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Abstract

There is increasing recognition that the welfare needs of cephalopod molluscs and decapod
crustaceans are important. Current commercial practices involving these animals include a
range of potential threats to their welfare, such as conditions of farming, capture, transport, and
slaughter. This article draws from and updates our 2021 review for the UK Government,
recommending a range of relatively simple and impactful changes that could benefit welfare
while highlighting important research gaps that should be prioritised to facilitate the drafting of
guidelines for best-practice.

Introduction

There is increasing recognition that the welfare needs of cephalopod molluscs (e.g. octopus,
squid, cuttlefish) and decapod crustaceans (e.g. lobsters, crabs, shrimp) are important. In the UK,
these groups of invertebrate animals were recently recognised as sentient as part of the Animal
Welfare (Sentience) Act 2022. We here take sentience as the capacity for subjective experience,
the ability to experience a range of feelings or ‘affects’, such as pain, joy, comfort, hunger, and
contentment (Browning & Birch 2022). The inclusion of cephalopod molluscs (henceforth,
‘cephalopods’) and decapod crustaceans (henceforth, ‘decapods’) followed a thorough review
of the current evidence (over 300 scientific studies) assessed against a set of physiological,
cognitive, and behavioural criteria specifically relating to the capacity for pain experience
(Birch et al. 2021; Crump et al. 2022).

This is not to say that the evidential picture is definitive: it is complex, incomplete and requires
a range of inferences and background assumptions. There is ongoing disagreement regarding
how to interpret the evidence and whether to consider cephalopods and decapods as sentient
(e.g. Mason & Lavery 2022; see also the range of responses to Crump et al. 2022). Nevertheless, it
has been taken by the UK Parliament to justify legislative protection of these animals. Elsewhere,
cephalopods have been recognised in animal welfare law, including the UK’s Animals (Scientific
Procedures) Act 1986, NewZealand’s AnimalWelfare Act 1999, and similar legislation in the EU,
Canada and some Australian states. Decapods have more limited recognition but still receive
certain protections in New Zealand, Austria, Norway, Switzerland, and some Australian states.
Recognising these animals as sentient requires, at minimum, that we ask: which current practices
could potentially harm their welfare?

In this article we survey the potential welfare harms arising from current commercial practices
involving cephalopods and decapods used mainly for food. Throughout the article, where we
refer to potential suffering or other welfare harms, this is taken to be conditional on the sentience
of the animals in question. As we have highlighted above we take there to be strong evidence in
favour of sentience in both cephalopods and decapods, but this is still open to a degree of
uncertainty. The article draws on, updates and expands our review for the UK Government
(Birch et al. 2021). Where possible, we have relied on literature that directly studies the welfare
impacts of different practices, however as such literature is limited, we have also inferred welfare
harms from relevant changes in behaviour, health, and physiology (e.g. those indicative of stress
responses). Our aim is not to draw up best-practice guidance for the treatment of cephalopods
and decapods, but to highlight some areas where guidance, research and/or policy interventions
may be required. While we include recommendations for easy, near-term changes, our primary
aim is to raise awareness of key issues and encourage further discussion regarding the best ways to
improve welfare in these and other areas. The following two sections survey the range of potential
welfare harms to cephalopods and decapods, respectively. Recommendations and evidence gaps
highlights what we see as the easiest and most beneficial changes to start with, as well as where
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more research would be most valuable. The final section concludes
the discussion and highlights the key animal welfare implications.

Commercial practices involving cephalopods

Cephalopods in sea fisheries

Most commercially used cephalopods are wild-caught and slaugh-
tered. Wild capture involves a range of potential welfare harms,
most notably the capture methods themselves, inappropriate hous-
ing after capture, and inhumanemethods of slaughter.Wild-caught
cephalopods, if not dead upon landing, usually die after being taken
from the water, posing significant welfare risks due to physical
trauma and asphyxiation between point of capture and landing, a
journey that can take hours or even days. The welfare issues are
similar to those arising for wild-caught fish. There is no easy way to
mitigate these risks, but codes of best practice should be developed
for cephalopods caught and landed alive (for recommendations, see
Pieroni et al. 2022; Sykes et al. 2024).

Globally, many inshore cephalopod fisheries target octopus,
cuttlefish, and squid species (Pierce et al. 2010). Capture methods
vary across fisheries and include netting, trapping, and dredging
techniques. Unlike decapod fisheries, captured cephalopods are not
transported alive and thus welfare risks for live maintenance and
captivity are not considered here. This section will instead focus on
welfare risks from the point-of-capture to landing. There is little
scientific literature explicitly identifying the welfare implications of
cephalopod fisheries. Consequently, the welfare risks discussed in
this section are largely based on capture, handling, and transport
data from studies that have captured cephalopods for scientific
purposes.

Squid are caught using trawls, driftnets, and seine nets. Hand-
jigging is also commonly used in squid fisheries (Pierce et al. 2010).
Squid caught in nets are typically dead when brought abroad,
whereas squid caught through jigs are alive. Hand-jigging is con-
sidered one of themore humanemethods for live capture because it
usually causes less harm to the squid, though it may not be suitable
for all species and can cause damage to skin or loss of arms and/or
tentacles through autotomy or improper handling when bringing
aboard (Cabanellas-Reboredo et al. 2011). While other live capture
methods exist, jigging is often preferred for minimising physical
injury (Pierce et al. 2010). Jigging is also selective in the size range of
animals captured (Rathjen 1991), reducing the need to discard
undersized animals. However, post-landing methods of slaughter
are not always considered humane, raising ethical concerns about
the overall treatment of squid during and after capture.

Octopus and cuttlefish are primarily caught using trawls, pots,
and traps (Pierce et al. 2010). Cuttlefish can also be caught using
nets (i.e. gillnets and trammelnets) and octopus can be caught as
by-catch in pots and traps. Trawled or netted cephalopods are
usually brought aboard the vessel dead or nearing death, whereas
trapped animals are caught alive (industry sources). Dredging has
also been used as a capture method for octopus, cuttlefish, and
squid. Trawling and dredging are the most environmentally
destructive methods and, in some instances, undersized cephalo-
pods are discarded, already dead (Pierce et al. 2010).

The following subsections will discuss the potential welfare risks
associated with the different capture methods.

Physical trauma
Capture techniques can result in physical trauma to cephalopods.
Specifically, physical trauma might arise from rough handling,

causing the mantle to detach from the head (AK Schnell, personal
observation 2013). Raising benthic species from depth too quickly
can lead to buoyancy malfunction due to rapid changes in pressure
(Forsythe et al. 1991; Sherrill et al. 2000; McDonald 2011). How-
ever, unlike the swim bladder of fish, the buoyancy mechanism in
cuttlefish (the cuttlebone) is unpressurised, so its volume is not
markedly altered as the animal changes depth (Denton & Taylor
1964; Sherrard 2000). Nevertheless, rapid vertical movement may
cause air to be trapped inside the mantle cavity (AK Schnell,
personal observation 2013) resulting in potential discomfort
or pain.

During capture methods that involve nets, individuals might be
pursued to exhaustion and then suffocate and become crushed
under the weight of other animals. However, further research is
required to determine the severity of this risk. Finally, collision with
other animals or the side of the net routinely causes skin damage
(Boyle 2010). Cephalopods have soft skin and are particularly
susceptible to skin ulcerations and fin injuries (i.e. specific to cuttle-
fishes and squids as octopuses do not have fins) that can result in
permanent damage. These injuries encourage bacterial growth
(Gestal et al. 2019) and can lead to disease or death (Hanlon
et al. 1984; Boyle 2010; Gestal et al. 2019).

Although most netted animals will die during or quickly after
being hauled up, skin and fin injuries become a welfare concern if:
(i) live individuals are left in nets for hours or days prior to landing
(as can be the case with trawl and drift nets); if (ii) live undersized
animals are released back into the water with injuries; and/or (iii) if
the skin injuries cause the animals to experience pain prior to death.
Skin plays a vital role in the survival of cephalopods as they use body
patterns for both concealment and communication (Hanlon &
Messenger 2018). Moreover, minor injuries in squid increases the
risk of predation (Crook et al. 2014), and squid with skin and fin
injuries respond poorly to temperature and salinity changes com-
pared to uninjured squid (Hanlon et al. 1983). Using soft netting
material or alternative capture methods (i.e. traps or jigging) might
decrease some risk of physical trauma involved in netting capture
methods (Iglesias et al. 2007), but this has not been systematically
tested.

Aggression and cannibalism
Except for a few species, both octopods and cuttlefish are relatively
solitary animals. Confinement in a small space with conspecifics,
such as a pot or trap, might not only cause stress but also fighting.
Indeed, limb amputation is commonly observed in wild-caught
octopuses (Florini et al. 2011), which might be a result of either
autophagy/auto-mutilation (Reimschuessel & Stoskopf 1990; Budel-
mann 1998) or fighting. Another risk is cannibalism; all coleoid
cephalopod groups have cannibalistic tendencies, particularly between
individuals that are not size-matched and when insufficient food is
provided (Aguado-Gimémenz & Garcia Garcia 2002; Hayter 2005;
Moltschaniwskyj et al. 2007; Budelmann 2010; Ibáñez & Keyl 2010;
Pierce et al. 2010; Jacquet et al. 2019).

