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Abstract

In this paper we study the fractional moments of the stationary solution to the stochastic
recurrence equation Xt = AtXt−1 + Bt , t ∈ Z, where ((At , Bt ))t∈Z is an independent
and identically distributed bivariate sequence. We derive recursive formulae for the
fractional moments E|X0|p, p ∈ R. Special attention is given to the case when Bt has
an Erlang distribution. We provide various approximations to the moments E|X0|p and
show their performance in a small numerical study.
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1. Introduction

We consider the stochastic recurrence equation

Xt = AtXt−1 + Bt , t ∈ Z, (1.1)

for an independent and identically distributed (i.i.d.) sequence ((At , Bt ))t∈Z of pairs (At , Bt )
with values in [0,∞)× R. We will write A,B,C, . . . for a generic variable of the stationary
sequences (At ), (Bt ), (Ct ), . . . , respectively. A unique causal stationary solution to (1.1) exists
if E logA < 0 and E logB+ <∞ (see [25]), and the solution can be written in the form

Xt = Bt +
t−1∑
i=−∞

Ai+1 · · ·AtBi, t ∈ Z. (1.2)

In what follows, we always assume that the stationary solution (1.2) exists.
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The stochastic recurrence equation (1.1) and its solution (1.2) have attracted significant
attention in the literature; see, e.g. [12], [21], [25], [33], and the references therein. This interest
is due to the numerous applications of the model (1.1). Among the most popular applications
are the ARCH(1) and GARCH(1, 1) processes in financial time series analysis introduced by
Engle [18] and Bollerslev [6], respectively. Another recent application is the modeling of
the TCP in telecommunications networks; see, e.g. [17], [23], and [28]. Boxma et al. [7]
considered (1.1) in the context of growth–collapse processes with renewal collapse epochs.
The stochastic recurrence equation (1.1) has also been used in the context of insurance risk
models; see [11] and [20]. Moreover, this equation is closely related to exponential functionals
of Lévy processes; see, e.g. [5], [9], [10], [24], and [29].

The distributional properties of the stationary solution to (1.1) are rather sophisticated. This
fact is highlighted by a famous result of Kesten [25] concerning the tails of X; see also [21].
Write

f (κ) = EAκ and φ(κ) = 1− f (κ), κ ∈ R.

Under the assumptions that there exists a positive α such that f (α) = 1, EAα logA and E|B|α
are both finite, the law of logA is nonarithmetic, and, for every x, P(A1x+B1 = x) < 1, there
exist constants c+, c− ≥ 0 such that c+ + c− > 0, and

P(X > x) ∼ c+x−α and P(X ≤ −x) ∼ c−x−α as x →∞. (1.3)

Because of the convexity of f and since f (0) = 1, we necessarily have f (κ) < 1 for κ ∈ (0, α).
Goldie [21] gave an alternative proof of (1.3) and determined the explicit form of the constants
c+ and c−. In particular, for A,B ≥ 0, he proved that

c+ = E[(A1X0 + B1)
α − (A1X0)

α]
αEAα logA

. (1.4)

Note that, due to the tail behavior (1.3), EXα = ∞; hence, both E(A1X0+B1)
α and E(A1X0)

α

are infinite while the nominator in the previous formula is finite.
If A ≤ 1 almost surely (a.s.), P(0 < A < 1) > 0, and Eer|B| < ∞ for some r > 0,

Goldie and Grübel [22] showed that (1.3) does not remain true. In this case, the tails of X
decay exponentially fast, thus ensuring the existence of all moments of X. If we formally set
α = ∞, we have f (κ) = EAκ < 1 for κ < α, just as in the Kesten–Goldie case. Under
mild conditions on A and B, Alsmeyer et al. [1] showed that A ≤ 1 a.s. and the existence
of exponential moments of B are conditions which are necessary to ensure that exponential
moments ofX exist. In the same paper, the authors quote a technical report of Kellerer (1992),
who proved for A,B ≥ 0 a.s. that EerX < ∞ for some r > 0 if and only if A ≤ 1 a.s. and
EerB <∞.

