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Abstract. For the modelling of the radiation fields in stellar winds and the re­
sulting forces new efficient algorithms are presented. In the first one, the radiative 
transfer equation for moving 3D media is solved analytically with the assumption 
that the source function is known, eg. from the solution of the NLTE rate equa­
tions. For a wind with inhomogeneities an a-posteriori error controlled finite element 
code is described that takes scattering explicitly into account. Finally,we present 
possibilities for the accurate inclusion of an arbitrary number of spectral lines in a 
deterministic and in a stochastic way. 

1 Introduction 

It is now well known for more than twenty years that radiative transfer is of 
crucial importance for stellar winds from hot stars (Lucy and Solomon, 1970; 
Castor, Abbot and Klein, 1975) since it essentially determines the thermo-
dynamical state of the matter involved and the force that acts on every 
volume element. Unfortunately, the radiative transfer equation differs from 
the hydrodynamic equations that describe the winds in that it is usually an 
integral-differential equation and therefore may involve the coupling of very 
distant regions. Hence special techniques for the solution have to be invoked, 
in particular if many lines are present and/or the geometry is not simple. 
Since 'classical methods' (cf. Kalkofen, 1987) either involve many severe sim­
plifications or are by far too expensive computationally new types of solutions 
of the transfer equation are required. 

In this contribution some analytical and numerical solutions of the trans­
fer equation in moving media will be reviewed that are relevant to stellar 
winds and that have recently been obtained in Heidelberg in an interdisci­
plinary effort. 

In the next section the transfer equation is given and interpreted as an 
equation in configuration®frequency®direction space. This allows a very con­
venient specific formulation e.g. for rotating winds not only of the transfer 
equation itself but also of the solutions if the source if given. In section 3 
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a finite element algorithm is described that allows the accurate solution for 
coherently scattering media with arbitrary density and temperature distribu­
tions. Section 4 is devoted to the inclusion of many lines and the correspond­
ing evaluation of frequency integrated quantities relevant for hydrodynamics. 
We close with brief discussion and outlook. 

2 The Radiative Transfer Equation and its Analytical 
Solution for Rotat ing Winds 

We base our discussion on the transfer equation for unpolarized time indepen­
dent radiation (cf. Oxenius, 1986, for a derivation and its inherent limitations) 

^ M = _x(s)(J(s)-S(s)) (1) 

with I — specific intensity, s = vector in ray direction n =, v = frequency, 
X = extinction coefficient, S — source function. If the medium is static the 
coordinate system for s can be positioned in such a way that s reduces es­
sentially to a scalar s. Frequency and angles can be considered then just as 
parameters. 

In order to take velocities (3 = (0x(x,Py(xf3z(x)) (x = geometrical coordi­
nates (x, y, z)) we apply a Lorentz transformation to Eq. 1 (cf. Baschek, et al., 
1997a). The resulting general expression is very complicated but it becomes 
very convenient if advection/aberration terms as well as terms involving /3™ 
with n > 1 are neglected. For the relativistically invariant intensity in terms 
of the logarithmic wavelength 

£ = lnA (2) 

it reads 

n • V/(x, n, 0 + n • V(n • /3(x))I(x, n, 0 

= - x ( x , 0 ( / ( x ) n , 0 - S ( x ) 0 ) (3) 

The solution of Eq. 3 can either be derived from the standard solution of 
Eq. 1 

/(s) = exp(-r(0 , s))/(0) + f exp(-r (s ' , s))x(s')S(s')ds' (4) 
Jo 

with 

r(s',s) = J\(s")ds" (5) 

and 1(0) is the incident intensity and the subsequent application of the appro­
priate Lorentz transformation to this solution or the solution can be obtained 
directly from Eq. 3 by means of characteristics. In both cases the solution is 
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given by Eq. 4 but all integrals have to be considered as path integrals (cf. 
Wehrse and Baschek, 1998) along the curve C(s) = (x0 + ns, n • /3(xo + ns)). 

It is now straightforward to use the velocity field for a rotating wind using 
a Cartesian coordinate system 

v(x,y,z) = vexp(\A2 + V2 + z2){x, V, zfl\Jx2 + y2 + z2 + 

VrotWx2 +y2 + z2)(x,y, 0)l/^/x2 + y2. (6) 

The results will be presented and discussed in detail in a separate paper 
(Wehrse and Miiller, 1998). 

3 Numerical Solution of the Transfer Equation for 
Arbi t ra ry 3D Geometries 

Whenever the wind is clumpy a finite element algorithm is advantageous 
since it takes the inhomogeneities into account in a natural way. Kanschat 
(1996) has developed a corresponding code for the transfer equation 3 with 

S = eB+—— / p(n,n'i"(x,n')dw' 
47r Jin 

(B =Planck function, p =phase function, w =solid angle). The code employs 
unstructured grids that are adaptively refined by means of an a-posteriori 
error estimate which is obtained from the solution of the dual problem. In 
this way it is guaranteed that the numerical solution of the transfer equation 
does not deviate from the exact analytical one by more than a prescribed 
value and simultaneously the computation time is minimized. An additional 
reduction of the CPU time is achieved by the use of a variant of the conjugate 
gradient method in place of the usual Jacobi iteration (A or approximate A 
iteration in the astronomical literature): since in this scheme the unknowns 
are eliminated according to the absolute value of corresponding eigenvalue 
starting with the largest one, convergence problems for optically thick media 
are completely avoided. The code is written in C++ in order to reduce the 
book-keeping concerning the interaction of the various cells and is designed 
for multiple instruction parallel! machines but runs also on workstations. In 
spite of the high numerical efficiency the machine requirements are quite high 
since always all radiative couplings have to evaluated. Therefore, the CPU 
time and memory vary strongly with required accuracy and the dimension 
and the complexity of the medium. Typical values are in the range of a few 
Gigabyte and several hours on an IBM SP2. 