Consequently, fisheries that include traps or pots to detain live
individuals together should ensure that their devices are large
enough for the species in question, baited with sufficient prey to
sustain the maximum number of captive individuals and be
checked frequently. Leaving the devices in situ for several days
can result in discomfort, stress, and even death, as the confined
space can provoke trapped animals to fight or eat each other. The
frequency of checking octopus traps varies depending on local
regulations, fishing practices, and environmental conditions. In
False Bay, South Africa, for example, soak time, trap density, and
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sea surface temperature are considered when determining optimal
intervals (Sanjay 2022). Additionally, variations in octopus behav-
iour, such as differences in trap interaction and escape attempts,
suggest that checking frequencymay need to be adjusted to account
for activity patterns and catch efficiency (Dominguez-Lopez et al.
2021).

Exposure to inappropriate salinity and temperatures
Cephalopods are highly stenohaline and stenothermal (Fiorito et al.
2015),meaning they can only tolerate a narrow range of salinity and
temperature (Moltschaniwskyj et al. 2007). Changes in salinity can
result in visual indicators of stress or discomfort, such as blanching
of the skin and excessive inking, and can lead to death (AK Schnell,
personal observation 2012). While stratification or mixing can
sometimes buffer the effects of freshwater run-off, cephalopods in
shallow or enclosed inshore environments remain vulnerable to
sudden salinity changes. A single overnight rainfall event of over
60 mm caused salinity fluctuations severe enough to result in up to
70% mortality in cuttlefish held in open-air, pot-like aquarium
traps exposed to the elements (AK Schnell, personal observa-
tion 2012). Such conditions, likely to become more frequent with
extreme weather, highlight the need for frequent trap checks to
minimise mortality.

Slaughter methods
Trawled or netted animals are usually brought aboard dead, whereas
trapped or jigged animals are often landed alive (industry sources).
If the animal is still alive, it will die from asphyxiation before being
iced. Time of death via asphyxiation on boats is not well-
documented but can take minutes to hours, which raises welfare
concerns, especially since cephalopods are likely to experience
distress during the process. Anecdotal evidence suggests that poten-
tially inhumanemethods are sometimes used on fishing vessels, such
as clubbing, slicing the brain, and reversing the mantle (Pereira &
Lourenco 2014).

There is currently an evidence gap regarding humane slaughter
methods that are commercially practical and available. There are
efforts to improve and standardise euthanasia for captive cephalo-
pods used in scientific experiments (Andrews et al. 2013; Fiorito
et al. 2015; Butler-Struben et al. 2018). Currently, the only recom-
mended method of humane slaughter for cephalopods is terminal
overdose of an anaesthetic (typically magnesium chloride and ethyl
alcohol), often followed by decerebration (Boyle 2010; Andrews
et al. 2013; Fiorito et al. 2015; Abbo et al 2021). However, this would
be inappropriate for cephalopods slaughtered for human consump-
tion. Furthermore, mechanical methods that do not involve con-
tamination, such as cutting or puncturing of the brain, require
skilled practitioners to ensure they are performed correctly (Boyle
2010; Andrews et al. 2013; Fiorito et al. 2015) and are inefficient for
large-scale practices. Further research is needed to determine the
optimal slaughter methods for commercial cephalopod fisheries.
We have been unable to find any codes of best practice or voluntary
guidelines specific to cephalopod fisheries. Even though cephalo-
pods are often caught as by-catch, it would be sensible to develop
codes of best practice for circumstances in which cephalopods are
alive when landed.

Octopus aquaculture

Currently, cephalopod aquaculture is small-scale and only per-
formed with a few species (O’Brien et al. 2018). However, farms
can be found in Europe, Australia, Latin America and Asia (Jacquet

et al. 2019). Cephalopods are sometimes suggested as an attractive
candidate for large-scale commercial aquaculture. This is due to
increasing demand for cephalopod consumption, their high value,
rapid growth, high food conversion rate, protein content, and
fecundity (Pierce et al. 2010). Both common cuttlefish (Sepia
officinalis) and common octopus (Octopus vulgaris) have been
identified as promising candidates for commercial aquaculture in
Europe, and some progress has beenmade in farmingO. vulgaris in
Spain. The issue of octopus welfare in aquaculture has becomemore
pressing with recent proposals to develop larger commercial farms
in the Canary Islands, with worries about animal welfare at the
forefront, alongside concerns about sustainability (Marshall 2023).
Already some states in the US have issued pre-emptive bans on
octopus farming and import of farmed octopus. The following
sections will outline key welfare risks arising from octopus farming,
highlighting the features of octopus that make them especially
unsuitable for intensive conditions and the lack of humane slaugh-
ter methods.

Hatchling mortality
One of the currently limiting issues in captive management of
octopus is hatchling mortality. As well as limiting the viability of
cephalopod farming, this can also be a welfare issue. ForO. vulgaris,
survival rates are, at best, around 30–40% at day 40 (Iglesias et al.
2007) and < 10% by day 60 (Vaz-Pires et al. 2004). This is primarily
due to problems with temperature, water quality, and nutrition
(Vaz-Pires et al. 2004; Boyle 2010; Navarro et al. 2014). Moreover,
hatchlings require a large amount of live food (larval shrimp and
other crustacea), which can be difficult to obtain (Iglesias et al.
2007; Pierce et al. 2010). Young animals dying of poor nutrition and
inappropriate housing conditions are highly likely to suffer poor
welfare.

Capture and transport
As captive breeding efforts and rearing have tended to fail, octopus
aquaculture often takes the form of ‘ranching’ or ‘rearing’, in which
young animals are captured and grown in captive tanks for eventual
sale. As noted above, many capture and transport methods can
harm cephalopods. Cephalopods require highly oxygenated water,
and prolonged transport can lower oxygen and increase nitrogen-
ous waste. An air stone or aerator should be used whenever possible
(Iglesias et al. 2007; McDonald 2011; Fiorito et al. 2015). Addition-
ally, if the animals ink in the water and it is not subsequently
cleaned (or the animal transferred), the ink can coat the gills and
cause asphyxiation (Hayter 2005; McDonald 2011). Several species
of octopus show stress-related biomarkers after being caught by
trawl, such as a compromised immune system, but they typically
recover within 24 h (Barragán-Méndez et al. 2019). Some species
appear more suited than others to these procedures – for example,
O. vulgaris and S. officinalis show some resistance to stress from
handling and transport (Vaz- Pires et al. 2004; Cooke et al. 2019).

A working group through FELASA (Federation of European
Laboratory Animal Science Associations) has recently published a
set of best-practices for capture and transport of cephalopods
(Sykes et al. 2024), though this is primarily for research purposes
and may not reflect larger-scale commercial operations.

Poor nutrition
Poor nutrition is one of the primary obstacles to establishing large-
scale octopus aquaculture, as the animals are carnivorous and
typically require live prey (Boyle 2010; Pierce et al. 2010; Navarro
et al. 2014). Although work has been done on developing suitable
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alternatives, none has been successful enough for widespread use
(Pierce et al. 2010). As it stands, there is insufficient understanding
of the metabolism and nutritional needs of cephalopods to formu-
late complete diets (O’Brien et al. 2018). Animals which fail to
thrive on food sources provided will experience a range of welfare
harms, such as hunger as well as nutritional andmetabolic diseases.

Inappropriate housing
The quality of the aquatic environment is critical to cephalopod
health andwelfare. Cephalopods have precise environmental needs,
requiring strict monitoring of oxygen, pH, CO2, nitrogenous waste,
and salinity levels, as well as rapid removal of ink as necessary (Vaz-
Pires et al. 2004; Hayter 2005; McDonald 2011; Sykes et al. 2012;
Fiorito et al. 2015; Cooke et al. 2019). Inadequate water conditions
can lead to health issues, infections, respiratory problems, agitation,
frequent inking and jetting, and even death (Hanley et al. 1998;
Hayter 2005; Fiorito et al. 2015).

Other environmental factors, such as lighting, temperature, and
noise or vibrations, also significantly impact their welfare (Hayter
2005; Fiorito et al. 2015). Cephalopods possess unique sensory
abilities, such as detecting polarised light, and advanced mechan-
oreception and chemosensory capabilities, which demand specific
environmental conditions (Browning 2019; Cooke et al. 2019).
Temperature appears particularly important, impacting feeding,
growth, and lifespan (Aguado-Giménez & García García 2002;
Sherrill et al. 2000).

Inadequate shelter in captivity is a major stressor for cephalo-
pods. In their natural habitat, these soft-bodiedmolluscs use hiding
and rapid escape strategies against predators (Cooke & Tonkins
2015). A lack of sufficient or appropriate shelter can cause behav-
iours associated with fear and stress, such as inactivity and anorexia
(Sherrill et al. 2000). Moreover, stress in octopus can even result in
autophagy: the consumption of their own limbs (Hayter 2005).
Providing ample hiding spots, such as shelters or caves, is essential
for their welfare (Vaz-Pires et al. 2004).

Furthermore, as discussed above, appropriate social grouping is
crucial. Most octopus species are solitary and prone to stress when
overcrowded. Housing them individually is important, as crowding
can trigger aggression, cannibalism (Aguado-Giménez & García
García 2002; Hayter 2005; Budelmann 2010; Pierce et al. 2010;
Jacquet et al. 2019) and increased stress, affecting their resting
and feeding habits (Cooke et al. 2019).