In this paper we are concerned with the calculation of the moments of the solution (Xt )t∈Z to
the stochastic recurrence equation (1.1). The positive integer moments of X can be calculated
by using the recursive argument given in [33]. First, observe that, from (1.1) for integer n ≥ 1,

Xn
d= (A1X0 + B1)

n,

whereX0 and (A1, B1) are independent. Then, assuming that E|X|p is finite and f (p) < 1 for
some p ≥ 1, an application of the binomial formula yields a recursive relation for the moments
EXl, 1 ≤ l ≤ n = [p], given by

EXl = (φ(l))−1
l−1∑
k=0

(
l

k

)
E(Ak1B

l−k
1 )EXk. (1.5)
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Note that f (l) < 1, l ≤ n, if p < α for the value α ≤ ∞ introduced above. It follows from
[1, Theorem 1.4] that E|X|p < ∞ if and only if EAp < 1 and E|B|p < ∞ for any p > 0,
provided that the mild conditionsA �= 0 a.s., P(B = 0) < 1, and P(A1x+B1 = x) < 1, x ∈ R,
hold.

In some special cases the distribution ofX can be calculated explicitly; see, e.g. [1], [7], [13],
[14], [15], [16], [21], [30], and the references therein. Then, in principle, one could also calculate
all moments of X, both the integer and the fractional moments.

In this paper we focus on the derivation of explicit formulae for the fractional moments of
X. Such moments were derived for models of telecommunication networks in [10] and [23],
and for exponential functionals of Lévy processes in [10], [23], and [29]. We also mention that,
for exponential B, the calculation of Goldie’s constant c+ in (1.4) reduces to calculating the
fractional moment EXα−1; see the comments at the end of Example 2.1. Moments are highly
relevant in statistical and econometric applications. In financial time series analysis, the ARCH
and GARCH processes introduced by Engle [18] and Bollerslev [6], respectively, constitute a
major class which is closely related to multivariate stochastic recurrence equations of the type
(1.1); see, e.g. [3] and [4]. The GARCH(1, 1) process fits into the one-dimensional stochastic
recurrence equation framework: it is a stationary process Yt = σtZt , t ∈ Z, where (Zt ) is a
mean zero, unit variance i.i.d. sequence and (σ 2

t ) solves the stochastic recurrence equation

σ 2
t = α0 + (α1Z

2
t−1 + β1)σ

2
t−1, t ∈ Z, (1.6)

for positive coefficientsαi andβ1. In applicationsZ is often assumed standard normal or student
distributed with β > 2 degrees of freedom. Then one is in the Kesten–Goldie framework,
i.e. there exist positive c0, α > 0 with E(α1Z

2 + β1)
α = 1 such that P(σ 2 > x) ∼ c0x

−α , and
a result of Breiman [8] ensures that the distribution of Y inherits the power law tail of σ . In
applications we are interested in the moments E|Y |p = EσpE|Z|p, p > 0, as well as in the
correlations of the sequences (|Yt |p) for positive p, most often for p = 1, 2.

The paper is organized as follows. In Section 2 we consider some recursive formulae for
the moments of X. In Section 3 we consider some special cases. Our main focus is on cases
which are related to exponential random variablesBt . We use the results and techniques proved
in [10] and [23]. We also consider the case when 0 ≤ A < 1 and B is bounded, and derive
explicit formulae for EXp.

2. Preliminaries

2.1. A simple recursive formula for moments

For the calculation of the fractional moments, the following observation is useful. A similar
formula was applied for calculating the moments of exponential functionals of Lévy processes
in [10], [23], and [29]. In what follows, we write FZ for the distribution function of any random
variable Z and FZ = 1− FZ for its right tail.

Lemma 2.1. Let p �= 0 be any real number. Assume thatA,B ≥ 0 a.s. are independent. Then

E[(A1X0 + B1)
p − (A1X0)

p] = p
∫ ∞

0
E(A1X0 + u)p−1FB(u) du, (2.1)

where both sides are finite or infinite at the same time. If 0 < EB < ∞, (2.1) can be written
in the form

E[(A1X0 + B1)
p − (A1X0)

p] = pEBE(A1X0 + B∗)p−1
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for a random variableB∗ which is independent ofA1, X0 and has the integrated tail distribution
of B given by

F ∗B(b) =
∫ b

0 FB(u) du

EB
, b > 0. (2.2)

Proof. We observe that, for any p ∈ R,

(A1X0 + B1)
p − (A1X0)

p = p
∫ B1

0
(A1X0 + u)p−1 du.

