf are due to KH rollers. These
rollers are elongated in the spanwise direction, as evidenced in the p′+ isosurfaces and w′+
field (figure 8c). The rollers create local flow reversals inside the riblet groove (figure 8d),
hence highly negative patches of Ĉf (figure 7h). For T950 (figure 8a,b) no KH roller is
visible, hence patches of negative Ĉf are hardly detected (figure 7b).

Formation of KH rollers was previously reported over blade riblets and triangular riblets
with α = 30◦ (García-Mayoral & Jiménez 2011b; Endrikat et al. 2021a,b). Specifically,
Endrikat et al. (2021a,b) detected these structures over the blade riblets BL20, BL33,
BL39, BL49 and triangular riblets T310, T321, T333 (see figure 9 in Endrikat et al.
(2021a)). They observed that KH rollers over the triangular riblets with α = 30◦ are
much stronger than over the blade riblets (see figure 6 in Endrikat et al. (2021a)).
Kelvin–Helmholtz rollers are also reported over environmental canopies such as terrestrial
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|Ĉf <0 � –0.22
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Figure 7. Investigation of local Ĉf /Cfs and local Ĉh/Chs (b,d, f,h) for selected cases of figure 5. Panels (a,c,e,g)
are Reynolds analogy plots for these cases; for fair comparison, the size of the plotting range is 0.05 for both
Cf /Cfs and Ch/Chs , for all cases. (a,b) Triangular riblet T950 at α = 90◦, s+ � 50; (c,d) trapezoidal riblet
TA63 at s+ � 63; (e, f ) blade riblet BL49 at s+ � 49; (g,h) triangular riblet T333 at α = 30◦, s+ � 33; for
T333 we only show the range 0 ≤ x+, ξ+ ≤ 1000 for consistent plotting range with other cases. In (b,d, f,h),
local Ĉf /Cfs is on the left-hand subpanel and local Ĉh/Chs is on the right-hand subpanel. Regions of Ĉf < 0 are
bordered with green lines. For each case, we report the fraction of the wetted area Aw where Ĉf < 0 (AĈf <0).

We also report the conditionally averaged Ĉf /Cfs over AĈf <0 given as C̄f /Cfs |Ĉf <0.

(Raupach, Finnigan & Brunei 1996) and aquatic canopies (Ghisalberti & Nepf 2002).
These rollers exchange scalar and momentum between the canopy and the overlaying flow
(Ghisalberti & Nepf 2004, 2005; Nepf et al. 2007).

Riblets trigger KH rollers because (1) a mixing layer forms between the slow-moving
flow inside the groove and the fast-moving flow above the groove, and (2) the crest
has wall-normal permeability to develop flow instability (García-Mayoral & Jiménez
2011a,b, 2012). Endrikat et al. (2021a) discover that the riblet geometries that trigger
KH rollers (1) have a high level of permeability, and (2) cause a high shear in the
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Figure 8. Visualisation of the flow for (a,b) triangular riblet T950 at α = 90◦, s+ � 50, and (c,d) triangular
riblet T333 at α = 30◦, s+ � 33. In (a,c), we plot the instantaneous fields of wall-normal fluctuating velocity
w′+ at the riblet crest, overlaid by the isosurfaces of fluctuating pressure (subtracted from the xy-plane and
time averaged pressure) p′+ ≡ p′/(ρu2

τ ) = −5 (coloured in blue) to identify KH rollers. In (c) for consistency
with (a), we only show 1000 and 300 wall units of T333 in the x+ and y+ directions. In (b,d), we plot the
flow field on an xz-plane passing through the middle of the groove (at y+ = 125 and 283 in panels (b) and (d),
respectively). The horizontal long-dashed magenta line locates the riblet crest. The vertical axis for each plane
is (z − zw)+ where zw is the z-coordinate at the bottom of the groove. On the xz-plane, we plot the streamwise
velocity field u+ overlaid by the (u+, w+) streamlines. We also overlay the temperature profiles θ+ (green
lines) at two x+ locations. Note that the top axis x+ corresponds to the u+ field and the streamlines, and the
bottom axis corresponds to the θ+ profiles.

mixing layer. Endrikat et al. (2021a) propose two parameters based on these conditions.
The viscous-scaled square root of the groove area �+

g is correlated with the wall-normal
permeability (figure 13b in Endrikat et al. (2021a)). Also, large drag at the riblet tip causes
high-shear mixing layer (figure 15a in Endrikat et al. (2021a)). The formation of KH rollers
occurs when 15 � �+

g � 40 and the drag at the tip reaches 50 % to 90 % of the total wall
drag (figure 15c in Endrikat et al. (2021a)). The case T333 (figure 8c,d) satisfies these
conditions.

