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Abstract. The gravitational n—body problem is chaotic. Phase trajectories that start very near each
other separate rapidly. The rate looks exponential over long times. At any instant, trajectories separated
in certain directions move apart rapidly (unstable directions), while those separated in other directions
stay about the same (stable directions). Unstable directions lie along eigenvectors that correspond
to positive eigenvalues of the matrix of force gradients. The number of positive eigenvalues of that
matrix gives the dimensionality of stable regions. This number has been studied numerically in a
series of 100—body integrations. It continues to change as long as the integration continues because
the matrix changes extremely rapidly. On average, there are about 1.2n unstable directions out of 3n.
Issues of dimensionality arise when the tools of ergodic studies are brought to bear on the problem
of trajectory separation. A method of estimating the rate of trajectory separation based on matrix
descriptions is presented in this note. Severe approximations are required.
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Extreme sensitivity to initial conditions, one of the accepted signatures of chaotic
systems, was demonstrated for the gravitational n—body problem (Miller, 1964)
at about the same time as Lorenz’s famous paper (Lorenz, 1963) in meteorology.
The effect is physical, an example of Krylov’s instability (Krylov, 1979). It was
demonstrated analytically (Miller, 1966), and the interaction between trajectory
separation and integrals of the motion was explored numerically by integrating
the matrix equations Eq. (3) explicitly as an n—body system developed (Miller,
1971). A plea was also made to the numerical analysis community for help in trying
to understand how valid physical conclusions might be inferred from numerical
experiments in view of the underlying chaotic properties of phase trajectories
(Miller, 1974). Some help may be on the way. Quinlan and Tremaine (1992)
constructed shadowing orbits in a restricted form of the gravitational n—body
problem. Their results suggest that real phase trajectories are so wild that a few
can be found which remain near almost any “reasonable” computed trajectory for
surprisingly long times.

Several attempts have been made to determine growth rates for trajectory sepa-
ration numerically ((Kandrup et al., 1994); (Goodman et al., 1993), with references
to earlier work in each of these papers) and analytically (Gurzadyan and Savvidy,
1986), (Kandrup, 1990). The numerical results lead to a general consensus that
the growth rate is a few per crossing time (e.g., some multiple of (Gp)!/?). This
same dependence had been found analytically, based on rather crude arguments in
(Miller, 1966).
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1. Formulation

Let the pair of 3n—vectors (p(1), (1)) be the instantaneous phase coordinates of
an n—particle system in the 6n—dimensional phase space (I"'—space), and let (p(2),
q(2)) represent a second system in the same space. Presume the two phase points to
be “near” each other and let ép = p(2) —p(1) and 6q = q(2) — q(1) represent the
difference-vectors in the same space. The motion of either system is determined
by the usual Hamiltonian equations, governed by a Hamiltonian H(p, q).

Equations of motion for ép and éq can be constructed by forming a Taylor
series expansion for H(p(2),q(2)) in terms of H(p(1), q(1)) and powers of dp
and §q. The linearized form of these equations is

d O*H O*H
49
d 0*H O*H

5 (6p) = "5&‘55(1 = %a—qtb,

where the derivatives are to be evaluated at (p(1), q(1)). Some care is required to
remain in a regime in which the linear terms of the expansion suffice.
Write the 3n §p’s and the 3n §q’s as elements of a 6n—vector:

£=(‘5q). @

ép
Then the equations (1) can be written in matrix form,
d¢
- = M¢, S
where the elements of M can be read off from Eq. (1):
on o
dqdp  Op?
M = . @
e PH
dq>  Odpdq

This matrix has dimension 6n X 6n, and it breaks into four 3n x 3n blocks.

The matrix equation (3) is to be thought of in a Lagrangian sense. The matrix
M is to be evaluated at the phase point currently occupied by the unperturbed
system (system 1), while £ gives the displacement of the second system relative
to the first. The matrix M depends implicitly on the time through the motion of
the phase point of the unperturbed system. It changes pretty drastically and pretty
rapidly — on the time scale of nearest particles moving past each other.

In Cartesian coordinates, all the elements in the blocks that contain mixed
second derivatives vanish, leaving those two blocks completely filled with zeroes.
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The off-diagonal elements are another story: the upper right block is diagonal. With
equal masses, it is just 1/m times the 3n x 3n identity. Unequal masses present no
problem of principle, but they mess up the notation, so they’ll not be worked out
in this note.