Hence, by the independence of A1X0 and B1,

E[(A1X0 + B1)
p − (A1X0)

p] = pE

[∫ B1

0
(A1X0 + u)p−1 du

]

= p
∫ ∞

0

[∫ b

0
E(A1X0 + u)p−1 du

]
FB(db)

= p
∫ ∞

0
E(A1X0 + u)p−1FB(u) du.

Then the statement of the lemma follows.

Remark 2.1. If EXp <∞, EB <∞, and f (p) �= 1, then the lemma yields

EXp = pEB

φ(p)
E(A1X0 + B∗)p−1. (2.3)

Following the argument after (1.5), we conclude that f (p) < 1 is a necessary condition for
EXp <∞ provided p > 0 and some mild conditions on A,B are satisfied. Since f is convex
and f (0) = 1, f (p) > 1 for p < 0. Hence, f (p) �= 1 is satisfied for all p �= 0 such that f (p)
is finite.

The idea of the proof of Lemma 2.1 can be applied iteratively. We explain the approach via
an example. Assume the conditions of the lemma are satisfied. Write Fn∗B for the distribution
function of a random variable Bn∗, which is obtained by applying the integrated tail operation
(2.2) n times and assuming that Bn∗ is independent of (A1, X0). Then, assuming that all
moments involved are finite and p �= 0,

EXp = pEB

φ(p)
[E(A1X0 + B∗)p−1 − E(A1X0)

p−1 + E(A1X0)
p−1]

= pEB

φ(p)
[(p − 1)EB∗E(A1X0 + B2∗)p−2 + E(A1X0)

p−1]

= p(p − 1)EB

φ(p)

[
EB∗E(A1X0 + B2∗)p−2 + f (p − 1)EB

φ(p − 1)
E(A1X0 + B∗)p−2

]
.

To illustrate the use of Lemma 2.1, we include the following benchmark example.

Example 2.1. Assume thatB has a standard exponential distribution, i.e.FB(x) = e−x, x > 0.
Then B∗ d= B and A1X0 + B∗ d= X. Multiple use of (2.3) yields

EXp = p · · · (p − n+ 1)

φ(p) · · ·φ(p − n+ 1)
EXp−n, n ≥ 1. (2.4)
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Relation (2.4) can be found in the literature on exponential functionals of Lévy processes and
related topics; see, e.g. [5], [9], [10], [24], and [29]. An explicit solution to (2.4) for At = βYt ,
positive Yt , β ∈ (0, 1), was given in [23]:

EXp = �(p + 1)
∞∏
k=1

φ(p + k)
φ(k)

, (2.5)

provided p > 0 or p < 0, −p �∈ N, f (p + 1) <∞, and E[(1− A)−1] <∞.
Under the assumptions of the Kesten–Goldie theory [21], [25] (see Section 1), the constant

c+ in (1.4) satisfies

c+EAα logA = α−1
E[(A1X0 + B1)

α − (A1X0)
α]

= E(A1X0 + B1)
α−1

= EXα−1

<∞,
although EXα = ∞. Then, if c+ and EAα logA are known, we can calculate the moments
EXα−k, k = 1, 2, . . . , using (2.4). Alternatively, if we know EXα−1 and EAα logA, we could
calculate c+. Unfortunately, (2.5) is not available in the Kesten–Goldie setting.

2.2. A result about the convergence of moments

The following result will be useful.

Lemma 2.2. Consider three i.i.d. sequences (At ), (Bt ), and (B(n)t ) of nonnegative random
variables defined on the same probability space. Assume that (At ) and (Bt ) are independent,
and that (At ) and (B(n)t ) are also independent. Let (Xt ) be the solution to (1.1), and let (X(n)t ) be
the corresponding solution with (Bt ) replaced by (B(n)t ). If EAp < 1 and E|B0 − B(n)0 |p → 0
as n→∞ for some p > 0, then

X(n)
d−→ X and E|X(n)|p → E|X|p as n→∞.