Lack of cognitive stimulation
There is also the potential for poor psychological welfare for captive
octopus, due to their behavioural and cognitive complexity (Cooke
& Tonkins 2015; Jacquet et al. 2019). Octopus are even able to
recognise and form relationships with caregivers, and the presence
of familiar people can impact their welfare (Narshi et al. 2022).
Jacquet et al. (2019) are concerned about lack of cognitive stimu-
lation for farmed octopus. They worry that the “tightly controlled
andmonotonous environments” typical of farming do not allow for
the cognitive stimulation, exploration, and environmental control
necessary for psychological welfare. Cephalopods regularly show
signs of stress in poor captive environments, such as irregular
swimming patterns, lethargy, agitation, and anorexia (McDonald
2011).

Disease
Several factors, including stress, suboptimal water quality, and inad-
equate nutrition, can predispose cephalopods to disease. Stress, in
particular, weakens their immune systems, increasing susceptibility

to bacterial, viral, and fungal infections (Sherrill et al. 2000; McDo-
nald 2011). The cephalopod immune system is not well understood
(Sykes & Gestal 2014; O’Brien et al. 2018). Whilst viral infections
have rarely been reported, bacterial infections commonly occur in
skin lesions (as above), and gills (Sykes & Gestal 2014; Fiorito et al.
2015). Parasites are common in wild animals and can appear in
captive stocks if live prey are used (Sykes & Gestal 2014). Addition-
ally, the current lack of comprehensive knowledge of cephalopod
analgesia and anaesthesia poses welfare concerns, particularly when
animals are injured or need to undergo medical interventions
(Fiorito et al. 2015).

Slaughter methods
There is, at present, no established method to humanely slaughter
farmed cephalopods; a major evidence gap. Proposals for commer-
cial octopus farms in the Canary Islands have suggested slaughter
through immersion in ice slurry, but there is no evidence that this is
a humanemethod for octopus. The use of ice slurry for slaughtering
fish has faced criticism due to its potential to cause prolonged
distress and pain (Marshall 2023). This occurs as the fish’s body
temperature gradually decreases. Additionally, the sudden immer-
sion in extreme cold can lead to thermal shock. In some instances,
this method also results in asphyxiation, as fish struggle to get
sufficient oxygen from the water (Marshall 2023). As noted in the
previous section, other more humane methods are not appropriate
for use on a commercial scale.

Commercial practices involving decapods

This section does not aim to provide a comprehensive guide to
safeguarding the welfare of decapods in commercial use. Rather,
the focus is on identifying specific practices that potentially create
a risk of poor welfare, with a focus mainly on marine rather than
freshwater decapods, as well as current evidence gaps. In 2022, 62.2%
of decapod production consisted of penaeid shrimp species (by live
weight equivalent; Food and Agriculture Organisation [FAO] 2024),
followed by 23.3% being red swamp crayfish (Procambarus clarkii),
and 6.4% being Chinese mitten crab (Eriocheir sinensis).

Handling of wild-caught decapods during capture, transport,
and sale

Shrimp and prawns are currently farmed in very large numbers
(Mood & Brooke 2019), but most commercial use of other marine
decapods involves wild-capture and the subsequent transport, sale,
and slaughter. Whilst farming comprised 68% of crustacean pro-
duction in 2022 (FAO 2024) and will be covered below, the follow-
ing sections first outline the primary welfare risks to wild-caught
marine decapods that arise during the processes of transport, sale,
and slaughter, including the direct harms from declawing and
nicking, harms from inappropriate housing and transport condi-
tions, and poor handling by untrained handlers. An estimated 3.3
million tonnes of shrimps and lobsters were caught from marine
capture fisheries worldwide in 2022, which was approximately 9.6%
by weight of all marine captured animals (FAO 2024).

Accidental injury
It is generally in the interests of the shellfish industry to avoid
damaging the decapods they catch, with intact animals fetching a
much higher value than injured ones would, especially in larger
species. Therefore, industry guidance already emphasises careful
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handling as good practice (e.g. Jacklin &Combes 2005; Seafish et al.
2024). Risk of physical damage is greater for catches that are
intended formarkets with less emphasis on the quality of individual
animals, such as trawl-caught species. Accidental physical injuries
to decapods include cracked carapaces, damaged antennae, and loss
of limbs. Haemolymph can rapidly leak from cracks, killing the
animal. In species intended for relatively prolonged live storage or
transport, industry guidance recommends that animals are care-
fully inspected, and those with damaged limbs should be prompted
to cast off the limbs via autotomy (Jacklin & Combes 2005). It is
unclear what the relative welfare impact of external injury versus
autotomy is to decapods, because injuries vary greatly, but risk of
infection or rapid death is lessenedwith autotomy. Crabs with claws
that were manually twisted off showedmore defensive behaviour in
contests, more frothing at the mouth and more haemolymph loss,
compared with those whose claws were autotomised following an
incision to the joint above the merus (McCambridge et al. 2016).

The risk of accidental injury can be reduced by refined capture
methods, such as using smooth plastic inserts in creels to prevent
limb tearing when crabs are pulled from netting (Jacklin & Combes
2005), avoiding rapid haulage of lobsters from deeper waters (Basti
et al. 2010), or where it is not possible to alter commercial haulage
speeds or capture depths allowing recovery in recirculating sea-
water (rather than damp storage) (Basti et al. 2010). Studies on
species caught using both creels and trawling (e.g. langoustine
[Nephrops norvegicus] and shrimp [Pandalus borealis]) have shown
trawling causes greater physiological stress, risk of injury, and
mortality, especially when trawl times were longer (Ridgway et al.
2006; Albalat et al. 2009; Larssen et al. 2013). Alongside discussions
about the economic and environmental effects of trawling for
decapods (e.g.Williams&Carpenter 2016), the welfare risks should
also be considered.

There is risk of physical injury (such as crushing) during trans-
port and storage, which can be reduced by using well-designed
species-appropriate containers. Containers should be resistant to
crushing, not allow limbs to become caught, and not contain so
many animals that those above do not crush those below (Barrento
et al. 2010). When lobsters are stored onboard in totes, they should
be packed with their tails curled beneath them to protect their
ventral surface from puncture, face in the same direction, and be
at a density that aids stability, but without pressing the animals too
tightly together (Basti et al. 2010).

At all stages, handling decapods causes physiological stress
(Jacklin & Coombes 2005) and should be performed with care
and kept to a minimum. If decapods are ‘thrown’ (e.g. Barrento
et al. 2008) or ‘tossed’ (Lavallee et al. 2000) into containers, this
increases the risk of physical injury and loss of vigour compared
with more careful placement. Careless and rough handling is a
welfare risk and should be avoided.

Declawing
Declawing is the practice of manually twisting or snapping the
claws off a decapod, and evidence suggests this may be painful
for the animals. Declawing can be contrasted with inducing the
animals to autotomise their own claws, usually by making an
incision in the limb at certain locations. Declawed crabs will tend
their wound, shield it, and in some cases display a ‘shudder’
response (McCambridge et al. 2016). They also show a physio-
logical stress response (as indicated by glucose and lactate in the
haemolymph) for at least 24 h after the injury, which is more severe
for manual declawing than induced autotomy (Patterson et al.
2007). Declawed crabs may be thrown back to sea (the claw being

the most valuable product in some cases) but without their claws,
they are at a competitive disadvantage in contests with other crabs
and unlikely to mate (McCambridge et al. 2016), as well as less able
to gain access to bivalves, one of their main food sources (Patterson
et al. 2009; Duermit et al. 2015). Larger wounds can also lead to
death within days (Duermit et al. 2015).

It is reasonable to conclude (with high confidence) that declaw-
ing true crabs (infraorder Brachyura) causes suffering. UK industry
codes of practice discourage declawing (Seafish et al. 2024), but
declawing is largely unregulated, with bans in place only in some
states within the US. The practice was banned in the UK from 1986
until 2000, when the relevant legislation was overridden by a
EuropeanUnion regulation (No 850/98). Banning declawingwould
be an easy, low-cost intervention to improve the welfare of decapods.

Disabling pincers (including nicking)
Decapod pincers or large claws usually require disabling in some
way, to prevent injury to both human handlers and other animals
sharing the same container. For clawed lobsters, the usualmethod is
to restrain the claws using elastic bands or cable ties (Jacklin &
Combes 2005; Seafish et al. 2024). Research into the welfare effects
of banding is yet to provide any conclusive evidence that this
practice compromises lobster welfare compared with the harms
of leaving the claws unrestricted. When comparing the haemo-
lymph parameters of group-housed banded American lobsters
(Homarus americanus) with those of individually housed non-
banded lobsters, there was a significant lasting increase in calcium
levels but not of glucose and lactate, which are more typically taken
to indicate stress (Coppola et al. 2019). There is therefore no reason
at this stage to consider regulating this procedure.