The remaining 3n X 3n block, that in the lower left, contains the gradient of
forces. (Minus the) first derivative of the Hamiltonian gives the force acting on
each particle, so (minus the) second derivative gives the gradient of the forces, G =
(grad F). Its structure is worked out in detail in §1.2, but for now we need only
note that all its elements are real and that it is symmetrical. A small displacement
in which every particle in the system is moved infinitesimally adds an increment
to the force acting on each particle by an amount given by (grad F).

1.1. REDUCE M TO DIAGONAL FORM

Since the G is real symmetric, it can be brought to diagonal form by a 3n X 3n
orthogonal matrix, O:
OT G O = Diag

(superscript T denotes transpose: since O is orthogonal, its transpose is its inverse).
However, the identity matrix remains an identity matrix under the same transfor-
mation, and the scalar multiple, 1/m, does no harm. Thus we can apply O to both
nonzero blocks, bringing both to diagonal form. In the language of 3n X 3n blocks,
this reads

T

00 011 00 OiI

m m

00 G O 00 Diag 0

The resulting matrix, which is diagonal in the upper right and lower left 3n X 3n
blocks, with null blocks on the diagonal, can be reduced to a block diagonal form
with 3n blocks, each of dimension 2 X 2, by means of row and column interchanges.
Each of the 2 x 2 blocks is of the form:

0 1/m
(2 0"): ®
Here, A\x is one of the eigenvalues of G. Those 2 X 2 matrices can each be
diagonalized to give
Ax = +4/Ak/m, (6)

on the diagonal. A pair of eigenvalues of the full 6n X 6n matrix corresponds to
each Ak . There are 6n in all — the required number.
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Positive A’s give real square roots, while negatives give pure imaginary square
roots. The real roots lead to unstable solutions, while the pure imaginary roots give
stable solutions. Thus the topic of determining the dimensionality of the stable
and unstable domains reduces to counting the number of positive (or negative)
eigenvalues of the 3n X 3n matrix, G = (grad F). The matrix, M, is not self—
adjoint.

The original 6n X 6n matrix has trace O (the Liouville theorem!), and so the
diagonal form must as well. It’s reassuring that it does.

Lagrangian displacements have allowed this problem to be reduced to an ex-
ercise in diagonalizing two matrices simultancously. All the standard texts on
classical mechanics show the procedure in their sections on small oscillations.

1.2. THE MATRIX OF FORCE GRADIENTS

Eigenvalues of M can be worked out once the eigenvalues of G = (grad F) are in
hand. The matrix G has the explicit form

(8) _ (@) (,B) _ ()

Gi(jaﬁ) = ;‘th—ﬁ' 0i; — 3 (x’ z; zigz] z, ) : D
where

2= (=) (-8, ®

a,f=1,2,3,.--,n are particle indices, and ¢, 5 = 1,2, 3 are coordinate indices.
Summation over repeated , 7, k pairs is implied, but not over repeated (o, §) pairs.
An i, o pair runs 1,2, 3, - - - 3n; the matrix is best thought of as having ¢, @ as its
first index and j, 3 as the second index. These expressions apply for o # 3; the
a-a element is simply the sum of the elements with a minus sign

(xex) __ I A(aB)
G = =32 G

B#a
B) _ () ® _ (a)
) ~ﬁ§:é s )22 il ©

so the row (or column) sums are zero. The matrix is symmetric under coordinate
index (¢, j) and under particle number (o, 3) interchanges separately. The quan-
tities x,(") are the coordinates of the individual particles. All particles have been
taken to have the same mass; generalization to different masses does not change
the character of the problem.

The (7, o) notation facilitates decompositioninto an n x n matrix of 3 x 3 blocks;
each 3 x 3 block runs through ¢, j = 1,2, 3, and the n X n block matrix has a block
entry for each particle pair (with special entries on the block diagonal to make the
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row- or column-sums be zero). Each of the 3 x 3 blocks is real symmetric and has
trace zero. The n X n block matrix is also symmetric, so the full 3n X 3n matrix
is real symmetric and has real eigenvalues. The trace of the 3n X 3n is zero, since
that of each of the 3 x 3 submatrices is zero. Thus the sum of the eigenvalues is
zero. There are nonzero eigenvalues, so some must be positive and some negative.

1.3. EIGENVALUES OF G

All eigenvalues of G are real, since the matrix is real symmetric. It has three zero
eigenvalues, corresponding to parallel displacements of all particles:

xz(a) — xga) + X;.