Proof. Recall the Mallows metric dp(R, S) = inf(E|R − S|p)min(1,1/p), p > 0, where the
infimum is taken over all joint distributions of the bivariate vectors (R, S) with fixed marginals
and pth finite moments. It is well known (see, e.g. [31]) that dp metrizes convergence in
distribution and Lp convergence. Under the assumptions of the lemma, for p ≤ 1,

dp(X
(n)
0 , X0) ≤ E|X(n)0 −X0|p

= E

∣∣∣∣
t∑

i=−∞
Ai+1 · · ·At [B(n)i − Bi]

∣∣∣∣
p

≤
t∑

i=−∞
(EAp)t−iE|B(n) − B|p. (2.6)

But
∑t
i=−∞(EAp)t−i < ∞ since EAp < 1 and E|B(n)0 − B0|p → 0. Then (3.6) follows for

p ≤ 1. For p > 1, the same idea of proof applies if we use the Minkowski inequality of order
p in (2.6).

The following example illustrates the use of Lemma 2.2.
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Example 2.2. Assume (At ) and (Bt ) are independent i.i.d. sequences of nonnegative random
variables, and that (Xt ) solves (1.1). We also assume that EAp < 1 and EBp < ∞ for some
p > 0. Let B(a) be a random variable with distribution given by

P(B(a) = 0) = 1− a for some a ∈ (0, 1]
and P(B(a) > x) = a(1− P(B ≤ x)), x > 0.

WriteFa for the distribution ofB(a). Denote by (X(a)t ) the solution to (1.1) for independent i.i.d.
sequences (At ) and (B(a)t ), where B(a)t

d= B(a). Consider an i.i.d. uniform sequence (Ui) on
(0, 1) independent of (At ). ThenF←a (Ut ) has the same distribution asB(a), whereF←a denotes
the quantile function of Fa . Obviously, E|B(a)0 − B(1)0 |p → 0 as a → 1. An application of
Lemma 2.2 now yields

X
(a)
0

d−→ X and E|X(a)0 |p
d−→ E|X|p.

3. Special cases

In this section we consider several special choices for the distributions of A and B, and give
recursive or explicit expressions for the fractional moments of X.

3.1. Cases related to exponential B

The examples of this section are closely related to Example 2.1, i.e. to the case of expo-
nentially distributed B. We will show how Lemma 2.1 and the results of Example 2.1 can be
applied to classes of distributions of B beyond the exponential distribution.

3.1.1. Erlang distributed B. In Example 2.1 we explained how Lemma 2.1 can be applied to
exponentially distributed B. A natural extension is to assume that B has an Erlang distribution.

Lemma 3.1. Assume that (Ei) is an i.i.d. standard exponential, independent of (Ai), and that
B

d= �n = E1 + · · · + En for some n ≥ 1. Also, assume that A ≥ 0 a.s. and A,B are
independent. Then, for p ∈ R,

φ(p)EXp =
n∑
k=1

(−1)k+1
(
n

k

)
EXp−kp(p − 1) · · · (p − k + 1), (3.1)

where we assume that all moments in this formula are finite.

Proof. For n = 1, this is just (2.4). Now assume that n ≥ 2. We have, with �0 = 0,

φ(p)EXp = E(A1X0 + �n)p − E(A1X0)
p

=
n∑
l=1

[E(A1X0 + �l)p − E(A1X0 + �l−1)
p].

As in the proof of Lemma 2.1, we obtain

E(A1X0 + �l)p − E(A1X0 + �l−1)
p = pE(A1X0 + �l)p−1. (3.2)

For l = n, A1X0 + �n d= A1X0 + B1
d= X. Therefore,

E(A1X0 + �n−1)
p = EXp − pEXp−1. (3.3)
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Using (3.2) and (3.3), we obtain

E(AX + �n−1)
p − E(AX + �n−2)

p = pE(AX + �n−1)
p−1

= pEXp−1 − p(p − 1)EXp−2.

Induction yields, for l = 1, . . . , n,

E(A1X0 + �l)p − E(A1X0 + �l−1)
p

=
n−l∑
j=0

(−1)j
(
n− l
j

)
p(p − 1) · · · (p − j)EXp−j−1.