For brown crabs (Cancer pagurus), banding is considered
unsuitable within the shellfish industry (Jacklin & Combes 2005;
Seafish et al. 2024), due to the claws’ tapered conformation. Instead,
if live storage or transportation of the crabs is necessary, the tendon
connecting the two parts of each claw is cut. This procedure is
known as ‘nicking’. There is evidence that this has negative
welfare effects. Nicking causes elevated glucose and lactate in
the haemolymph and increases the risk of muscle necrosis and
pathology (Welsh et al. 2013). These effects are worsened at
warmer temperatures, whilst colder temperatures helped reduce
the risk of physiological stress and pathology (Johnson et al.
2016). Due to the health and welfare risks to crabs, alternatives
to nicking should be developed and implemented. One potential
alternative is immobilisation using elastic bands as is sometimes
practised for brown crabs in Norway (Woll et al. 2010). In blue
crabs (Callinectes sapidus), elastic bands can be successfully used
for binding claws if a small block or dowel is first gripped between
the two dactyls of each claw and then left in place (Haefner 1971).
Another solution to prevent fighting could be to use individual
compartments for storing crabs, equivalent to the ‘tubes’ used for
Nephrops (langoustine).

Social stress and aggression
Aggression and stress can occur in decapods that are usually
solitary in the wild, such as lobsters, when many animals are kept
in close proximity, such as being trapped in the same creel or
housed in live storage tanks at food retailers. Social aggression can
cause ‘anxiety-like’ states in crayfish (P. clarkii) (Bacqué-Cazenave
et al. 2017), and it is reasonable to assume that social aggression will
produce similar states in other decapods. While socially grouping
lobsters with bound pincers did not significantly increase haemo-
lymph glucose or lactate compared to individual holdings (Coppola
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et al. 2019), this could be due to the protection from injurious
aggression or because the stress measures used were not sensitive
to the effects. To prevent aggression and associated stress during
capture, the Seafish code of good practice for handling crustaceans
recommends the use of creels with a second chamber andwith escape
gaps or a largemesh net (where practical) to allow by-catch to escape
(Jacklin & Combes 2005).

Though low stocking density may be important in preventing
social stress, one survey conducted in Portugal showed that stock-
ing densities can be very high (maximum reported: 300 kg m�3)
and sometimes exceed recommendations (120 kg m�3; Barrento
et al. 2008). Carder (2017) investigated live lobster storage condi-
tions at nine UK food retailers and found that lobsters were stocked
at densities that caused some individuals to be on top of each other
in eleven of the 26 display tanks observed. Indeed, in four tanks,
there were at least two full layers of lobsters. Similarly, Crustacean
Compassion (2020) reported lobsters fighting in a wholesaler dis-
play tank, and up to 50 lobsters being displayed within a single tank
(dimensions not given). High stocking densities of socially stored
decapods could represent a risk to welfare.

Exposure to inappropriate temperatures
The thermal preferences of decapods differ between species and
depend to some extent on what temperature they are acclimated
to. For most species, their upper and lower temperature tolerance is
currently unknown (Lagerspetz &Vainio 2006). However, there are
potential welfare risks from exposing animals to temperatures that
are too high or low.

Physiological stress, disease susceptibility, and mortality are
higher in decapods transported or stored at excessively warm
temperatures. This can occur whenever vessel- or shore-based
storage containers cannot be cooled to an optimal temperature,
such as during warm weather (Lavallee et al. 2000; Jacklin &
Combes 2005). Studies of decapod transport at different temperat-
ures have shown negative health, behaviour and physiological stress
effects at higher temperatures for brown crabs (C. pagurus) (Woll
et al. 2010; Barrento et al. 2011; Johnson et al. 2016), shrimps
(P. borealis) (Larsson et al. 2013) and Asian tiger prawns (Penaeus
monodon) (de la Vega et al. 2007). Decapods in both immersed and
damp storage must, therefore, be kept below a maximum tempera-
ture threshold appropriate for their species (Jacklin&Combes 2005).
This is the case even for temporary storage (e.g. onboard vessels or
awaiting transfer) – for example, lobsters landed on sunny days
showed greater loss of vigour than those on cloudy days, presumably
because of exposure to sunlight (Lavallee et al. 2000). Use of shade
covers, running seawater hoses, and planning capture times to avoid
the hottest parts of the day can all reduce excessive heat exposure. UK
codes of practice recommend storing decapods between 4 and 8oC
(Seafish et al. 2024).

Excessively cold temperatures may also be a problem. Ice or ice-
packs are sometimes used to cool decapod environments on board
vessels and during live transport, because they reduce the animals’
activity levels and oxygen requirements, helping prolong their lives
(Jacklin & Combes 2005). However, ice should not be placed in
direct contact with decapods (Seafish et al. 2024). Fishing industry
reports suggest that the sudden cold can stress and even kill many
decapod species fromUKwaters (Jacklin & Combes 2005). In some
countries, including Italy and Switzerland, displaying and trans-
porting live crustaceans on ice or in icy water is illegal. Most
marine decapods do not inhabit polar regions (the exception being
certain caridean shrimp species), so they would rarely encounter
ice in nature, and most become immobile at or below about 2°C

(Frederich et al. 2002). The reduced activity in decapods when
cooled to near freezing is sometimes termed ‘torpor’. It reduces the
metabolic rate, which helps them survive short cold periods and
regain activity once temperatures increase again. For decapods
fished in waters that rarely reach temperatures below 4°C (such
as the UK; Morris et al. 2018), torpor is unlikely to be a ‘natural’
behaviour.

Whether near freezing temperatures cause nociception or pain
in decapods is unknown. Research into this is urgently needed,
especially because there is the assumption that extreme cooling has
anaesthetic effects, which is in direct conflict with the possibility
that it could cause avoidance, nociception, or pain. Even in humans,
this paradox exists, because very cold temperatures can cause pain,
but can otherwise numb certain other sources of pain (Yin et al.
2015), so the situation may also be complex in decapods, and
current evidence is inconclusive. Cold shock did not influence
haemolymph serotonin or octopamine levels in either crabs or
shrimp (Weineck et al. 2018). Lobsters (H. americanus), spiny
lobsters (Panulirus japonicus), and prawns (Penaeus japonicus)
have cold-sensitive neurons in their ventral nerve cord, which
increase their firing rate within a temperature range of 0.5–5.5°C
(Tani & Kuramoto 1998). Puri and Faulkes (2015) found no
evidence for cold-sensitive nociceptors in crayfish (P. clarkii), but
this study used a much colder stimulus (�78°C) than either con-
ventional chillingmethods or ecologically relevant conditions. Cold
nociception in general is not well understood across species, and it
may have evolved later than heat nociception (Smith & Lewin
2009). This is an important evidence gap: there is a need for better
knowledge of the lowest temperature that commercially important
species of decapod can tolerate without harming health andwelfare.

Storage and transport out of water or in marine vivier vehicles
Another potential welfare risk is the open-air storage and transport
of aquatic decapods. For instance, rock lobsters (Panulirus cygnus)
will tail-flip (thought to be a behavioural sign of stress) as soon as
they are removed from the water (Paterson & Spanoghe 1997).
Some decapods, especially brown crabs, green crabs, and lobsters,
can typically survive for 2–3 days in ‘dry’ storage, as long as the
conditions are sufficiently damp. This is sometimes known as damp
storage or semi-dry storage. Industry guidance suggests that deca-
pods in dry storage should be covered with wet seaweed, fabric,
paper or hessian and kept between 4 and 8oC (Seafish et al. 2024).
The welfare effects of dry storage are not well known. One study
investigating the effects of damp storage on brown crabs (C. pagurus)
reported that waste products, such as ammonia, started to accumu-
late in the haemolymph, since seawater is needed to remove them
(Woll et al. 2010). This accumulation of waste products may or may
not cause suffering — this is an evidence gap.

A key welfare risk to (non-amphibious) decapods is hypoxia
(lack of oxygen), which causes lactate to build up in the tissues due
to anaerobic respiration. In humans, this build-up of lactate is
painful. Whether it is also painful in decapods is unknown —

another evidence gap. For animals held in vivier vehicles (lorries,
boats or trailers adapted to transport marine life in seawater),
industry guidance suggests that oxygen saturation should not fall
below 85%, which is a risk over time, at higher stocking densities,
and under warmer temperatures (Seafish et al. 2024). Hypoxia can
occur when an animal is removed from water, because the gills can
collapse. Decapods are exposed to air during damp storage, but also
sometimes whilst awaiting transfer to vehicles or storage contain-
ers. For example, a study of crabs transported from the UK to
Portugal found that crabs held in the buckets for longer showed

6 Heather Browning et al.

https://doi.org/10.1017/awf.2025.25 Published online by Cambridge University Press

https://doi.org/10.1017/awf.2025.25


increased haemolymph L-lactate, acidity, and haemocyanine before
the journey, and lasting lowered haemolymph pH throughout the
entire journey (Barrento et al. 2010). Since hypoxia can also occur
in viviers with seawater low in oxygen, in some cases, decapods will
have equivalent or even better experiences in damp storage than
storage in poor-quality seawater (Lorenzon et al. 2008; Barrento
et al. 2011, 2012). However, the focus should be on ensuring higher-
quality seawater transport, good water quality, and appropriate
temperature. Keeping seawater clean and well-aerated can be chal-
lenging but is very important (Jacklin & Combes 2005; Seafish et al.
2024). However, where this is not possible, it may sometimes be
preferable to use temporary damp storage. The maximum duration
of damp storage should be investigated for key species to help
prevent suffering.