Nothing more is known analytically beyond this and the fact that all eigenvalues
- must sum to zero.
The eigenvalues have been studied experimentally. Some matrices were gen-

erated in which coordinates w,(a) were chosen randomly within the unit cube, the
force gradient matrix computed according to Eq. (7) and Eq. (9), and the eigen-
values found. Cases were tried for various values of n. In all cases, the expected
three zero eigenvalues were smaller than the nonzero values by a factor near 10'°
(reasonable for the diagonalization routine used), and were easily distinguishable.
No other zero eigenvalues were found.

Eigenvalues have also been studied experimentally by forming the matrix from
configurations generated as snapshots of a 100—body systems advanced by direct
integration, Properties of these sets of eigenvalues are essentially indistinguishable
from those generated by the random number loads except that closest pairs tended
to be closer in the actual integrations. Numerical results quoted in the remainder
of this note are based on these 100—body integrations.

The number of positive eigenvalues changes as an n—body system develops.
There is no clear trend toward more (or toward fewer) positive eigenvalues during
an integration.

No repeated eigenvalues were found, apart from the three zeroes always present.

The number of positive eigenvalues averages about 1.2n for systems containing
10 particles or more.

The most positive eigenvalue is well approximated by 4/ r%z and the most
negative by —2/ r%z, where 7y, is the separation of the closest pair of particles.

2, Trajectory Separation

Configuration and momentum components remain distinct in the formulation so
far presented. Further discussion is facilitated by eliminating the momenta in favor
of velocities to get a coupled set of second-order ODE’s:

d? 1
= (6a) = — G (éa). 10y
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These equations decouple if G is brought to diagonal form. This decoupling holds
only instantaneously, since the matrix G changes very rapidly with time. Significant
changes occur in the time it takes the closest pair of particles to pass each other. Eq.
(10) is also valid only for the tiny displacements allowed in writing the equations
in matrix form, Eq. (3). Nonetheless, the picture presents a useful way of looking
at the physics of trajectory separation. The rest of this section refers to “snapshots”
that last only for these very short times.

Eigenvectors of G represent displacements of all particles in the system such
that the change in the force acting on each particle lies along the vector by which
that particle was displaced. The particle is accelerated along its vector displacement
if the corresponding eigenvalue is positive, decelerated if it is negative.

2.1. “NORMAL COORDINATES”

Eigenvectors of G are orthogonal and span the configuration space. They can
serve as a basis in which to express éq within the little patch on which we are
concentrating. They are “normal coordinates,” and each corresponds to a “normal
mode.” There are 3n of them. They would be normal modes in the usual sense if the
matrix G did not vary with time. Two degrees of freedom are associated with each
“mode,” accounting for the required 6n degrees of freedom. Most are stable, but
about 40% of them are unstable, and the three with zero eigenvalues are neutral.

Apart from the three zero eigenvalues that correspond to rigid displacement
of all the particles together, the only degeneracies arise when G is evaluated at
a point that lies on one of several special hypersurfaces of reduced dimension.
These hypersurfaces are sets of measure zero. Degeneracies present no problem
in practice. The three zero eigenvalues reflect the six first integrals of the centroid
motion, which are conserved in this picture.

2.2. THE RATE OF TRAJECTORY SEPARATION

Much of the interest in trajectory separation is to estimate the rate at which trajecto-
ries separate. Special interest attaches to its dependence on the number of particles,
with the goal of finding how it might act with very large numbers of particles. Any
attempt to address rates through the formulation presented here involves lots of
approximations. The linerization introduced at Eq. (1) is the only approximation
used so far in this note.

Estimates for e—folding rates of trajectory separation entail averages of G
over realistic trajectories as the unperturbed system explores the phase space.
The principal problem is to find some suitable average. The present discussion
is included to illustrate the kinds of approximations involved. The description
provides useful insights into the physical processes at work in trajectory separation.

Several steps are involved. A new assumption is introduced at each step. One
way to go about this is sketched here.
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First, the separation vector éq is referred to the basis instantaneously provided
by eigenvectors of the current matrix G. While éq itself may be fairly stable in
direction, changes in G make it appear to vary. Eigenvectors of G swing around
without any special relation to the direction of éq, so éq appears to take random
directions relative to the changing basis. Thus the amplitude of each degree of
freedom is approximated as +|¢|/+/6n. The trajectory separation has been analyzed
into “normal modes” with amplitudes split between the two degrees of freedom
within each “normal mode.”