This concludes the proof of (3.1).

Relation (3.1) yields a recursive relation for EXp in terms of the lower moments EXp−1, . . . ,

EXp−n. In contrast to the case n = 1 (exponential B), we could not solve the recursion (3.1)
explicitly. There is evidence that (3.1) yields good approximations to higher moments if one
can approximate EXp for small initial values of p (e.g. by Monte Carlo simulation); this has
already been reported in [12].

In the Kesten–Goldie setting, the right-hand side of (3.1) remains valid for the tail index p =
α if the left-hand side is replaced by E[(A1X0+�n)α−(A1X0)

α]. The resulting formula yields
an expression for Goldie’s constant c+ in (1.4) in terms of the moments EXα−1, . . . ,EXα−n.

3.1.2. The distribution of B is a multiplicative mixture of an exponential distribution. A partic-
ular case of (1.1) has attracted some attention:

Xt = At(Xt−1 + Ct), t ∈ R, (3.4)

for independent sequences (At ) and (Ct ) of i.i.d. nonnegative random variables. In this case,
Bt = AtCt , and At and Bt are dependent for every t with the exception of constant A. The
marginal distribution of the solution to (3.4) is known in some particular cases when A and C
have gamma- or beta-like distributions; see [13], [14], [15], [16], and [7], [10].

Lemma 3.2. Consider model (3.4), and assume that C is standard exponential and (At ) =
(βYt ) for some β ∈ (0, 1) and an i.i.d. sequence (Yt ) with Y > 0 a.s. Then

EXp = f (p)E(X0 + C1)
p = f (p)�(p + 1)

∞∏
k=1

φ(p + k)
φ(k)

, (3.5)

provided p > 0 or p < 0, −p �∈ N, f (p + 1) < ∞, and E(1 − A)−1 < ∞, and both sides
in (3.5) are finite or infinite at the same time.

Proof. Assume that EXp <∞ for some p > 0. Then, by Lemma 2.1,

EXp = f (p)E(X0 + C1)
p

= f (p)[E(X0 + C1)
p − EXp + EXp]

= f (p)[pE(X0 + C1)
p−1 + EXp].

Hence,

E(X0 + C1)
p = p

φ(p)
E(X0 + C1)

p−1.
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Then one is in the situation of Example 2.1. Replacing in (2.4) the moments EXp−k, k =
0, 1, . . . , by the corresponding moments ofX0+C1, the proof of Proposition 7 of [23] applies
to conclude that

E(X0 + C1)
p = �(p + 1)

∞∏
k=1

φ(p + k)
φ(k)

.

3.1.3. The distribution of B is exponential with an atom at 0. In this subsection we assume that

P(B = 0) = 1− a for some a ∈ (0, 1) and P(B > x) = ae−x for x > 0. (3.6)

ThenB∗ has a standard exponential distribution and it is plausible that the results for exponential
B are applicable. This is the content of the next result.

Lemma 3.3. Assume that B has the distribution (3.6), that (At ) = (βYt ) for some β ∈ (0, 1)
and an i.i.d. sequence (Yt ) of positive random variables, and that (At ) and (Bt ) are independent.
Then, for p > 0, the relation

EXp = �(p + 1)
∞∏
k=1

φ(p + k)
φ(k)

1− (1− a)EAk−1

1− (1− a)EAp+k−1 (3.7)

holds, provided E[(1− A)−1] <∞ and

(1− a)EAp−1 < 1 for p ∈ (0, 1). (3.8)

Proof. An application of Lemma 2.1 and (2.3) yields, for real p and standard exponentialB,

EXp = pa

φ(p)
E(A1X0 + B∗)p−1, (3.9)

where both sides are finite or infinite at the same time. The moment on the right-hand side is
finite for p > 0. For p ≥ 1, this is elementary, and, for p ∈ (0, 1), we have

E(A1X0 + B∗)p−1 ≤ E(B∗)p−1 =
∫ ∞

0
x−(1−p)e−x dx <∞.