Kelvin–Helmholtz rollers have a noticeable impact on the thermal field. They create an
isothermal layer of θ ≈ 0 inside the riblet valley. In figure 8(b,d), we plot instantaneous
profiles of θ+ on an xz-plane passing through the middle of the riblet groove. For T333
(figure 8d) where KH rollers are strong, profiles of θ+ approach zero inside the valley
(with the slope ∂θ/∂z � 0). As a result, patches of Ĉh � 0 appear (figure 7h). On the
other hand, for T950 (figure 8b) where KH rollers are absent, such a quiescent thermal
field does not appear.

We find some resemblance between KH rollers and the mechanism for breaking the
Reynolds analogy through wall blowing/suction (Higashi, Mamori & Fukagata 2011;
Hasegawa & Kasagi 2011; Yamamoto et al. 2013; Kaithakkal et al. 2020, 2021). Wall
blowing/suction generates a travelling-wave-like control input that is almost uniform in
the spanwise direction and periodic in the streamwise direction. Similarly, KH rollers are
spanwise-elongated structures that are periodically advected in the streamwise direction.
Wall blowing/suction is an active mechanism, hence it demands an additional actuation
cost. However, KH rollers are passively generated, hence demand no additional cost.
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Our analysis so far shows the importance of KH rollers in local breaking of the
Reynolds analogy. The structure of KH rollers consists of alternating reversed and forward
flows (see the streamlines in figure 8d). The reversed flow is associated with the local
favourable breaking of the Reynolds analogy (Ĉf /Cfs < 0 < Ĉh/Chs). On the other hand,
the forward flow could cause local unfavourable breaking of the Reynolds analogy if
Ĉf /Cfs > Ĉh/Chs > 0. There are also other flow mechanisms that interact with the wall.
Each mechanism could locally maintain or break the Reynolds analogy, and each of
these mechanisms potentially interact or modulate one another. The global Reynolds
analogy behaviour results from a complex interplay between all the wall-interacting flow
mechanisms. In the next section, we study the wall effect of all the flow mechanisms; we
assess the probability of all the wall events in the (Ĉf /Cfs, Ĉh/Chs) space. We present
evidence that KH rollers are the primary mechanisms for the local favourable breaking
of the Reynolds analogy. This is due to the flow reversal and deceleration part of KH
rollers. We further show that to the global Reynolds analogy, the contribution of the
favourable wall events by KH rollers can counter or even outweigh the contribution of
the unfavourable wall events, leading to a heat transfer efficiency η that exceeds unity.

3.2.3. Kelvin–Helmholtz rollers and favourable breaking of the Reynolds analogy
To relate the local wall events (hence local breaking of the Reynolds analogy) to the global
breaking of Reynolds analogy, we study the joint probability density function (j.p.d.f.)
between Ĉf /Cfs and Ĉh/Chs (figure 9). We consider the favourable case T333 and the other
cases of figure 7 (T950, TA63 and BL49). We calculate the j.p.d.f. for the entire wetted
area Aw (grey j.p.d.f.s in figure 9a–d). We also partition Aw (top sketches in figure 9), and
calculate the conditional j.p.d.f. for each partition (second to last rows of figure 9a–d). Our
partitioning is based on geometrical parts (e.g. crest, valley, sidewall). We assign the label
side (in blue) to the middle of each sidewall, with an area fraction between 0.6 to 0.8 of the
sidewall. Similarly, we assign the label bottom (in orange) to the middle of each bottom
wall, with an area fraction between 0.6 to 0.8 of the bottom wall. The remaining top edges
or tips are labelled as crest (in pink). The remaining bottom corners or valleys are labelled
as valley or corner (in green). The j.p.d.f. of the entire Aw reflects the complex interaction
between all the flow mechanisms and the wall. By partitioning Aw and calculating their
conditional j.p.d.f.s, we aim to discern the wall effect of different flow mechanisms as
much as we can. Also, partitioning allows us to quantify the contribution of local breaking
of the Reynolds analogy on each partition to the global breaking of the Reynolds analogy.
In other words, for a certain riblet case we can trace the source of its global breaking of
the Reynolds analogy (e.g. to the specific regions crest, side or valley).