Fig. 1 shows, as an example, the radiative accelerations in an inhomoge-
neous medium that is illuminated from below. Note that the forces seem to 
compress the regions of higher density. Consequences for stellar winds appear 
to be obvious but firm conclusions cannot be drawn before this transfer code 
is coupled with a hydrodynamic one. 

https://doi.org/10.1017/S0252921100071906 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100071906


Radiative Fluxes and Forces in Non-Spherical Winds 147 

\ \ . i i \ \ i i 

Fig. 1. Example for the complex behavior of radiative forces in an inhomogeneous, 
static scattering 2D medium with small thermal emission that is illuminated from 
below (Kanschat, 1996). Only one frequency is taken into account. The shading 
indicates the density distribution and the arrows indicate strengths and direction 
of the radiative acceleration. Differential motion, wavelength dependent extinction 
and thermal emission would introduce additional complications. 

4 Many Lines 

Since it seems that the winds from hot stars are not accelerated by just a 
few lines but by the combined action of all lines (cf. Kudritzki's contribution 
in this volume) it is important to include in simulations the line absorption 
as completely as possible; in particular, weak lines should be represented 
adequately. Unfortunately, even very fast present-day computers do not allow 
such a representation if the well known solutions of the transfer equation are 
employed. 

In our search for alternative methods it turned out (Baschek et al., 1997b) 
that the solution of eq. 3 for a layered moving medium can easily be expressed 
in terms of the spectral thickness 

iKO = / xtt'W. (7) 
ha 

The spectral thickness is much better suited for the evaluation of integrals 
over wavelength than the extinction coefficient itself since it is much smoother 
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due to integration; in fact; in most cases it can be well approximated by a 
piece-wise linear function. Since, in addition, it was found that the integral 
over the Planck function over an arbitrary wavelength interval can conve­
niently be expressed in terms of poly-logarithmic functions, the computation 
times for total fluxes and radiative accelerations could be reduced by more 
than 5 dex with a loss in accuracy of only 1 percent. 

As an alternative to this deterministic approach we also developed a 
method in which the line positions are assumed to follow a Poisson process 
with mean density p(£)(Wehrse et al., 1998). The line strengths and broad­
ening parameters may be correlated with wavelength and may obey some 
suitable distribution, as e.g. 

p(t,*)=PoW) (8) 

where / is a suitable function to describe the line strengths and widths (com­
bined in the parameter #). The expectation values of the specific intensity 
for a shell of geometrical thickness z « R with constant acceleration w is 
then given by 

/>00 

(I) = / IP(dI) (9) 
Jo 

= lI°}~ IL (mp {~h f, * H ) TnS{z~^"}d" 
+ S ( 2 , O - S ( 0 , { - n « ) / e x p f - i £ x ( C K j \ (10) 

where the crucial term 

(exp 

with 

fl&T,) =exp (fp(?>*) | e x P (-^fxi(t',*,<-?)dA - 1 

(~ f X K K J ) = exp(-Xc(£ - V)H fl&ri) (11) 

dgd& 

(12) 
In these expressions we have splitted the extinction coefficient in an contin­
uum (subscript c) and a line contribution (subscript 1). S s the combined set 
of wavelengths and line parameters; the three arguments of the line absorp­
tion coefficient \ indicate the actual wavelength, the line parameters, and the 
center of line. The general formula for fi given here looks rather complicated; 
in actual cases, however, one integration can often be performed analytically 
so that quite handy expressions can be obtained. Fig. 2 gives as an example 
the expectation value of the intensity emerging from a rotating stellar wind 
under the assumption that the invidual lines have a J-function profile. 
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Fig. 2. Typical expectation value of the comoving frame specific intensity from an 
rotating wind as a function of latitude 9 and longitude (f>. Spectral lines are included 
in a stochastic description, see text. 

5 Discussion and Outlook 

In this contribution some powerful new methods for the modelling of radia­
tion fields in non-spherical wind have been discussed. Up to now they have 
been applied to rather simple situations only in order to understand the way 
radiation fields operate in such complicated systems as non-spherical and ro­
tating winds. The next step will be the proper determination of the opacity 
input data, in particular the distribution functions mentioned in the previous 
section. 
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Discussion 

J. Bjorkman: One of the more difficult aspects of radiation transfer is that 
the opacity depends on the radiation field. In the model you presented, the 
opacity constants are independent of the radiation field. How would one mod­
ify your model to account for these effects? 
R. Wehrse: In the analytical solutions for moving media presented here it is 
indeed assumed that the source function is known in advance. However, the 
solutions can also be used advantageously in NLTE calculations by inserting 
them into the rate equations. 
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