Under the assumption (3.8), we also have EXp−1 < ∞ for p ∈ (0, 1), as we will show next.
We have the representation Bi = Eiri, i ∈ Z, where (Ei) is an i.i.d. standard exponential
sequence independent of the i.i.d. sequence (ri), where P(ri = 1) = 1 − P(ri = 0) = a.
Now consider T0 = 0 and T1 = min{i ≥ 1 : ri = 1}. This random variable is geometrically
distributed with success probability a: P(T1 = k) = a(1 − a)k−1, k ≥ 1. By induction,
define Ti+1 = min{k > Ti : rk = 1}, i ≥ 1. The sequence (Ti+1 − Ti) is i.i.d. Using the
representation X

d= ∑∞
i=0 Bi+1�i , where �i = ∏i

k=1Ak with the convention that �0 = 1,
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we also have X
d=∑∞

k=1 ETk�Tk−1. Hence,

EXp−1 ≤ E(ET1�T1)
p−1

=
∞∑
k=1

a(1− a)k−1
E(Ek�k)

p−1

=
∞∑
k=1

a(1− a)k−1
E(B∗)p−1(EAp−1)k

= aEAp−1
E(B∗)p−1(1− (1− a)EAp−1)−1

<∞,
where we used (3.8) in the last step. Relation (3.9) can be written in the form

EXp = p

φ(p)
[aE(A1X0 + B∗)p−1 + (1− a)E(A1X0)

p−1] − (1− a)E(A1X0)
p−1

= p

φ(p)
[1− (1− a)EAp−1]EXp−1

= p

g(p)
EXp−1, p > 0. (3.10)

We will verify that, for p > 0, provided E[(1− A)−1] <∞, (3.7) coincides with the following
limit:

EXp = �(p + 1) lim
n→∞

n∏
k=1

g(p + k)
g(k)

= �(p + 1)
∞∏
k=1

φ(p + k)
φ(k)

1− (1− a)EAk−1

1− (1− a)EAp+k−1 .

For the convergence of
∏∞
k=1g(p + k), p ≥ 0, to a finite positive limit, we verify that

∞∑
k=1

|g(p + k)− 1| <∞. (3.11)

However, for some constant c > 0,

∞∑
k=1

|g(p + k)− 1| =
∞∑
k=1

| − f (p + k)+ (1− a)f (p + k − 1)|
1− (1− a)f (p + k − 1)

≤ c
∞∑
k=0

f (p + k)

≤ cE[(1− A)−1]
<∞.

Therefore, (3.11) is satisfied and the infinite products in (3.7) have finite positive limits. Now
we proceed as in the proof of Proposition 7 of [23]. Consider the function

ψ(p) = E(Xp−1)

∞∏
k=1

g(k)

g(p + k − 1)
.
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In view of (3.10) it satisfies the relationsψ(p+1) = pψ(p) for p > 0 and alsoψ(1) = 1. We
will show that ψ is the gamma function. As in [23], we will use the Bohr–Mollerup theorem
(see [2]), according to which it remains to verify that logψ is convex on (0,∞). We have

logψ(p) = log

( ∞∏
k=1

g(k)

g(p + k − 1)

)
+ log EXp−1.

Following [23], the second derivative of log EXp−1 is nonnegative. Direct calculation shows
that the second derivative of

∑∞
k=1 log(g(k)/g(p + k − 1)) is nonnegative as well.

Now, in order to indicate that (Bt ) and (Xt ) depend on a, we write (B(a)t ) and (X(a)t ). Of
course, B(a)

d−→ B(1) as a ↑ 1, and the limiting random variable has a standard exponential
distribution. In our context, it is natural to ask whether the moments E(X(a))p converge to
E(X(1))p as a ↑ 1. The answer is indeed positive as follows from the discussion in Example 2.2.
Under the assumptions of Lemma 3.3, we have, for p > 0, as a ↑ 1,

X(a)
d−→ X(1) and E(X(a))p → E(X(1))p.

3.1.4. Geometric α-stable B. In the previous examples we considered light-tailed distributions
of B. The present example shows that B can have a very heavy-tailed distribution, while the
exponential benchmark (Example 2.1) is still useful for determining the moments of X.