For j.p.d.f., we choose the sample space {xCf : −8 ≤ xCf ≤ 8} for Ĉf /Cfs and {yCh : 0 ≤
yCh ≤ 8} for Ĉh/Chs . Outside of this space, the j.p.d.f. is less than 10−3. The conditional
j.p.d.f. of each partition, e.g. at the crest P(xCf , yCh |crest), is calculated as follows:

P(xCf , yCh |crest) = prob(xCf ≤ Ĉf /Cfs < xCf + δxCf , yCh ≤ Ĉh/Chs < yCh + δyCh, crest)

δxCf δyCh(Acrest/Aw)
.

(3.1)

Here, Acrest/Aw is the wall-wetted area fraction of the crest (also coloured magenta on top
of figure 9). Each of figure 9(a–d), corresponds to one riblet case, listing the j.p.d.f. of its
entire wetted area and the conditional j.p.d.f. of contributing partitions. The j.p.d.f.s consist
of two quadrants: Q1(xCf ≥ 0, yCh ≥ 0) and Q2(xCf ≤ 0, yCh ≥ 0). The black dashed line
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Figure 9. Joint probability density function (j.p.d.f.) between Ĉf /Cfs and Ĉh/Chs for (a) triangular riblet T950
at α = 90◦ and s+ � 50, (b) triangular riblet T333 at α = 30◦ and s+ � 33, (c) trapezoidal riblet TA63 at
s+ � 63 and (d) blade riblet BL49 at s+ � 49. In each of (a–d), the grey contours show j.p.d.f. of the entire
riblet surface. The j.p.d.f. is further conditioned based on the geometrical partitions following (3.1): crest (pink);
bottom (orange); side (blue); and corner or valley (green). The second to last rows are the conditional j.p.d.f.s
of the partitions with consistent colouring as the sketched partitions at the top. At the top, we report the area
(probability of the condition) of each partition. The black dashed line in each j.p.d.f. locates xCf = yCh , i.e.
the Reynolds analogy line. The white bullet point on each j.p.d.f. is the averaged Ĉf /Cfs and Ĉh/Chs over the
corresponding partition, following (3.2). In the j.p.d.f.s with blue checkmark, the white bullet point is above
the dashed line, in those with red cross-mark, the bullet point is below the dashed line, and in those with
circled dot, the bullet point falls onto the dashed line (within two significant digits). The scattered green dots
on each j.p.d.f. are the xt-averaged Ĉf /Cfs and Ĉh/Chs ; their departure from the dashed line highlights the wall
signature of secondary flows.
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in each plot, locates yCh = xCf which is the Reynolds analogy line. Below the dashed line
in Q1 is the unfavourable side, and above the dashed line in Q1 and the entire Q2 are
grouped as the favourable side.

Among the four riblet cases in figure 9, the j.p.d.f.s of T333 are unique (figure 9b).
This is the only case that triggers strong KH rollers (figures 7h and 8d). The j.p.d.f. of
this case on the sidewalls (blue j.p.d.f., figure 9b) leans towards the favourable side to a
large extent (upper half of Q1 and the entire Q2). This is associated with the flow reversal
(Ĉf < 0) and flow deceleration by KH rollers (figures 7h and 8d). The j.p.d.f.s of other
riblet cases do not extensively lean towards the favourable side in any of their partitions.
In the other riblet cases, KH rollers are weak or non-existent. Therefore, the flow reversal
and deceleration by KH rollers are the primary mechanisms for extending the j.p.d.f. to
the favourable side, hence local favourable breaking of the Reynolds analogy. On the other
hand, some flow phenomena extend the j.p.d.f. to the unfavourable side (lower half of Q1);
the forward accelerating part of KH rollers is among these phenomena, see for example
the blue j.p.d.f. in figure 9(b). There are also some flow phenomena that evenly distribute
the j.p.d.f. close to the Reynolds analogy line (dashed line), like a smooth wall.

The global (Cf /Cfs, Ch/Chs) is the integration of all the events on all sides of the j.p.d.f.
Global favourable breaking of the Reynolds analogy is possible if the favourable side of
the j.p.d.f. contributes more to the integral. For T333 (figure 9b), we quantitatively show
that the contribution of the favourable side counters or even outweighs the unfavourable
side. As a result, the global (Cf /Cfs, Ch/Chs) stays on or slightly falls above the Reynolds
analogy line (figures 7g and 9b, grey j.p.d.f.). This is primarily due to KH rollers that
skew the sidewall (blue) j.p.d.f. towards the favourable side. For this quantitative analysis,
we compute the averaged Ĉf /Cfs and Ĉh/Chs over the entire surface and each partition by
integrating its j.p.d.f., e.g.