Lack of food
Decapods in medium-term storage, such as lobsters, are often not
fed (Seafish et al. 2024), partly to prevent contamination and
soiling of the water with uneaten food and waste products. They
can survive without obvious weight loss or increased mortality
risk for several weeks without food (e.g. Siikavuopio et al. 2018),
although there are species differences (Sacristán et al. 2017). In the
wild, decapods have periods of fasting as part of their moult cycle
(Lipcius & Herrnkind 1982). Recently moulted decapods are
usually avoided in the fishing industry, because their flesh is very
watery and their soft shells make them vulnerable to damage, so
stored individuals will mostly comprise animals between moults
that would be motivated to feed, and a smaller proportion that
may have been preparing to moult and therefore would not feed.
Housing animals in colder water may help them cope with lack of
food, as indicated by physiological markers (Albalat et al. 2019;
Siikavuopio et al. 2018). The resilience to starvation at cool
temperatures in terms of bodyweight and mortality suggests that
lack of foodmight pose little welfare concern for some species over
the short- to medium-term, although this has not been tested
directly, and fasting does confer some gradual physiological
effects.

Lack of access to dark shelters
Decapods in the wild will spend substantial amounts of time in dark
shelters. Given a choice between a light area and a dark shelter,
crabs will typically prefer the dark shelter (e.g. Barr & Elwood 2011;
Hamilton et al. 2016). Crayfish (P. clarkii) in an anxiety-like state
will avoid bright areas (Fossat et al. 2014, 2015). Given this aversion
to light, good practice for handling decapods must involve provid-
ing them with access to dark environments. This is already recom-
mended by Seafish as one of their “10 golden rules” for handling
crustaceans and in their codes of practice (Jacklin & Combes 2005-
; Seafish et al. 2024). Yet there is evidence (obtained by the cam-
paign group Crustacean Compassion) that supermarkets selling
live lobsters in the UK commonly do not provide access to dark
shelters (Carder 2017) and display lobsters under bright lighting
(Crustacean Compassion 2020).

Live purchase
Live decapods can be ordered from Amazon and other online
retailers in countries such as the UK and US, sometimes travelling
internationally. There is no way to ensure welfare-sensitive hand-
ling when a live animal is delivered to a private home. This practice
carries an inherent risk of poor handling and inappropriate slaugh-
ter methods (see also the following section). Ending this practice

would be a simple intervention to avoid this specific set of risks for
poor decapod welfare.

A report by the campaign group Crustacean Compassion (2020)
described highly inconsistent advice given to customers purchasing
live lobsters inUKwholesalers on how to effectively transport, store
or slaughter the animals. There is a need for enforceable codes of
good practice regarding the advice and training that is provided in
these settings. Live animals should only be sold to customers who
are trained in appropriate handling and slaughter methods. Indus-
try codes of practice suggest that animals should only be dispatched
by competent persons (Seafish et al. 2024), but currently it is
difficult to define or enforce this.

Stunning and slaughter

One of the biggest threats to decapod welfare is inhumane methods
of stunning (causing loss of consciousness – conditional of course
on the presence of conscious experience) and slaughter (Conte et al.
2021). While electrical stunning seems to be the most promising
method for causing loss of consciousness, this is still not in wide-
spread use and the loss of consciousness (as opposed to immobility
and unresponsiveness) has not been confirmed. The best mechan-
ical slaughter methods (double-spiking and whole-body splitting)
require highly trained operators and are not viable on a large
commercial scale. Other methods, including live boiling, chilling,
dismemberment, and osmotic shock, seem very likely to cause
prolonged suffering before death. Asphyxiation, which is the most
commonmethod used for wild-caught shrimp and inmany shrimp
farms globally, has not been studied but is highly unlikely to be
humane. The following sections discuss thesemethods in detail and
identify the most pressing evidence gaps.

Stunning
Effective stunning not only immobilises the animal but also abol-
ishes sentience (see discussion in Conte et al. 2021). Electrical
stunning has the potential to be an effectivemethod. Electric shocks
of sufficiently high voltage and long duration can stun (and, at even
higher voltages or longer durations, kill) crustaceans. Pre-dispatch
stunning is a legal requirement in New Zealand and Switzerland.
There are now several manufacturers producing electrical stunning
equipment (e.g. Crustastun® [Mitchell and Cooper Ltd, Uckfield,
UK] and Polar Systems Ltd [Kings Lynn, UK]) and include both
single-animal units for the hospitality sector and a large-scale
stunner for processors.

Electrical stunning appears to be the most humane method
for stunning and/or slaughter. Roth and Øines (2010) compared
electrical stunning, chilling, boiling, and CO2 gassing for slaugh-
ter of crabs (C. pagurus), and found that electrical stunning was
the only method effective within 1 s. Crustastun® units are effective
for a range of species, such as brown crabs (C. pagarus), lobster
(H. gammarus), Norway lobster (N. norvegicus), and shore crab
(Carcinus maenas), rapidly causing loss of consciousness (as
measured by cessation of behavioural and neuronal activity)
without creating stress (as measured by sampling L-lactate in
haemolymph and occurrence of autotomy [Neil 2010, 2012; Neil
& Thompson 2012; Neil et al. 2022]; though other work [Roth &
Øines 2010; Roth & Grimsbø 2016] has found autotomy in
response to electroshock of insufficient voltage). We note that
only the first of these two latter studies has been peer-reviewed.
In other work, electric shock immobilised and reduced heartrate
in P. clarkii and Litopenaeus vannamei (Weineck et al. 2018)
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A non-peer-reviewed study also found that Crustastun® reliably
kills Norway lobster (Albalat et al. 2008).

However, a degree of caution is needed in interpreting these
results. While they suggest that Crustastun® did not cause extreme
physiological stress, we cannot conclude from this that it is painless
(Stevens et al. 2016). Stress responses can indicate pain (Elwood
2016), but this study should be considered in the context of how
Crustastun® affects other (neural) indicators. A lack of significantly
increased haemolymph lactate or autotomy, especially in experi-
ments with small sample sizes, is insufficient evidence that high-
voltage shocks do not induce pain. Elwood and Adams (2015)
found that shore crabs (C.maenas) exposed to a weak electric shock
for a short time exhibited higher levels of haemolymph lactate than
controls. Fregin and Bickmeyer (2016) found that the Crustastun®
induced a seizure-like pattern of increased neural activity, com-
bined with an absence of responsiveness to mechanical stimulation
(interpreted as total anaesthesia), but when crayfish were dropped
into boiling water after stunning, the neural response – though
much reduced relative to controls – was not abolished. We do not
know what the seizure-like neural activity induced by electrical
stunning feels like for decapods though, in humans, epileptic
seizures involving the whole brain (as opposed to a specific region)
result in loss of consciousness, so the same may be true for these
animals.

Pharmacological anaesthesia is a potential alternative to elec-
trical stunning, despite being limited to chemicals safe for human
consumption. Two prime candidates are clove oil and AQUI-S®, a
clove oil-based product without the former’s odour. In both, the
active ingredient is eugenol (4-allyl-2- methoxyphenol). To our
knowledge, pharmacological anaesthetics are rarely used on crust-
aceans in the UK. However, as a fish anaesthetic (Soto 1995;
Anderson et al. 1997; Keene et al. 1998), AQUI-S® has been
approved for human consumption in New Zealand, Australia,
Chile, South Korea, Costa Rica, Honduras, and Norway, but not
the EU or US (Priborsky & Velisek 2018).

Several studies suggest that clove oil and AQUI-S® stun crust-
aceans, though this can take some time. Eugenol temporarily
immobilises blood-spotted crabs (Portunus sanguinolentus)
in 14 min (Premarathna et al. 2016), and Australian giant crabs
(Pseudocarcinus gigas) in 30 min (Gardner 1997) but up to
188 min in hairy shore crabs (Hemigrapsus oregonensis)
(Morgan et al. 2001). Eugenol also immobilises other crust-
aceans, including lobsters (H. americanus: Waterstrat & Pink-
ham 2005), langoustine (N. norvegicus; Cowing et al. 2015),
crayfish (Cherax quadricarinatus; Ghanawi et al. 2019), prawns
(Macrobrachium rosenbergii; Coyle et al. 2005) and shrimps
(P. monodon; Cai et al. 2012) (for more detailed reviews, see de
Souza Valente [2022], Spoors et al. [2023] and Rotllant et al.
[2023]). However, these pharmacological studies typically use
behavioural indicators of stunning, which do not distinguish
anaesthesia from paralysis. Eugenol’s mode of action is also
poorly understood. Whilst pharmacological anaesthetics are
potentially effective, more research is needed.