We assume that
Bn = E1/α

n Cn, n ∈ Z, (3.12)

where (En) is an i.i.d. standard exponential sequence, (Cn) is an i.i.d. sequence of strictly
α-stable random variables for some 0 < α ≤ 2 (cf. [32]), A > 0 a.s., and (An), (En), and (Cn)
are independent. Then (3.12) defines a strictly geometric α-stable random variable; see [26]
and [27].

LetZ be an α-stable Lévy motion on [0,∞) such thatZ1
d= C1 andNt = #{i ≥ 1 : �n ≤ t},

t ≥ 0, �0 = 0, �n = E1 + · · · + En, n ≥ 1, be the Poisson process generated by (En),
ξt =∑Nt

i=1 logAi, t ≥ 0. Also, assume thatZ, (En), and (An) are independent. The stationary
solution to Xn = AnXn−1 + Bn, n ∈ Z, has the representation in law

X
d=

∫ ∞
0

eξt dZt .

Indeed, recalling that ZE1

d= E1/α
1 C1, we have

∫ ∞
0

eξt dZt =
∞∑
k=1

exp

( k∑
t=1

logAi

)
(Z�k − Z�k−1)

d=
∞∑
k=1

A1 · · ·AkE1/α
k Ck.

Write Y0 =
∫∞

0 eαξt dt , and assume that Y0 and C1 are independent. By the strict α-stability
of Z,

X
d= C1Y

1/α
0 ,
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and then, for p < α,
E|X|p = E|C|pEY

p/α
0 ,

where E|C|p is a known constant (see [34, Chapter 2]). It is not difficult to see that

Y0
d= Aα1Y0 + E1,

where A1, E1, and Y0 are independent. Now, the moments of Y0 can be determined by using
(2.5) and, in a similar way, one can determine the moments of the positive and negative parts
of X.

3.2. The case when B is bounded

In Section 1 we mentioned a popular class of models from financial time series analysis, the
ARCH-GARCH family, and the fact that it is common to analyze the fractional moments of
such processes. The GARCH(1, 1) squared volatility process (σ 2

t ) is described by the stochastic
recurrence equation (1.6). In this case, B = α0 is a constant.

The goal of this section is to study the fractional moments of X for bounded B. Using the
same idea as above, we can obtain similar formulae for recursion (1.1) with bounded A and B.

Proposition 3.1. Assume that A and B are independent, and that 0 ≤ A ≤ a < 1, 0 ≤ B ≤ b
a.s. for some positive constants a, b. Write f (p) = EAp and g(p) = EBp, p > 0. Then the
following relation holds for p > 0:

EXp =
∞∑
n=0

p(p − 1) · · · (p − n+ 1)

n!
f (n)g(p − n)

φ(n)

×
n−1∑
k1=0

f (k1)g(n− k1)

φ(k1)

k1−1∑
k2=0

f (k2)g(k1 − k2)

φ(k2)
· · ·

kn−1−1∑
kn=0

f (kn)g(kn−1 − kn)
φ(kn)

×
(

n

k1 − k2k2 − k3 · · · kn−1 − knkn
)
. (3.13)

Proof. We start by observing that A1X0 ≤ ab(1− a)−1. Thus, if a < (b + 1)−1, a Taylor
expansion of (B1 + x)p for 0 ≤ x ≤ ab(1− a)−1 < 1 yields

E(B1 + A1X0)
p =

∞∑
n=0

p(p − 1) · · · (p − n+ 1)

n! f (n)EBp−nEXn.

Then multiple use of (1.5) yields (3.13).
For any c > 0, write Bt(c) = Bt/c and Xt(c) = Xt/c. The stochastic recurrence equation

(1.1) is equivalent to
Xt(c) = AtXt−1(c)+ Bt(c), t ∈ Z, (3.14)

and EXp = cpE(X(c))p. Since B(c) ≤ b/c a.s. and X(c) ≤ a(b/c)(1 − a)−1, the above
calculations are valid for the new equation (3.14) under the condition a < (b/c + 1)−1. Thus,
if c is sufficiently large, the value a may be arbitrarily close to 1 and all moment calculations
can be extended for arbitrary a < 1 and b > 0.