Cfcrest

Cfs
=

∫ ∞

0

∫ ∞

−∞
xCf P(xCf , yCh |crest)dxCf dyCh . (3.2)

Then we overlay the averaged (Ĉf /Cfs, Ĉh/Chs) as a white bullet point to each j.p.d.f.
(figure 9a–d). Next to each bullet point, we report its location. To facilitate locating the
bullet point relative to the dashed line, we checkmark (in blue) the j.p.d.f. if the bullet
point falls above the dashed line (favourable breaking), we cross-mark (in red) the j.p.d.f.
if the bullet point falls below the dashed line (unfavourable breaking), and we circle dot (in
black) the j.p.d.f. if the bullet point falls onto the dashed line (no breaking). The location of
the bullet point on each partition helps to explain the global Reynolds analogy behaviour.
The global Cf /Cfs can be obtained from its partial compartments. For example, for the
triangular riblets (figure 9a,b) we have

Cf

Cfs
= Cfcrest

Cfs

(
Acrest

Aw

)
+ Cfside

Cfs

(
Aside

Aw

)
+ Cfvalley

Cfs

(
Avalley

Aw

)
, (3.3)

the same summation relation applies for Ch/Chs . This quantification reveals: (1) whether
the events on each partition break Reynolds analogy favourably or unfavourably, and (2)
how much each partition contributes to the global breaking of Reynolds analogy.

Considering the sharp triangular riblet T333 (figure 9b), the conditionally averaged
(Cfside/Cfs, Chside/Chs) over the sidewalls (blue j.p.d.f.) show noticeable breaking of the
Reynolds analogy in a favourable way. On the sidewalls the conditionally averaged
Chside/Chs � 1.00 is approximately 10 % higher than Cfside/Cfs � 0.91. On the crest
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(figure 9b, pink j.p.d.f.), however, the Reynolds analogy is broken unfavourably. In total,
the favourable breaking of the Reynolds analogy on the sidewalls counter (or slightly
outweigh) the unfavourable breaking of the Reynolds analogy on the crest (grey j.p.d.f.
in figure 9b).

We can explain the correlation between the strength of KH rollers and favourable
breaking of the Reynolds analogy through figures 7 and 9. In figure 7(b,d, f,h), the
conditionally averaged C̄f /Cfs |Ĉf <0 is a measure of the strength of KH rollers in each riblet
case. Therefore, the strength of KH rollers in TA63 (figure 7d), BL49 (figure 7f ) and T333
(figure 7h) is low, moderate and high, respectively. As KH rollers become stronger, the
sidewall j.p.d.f.s progressively lean towards the favourable side from TA63 (figure 9c) to
BL49 (figure 9d) and T333 (figure 9b). As a result, the Reynolds analogy on the sidewalls
(white bullet point on the blue j.p.d.f.) is broken unfavourably for TA63 (figure 9c), is
maintained for BL49 (figure 9d) and is broken favourably for T333 (figure 9b). This
quantitative analysis reveals the delicate interaction between KH rollers and riblet shape
in contributing to the global favourable breaking of Reynolds analogy.

3.2.4. Secondary flows and unfavourable breaking of the Reynolds analogy
With the j.p.d.f.s, we can also explain the cases that unfavourably break the Reynolds
analogy. The cases TA63 (figure 9c) and BL49 (figure 9d) unfavourably break the global
Reynolds analogy (grey j.p.d.f.s). The source of unfavourable breaking is at the crest (pink
j.p.d.f.s). Other partitions (blue, green or orange j.p.d.f.s) also yield unfavourable breaking,
but the level of breaking at the crest is more noticeable (compare the location of the white
bullet point between the pink j.p.d.f.s and the other partitions).

We conjecture that the unfavourable breaking at the crest is primarily related to the
secondary flows (Modesti et al. 2021). Several reasons support our conjecture. First, the
secondary flows form at the sharp tips or edges of the riblets crest (figures 9–11 in Modesti
et al. (2021) or § 3.1 in Stroh et al. (2020)). These are the locations where unfavourable
breaking of the Reynolds analogy is high (figure 9c,d, pink j.p.d.f.s). Second, increase in
Cf is correlated with the strength of secondary flows (Modesti et al. 2021). In other words,
with stronger secondary flows, the j.p.d.f. extends to the lower side of Q1 quadrant. Finally,
increasing the riblets spacing s+ intensifies secondary flows especially for the trapezoidal
riblets (Modesti et al. 2021), hence further extension to the lower side of Q1 quadrant.
This is consistent with the behaviour of the trapezoidal and blade riblets (figure 5b,c);
increasing s+ exacerbates their unfavourable behaviour.