Chilling is another stunning technique, sometimes used for
transport (as discussed previously inHandling of wild-caught deca-
pods during capture, transport and sale). As crustaceans are ecto-
thermic, they enter a state of torpor when external temperatures
drop below a certain threshold. This renders them immobile,
preventing autotomy and aggression between individuals. Torpor
also facilitates nerve centre destruction, allowing a faster and more
humane dispatch. Decapods are typically chilled by placing them
into cold water or ice slurry. However, it is unclear whether chilling-

induced inactivity is associated with loss of consciousness. Lobsters
(H. gammarus and H. americanus) and crayfish (Astacus astacus
and A. leptodactilus) both showed neural activity after an hour in
cold water or ice slurry (Fregin & Bickmeyer 2016). Recordings of
the number, amplitude, and rate of nerve impulses in Nephrops
after 30 min of being immersed in ice were virtually the same as in
the control animals, indicating no reduction of brain activity
(Albalat et al. 2022a). Blue crabs (C. sapidus), red swamp crayfish
(P. clarkii), and white-leg shrimp (L. vannamei) held in ice slurry
showed decreased heart rate, although most crabs still had a heart
rate after five minutes and exhibited central neural processing for
muscle reflexes after two minutes (Weineck et al. 2018). The
effectiveness of chilling, even for inducing immobility, depends a
lot on the cold tolerance of the particular species and appears to be
ineffective for some (Rotllant et al. 2023). As discussed previously,
there is also the potential for negative welfare experience associated
with chilling. More research is needed to establish whether chilling
itself is painful, but the existing literature suggests that cold-
induced immobilisation leaves crustaceans susceptible to pain from
subsequent procedures. Use of slush-ice presents another welfare
concern: salinity drops as the ice melts, which can lead to osmotic
shock before torpor is induced, although maintaining salinity can
resolve this issue (AHAW 2005).

From a welfare perspective, crustaceans should be stunned
before dispatch, and this is recommended in UK industry codes
of practice (Seafish et al. 2024). Electric and pharmacological
stunning are themost promising approaches. Future research could
identify ways to make stunning more practical and effective. The
Humane Slaughter Association is currently funding research into
effective methods of stunning and slaughtering crustaceans. Chill-
ing is not a humane stunning method if it merely paralyses crust-
aceans without anaesthetising them. This method has already been
banned in Switzerland and parts of Italy.

Mechanical slaughter (dispatch)
The shellfish industry uses the term ‘dispatch’ to refer to the
slaughter of decapods; here, we use the two terms interchangeably.
Unlike vertebrates, crustaceans have a decentralised nervous sys-
tem. Crabs have two main nerve clusters (ganglia), and lobsters
have 13 interconnected ganglia down the ventral nerve cord. The
result is that methods that target only the brain will not necessarily
kill the animal quickly (Roth & Øines 2010).

Spiking involves piercing the underside with a spike, destroying
the ganglia. This method is recommended for crabs, because the
brain (or cerebral ganglion) and ventral nerve mass (or thoracic
ganglion) can both be spiked in rapid succession in a procedure
known as ‘double spiking’. An early study for the Universities
Federation for Animal Welfare (UFAW) recommended double
spiking as the most humane method for slaughtering crabs
(Baker 1955). Although double spiking is relatively quick, it is not
instantaneous. At present, most UK crab processors only destroy
one ganglion (‘single spiking’). Single spiking creates a welfare risk
because it is less likely to kill the animal quickly and reliably (Roth&
Øines 2010). UK codes of practice recommend double-spiking
following stunning of crabs (Seafish et al. 2024), but regulations
requiring double spiking (coupled with education about why this
matters) would improve UK welfare standards; as would similar
regulations globally.

Spiking is unsuitable for lobsters, because their chain of gan-
glia cannot be individually pierced quickly and accurately. To
destroy all 13 ganglia, lobsters’ under-surface must be severed
down the longitudinal midline using a knife. This process, known
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as splitting, is common in restaurants (industry sources) and is
the recommended dispatch method following stunning accord-
ing to UK industry guidance (Seafish et al. 2024). Due to the
demand for whole lobsters, chefs typically only split the head
(head splitting), rather than the whole body (complete splitting).
However, head splitting leaves the posterior ganglia intact, rais-
ing the chance of continued survival. We cannot be confident that
head splitting reliably abolishes consciousness immediately.
From a welfare perspective, lobsters should be split from head
to tail, destroying all 13 ganglia and killing the animal. Whole-body
splitting should take less than 10 s when performed by a skilled
practitioner.

Tailing involves separating the thorax from the abdomen. On
Nephrops (langoustine) vessels, for instance, the abdomen is usually
twisted away from the thorax (industry sources). Large vessels may
chill the Nephrops beforehand, inducing immobility but without
necessarily abolishing consciousness. As well as Nephrops, crayfish
are slaughtered using tailing in the UK (industry sources). While
spiking and splitting (properly performed) destroy all the animal’s
ganglia, tailing does not. For this reason, it should not be recom-
mended without prior effective stunning.

High-pressure processing involves crushing batches of crust-
aceans. It is claimed that high- pressure processing kills crustaceans
in < 6 s, equivalent to spiking and splitting (industry sources). We
have not been able to find robust scientific evidence confirming
this. High- pressure processing without effective prior stunning has
the potential to cause pain, even if it is over quickly. The use of this
method varies by region – although it is the most common form of
dispatch in the US, it is rare in the UK (industry sources).

Correctly practised, spiking and splitting are relatively quick
dispatchmethods. Quickly destroying every ganglion before further
processing (e.g. boiling, freezing, or chopping up) ensures that the
animal is dead and may not feel further pain. However, both tailing
and routine spiking/splitting practices (especially single spiking
and head splitting) do not destroy all ganglia. Double spiking crabs
and completely splitting lobsters (as performed by competent and
trained operators) should be considered best practice. Nevertheless,
all mechanical dispatch methods take several seconds and may
sometimes leave ganglia intact, especially when performed quickly
or by untrained personnel. Crustaceans should therefore be effect-
ively stunned beforehand.

Chilling
Decapods are sometimes dispatched using extremely low temper-
atures in refrigerators, freezers, or on ice. The welfare issues out-
lined in the section on stunning also apply here: nervous system
activity continues after chilling,melting slush-ice can cause osmotic
shock, and death is slow. Gardner (2004) argued that thismethod of
dispatch is slow, inconsistent, and aversive. However, there is
currently no evidence for cold-sensitive nociceptors in crustaceans
(Puri & Faulkes 2015). If future research confirms their absence at
more realistic temperatures in more species, low temperatures
could conceivably represent a humane method of slaughter.

Chilling is a rare slaughter method, because it reduces meat
quality (industry sources; but see Albalat et al. 2022a, who found
no significant effect), but is common in domestic kitchens. This is
concerning as, unlike commercial blast freezers, home freezers do
not reduce temperature rapidly. Crustaceans in home freezers
must, therefore, be left to die over a period of more than 1 h (Roth
& Øines 2010). Edible crabs autotomise during freezing, indicat-
ing distress (Roth & Øines 2010). This prolonged suffering may
be worse than rapid methods considered inhumane (e.g. boiling).

Boiling
Boiling is perhaps the most controversial dispatch method, having
been banned in several jurisdictions (Switzerland, New Zealand,
and parts of Italy). Immersion in boiling water is nonetheless
common in UK restaurants and domestic kitchens for lobster,
Nephrops (langoustine), small crabs, crayfish, shrimps, and prawns,
as well as on-vessel for brown shrimp, although recent industry
guidance has urged users to attempt to avoid processing or cooking
crustaceans before stunning or killing them (Seafish et al. 2024).

Boiling elicits various behavioural and physiological symptoms
of distress, such as unco-ordinatedmovements and escape attempts
in crabs (C. pagurus; Baker 1955).More recent work on lobsters and
cuttlefish did not observe such behaviours but did find that intense
neural activity continued for up to 30–150 s after immersion (Fregin
& Bickmeyer 2016). This suggests a period of up to 2.5 min (this
duration alignswith an estimate byRoth&Øines [2010], obtained by
a different method) of continued sentience, potentially involving
extreme suffering. Smaller individuals died more quickly than larger
ones, suggesting that boiling involves less prolonged suffering for
smaller crustaceans (e.g. shrimps). This has recently been supported
through work by Lauridsen and Alstrup (2024), who found more
rapid heating curves for smaller species, suggesting they may reach
stunningor killing temperatures in under 10 s; comparedwith several
minutes for larger species.

To address welfare concerns regarding live boiling, a number of
authors have recommended immersing crustaceans in cold water
and slowly raising the temperature (e.g. 1°C per min). Evidence on
the effectiveness and welfare effects of this method are mixed. Some
studies have found that crabs, lobsters, and crayfish do not show
behavioural responses indicating pain and distress (e.g. tail-flipping
or escape behaviour; Gunter 1961; Fregin & Bickmeyer 2016) and
that CNS activity disappeared above 32°C in lobsters (H. gammarus
and H. americanus) and crayfish (A. astacus and A. leptodactilus)
(Fregin & Bickmeyer 2016). However, other studies found that
edible crabs (C. pagurus; Baker 1955) and red swamp crayfish
(P. clarkii; Adams et al. 2019) displayed behaviours indicating
distress, including escape attempts, unco-ordinated movements,
and autotomy; and crayfish still showed a heartbeat and functional
nervous system up to 44°C even when apparently unresponsive
(Adams et al. 2019). Hence, a lack of behavioural responses to
boiling may not indicate a loss of consciousness. This evidence is
therefore insufficient to suggest that gradually raising water tem-
perature (without prior stunning) is more humane than dropping
an animal into boiling water. There is still a serious risk that it
causes suffering over a period of minutes.