Remark 3.1. The condition a < 1 is crucial for the above calculations. If P(A = 1) > 0
then all of the moments EXp, p > 0, can still be finite. For example, assume that we have
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q = P(A = 0) = 1− P(A = 1) ∈ (0, 1) and B ≡ 1 a.s. Then X has a geometric distribution
with parameter q and the moments are given by

EXp = (1− q)
∞∑
n=1

qn−1np, p > 0.

The latter example extends to the case when q = P(A = 0) = 1−P(A = a) ∈ (0, 1) for some
a > 0. ThenX =∑N

n=1a
n, whereN is geometric with success probability q and the moments

are given by

EXp = (1− q)
∞∑
n=1

qn−1
( n∑
k=1

ak
)p
.

For a �= 1, this turns into

EXp = (1− q) ap

|1− a|p
∞∑
n=1

qn−1|1− an|p,

which is finite for qap < 1.

In the remainder of this section, we assume that B ≡ 1 a.s. This case can be understood as
a limiting case when B is Erlang distributed and the parameter of the Erlang distribution tends
to∞. Indeed, consider the sequence of stochastic recurrence equationsX(n)t = AtX(n)t−1 + B(n)t ,
t ∈ Z, where (B(n)t ) is an i.i.d. sequence withB(n)

d= n−1(E1 + · · · + En) for an i.i.d. sequence
(Et ) with standard exponential marginal distribution. We also assume that (At ) and (B(n)t ) are
independent. By the strong law of large numbers, B(n)t → 1 a.s. as n→∞ for every t and we
also have E|B(n) − 1|p → 0 for every p > 0. Lemma 2.2 now yields E|X(n)|p → E|X|p.

A change of the indices in (3.13) and g ≡ 1 yield the alternative expression

EXp =
∞∑
j=1

∞∑
n1=1

· · ·
∞∑
nj=1

p(p − 1) · · · (p − (n1 + · · · + nj )+ 1)∏j
d=1 nd !

× f (n1)

φ(n1)

f (n1 + n2)

φ(n1 + n2)
· · · f (n1 + · · · + nj )

φ(n1 + · · · + nj ) .

This formula can be easily evaluated and converges very fast. We illustrate this aspect for A
with a uniform distribution on (0, a), a < 1. Then

∞∑
j=1

∞∑
n1=1

· · ·
∞∑
nj=1

p(p − 1) · · · (p − (n1 + · · · + nj )+ 1)∏j
d=1 nd !

an1

(n1 + 1)− an1

× an1+n2

(n1 + n2 + 1)− an1+n2
· · · an1+···+nj

(n1 + · · · + nj + 1)− an1+···+nj . (3.15)

In Figure 1 we approximate the latter expression for p = 0.6 and values a ∈ (0, 1) by
replacing all infinite sums in (3.15) by the sums truncated at some integer M ≥ 1. The value
M is indicated on the x-axis. The corresponding absolute change of the approximated moment
from M to M + 1 is tabulated in Table 1.

We mention for the sake of completeness that the calculation of Goldie’s constant c+ in (1.4)
in the case B ≡ 1 a.s. has been addressed in [19]. However, since we assume that A < 1 a.s.,
the results of this section are beyond the Kesten–Goldie setting.
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Figure 1: Approximation of EX0.6 for B = 1 and A uniform on (0, a), taking into account only the
firstM (indicated on the x-axis) summands in each of the infinite series in (3.15). The curves from bottom

to top correspond to a = 0.1, 0.3, 0.5, 0.7.

Table 1: Absolute values of the differences of the approximated moments for p = 0.6. The symbol

M,M+1 describes the absolute value of the change of the approximation from M to M + 1.

a 
12 
23 
34 
45 
56 
67 
78

0.1 4× 10−4 1× 10−5 6× 10−7 4× 10−8 2× 10−9 1× 10−10 1× 10−11

0.3 5× 10−3 3× 10−4 5× 10−5 8× 10−6 1× 10−6 3× 10−7 6× 10−8

0.5 2× 10−2 2× 10−3 3× 10−4 7× 10−5 2× 10−5 6× 10−6 2× 10−6

0.7 4× 10−2 4× 10−3 9× 10−4 3× 10−4 9× 10−5 4× 10−5 3× 10−5
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