We can explore the wall effect of secondary flows, especially at the riblets crest, by
investigating how much the xt-averaged Cf /Cfs and Ch/Chs (green dots in figure 9) deviate
from the Reynolds analogy line. Secondary flows appear in the xt-averaged flow field
(Modesti et al. 2021). Therefore, the wall signature of secondary flows should be reflected
in the behaviour of the green dots in figure 9. The green dots fall onto the Reynolds analogy
line if the local flow mimics that of a smooth wall, which has no secondary flow or KH
rollers. This is noticeable on the partitions that are minimally influenced by the secondary
flows or KH rollers, e.g. the bottom wall of TA63 and BL49 (orange j.p.d.f.s, figure 9c,d)
or the sidewall of TA63 (blue j.p.d.f., figure 9c). The KH rollers favourably break the
analogy between xt-averaged Cf and xt-averaged Ch (blue j.p.d.f., figure 9b) by creating
patches of negative Cf . However, the streamwise aligned secondary flows, evident in the
analysis by Modesti et al. (2021), unfavourably break the analogy between xt-averaged
Cf and xt-averaged Ch. As a result, the green dots at the crest of TA63 and BL49 (pink
j.p.d.f.s, figure 9c,d) deviate from the Reynolds analogy line towards the lower side of the
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Q1 quadrant. Modesti et al. (2021) visualise secondary flows over the same riblet cases
(their figures 9 and 11). They observe that secondary flows are stronger over TA63 and
BL49 compared with T950 and T333. Consistently, here we observe that the green dots
in TA63 and BL49 (figure 9c,d) depart farther from the Reynolds analogy line compared
with T950 and T333 (figure 9a,b). This observation further supports the unfavourable role
of secondary flows in breaking the Reynolds analogy.

Secondary flows are also observed over spanwise-alternating strips of LEGO baseboard
and LEGO brick (Vanderwel et al. 2019). Vanderwel et al. (2019) find that secondary flows
are time-averaged representation of a complex vortex interaction with various sizes and
shapes. This vortex interaction predominantly occurs above the surface ridges. As a result,
we observe secondary flows above the riblets crest (figure 11 in Modesti et al. (2021)).
The xt-averaged (Ĉf /Cfs, Ĉh/Chs) at the riblet crest (the green dots on the pink j.p.d.f.s in
figure 9) represent the net contribution of this vortex interaction to the global breaking of
Reynolds analogy. We find that this contribution is unfavourable.

4. Conclusions

We investigate the Reynolds analogy over riblets by analysing a DNS dataset of 20
riblet cases with various shapes and sizes. We uncover the important flow physics that
contribute to the local favourable breaking of the Reynolds analogy, and the flow physics
that contribute to its unfavourable breaking. We also uncover how changing the riblet shape
and size triggers the local favourable and unfavourable flow events. It is possible to explore
these aspects with the high-fidelity DNS data and the wide range of riblet geometries that
we consider.

Global breaking of the Reynolds analogy results from an interplay between various flow
mechanisms: each mechanism contributes through local breaking of the Reynolds analogy.
We find evidence that riblet-generated KH rollers and secondary flows are the primary
drivers for breaking the Reynolds analogy. Kelvin–Helmholtz rollers locally break the
Reynolds analogy in a favourable way. These rollers extend from the riblet crest down to
the valley, and create patches of negative wall shear-stress in the riblet grooves. Patches
of negative wall shear-stress do not have an analogue in the wall heat-flux (as it is a
non-negative quantity – e.g. heat only transfers from a hot wall to cold fluid). On the
other hand, secondary flows are associated with the local unfavourable breaking of the
Reynolds analogy. Our finding is supported by the study of Modesti et al. (2021), observing
secondary flows near the riblets crest which is the prominent locale for unfavourable
breaking of the Reynolds analogy. Further support is provided by the wall signature of
secondary flows on the riblet surface that coincide with an unfavourable larger fractional
increase in the skin-friction coefficient than in the Stanton number. Considered together,
we can conclude that the global Reynolds analogy performance of a riblet (i.e. its
heat-transfer efficiency) results from the competition between KH rollers and secondary
flows.