Freshwater immersion
Crustaceans immersed (‘drowned’) in freshwater must usually be
left overnight. This practice is rare in the UK, as it reduces meat
quality, but is sometimes practised on lobster and brown crab
(industry sources). From a welfare perspective, it cannot be recom-
mended. Crabs immersed in freshwater have shown behavioural
signs of distress, such as unco-ordinated movement and increased
respiration (Baker 1955), and even autotomising and tearing at
their own legs and abdomen (Gardner 1997). Like chilling, fresh-
water immersion potentially leads to more prolonged suffering
than faster methods considered inhumane, such as boiling.

Aquaculture

Farming of decapods is increasing worldwide, partly due to chal-
lenges with the sustainability of fisheries, but also because the
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knowledge and technology required for successful decapod aqua-
culture has reached a point where it is a viable option for many
species. In 2017, the number of individual decapods farmed for
food was estimated at between 255 and 605 billion, with approxi-
mately 85% being shrimp and prawns (Mood&Brooke 2019). As of
2022, aquaculture contributed 68% of crustacean production, with
6.8 million tonnes of whiteleg shrimp representing the predomin-
ant species (FAO 2024). In most systems, decapods are bred and
reared tomarketable size within captivity; whereas in other systems,
such as for some lobsters, decapods are hatched and reared as
larvae, but then released and ongrown to replenish fisheries, where
they may later be caught as adults. A minority of decapods or their
‘seed’ used in aquaculture are sourced from the wild. Aquaculture
facilities can range from extensive open systems (connected with an
external water body, such as the sea or rivers) to intensive closed
systems (which may involve water recirculation through filters).
The potential welfare implications of commercial practices in deca-
pod aquaculture vary across species, systems and countries, and
practices are evolving especially rapidly for some of the more newly
cultured species. Many of the aforementioned environmental stres-
sors that present welfare risks to live-caught decapods in wet
storage, such as poor water quality and overcrowding, can also
apply to farmed decapods, and over a longer timescale.

Shrimps
Most of the decapods used in aquaculture are shrimp, with almost
10 million tonnes produced per year under increasing intensifica-
tion (Wuertz et al. 2023). Themost commonly farmed species is the
whiteleg shrimp (L. vannamei). While there is currently little
evidence one way or the other regarding sentience in penaeid
shrimp (Birch et al. 2021), a precautionary approach based on
the lack of research and their close taxonomic relationship to other
decapods for which there is more convincing evidence means their
welfare should be taken seriously and potential harms prevented
where possible. Alongside problems of humane slaughter discussed
above, one of the most pressing problems in shrimp aquaculture is
the practice of eyestalk ablation, which poses a severe welfare risk if
the animals are sentient.

Eyestalk ablation is a controversial practice that involves remov-
ing one or both of the eyestalks of a mature broodstock female
prawn in order to induce egg production. It has a range of negative
effects on the animals (for a review, see Albalat et al. 2022b) and
could be linked to suffering. Eyestalk ablation in L. vannamei causes
recoil reactions (Taylor et al. 2004) and in M. americanum causes
tail-flicking and rubbing of thewound site (Diarte-Plata et al. 2012),
all of which are dampened by the use of anaesthetic (lidocaine). In
recent years, experiments with ablation-free approaches by Zacar-
ias et al. (2019, 2021) have suggested that eyestalk ablation may not
be necessary for economically viable shrimp aquaculture, and that
avoiding it leads to better reproductive performance from the
breeding females and more resilient offspring with lower mortality
rates. Banning eyestalk ablationwill be a crucial part of high-welfare
shrimp aquaculture. As it does not appear that shrimp aquaculture
companies in the UK use eyestalk ablation (industry contacts) there
would be nomajor downside to banning eyestalk ablation there, but
any immediate welfare benefit would be limited. In the UK, the
welfare benefits of such a ban would be limited due to the small size
of the industry and the fact that UK shrimp aquaculture companies
do not appear to use eyestalk ablation (industry contacts), though
for the same reasons there would also be no major downside to a
ban. However, in other regions where the practice is still common,
such as the US and Asia, such bans could have a greater impact.

Alongside this direct welfare harm, shrimp can show physio-
logical and behavioural signs of distress when housed under
inappropriate conditions, such as inappropriate salinity, low oxy-
gen, high water turbidity, low temperature, and high stocking
density (which can even lead to cannibalism) (Albalat et al.
2022b; Pedrazzani et al. 2023; Wuertz et al. 2023). Diseases are also
common and have clear welfare implications depending on the
disease (Albalat et al. 2022b). Some diseases are non-transmissible
and can be caused by suboptimal environmental conditions, tox-
icity or nutritional deficiencies. Others are caused by a variety of
pathogens and parasites and can lead to epidemic outbreaks that
lead to mass mortality. The most common diseases include white
spot disease, yellow head virus, and Vibrio spp bacterial infections
(El-Saadony et al. 2022).

To prevent welfare issues, as well as the obvious production
losses, there are many alternative actions that may be taken, which
have been reviewed elsewhere (Seethalakshmi et al. 2021; Abdel-
Latif et al. 2022; El-Saadony et al. 2022). Prophylactic antimicro-
bials may be added to the ponds via the feed, but these can lead to
resistant strains of pathogens that can ultimately harm the shrimps
and other species, including humans. Probiotics, prebiotics, vac-
cines and other biotechnological solutions have been suggested as
more sustainable alternatives for the future, and their impact on
shrimp welfare should be taken into account during development
(Seethalakshmi et al. 2021). Ultimately, because disease risk is
increased by use of high stocking densities, excessively warm tem-
peratures, and poor water quality, farming shrimp under optimal
conditions for their health and welfare and using good biosecurity
practices will help prevent diseases and their associated welfare
compromises. This can be difficult in practice and work will be
required to determine optimal conditions that are also feasible in
reality.

Lethal ‘stress tests’ carried out on small samples of larvae to
check the quality of the larvae batch carry obvious welfare harms if
larvae are sentient, through exposure to environmental stressors
such as changes in salinity and temperature or exposure to toxins
such as ammonia and formalin (Wuertz et al. 2023). Harvesting of
animals involves stressful capture using nets or pumps, which
triggers flight behaviour and physiological stress responses
(Wuertz et al. 2023).

Historically, shrimp standards and best practice guidelines have
incidentally included welfare components, such as disease, stocking
density, and water quality, but this has not been their focus
(e.g. Aquaculture Stewardship Council [ASC] 2023). Since publi-
cation of our original report, however, several welfare-based best
practice guidelines and reviews have been published (Albalat et al.
2022b; Crustacean Compassion 2023; Pedrazzani et al. 2023;
ShrimpWelfare Project [SWP] 2024). Moving forward, we recom-
mend further strengthening these guidelines, using the peer-
reviewed literature to make more specific recommendations, and
(where this is lacking) carrying out welfare science to build a better
evidence base. This would complement research into the develop-
ment of shrimp sentience across all life stages.

Lobsters, crayfish and crabs
Crab, crayfish and lobster farming occur on a smaller scale than
shrimp farming, but are increasing rapidly. Of global crustacean
aquaculture production in 2022, the second most common species
after the white leg shrimp at 62.2%, was the red swamp crayfish
(P. clarkii) at 23.3%, followed by mitten crabs (Eriocheir spp) at
6.4% (FAO 2024). Many of the welfare risks associated with aqua-
culture of crabs, crayfish and lobsters are shared with those of
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shrimps. Disease is again a significant threat to the welfare of these
animals, with the specific diseases differing somewhat between
species, and being most common in intensive systems with sub-
optimal environments and high stocking densities. Common dis-
eases and parasites of farmed crabs, including the commercially
important Chinesemitten crab (E. sinensis), mud crabs (Scylla spp),
swimming crabs (Portunus spp), blue crabs (C. sapidus) and shore
crabs (C. maenas), have been extensively reviewed by Coates and
Rowley (2022). Depending on the specific disease, signs of poor
welfare included lethargy, limb loss, tremors, loss of appetite, failure
to moult and mortality. As with shrimp aquaculture, reducing
stocking density and providing near optimal conditions are vital
for preventing or minimising the spread of such diseases. Anti-
microbial stewardship will be important here, as with shrimp
aquaculture. One approach is to dip the tail or the whole of wild-
caught berried female H. gammarus into antimicrobial solution
before introducing them into a hatchery, but there are concerns that
this may disrupt their microbiome (Hinchcliffe et al. 2022).
Research is needed to further understand how to prevent and treat
diseases in these, in some cases relatively newly cultured, decapod
species.