Next, growths in £ can be approximated by a random walk with unequal steps.
Only unstable “modes,” those with positive eigenvalues of G, contribute. Each
unstable “mode” grows like exp(Axt) (Eq. (6)). Both momentum and configuration
parts in the K™ “normal mode” grow together. The stable and neutral “normal
modes” don’t grow at all. Since Ax ’s are as often negative as positive, the expected
- growth is zero, a consequence of microscopic reversibility. But the expected square
is nonzero. When growths over all unstable “normal modes” are added together,
the mean square growth during a short time At is

(55) = [ (8] = g Tiwap - 288500 an

The second form indicates the change between successive “snapshots.” The last
form, through Eq. (6), involves the sum over positive eigenvalues of G. The factor
2 appears because each Ax appears twice, once for each sign in Eq. (6). Eq. (11)
gives the variance, o2, of Aln |£|, since the mean is zero. Each “normal mode” acts
like the free motion of an harmonic oscillator. Energy is conserved because there
is no forcing term. Estimates according to Eq. (11) areexamples of the “spectrum
of stretching numbers” of Contopoulos and Voglis (1996).

Third, the random walk is asymptotically Gaussian if enough steps are involved.
Steps take the spatial directions of unstable “normal modes” within one snapshot.
Since the logarithm tends to a normal distribution, mean growth over this interval
is the mean from a log—normal distribution, which is e’ /2 Ttis always greater than
unity.

Fourth, the quadratic dependence on time interval (the (At)2 in Eq. (11)) arises
because the growth is treated as coherent over the interval Af. After a coherence
time, this must be terminated, to be replaced by a new randomization of the
separation vector, The time for the nearest particles to orbit by a radian might be
used for a coherence time. This gives (At)? = d° /(2G'm) where d is the separation
of the nearest pair of particles. We then have s = T,;/At independent steps, each
growing by e/, leading to a total estimated growth per crossing time of e(s”)/2,

Happily, growth rates estimated in this manner from our 100—body integrations
are around 1.5 to 2 per crossing time, which agrees reasonably well with values
found by Kandrup et al . (1994) and earlier papers referenced therein. The greatest
positive eigenvalue contributed about 40% of the sum of positive eigenvalues, and
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itis very nearly 4/ 73, for the nearest pair. This implies that the contributions of the
“mean field” and of the nearest pair to the growth are nearly the same, as observed
by Kandrup et al . (1992).

3. Discussion

1. The number of positive eigenvalues of G changes as particles move about.
Changing numbers of positive and negative eigenvalues have been known for
some time (Miller, 1972). They indicate a changing dimensionality of the stable
and unstable regions. There are always three zero eigenvalues, which correspond
to rigid displacements of the entire system in any of three orthogonal directions.
2. The number of positive eigenvalues is about 1.2n, where » is the number of
particles. This ratio is attained for n > 10.

3. There are no duplicate eigenvalues, save for the three zero cases. Occasional
duplications require special configurations that reduce them to a set of measure
Zero.

4. The formulation presented here takes the discrete particle nature of n—body
systems into account explicitly. Many-body interactions are included up to the full
number of particles. Systems with large numbers of particles show exponential
trajectory separation, up to and including the infinite numbers implied in some
analytic models.

5. The sum of all eigenvalues is zero (trace of G is zero). This means that there are
some positive, as well as some negative, eigenvalues for any n—body system.

6. The greatest positive eigenvalue is well approximated by 4/d>, where d is the
separation of the nearest pair of particles anywhere within the configuration. It
contributes about 40% of the sum of all positive eigenvalues. The most negative
eigenvalue is near —2/d°.

7. This formulation shows why separations projected onto the configuration space
and onto the velocity space each grow at the same rate, as noted by Kandrup and
Smith (1991). They’re tightly coupled, since the full system is actually described
by the 6n X 6n—matrix M.

8. There is nothing intrinsic in the arguments presented here to indicate that basic
e—folding rates should be a few per crossing time. Estimates for e—folding rates
of trajectory separation entail averages of G over realistic trajectories as the unper-
turbed system explores the phase space.

9. An heuristic argument permits an estimate of the e—folding rate for trajectory
separation. It yields estimates of a few per crossing time, like those of (Kandrup
et al., 1994) and earlier papers cited there. Severe approximations are required, but
it provides a different way of looking at the problem of trajectory separation.

10. The changing numbers of positive (and of negative) eigenvalues along an
actual trajectory demonstrates that the gravitational n—body system is not an
“Anosov system” (such systems are sometimes called “C-systems", (Arnold and
Avez, 1968)).
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