Among the considered riblet cases, KH rollers are noticeably stronger over the triangular
riblets with α = 30◦ and secondary flows are relatively weak, especially for the case
T333 (s+ = 33). For this riblet shape, favourable breaking of the Reynolds analogy by
KH rollers counter the unfavourable breaking of the Reynolds analogy associated with
the secondary flows. However, in the other considered riblet shapes (triangular riblets
with α = 60◦, 90◦, trapezoidal, blade and asymmetric riblets), KH rollers are weak or
non-existent, yet secondary flows are persistent especially with increasing s+. As a result,
the global Reynolds analogy in most of the considered riblet cases is broken unfavourably.
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The exceptions are the triangular riblet with α = 30◦, s+ = 21 (T321) and α = 30◦, s+ =
33 (T333). These cases fall onto or slightly above the Reynolds analogy line (in the
favourable side).

With the knowledge of the present study, we can partially explain and predict the
Reynolds analogy behaviour of common riblet shapes (e.g. triangular, blade, trapezoidal).
Also, the present study provides insight for the future of the riblet designs towards
higher heat-transfer efficiencies. Especially towards the designs that enhance KH rollers.
Kelvin–Helmholtz rollers generate flow reversals which are favourable events for breaking
the Reynolds analogy. However, unlike the flow reversals in conventional rough surfaces,
KH rollers are not accompanied by pressure drag as an unfavourable source for breaking
the Reynolds analogy. We have to emphasise that our notion of favourable is based on
heat-transfer efficiency, i.e. achieving maximum heat transfer with the minimum drag.
However, depending on the importance of the drag in different applications, both riblets
and roughness can be used for controlling heat transfer.
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Appendix. Analysis of the transport terms for the streamwise momentum and
temperature equations

In figure 10, we assess the contribution of different transport terms to the u-momentum
equation (streamwise component of 2.2) and θ -transport equation (2.3); we present all
the terms in viscous units (scaled by ν, uτ and θτ ). We consider T333, triangular riblet
with α = 30◦ and s+ = 33 (figure 10n). This is the case that triggers strong KH rollers
(figures 7h and 8c,d). We focus on the riblet groove, in the presence of KH rollers
(figure 10a). For both u and θ , we plot the streamwise and wall-normal advection
terms (figure 10b,c,i,j), streamwise and wall-normal diffusion terms (figure 10d,e,k,l),
and the mean driving source terms (figure 10f,m). We also plot the streamwise gradient
of fluctuating pressure ∂p′+/∂x+ for the u-momentum (figure 10g). This term has no
analogue in the θ -transport equation.

The mean driving source terms −dP+/dx+ and −u+ dT+
w /dx+ (figure 10f,m) have

negligible contribution inside the riblet groove. In some numerical studies, they drive the
thermal field with −dP+/dx+, similar to the velocity field (Kim & Moin 1989; Hasegawa
& Kasagi 2011; Yamamoto et al. 2013). These studies aim to enforce the analogy between
the u-momentum and θ -transport equations. From figure 10( f,m), we conjecture that the
thermal field inside the riblet groove is insensitive to the mean driving source term.
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Figure 10. Different transport terms for the u-momentum and θ -transport equations for the triangular riblet
case T333 with α = 30◦ and s+ = 33. We consider an xz-plane passing through the middle of the riblet
groove, indicated with vertical red line in (n), same plane as in figure 8(d). Panels (a–g) correspond to
u, and (h–m) correspond to θ . Panels (a,h) show the instantaneous fields of u+ and θ+. The (u+, w+)

streamlines are overlaid on (a). For u-momentum, we consider the streamwise and wall-normal advection terms
∂u+u+/∂x+, ∂u+w+/∂z+ (b,c), streamwise and wall-normal diffusion terms ∂2u+/∂x+2

, ∂2u+/∂z+2 (d,e),
mean and fluctuating pressure gradient terms −dP+/dx+, −∂p′+/∂x+ ( f,g). For θ -transport, we consider
the streamwise and wall-normal advection terms ∂θ+u+/∂x+, ∂θ+w+/∂z+ (i,j), streamwise and wall-normal
diffusion terms (1/Pr)∂2θ+/∂x+2

, (1/Pr)∂2θ+/∂z+2 (k,l), and temperature source term −u+ dT+
w /dx+ (m).

We present all the terms in viscous units (scaled by ν, uτ and θτ ). The riblet crest is located with a horizontal
dashed line in (a–g). The colourbar and its range is the same for (a) u+ and (h) θ+, and is shown next to (h).
To fairly compare different transport terms with each other, the colourbar and its range is the same for the
u-momentum and θ -transport terms, and is shown next to (i).
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