There are also welfare risks associated with the demand for ‘soft-
shell’ crabs. These are newly moulted crabs of species most com-
monly comprising mud crabs (Scylla spp) in Asia, the Atlantic Blue
Crab (C. sapidus) in the US and the blue swimming crab (Portunus
pelagicus) in India. For most of these species, there is only a short
window of a few hours following moulting during which the crabs
can be harvested for the soft-shell market. Therefore, there is
commercial pressure to be able to induce moulting in these crabs,
and although no single method is yet to prove entirely effective,
many potential methods are being used and optimised, as reviewed
byWaiho et al. (2021). Eyestalk ablation is one suchmethod, which
seems relatively ineffective and carries similar welfare risk to that in
shrimps, so should be discontinued. Induction of moulting by
removal of the walking legs, the claws, or both was compared in
Scylla olivacea (Rahman et al. 2020); in that study, the claws were
manually snapped off, whereas the legs were cut to induce autot-
omy. Ablation of both claws significantly hastened moulting and
also appeared to increase crab body size following themoults. Crabs
with limbs removed did not show significantly greater mortality
rates than controls. However, no measures of animal welfare were
included in that study, and as described previously in Handling of
wild-caught decapods during capture, transport and sale, declawing
is of animal welfare concern and has been shown to increase crab
mortality in other studies (Waiho et al. 2021). Most other methods
involve the injection of moult regulation hormones (ecdysteroids,
e.g. E20), phytoecdysteroids, melatonin or other substances; these
can be effective, although they are still at the experimental stage and
the effects on crab welfare unknown (Waiho et al. 2021). Feeding
crabs sufficiently also hastens moulting compared with restricted
food rations (Gong et al. 2022). A further cause for welfare concern
for soft-shell crabs is that, when harvested, they are usually placed
into –20°C while still alive to be frozen before their shells harden.
The welfare risks of freezing as a slaughter method, especially
without prior stunning, are described above (Waiho et al. 2021).

The welfare needs of species that are relatively new to aquacul-
ture may not yet be well understood, creating welfare risks as
industry develops. For example, insufficient or inadequate food
may impair growth, risk deficiency diseases and hunger, and
potentially cause cannibalism (Harlıoğlu & Farhadi 2017; Hinch-
cliffe et al. 2022; Nankervis & Jones 2022). It was noted that
individually housed H. gammarus larvae grew more slowly than

communally housed ones fed the same ration of dry pellets, which
are not readily accepted by the animals; this implies that commu-
nally housed larvaemay have supplemented their diet – presumably
through cannibalism. Unlike many shrimp species, some decapod
species also require darkness or shelters to thrive and reduce
aggression (Shelley & Lovatelli 2011; Yu et al. 2020; Zhang et al.
2022). It will be important that research and development activities
in decapod aquaculture evaluate welfare-relevant metrics beyond
solely production or economic outcomes. This requires careful
selection of species with fewer potential welfare risks (Chiang &
Franks 2024) as well as development of species-specific welfare
guidelines prior to commercial-scale use (for a recent example of
the development of a comprehensive welfare index for whiteleg
shrimp [P. vannamei], see Pedrazzani et al. 2024).

Where they are farmed, the concerns for handling and transport
described in the previous section will apply. There are also some
additional concerns regarding appropriate housing conditions. For
instance, insufficient holding space for rearing lobsters can slow
growth, and limit development of a normal behavioural repertoire
(Latini et al. 2023).

Recommendations and evidence gaps

The identified welfare issues for cephalopods and decapods lead to
several clear recommendations for immediate, cost-effective inter-
ventions.

Banning declawing and nicking in crabs would be a positive step,
given credible evidence that they cause suffering. Declawing was
banned in the UK from 1986 to 2000, and banning this practice
both from fisheries and in aquaculture would be an effective
intervention to improve crab welfare. Developing and implement-
ing practical alternatives to nicking should also be a priority for
research. Moreover, addressing the sale of decapods to untrained
handlers (especially through online retailers, where there is no face-
to-face contact between supplier and purchaser) is vital for pre-
venting welfare risks associated with improper handling and inhu-
mane slaughter methods.

High-welfare octopus farming appears to be extremely difficult,
if not impossible, to implement. Despite the absence of commercial-
scale farms at present, impending projects like those proposed by
Nueva Pescanova in Spain indicate the emerging reality of this
industry. Proactive measures like implementing bans on octopus
farming in countries where it is likely to proceed (e.g. Spain,
Australia, Japan, Mexico), or restricting imports in regions less
inclined to farm, would be proportionate ways to err on the side of
caution (Birch 2024).

Aquaculture of decapods is clearly established, especially for
shrimps, but many welfare risks exist and improved practice is
needed. For many farmed decapod species, basic information on
optimal environmental conditions, feeding, and stocking densities
to prevent disease and poor welfare is still required. Practices such
as eye-stalk ablation and limb removal pose high risks to welfare
and appear largely ineffective, so should be banned. The welfare
impacts of anti-microbial and hormone applications require assess-
ment compared with alternatives. The current lack of clear and
enforceable regulations for the handling, housing, and slaughter of
decapods often leads to outdated or cruel practices. Establishment
of such standards is urgent.

There are several critical gaps in our current understanding that
urgently require research to improve best practices in the handling
and processing of cephalopods and decapods. However, it is crucial
to keep in mind the same welfare considerations when performing
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research. Much of the research into animal sentience and welfare
can inflict many of the same harms discussed here (Baker et al.
2024), associated with capture, housing, (lack of) anaesthesia, and
inhumane slaughter methods. While it may occasionally be neces-
sary to inflict harms during research to gain information that will
lead to greater long-term benefits, researchers should take every
precaution to prevent or minimise these harms.

A key area is the development of humane stunning and slaugh-
ter methods for these animal groups. For cephalopods, the only
currently approved method for humane slaughter is an anaesthetic
overdose, which is unsuitable for animals intended for human
consumption.Mechanicalmethods like brain cutting or puncturing
are not only time-consuming and skill-intensive but also question-
ably humane. Research into immediate post-catch humane slaugh-
termethods for cephalopods, which align with commercial usage, is
therefore essential.

For decapods, methods such as double-spiking (for crabs),
whole-body splitting (for lobsters), and electrocution with specia-
lised devices are considered potentially humane. However, these
methods take 10–15 s to execute and require specific skills. Prior-
itising research to develop reliable and humane killing methods for
decapods within a shorter time-frame is critical, as recognised by
the Humane Slaughter Association. Further research into effective
methods of rapid stunning and humane slaughter for various
commercially important decapod species and particularly smaller
species like shrimps, is crucial.

Another significant research area is analgesia for both cephalopods
and decapods. The effectiveness of drugs, including morphine, in
managing or preventing pain in decapods remains unconfirmed
(Rotllant et al. 2023). Research into anaesthesia is also limited,
although some promising local and general anaesthetics have been
identified (Butler-Struben et al. 2018; de Souza Valente 2022; Rotllant
et al. 2023). Distinguishing between chemicals that immobilise ani-
mals and those that genuinely induce loss of consciousness is crucial,
benefiting not just commercial species but also those used in research.

Additionally, it is vital to understand the diverse welfare needs of
decapods, such as the optimal temperature ranges, diets, and stock-
ing densities for housing different species. The new Seafish welfare
codes of practice (Seafish et al. 2024) are an upgrade on previous
guidelines (Jacklin & Combes 2005; see also Boyd et al. 2002; Shelley
et al. 2011) that focused on more product quality than welfare.
However, they still provide only general guidance for handling a
range of species and we believe they still do not go far enough to
address all the necessary considerations (e.g. humane slaughter).
More welfare-centric, species-specific guidelines are still needed.

Practices such as storing decapods on ice raise questions about
their thresholds for entering torpor, whether this state affects the
state of consciousness, and if direct contact with ice activates
nociceptors for cold temperatures. Establishing evidence-based
maximum stocking densities and bulk weights for transportation
can prevent issues like crushing and hypoxia. For cephalopods,
developing best-practice guidelines for capture, transport, breed-
ing, housing, and husbandry outside scientific contexts also need to
be developed (for scientific contexts, see Fiorito et al. 2015). The
development and implementation of such guidelines is important
for ensuring the welfare of cephalopods in commercial settings.

Finally, there is an urgent need to develop and validate welfare
indicators for all these species. Current indicators often focus on
health, production status, or physiological stress (Paterson & Spa-
noghe 1997; Albalat et al. 2022b; Conneely & Coates 2023; Wuertz
et al. 2023) rather than the animals’ affective experiences. Although

recent research aims to assess the welfare of cephalopods and
decapods (see e.g. Narshi et al. 2022; Andrade et al. 2023; Pedraz-
zani et al. 2023), a more extensive programme is necessary to
effectively measure and improve welfare standards.

Animal welfare implications and conclusion

The acknowledgment of cephalopod molluscs and decapod crust-
aceans as sentient beings has heightened concern for their welfare,
particularly in light of certain commercial practices that pose
potential welfare risks. This paper aims to make the animal welfare
implications of these practices clear. By identifying practices with
the highest welfare risks, we can initiate discussions on mitigating
or preventing these risks. The recommendations proposed herein
offer what we see as potentially practical, cost-effective strategies for
immediate improvements in the welfare of cephalopods and deca-
pods. We acknowledge the complexities attendant with any large-
scale social or behaviour change, requiring education and engage-
ment beyondmere legislative change. These suggestions should not
be seen as a comprehensive account of how to mitigate or prevent
all welfare risks to cephalopods and decapods, but rather initial
suggestions of the more straightforward improvements. Further-
more, highlighting the most pressing evidence gaps should direct
future research towards addressing the urgent welfare challenges
facing these animals.

Changes to policy and regulation should not be seen as inherently
opposed to the interests of those involved in the commercial use of
cephalopods and decapods. As is already recognised for vertebrates,
well-designed welfare regulations can protect producers from the
erosion of standards that may occur when cost-cutting and welfare-
reducing practices become commonplace in a competitive market-
place. These regulations can also reassure consumers who may be
reluctant to purchase products associated with harmful or inhumane
practices. Enhancing thewelfare of cephalopods and decapods can be
beneficial for the animals, producers, and consumers alike.
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